
sa    pa Safe MultiProcessing Architectures

at the University of Washington

Bulk Disambiguation of 
Speculative Threads in Multiprocessors

Luis Ceze, University of Washington

 

National Institute of Informatics, Tokyo



Who Am I?

•Joined University of Washington in Fall’07

•How I spent the second half of my 20s:
• at UIUC as a graduate student in Computer Architecture

• research on multiprocessor architectures and compilers

• before UIUC: IBM Research: Blue Gene supercomputer

•Born in São Paulo, Brazil, living in the US for ~9 years
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My Current Research

•Areas: Computer Architecture/PL/Systems

•Key projects:
• making multiprocessors deterministic

• detecting and avoiding concurrency bugs

• understanding parallel program behavior with graphs
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Who Are You? :)	
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Talks Roadmap

•September 10: 
• Intro, Speculative Execution, Bulk Disambiguation

•September 11:
• Memory Models, Efficient Enforcement of Sequential Consistency

•September 14:
• Determinism in Shared-Memory Multiprocessors

•September 15:
• Concurrency Bugs, Atomicity Violations, How to Prevent Them

• My view of what is hot 
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How many times have you seen this plot?
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From Hennessy and Patterson, Computer Architecture: 
A Quantitative Approach, 4th edition, October, 2006
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Shared Memory Multiprocessors are 
Ubiquitous...
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•All processor manufacturers offer multi-cores
• lower design complexity

• better power efficiency

•Sequential programs unlikely to run much faster

➡Need to make parallel programs ubiquitous as well



Who wrote parallel programs before?

•How did you find concurrency?

•How did you express parallelism?

•How did you debug your program?

•Did it scale?

•Machine model for the lectures:
• shared memory 

• prevalent model, arguably easier to program than message passing
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Why are multiprocessors scary?

• It is hard to find concurrency in general-purpose 
applications

•Synchronization is error-prone

•Non-deterministic behavior

•Hard to debug

•Memory consistency models typically obscure

➡But we need to make multicores work, the HW/SW 
industries are betting on this!
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Architecture Support is Key 
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Simple machine model
shared memory, sequential consistency

deterministic behavior

Fewer correctness requirements
speculative parallelization with hardware safety net (TLS)

Primitives for better programming models
synchronization (TM, Colorama)

Hooks for debugging

Innovations in the architecture won’t be 
transparent to the software



ld X
...
...

...
st X
...

Thread-Level Speculation (TLS)

Sequential
......

...
ld X
ld Y
...

T0 T1

Transactional Memory (TM)

...
st X
...

A

B

A

T0 T1

...
st X
...

ld X
...
...

B

Transactional Memory/TLS
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...
ld X
ld Y
...

commit
...re-execute

!

!

re-execute

ld X
...
...

Replacement for locks: no need 
to worry about deadlocks, 
mapping, ...

No need to prove parallelism. Original 
sequential order is a safety net.
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Compilers cannot parallelize, why not?
TLS: Assume no dependences, hardware verifies

for(i=0;i<n;i++) {
  X[Y[i]] = X[Z[i]]...
}

Sequential

for(     ;   ;i++) {
  X[Y[i]] = X[Z[i]]...
}

for(   ;     ;i++) {
  X[Y[i]] = X[Z[i]]...
}

TLS Task A

TLS Task B

    i=0 i<n/2

    i=n/2 i<n

TLS Example
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TLS Hardware:
Tracks data accesses at run-time
Detects dependence violations
Kills and restarts tasks
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Requirements for Speculative Execution
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✓Monitor and enforce data dependences across threads

✓Manage buffering of speculative state

•How typically done? 
• piggyback on coherence protocol, modify L1 cache

➡Our goal: Simplify concepts and implementation



Current Mechanisms
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Address Disambiguation

•enforce data dependences

rd X

wr X

Address Disambiguation
•enforce data dependences

rd X
wr X

Discard Incorrect State
•invalidate•squash

Thread ID

A

B
A

Multiple Speculative
Threads per Cache

•Leverage coherence protocol

•Extend primary caches

•Shortcoming:

•Tight coupling with critical components

A

B

A

Multiple Speculative

Threads per Cache wr Y

Discard Incorrect State

•invalidate•squash

Thread ID

X

wr Y

‣eager

‣lazycommit



Proposal: Bulk Operations

•Encode addresses accessed by thread in signatures

•Support signature operations in hardware
• Process sets of addresses at once ⎯ in bulk

•Use signature operations as building blocks to:
• Monitor and enforce data dependences across threads

• Manage buffering of speculative state
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Example - Bulk Address Disambiguation
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✓commit W0

W0 = sig(B,C)
R0 = sig(X,Y)

W1 = sig(T)
R1 = sig(B,C)

(W0 ∩ R1 ) ∨ (W0 ∩ W1)

Thread 0 Thread 1

ld X
st B
st C
ld Y

ld B
st T
ld C



Bulk Operations Pros & Cons

✓Conceptual and implementation simplicity

✕ Inexact operations (superset)

✓Correctness is guaranteed

✓Competitive performance compared to current 
schemes

➡Evaluated in the context of TLS & TM
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Outline

•Introduction

•Signatures and Signature Operations

•Commit Process using Signature Operations

•Evaluation

•Conclusion
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Permute

. . .

Address

Signature

Accumulating Addresses into Signatures
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Signature

Encode

∩
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membership

Signature Operations
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Bulk Disambiguation
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(WC ∩ RR ≠ ∅) ∨ (WC ∩ WR ≠ ∅)

•Set operations map directly to signature operations

•Can choose disambiguation granularity 
• depends on the address encoded (line, word or byte)

• reduce squashes due to false sharing

•Encoding may cause unnecessary squashes

commit

Committing
(C)

WC

Receiving
(R)



Composed Operation: Signature Expansion
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∈

Selected line 
addresses

Signature

!

FSM

All valid line addresses from 
selected cache set

•Select lines in the cache that belong to the signature
• used in bulk invalidations

Cache

Tags Data

Index



Bulk Invalidation

•Used in the receiver cache to:
• invalidate lines written by the committing thread 

(using committing thread’s signature WC) 

• if thread squash, discard speculative state (using 
local write signature WR)

24

Signature
Signature
Expansion

Invalidate
Lines

commit

Committing
(C)

WC

Receiving
(R)

X

X
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Commit Process
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Bulk invalidation of 
cache using WR 

Bulk disambiguation
WC ∩ RR ≠ ∅ ∨ WC ∩ WR ≠ ∅

Squash ?

Send out WC

Set  WC = RC= ∅

Set  WR = RR= ∅

Y

Bulk invalidation of 
cache using WC 

N

commit

Committing
(C)

WC

Receiving
(R)

Thread C commits

Committing Thread (C)

Thread R receives WC

Receiving Thread (R)

All B
ulk-based 

operations



# of 
Versions

W Signature R Signature

Signature
Functional Units Controller

Processor

Cache and
Cache/Coherence

Controller

Network

Bulk Disambiguation Module
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Multiple 
Speculative 
Threads in 
Processor

Standard
Interface



Why Simpler Architecture?
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•Compact representation of sets of addresses

•Well-defined operations that map directly into hardware

•No tight coupling with coherence protocol or cache 
implementation

See paper for more details



Forwarding Speculative Values in TLS
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More speculative

Thread i Thread i+2
Wi

Wshi Spawn

Wshi

Wi

Wi

Thread i+1



Evaluation

•TM
• Modified Jikes RVM to insert transaction annotations

• SPECjbb2000, Multithreaded Java Grande applications

•TLS
• Binaries generated by POSH TLS compiler [PPoPP’06]

• SPECint 2000

•Used SESC simulator [sesc.sourceforge.net]
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Signature Accuracy
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Signature Size (bits)

•2 Kbit signature:
• moderate compressed size (~375b)

• few false positives (~5%)
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Performance in TLS
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Performance in TM
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You will also find on the paper...
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•Transaction nesting using multiple pairs of signatures

•Overflow and context switch discussion

•In-depth characterization (including bandwidth)

•Supporting forwarding of speculative values in TLS



Other Uses for Speculative Execution

•Prefetching 

•Fault tolerance

•Simplifying code generation

•...
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Conclusion

•Bulk-only design of speculative multithreading
• for TM and TLS

•Major conceptual and implementation simplification

•Competitive performance (~5% degradation)

•Next Lecture: Enforcing SC efficiently
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