Bulk Disambiguation of
Speculative Threads in Multiprocessors

Luis Ceze, University of Washington

S a a Safe MultiProcessing Architectures
at the University of Washington

National Institute of Informatics, Tokyo




Who Am 1?

¢ Joined University of Washington in Fall’O7

e How | spent the second half of my 20s:
e at UIUC as a graduate student in Computer Architecture
¢ research on multiprocessor architectures and compilers

e before UIUC: IBM Research: Blue Gene supercomputer

e Born in S3o Paulo, Brazil, living in the US for ~9 years




My Current Research

e Areas: Computer Architecture/PL/Systems

¢ Key projects:
e making multiprocessors deterministic
¢ detecting and avoiding concurrency bugs

¢ understanding parallel program behavior with graphs




Who Are You? :)




Talks Roadmap

e September 10:

e Intro, Speculative Execution, Bulk Disambiguation

e September 11:

e Memory Models, Efficient Enforcement of Sequential Consistency

e September 14:

e Determinism in Shared-Memory Multiprocessors

e September 15:
e Concurrency Bugs, Atomicity Violations, How to Prevent Them

e My view of what is hot




How many times have you seen this plot?

10000

From Hennessy and Patterson, Computer Architecture: X 2 - &
-
Al Quantitative Approach, 4th edition, October, 2006 -
@
1000 === -==== - - - - - - - mmmmmmm - -’- @ € ]
2 -
_ <
§ 100 ----------------------------------‘--’ ------------------------------
g
% -
>
: o
o @
% 10 F-------c-cccccmenn Y Sl BB
£ K4
S
¢ -
(I I i e T I I IR
0

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006




Shared Memory Multiprocessors are
Ubiquitous...

¢ All processor manufacturers offer multi-cores
¢ lower design complexity

¢ better power efficiency

e Sequential programs unlikely to run much faster

=Need to make parallel programs ubiquitous as well




Who wrote parallel programs before?

e How did you find concurrency?

e How did you express parallelism?
e How did you debug your program?
eDid it scale?

e Machine model for the lectures:
¢ shared memory

¢ prevalent model, arguably easier to program than message passing




Why are multiprocessors scary?

oltis hof SR
applicd @

e Synchr| 4
e Non-d¢
* Hard tc

QT WS/ G -, Multicore
3 Y , Vend(')"rs -
2 ey 3 /._ d Y 2 S N
=But wq R B i</ e it
industr) B8 |

-

From Bob Colwell’s talk at FCRC




Architecture Support is Key

4 )

Hooks for debugging
_—
Fewer correctness requirements

speculative parallelization with hardware safety net (TLS)
4 ™\

Innovations in the architecture won’t be
transparent to the software

y

= SYTICTHITOMNMNZAatOrT ( 1ivl, UOIOIdiTid)
Simple machine model

shared memory, sequential consistency

deterministic behavior

10




Transactional Memory/TLS

Transactional Memory (TM)

Thread-Level Speculation (TLS)

T0 T1
' . . .
«<—>|st X
lcommit
re-execute
| d X
ld Y
v. .. |

Replacement for locks: no need
to worry about deadlocks,

mapping, ...

Sequential T0

Alst X

ld X

No need to prove parallelism. Original
sequential order is a safety net.

11




TLS Example

Sequential ::>

for(1=0;1<n;i1++) {

}

X{Y[i]] = X[(2[i]]...

o Compilers cannot parallelize, why not?
o TLS: Assume no dependences, hardware verifies

TLSTask A ::

TLSTask B ::

for(i=0;i<n/2;i++) {

}

X[Y[i]] = X[(Z[i]]...

for(i=n/2;1<n;i++) {

}

X[Y[i]] = X[(Z[i]]...

12




TLS Example

e TLS Hardware:

e Tracks data accesses at run-time
¢ Detects dependence violations
o Kills and restarts tasks

Sequential TLS (no dep violations)

Time
Time

TLS (dep violation)

13




Requirements for Speculative Execution

v Monitor and enforce data dependences across threads
v'Manage buffering of speculative state

e How typically done?

¢ piggyback on coherence protocol, modify L1 cache

= Qur goal: Simplify concepts and implementation

14




Current Mechanisms

Address Disambiguation
*enforce data dependences

rd X

Discard Incorrect State
esquash *invalidate

=3

=

/

er/

Multiple Speculative
Threads per Cache

A

B
A

¢ | everage

e Shortcq

 Tigt

rd

mponents

15




Proposal: Bulk Operations

e Encode addresses accessed by thread in signatures

Read R

Write W

e Support signature operations in hardware

e Process sets of addresses at once — in bulk

¢ Use signature operations as building blocks to:

e Monitor and enforce data dependences across threads

e Manage buffering of speculative state




Example - Bulk Address Disambiguation

Thread 0O Thread 1

Wo = sig(B, O
Ro = sig(X, Y)

Jcommit ...................... | VVO

17




Bulk Operations Pros & Cons
Conceptual and implementation simplicity
X Inexact operations (superset)
Correctness is guaranteed

Competitive performance compared to current
schemes
=Evaluated in the context of TLS & TM

18




Outline

e |ntroduction

e Signatures and Signature Operations

e Commit Process using Signature Operations
e Evaluation

e Conclusion

19




Accumulating Addresses into Signatures

Address

\4

Permute

\

IS

Signature

20




Signature Operations

S, NS,
intersection

é[' membership

e S= 7

is empty?

aEesS
membership

21




Bulk Disambiguation

Committing  Receiving

© ®
(We n Rrz @) v (We n Wr 2 )
commit ¢-.. .4
Wec

e Set operations map directly to signature operations

e Can choose disambiguation granularity
e depends on the address encoded (line, word or byte)

¢ reduce squashes due to false sharing

e Encoding may cause unnecessary squashes

22




Composed Operation: Signature Expansion

e Select lines in the cache that belong to the signature

e used in bulk invalidations

FSM

Index

Cache

o

— Signature

S

Tags Data

—
-

g

l

Selected line
addresses

All valid line addresses from
selected cache set

23




Bulk Invalidation

Committing Receiving

)

commit &-

R)

-

Signature
Expansion

e Used in the receiver cache to:

¢ invalidate lines written by the committing thread
(using committing thread’s signature W)

local write signature Wg)

(
................ > .
................ » |nvalidate
................ > .
................ > Lines

R Cache

n—

R Cache

e if thread squash, discard speculative state (using W %
R

24




Commit Process

Receiving Thread (R)

Committing Receiving _
(C) R) 4‘ Thread R  receives Wec )' N
§

commit ¢

l

Send out W¢

| Set We=Rc=9 - - Bulk invalidation of
- cache using W¢
N —

25




Bulk Disambiguation Module

Standard
# of | [
Versions'f J J
/ W Signature R Signature
/ \4
4 Signature Controller Cache and
Multiple / Functional Units = Cache/Coherence
. Controller
Speculative $
Threads in

Processor Network

26




Why Simpler Architecture?

e Compact representation of sets of addresses
¢ \Well-defined operations that map directly into hardware

e No tight coupling with coherence protocol or cache
implementation

See paper for more details

27




Forwarding Speculative Values in TLS

More speculative

>
Thread i Thread i+1 Thread i+2
Wi
A ® ®
Wahi Spawn "
2 2 ®
Vo @ Wani o v®
.......................................................... '
Wi

28




Evaluation

oTM

e Modified Jikes RVM to insert transaction annotations

e SPECjbb2000, Multithreaded Java Grande applications

eTLS
¢ Binaries generated by POSH TLS compiler [PPoPP’06]
e SPECint 2000

e Used SESC simulator [sesc.sourceforge.net]

29




Signature Accuracy

30.0 1500

S

8 225 1125

=

‘0

s 15.0 750

@

P 75 375
0 0

512 576 800 1024 1344 1824 2048 4096 5120 16448
Signature Size (bits)

o2 Kbit signature:
e moderate compressed size (~375b)

e few false positives (~5%)

Compressed Size (bits)

30




Performance in TLS

" Eager . Lazy Bulk

1.50

1.25
1.00
0.75
0.50
0.25

Speedup Normalized to Sequential

SPECint (GeoMean)

e Bulk: Only 5% performance degradation over Eager

® Most performance loss comes from Eager—Lazy

31




Performancein TM

" Eager . Lazy Bulk

O A a4
o O DN

o
~

Speedup Normalized to Eager
o o
N o

o

Java Apps (GeoMean)

¢ Bulk performance degradation over Lazy negligible

32




You will also find on the paper...

e Transaction nesting using multiple pairs of signatures
e Overflow and context switch discussion
¢ In-depth characterization (including bandwidth)

e Supporting forwarding of speculative values in TLS

33




Other Uses for Speculative Execution

¢ Prefetching
¢ Fault tolerance

e Simplifying code generation

34




Conclusion

¢ Bulk-only design of speculative multithreading
e for TM and TLS

e Major conceptual and implementation simplification

e Competitive performance (~5% degradation)

e Next Lecture: Enforcing SC efficiently

35




