
sa pa Safe MultiProcessing Architectures

at the University of Washington

Bulk Disambiguation of
Speculative Threads in Multiprocessors

Luis Ceze, University of Washington

National Institute of Informatics, Tokyo

Who Am I?

•Joined University of Washington in Fall’07

•How I spent the second half of my 20s:
• at UIUC as a graduate student in Computer Architecture

• research on multiprocessor architectures and compilers

• before UIUC: IBM Research: Blue Gene supercomputer

•Born in São Paulo, Brazil, living in the US for ~9 years

2

My Current Research

•Areas: Computer Architecture/PL/Systems

•Key projects:
• making multiprocessors deterministic

• detecting and avoiding concurrency bugs

• understanding parallel program behavior with graphs

3

Who Are You? :)	

4

Talks Roadmap

•September 10:
• Intro, Speculative Execution, Bulk Disambiguation

•September 11:
• Memory Models, Efficient Enforcement of Sequential Consistency

•September 14:
• Determinism in Shared-Memory Multiprocessors

•September 15:
• Concurrency Bugs, Atomicity Violations, How to Prevent Them

• My view of what is hot

5

How many times have you seen this plot?

0

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
er

fo
rm

an
ce

 (v
s.

 V
A

X
-1

1/
78

0)

From Hennessy and Patterson, Computer Architecture:
A Quantitative Approach, 4th edition, October, 2006

6

Shared Memory Multiprocessors are
Ubiquitous...

7

•All processor manufacturers offer multi-cores
• lower design complexity

• better power efficiency

•Sequential programs unlikely to run much faster

➡Need to make parallel programs ubiquitous as well

Who wrote parallel programs before?

•How did you find concurrency?

•How did you express parallelism?

•How did you debug your program?

•Did it scale?

•Machine model for the lectures:
• shared memory

• prevalent model, arguably easier to program than message passing

8

Why are multiprocessors scary?

• It is hard to find concurrency in general-purpose
applications

•Synchronization is error-prone

•Non-deterministic behavior

•Hard to debug

•Memory consistency models typically obscure

➡But we need to make multicores work, the HW/SW
industries are betting on this!

9

Co
m

pi
le

rs
Ap

ps Multicore
Vendors

$100+B industry

From Bob Colwell’s talk at FCRC

Architecture Support is Key

10

Simple machine model
shared memory, sequential consistency

deterministic behavior

Fewer correctness requirements
speculative parallelization with hardware safety net (TLS)

Primitives for better programming models
synchronization (TM, Colorama)

Hooks for debugging

Innovations in the architecture won’t be
transparent to the software

ld X
...
...

...
st X
...

Thread-Level Speculation (TLS)

Sequential
......

...
ld X
ld Y
...

T0 T1

Transactional Memory (TM)

...
st X
...

A

B

A

T0 T1

...
st X
...

ld X
...
...

B

Transactional Memory/TLS

11

...
ld X
ld Y
...

commit
...re-execute

!

!

re-execute

ld X
...
...

Replacement for locks: no need
to worry about deadlocks,
mapping, ...

No need to prove parallelism. Original
sequential order is a safety net.

12

Compilers cannot parallelize, why not?
TLS: Assume no dependences, hardware verifies

for(i=0;i<n;i++) {
 X[Y[i]] = X[Z[i]]...
}

Sequential

for(; ;i++) {
 X[Y[i]] = X[Z[i]]...
}

for(; ;i++) {
 X[Y[i]] = X[Z[i]]...
}

TLS Task A

TLS Task B

 i=0 i<n/2

 i=n/2 i<n

TLS Example

13

B

TLS Hardware:
Tracks data accesses at run-time
Detects dependence violations
Kills and restarts tasks

Ti
m

e

Sequential
Ti

m
e

TLS (no dep violations)

Ti
m

e

TLS (dep violation)

A A A

B

B

B

TLS Example

Requirements for Speculative Execution

14

✓Monitor and enforce data dependences across threads

✓Manage buffering of speculative state

•How typically done?
• piggyback on coherence protocol, modify L1 cache

➡Our goal: Simplify concepts and implementation

Current Mechanisms

15

Address Disambiguation

•enforce data dependences

rd X

wr X

Address Disambiguation
•enforce data dependences

rd X
wr X

Discard Incorrect State
•invalidate•squash

Thread ID

A

B
A

Multiple Speculative
Threads per Cache

•Leverage coherence protocol

•Extend primary caches

•Shortcoming:

•Tight coupling with critical components

A

B

A

Multiple Speculative

Threads per Cache wr Y

Discard Incorrect State

•invalidate•squash

Thread ID

X

wr Y

‣eager

‣lazycommit

Proposal: Bulk Operations

•Encode addresses accessed by thread in signatures

•Support signature operations in hardware
• Process sets of addresses at once ⎯ in bulk

•Use signature operations as building blocks to:
• Monitor and enforce data dependences across threads

• Manage buffering of speculative state

16

Read

Write

R

W

Example - Bulk Address Disambiguation

17

✓commit W0

W0 = sig(B,C)
R0 = sig(X,Y)

W1 = sig(T)
R1 = sig(B,C)

(W0 ∩ R1) ∨ (W0 ∩ W1)

Thread 0 Thread 1

ld X
st B
st C
ld Y

ld B
st T
ld C

Bulk Operations Pros & Cons

✓Conceptual and implementation simplicity

✕ Inexact operations (superset)

✓Correctness is guaranteed

✓Competitive performance compared to current
schemes

➡Evaluated in the context of TLS & TM

18

Outline

•Introduction

•Signatures and Signature Operations

•Commit Process using Signature Operations

•Evaluation

•Conclusion

19

Permute

. . .

Address

Signature

Accumulating Addresses into Signatures

20

S1

S1 ∩ S2

S2

intersection

S1 ∪ S2

S1 S2

union

S

S = ∅ ?

T/F

is empty?

Address
S

Signature

Encode

∩
= ∅?

a ∈ S

a

T/F

membership

Signature Operations

21

S1

S1 ∩ S2

S2

intersection
S1 ∪ S2

S1 S2

union

S

S = ∅ ?

T/F

is empty?

Address
S

Signature

Encode

∩
= ∅?

a ∈ S

a

T/F

membership

S

!(S)
Lo

gi
c Cache

set
bitmask

decode

Bulk Disambiguation

22

(WC ∩ RR ≠ ∅) ∨ (WC ∩ WR ≠ ∅)

•Set operations map directly to signature operations

•Can choose disambiguation granularity
• depends on the address encoded (line, word or byte)

• reduce squashes due to false sharing

•Encoding may cause unnecessary squashes

commit

Committing
(C)

WC

Receiving
(R)

Composed Operation: Signature Expansion

23

∈

Selected line
addresses

Signature

!

FSM

All valid line addresses from
selected cache set

•Select lines in the cache that belong to the signature
• used in bulk invalidations

Cache

Tags Data

Index

Bulk Invalidation

•Used in the receiver cache to:
• invalidate lines written by the committing thread

(using committing thread’s signature WC)

• if thread squash, discard speculative state (using
local write signature WR)

24

Signature
Signature
Expansion

Invalidate
Lines

commit

Committing
(C)

WC

Receiving
(R)

X

X

R Cache

WC

R Cache

WR

Commit Process

25

Bulk invalidation of
cache using WR

Bulk disambiguation
WC ∩ RR ≠ ∅ ∨ WC ∩ WR ≠ ∅

Squash ?

Send out WC

Set WC = RC= ∅

Set WR = RR= ∅

Y

Bulk invalidation of
cache using WC

N

commit

Committing
(C)

WC

Receiving
(R)

Thread C commits

Committing Thread (C)

Thread R receives WC

Receiving Thread (R)

All B
ulk-based

operations

of
Versions

W Signature R Signature

Signature
Functional Units Controller

Processor

Cache and
Cache/Coherence

Controller

Network

Bulk Disambiguation Module

26

Multiple
Speculative
Threads in
Processor

Standard
Interface

Why Simpler Architecture?

27

•Compact representation of sets of addresses

•Well-defined operations that map directly into hardware

•No tight coupling with coherence protocol or cache
implementation

See paper for more details

Forwarding Speculative Values in TLS

28

More speculative

Thread i Thread i+2
Wi

Wshi Spawn

Wshi

Wi

Wi

Thread i+1

Evaluation

•TM
• Modified Jikes RVM to insert transaction annotations

• SPECjbb2000, Multithreaded Java Grande applications

•TLS
• Binaries generated by POSH TLS compiler [PPoPP’06]

• SPECint 2000

•Used SESC simulator [sesc.sourceforge.net]

29

Signature Accuracy

30

Signature Size (bits)

•2 Kbit signature:
• moderate compressed size (~375b)

• few false positives (~5%)

0

7.5

15.0

22.5

30.0

512 576 800 1024 1344 1824 2048 4096 5120 16448

Fa
ls

e
P

os
iti

ve
s

(%
)

C
om

p
re

ss
ed

 S
iz

e
(b

its
)1500

1125

750

375

0

Performance in TLS

31

0

0.25

0.50

0.75

1.00

1.25

1.50

SPECint (GeoMean)

Eager Lazy Bulk

•Bulk: Only 5% performance degradation over Eager

•Most performance loss comes from Eager→Lazy

S
p

ee
d

up
 N

or
m

al
iz

ed
 t

o
S

eq
ue

nt
ia

l

Performance in TM

32

0

0.2

0.4

0.6

0.8

1.0

1.2

Java Apps (GeoMean)

Eager Lazy Bulk

S
p

ee
d

up
 N

or
m

al
iz

ed
 t

o
E

ag
er

•Bulk performance degradation over Lazy negligible

You will also find on the paper...

33

•Transaction nesting using multiple pairs of signatures

•Overflow and context switch discussion

•In-depth characterization (including bandwidth)

•Supporting forwarding of speculative values in TLS

Other Uses for Speculative Execution

•Prefetching

•Fault tolerance

•Simplifying code generation

•...

34

Conclusion

•Bulk-only design of speculative multithreading
• for TM and TLS

•Major conceptual and implementation simplification

•Competitive performance (~5% degradation)

•Next Lecture: Enforcing SC efficiently

35

