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Using dynamical density functional theory (DDFT), we theoretically study Brownian self-diffusion

and structural relaxation of hard disks and compare to experimental results on quasi two-dimensional

colloidal hard spheres. To this end, we calculate the self-van Hove correlation function and distinct van

Hove correlation function by extending a recently proposed DDFT-approach for three-dimensional

systems to two dimensions. We find that the theoretical results for both self-part and distinct part of

the van Hove function are in very good quantitative agreement with the experiments up to relatively

high fluid packing fractions of roughly 0.60. However, at even higher densities, deviations between

the experiment and the theoretical approach become clearly visible. Upon increasing packing fraction,

in experiments, the short-time self-diffusive behavior is strongly affected by hydrodynamic effects

and leads to a significant decrease in the respective mean-squared displacement. By contrast, and

in accordance with previous simulation studies, the present DDFT, which neglects hydrodynamic

effects, shows no dependence on the particle density for this quantity. Published by AIP Publishing.

https://doi.org/10.1063/1.5019447

I. INTRODUCTION

Experimentally, the dynamics of colloidal suspensions in

both three (3D) and two dimensions (2D) can be tracked on

a single-particle level in real-time using optical microscopy,

allowing for the study of diffusive processes and structural

relaxation.1–8 A key quantity in determining the temporal

behavior of systems which are in a disordered phase is the

van Hove function G (r, t),9,10 which describes the probability

of finding a particle at location r at time t, given that another

particle was located at the origin at t = 0. In particular, G(r, t)

provides useful information to characterize phenomena such

as glass-2 or gel-transitions.4

The van Hove function, or its Fourier-space counterpart,

the intermediate scattering function F(k, t), can be obtained

with some computational effort in simulations; see, e.g.,

Refs. 11–16. However, in the last few years, an efficient and

reliable theoretical approach for calculating G(r, t) of a Brown-

ian liquid has also been proposed17,18 within the framework of

classical density functional theory (DFT)19 and its dynamical

counterpart (DDFT).20,21 Here, the treatment of the important

reference system of 3D hard spheres turned out to be challeng-

ing as different models gave rise to controversial results. This

included a freezing of the dynamics at unrealistically low fluid

packing fractions when compared to the formally exact pre-

dictions of computer simulations such as Brownian dynamics

or kinetic Monte Carlo methods.12,14 However, by means of

considering the crossover to zero dimensions, i.e., a cavity that

a)daniel.stopper@uni-tuebingen.de

can hold at most one particle, an excess free-energy functional

has been derived within the framework of Rosenfeld’s fun-

damental measure theory (FMT)22,23 that accurately captures

the behavior of the van Hove function up to high packing frac-

tions.24 Moreover, the method has been successfully applied

to the more complex situations of a model colloid-polymer

mixture.16

Recently, dynamical properties of hard disks, the 2D ana-

logue of hard spheres, were extensively investigated in experi-

ments considering monolayers of colloidal hard spheres.7,25,26

In particular, the mean-squared displacement (MSD) and self-

diffusion coefficients were measured at various fluid packing

fractions φ = πR2ρb, where R is the disk-radius and ρb = N /A

is the particle number density, with N as the number of

particles per area A. These quantities were found to coin-

cide quantitatively with computer simulations which do not

take solvent-mediated hydrodynamic interactions (HI) into

account,7,26 implying that for this quasi-2D system, hydro-

dynamic interactions, whilst being important at short-times,

do not significantly affect the self-diffusion of particles in

the long-time self-diffusion regime. Results from this col-

loidal system thus allow for a direct mapping between exper-

iments and theories that do not consider HI. While these

experiments have been performed in the stable liquid phase,

recently dynamic properties of 2D disk-like systems have

been investigated at the glass transition27 and in amorphous

solids.28

Importantly, a FMT-type excess free-energy functional

for hard disks has been derived by Roth et al.29 and exten-

sively benchmarked against experimental results on 2D col-

loidal hard spheres.30 However, while particle dynamics and
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structural relaxation have previously been addressed in simu-

lations, see, e.g., Refs. 31–33, a theoretical calculation of the

van Hove function for hard disks and subsequent comparison

to experiments are still lacking. In this work, we determine the

latter where we employ the theoretical description as given in

Ref. 24, which can be applied to the 2D case straightforwardly.

In particular, we compare the theoretical results for the self-

part Gs(r, t) of the van Hove function, describing the motion

of an individual test particle, to experimental results on 2D

colloidal hard spheres and find that the theory and experiment

are in excellent agreement at long times up to area fractions of

roughly φ = 0.60. However, for even higher packing fractions,

the self-part and its respective MSD given by DDFT show

some clear deviations in comparison to the experimental data.

Good quantitative agreement is also found between the dis-

tinct van Hove functions of the theory and experiment at low

and intermediate φ although, in accordance with the behav-

ior of the self-part, deviations are observed at higher packing

fractions.

The paper is organized as follows. In Sec. II, we give

an overview of the theory, including a brief introduction to

dynamic test particle theory, DDFT, and the FMT for hard

disks. Section III briefly describes the experimental and numer-

ical methods employed to determine the MSD and self-part

and distinct part of the van Hove function. Subsequently,

we present our results in Sec. IV, and finally in Sec. V, we

summarize our findings.

II. THEORETICAL BACKGROUND

In order to determine the Brownian dynamics of a system

in thermal equilibrium, the van Hove function G(r, t) is an

important and convenient quantity.10 It can be written as

G(r, t) =
1

N

〈 N
∑

i,j=1

δ(r + rj(0) − ri(t))

〉

≡ Gs(r, t) + Gd(r, t), (1)

where 〈·〉 denotes an average over all initial conditions of the

solvent and δ(·) is the Dirac delta function. Physically, G(r, t)

describes the probability that a particle i is located at position

r at time t, provided that there has been another particle j at

the origin r = 0 at time t = 0. Furthermore, by discriminating

between the cases i = j and i , j, it naturally splits into the

self-part Gs(r, t), describing the motion of the (test) particle

initially located at the origin, and the distinct part Gd(r, t),

accounting for the behavior of the surrounding particles. In

particular, for a uniform bulk system, Eq. (1) depends only on

the distance r = |r| to the origin.

Technically, G(r, t) is a correlation function on the two-

particle level, similar to the radial distribution function g(r).

In fact, for t = 0, the distinct part is exactly given by

Gd(r, 0) = ρbg(r). In the limit of very large times, we have

Gd(r, t → ∞) = ρb and Gs(r, t → ∞) = 0.10 For explicit

calculations, it is convenient to make use of the so-called

dynamic test particle theory,17 which is a dynamical exten-

sion of the well-known Percus’ static test particle theory.34 It

treats the system as a binary mixture of species s (self) con-

sisting only of the test particle and species d (distinct) which

consists of the remaining N ☞ 1 particles. Hence, in thermal

equilibrium at time t = 0, the one-body density distribution

ρd(r, t = 0) around species s is given by ρd(r, t = 0) = ρbg(r)

and ρs(r, t = 0) = δ(r). Now assume that the coordinate sys-

tem is fixed in space at the original position of the tagged

particle; thus, for times t > 0, one can then follow the time

evolution of the densities ρs(r, t) and ρd(r, t). Considering the

definition of G(r, t), we can identify ρs(r, t) ≡ Gs(r, t) and

ρd(r, t) ≡ Gd(r, t).

In particular, one can employ dynamic test particle the-

ory within the framework of DDFT in order to describe and

investigate Brownian diffusion processes. For a binary mix-

ture consisting only of the self-particle and distinct particle,

the key equation of the DDFT that we use in this work can be

written in the form of a continuity equation20,21 (we adopt the

notation of Ref. 24),

∂ρs/d(r, t)

∂t
= −∇ · js/d(r, t), (2)

where the particle current js/d(r, t) is assumed to be driven by

chemical-potential gradients21,24

js/d(r, t) = −Ds/d(r, t)ρs/d(r, t)∇βµs/d(r, t), (3)

with the inverse temperature β = 1/(kBT ). The quantities

Ds/d(r, t) denote space- and time-dependent diffusivities of the

particles; note that this is an adjustment to standard DDFT21

which assumes Ds/d(r, t) = D0, where D0 is the Stokes-Einstein

single-particle diffusion coefficient. The local chemical poten-

tial µs/d(r, t) is obtained from the functional-derivative of the

equilibrium Helmholtz free-energy functional,

µs/d(r, t) =
δF[ρs, ρd]

δρs/d(r, t)
, (4)

which is given by

F[ρs, ρd] = kBT
∑

l=s,d

∫
dr ρl(r, t)

(

ln(λ2ρl(r, t)) − 1
)

+ Fex[ρs, ρd] +
∑

l=s,d

∫
dr ρl(r, t)Vext(r, t). (5)

Here, λ is the thermal wavelength and V ext(r, t) is an arbi-

trary (time-dependent) external potential. Note that in order to

determine Gd(r, 0), one demands that V ext(r) equals the parti-

cle interactions but vanishes for all times t > 0. The first part of

Eq. (5) is the exactly known ideal-gas contribution, whereas the

intrinsic excess free-energy functional Fex[ρs, ρd] describes

the specific particle interactions. In practice, the latter quan-

tity generally is known exactly only in very few cases such as

one-dimensional hard rods,35,36 and in general approximations

have to be made. Note that employing Eqs. (3)–(5) is equal

to assuming that non-equilibrium two-body correlations are

identical to their equilibrium counterparts, which obviously is

exact for non-interaction particles,21 but provides an approxi-

mation to the dynamics of interacting particles. Nevertheless,

DDFT successfully has been applied to various situations, e.g.,

phase separation in a cavity,37 sedimentation in a gravitational

field,38 the micro-rheology of colloid-polymer mixtures,39 and

also for hard disks in confinement.40
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In this work, we describe the hard-disk interactions within

the framework of FMT,22,29 i.e., the excess free-energy func-

tional Fex is given by a volume integral in two dimensions over

an energy density Φ,

βFex[ρs, ρd] =

∫
drΦ({nα}), (6)

which itself depends on a set of weighted densities nα(r). These

are defined as convolutions of the one-body density ρ(r) with

certain weight functions ωα(r),

nα(r) =
∑

i=s,d

∫
dr′ ρs/d(r′)ωα(r − r′), (7)

where the weight functions characterize the geometry of the

particles and can be of scalar-, vector- (−→· ), or second-rank (←→· )

tensor-type. Note that while the self-particle and distinct par-

ticle are formally treated as different species, physically they

are identical and hence the weight functions do not depend on

the species. This restriction, of course, is straightforward to

lift in order to treat multi-component mixtures. For instance,

ω2(r) = Θ(R ☞ |r|) describes the disk area, ω0(r) = δ(R ☞ r)

characterizes the surface, −→ω2(r) = rδ(R− r)/r is a surface nor-

mal, and←→ω2(r) = rrδ(R − r)/r2 is the tensorial contribution.

The free-energy density Φ reads29

Φ({nα}) = −n0 ln(1 − n2) +
1

4π(1 − n2)

×

(

19

12
n2

0 −
5

12
−→n2 ·
−→n2 −

7

6
←→n2 ·
←→n2

)

, (8)

which has been proven to give accurate results for the radial

distribution function g(r) of hard-disk mixtures in comparison

to experiments.30 Note that←→n2 ·
←→n2 denotes a full contraction

of the tensors.

In previous theoretical studies addressing Brownian dif-

fusion of three-dimensional colloidal hard spheres,12,14,24 it

turned out that the quality of the results compared to those

from simulations crucially depends on (i) the choice of

the underlying functional characterizing hard-body correla-

tions and (ii) the precise treatment of the self-component

s which represents one single particle. Generally, the free-

energy functionals in DFT are of grand-canonical character,

and fluctuations are known to yield unphysical contributions

in systems where particles are treated explicitly.41,42 Impor-

tantly, a method has been derived which removes possible

self-interactions within the free-energy functional by con-

sidering the zero-dimensional crossover and a proper mod-

eling of the grand potential in that situation. The main

result is simply to subtract the contribution of the individ-

ual self-particle from the full (mixture) excess free-energy

functional24

F
q
ex[ρs, ρd] = Fex[ρs, ρd] − Fex[ρs], (9)

which is referred to as “quenched” functional (hence the super-

script “q”). While the free-energy functional employed in

Ref. 12, which is based on the relatively simple Ramakrishnan-

Yussouff functional,43 implicitly obeys the form of Eq. (9), it

predicts a freezing of the dynamics at unrealistic low pack-

ing fractions. Only FMT-based functionals along with Eq. (9)

so far have shown to not yield unsatisfactory results for the

van Hove function in terms of structural mismatches between

DDFT and simulations.14,24

However, even with a proper removal of self-interactions,

the standard DDFT is not capable of adequately describing the

crossover from free diffusion at very short times to the slowed

down long-time self-diffusivity Ds < D0. The MSD given by

the standard DDFT typically tends to decrease at interme-

diate times but subsequently predicts the particles to speed

up to exhibit ideal-gas diffusion in the long-time limit.12,14,24

Hereby, the theory predicts a behavior of the MSD which is

akin to superdiffusivity, which is unphysical in the present con-

text of overdamped equilibrium dynamics. This behaviour of

the MSD is due to the fact that the decay of Gs(r, t) in the stan-

dard DDFT can be affected only by structural information that

is encoded within the respective distinct part of the van Hove

function. However, for long times, the correlations in Gd(r, t)

decay to a flat bulk profile and thus structural information is

lost, with the standard DDFT therefore yielding the (incorrect)

ideal-gas diffusivity.

This shortcoming can be bypassed by assuming space- and

time-dependent diffusivities Ds/d(r, t) as done in Eq. (3), in

order to capture effects of high packing fractions on the (self-)

diffusive behavior. Note that a similar adjustment of standard

DDFT, for instance, has also been employed in descriptions

for sedimentation processes of colloidal hard spheres.38 Obvi-

ously, the approach (3) requires that D(r, t) is known at least

numerically. As in a previous publication addressing diffu-

sion in a model colloid-polymer mixture,16 we obtain D(r, t)

via a suitable fit to kinetic Monte Carlo simulations for the

present system,7 and subsequently by generalizing to inhomo-

geneous situations. The fit function that we employ is given

by

D(φ)/D0 = exp(−1.74φ + aφ3 + bφ4 + cφ5), (10)

with a = ☞13.25, b = 46.72, and c = ☞48.01, which gives

an accurate fit to the data and obeys the correct low packing

fraction behavior7

D(φ)/D0 = 1 − 1.74φ + O(φ2), (11)

as is demonstrated in Fig. 1. Note that, besides the employed

fit to simulations, one can alternatively make use of simpler

theoretical approximations for D(φ). An adequate choice is a

result obtained from Leegwater and Szamel that is valid in 3D

FIG. 1. Long-time self-diffusivity D as a function of area fraction φ as

obtained from Monte-Carlo simulations and experiments7 (open squares and

red stars), the fit according to Eq. (10), theoretical prediction with γ = 1.68,

Eq. (12), and the low packing fraction limit 1 − 1.74φ + O(φ2).
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and 2D,44

D(φ) =
D0

1 + γφg(σ+)
, (12)

where for hard disks (as well as for hard spheres) γ = 2 and

g(σ+) = (1 ☞ φ/2)/(1 ☞ φ)2 is the contact value of the radial

distribution function g(r) from 2D scaled particle theory.45

For instance, the authors employed Eq. (12) in Ref. 24 for

calculating the van Hove function of 3D hard spheres, and in

Ref. 26, good agreement with present experiments was found

for γ = 1.68 (see dashed line in Fig. 1). However, here, we

make use of the fit to computer simulations, which provides

the most accurate theoretical description of D(φ) to be used

within DDFT.

The generalization to inhomogeneous situations is

achieved by replacing φ via a weighted-density approximation

with φ→ n
s/d

2
(r, t), where

n
s/d

2
(r′, t) =

∫
dr ρs/d(r′, t)Θ(R − |r − r′ |) (13)

is the 2D-volume weighted density. The diffusivity of the self-

particle, Ds(r, t) ≡ Ds(n
d
2
), is evaluated at nd

2
(r, t) (as it is

influenced only by its surrounding neighbours when neglecting

HI), whereas the distinct particles are influenced by the self-

particles as well as other surrounding distinct particles, i.e.,

Dd(r, t) ≡ Dd(nd
2
+ns

2
). As we will see in Sec. IV, this weighted-

density approximation yields very good results up to packing

fractions of φ ≈ 0.60 but can give rise to unphysical behavior

at even higher densities.

III. EXPERIMENTAL AND NUMERICAL METHODS

Experimentally, the quasi-2D colloidal system was intro-

duced in Ref. 30 and has previously been shown to be an

excellent model for hard disks.7,30 The system is composed of

monolayers of melamine formaldehyde particles (Micropar-

ticles GmbH), with a hard sphere diameter of σ = 4.04 µm,

that are dispersed in a 20/80 v/v% ethanol/water mixture and

allowed to sediment to form a monolayer on the base of a

glass sample cell. Note that the height of the sample cell is

much larger than the particle diameter, ∼50 σ. The high mass

density of the particles results in a gravitational length of

0.02 µm, and thus, out-of-plane fluctuations are negligible

and the system is structurally two-dimensional. The area frac-

tion, φ, is varied over a range from approximately φ = 0.1 to

0.65. The system is imaged at a rate of 2 frames/s for up to

30 min using a simple video-microscopy setup, consisting of

an Olympus CKX41 inverted microscope with a 40× objective

and equipped with a PixeLink CMOS camera (1280 × 1024

pixels). Standard particle tracking software46 is used to obtain

particle coordinates, with an error of 12± 10 nm in the particle

position.

The self-part of the van Hove function, Gs(x, t), is

computed directly from particle coordinates in one spatial

dimension as25

Gs(x, t) =

〈

1

N

N
∑

j=1

δ[x − xj(t) + xj(0)]

〉

, (14)

where for a homogeneous, isotropic system in 2D, calcula-

tion of Eq. (14) for movement in the x or y direction leads to

identical results such that Gs(x, t) = Gs(y, t) = Gs(r, t). The

distinct part of the van Hove function, Gd(x, t), is also calcu-

lated directly from particle coordinates according to Eq. (1)

with i , j. In both cases, quantities are averaged over multiple

particles and time origins.

The DDFT along with the 2D-FMT is discretized on a

standard rectangular 2D grid with an equidistant spacing of

∆ = R/30 along each axis. In order to minimize finite size

effects, the number of grid points is N = (1024)2 for packing

fractions up to φ= 0.56 and N = (2048)2 for the highest packing

fraction φ = 0.65. Note that while the problem is radially sym-

metric, which in principle allows for an analytical reduction

of the FMT to effectively one dimension, the resulting equa-

tions no longer include convolutions, making the numerical

evaluation much more inefficient than using standard Fourier

methods that can be applied in the full 2D case—this is in

contrast to three dimensions, where the effectively 1D equa-

tions still include convolutions. In particular, we employ a

massively in-parallel computation of the DDFT and FMT on

graphics cards.47 The equilibrium density profile Gd(r, 0) is

obtained by a standard minimization of the grand potential

Ω[ρ] = F[ρ] + ∫ drρ(r)(V ext(r) ☞ µ) using Percus’ test par-

ticle limit; i.e., the external potential V ext(r) acting on the

fluid is equal to the particle interactions. The self-part ρs(r, 0)

is initialized with a strongly peaked Gaussian distribution.

For t > 0, the two-component DDFT is integrated forward

in time without any external potential, V ext(r) = 0. Since we

are only interested in the dynamics up to times t ∼ τB, we

employed a simple Euler-forward algorithm using time steps of

∆t = 10☞5τB.

IV. RESULTS AND DISCUSSION

Using the theory as outlined in Sec. II, in Figs. 2(a)–2(d),

we display the self-part of the van Hove function Gs(r, t) (solid

lines) against the experimental results (individual symbols)

for area fractions φ = 0.1 (a), 0.39 (b), 0.56 (c), and 0.65 (d),

where the abscissae are displayed on a logarithmic scale. Note

that the highest packing fraction of 0.65 is rather close to

the experimentally found first-order transition from a liquid

to a hexatic phase at φ ≈ 0.68.8 Times are in reduced units,

t∗ = t/τB, where t∗ = 0.012 (green triangles), 0.191 (black dia-

monds), 0.835 (blue circles), and 1.443 (red squares). For a

low area fraction of φ = 0.1, which is in the dilute limit, we see

that DDFT and experiments coincide perfectly, consistent with

the fact that both the DDFT itself and the excess free-energy

functional become the most reliable at low packing fractions.

More importantly, the self-part given by DDFT is also in

excellent agreement with the experiments up to area fractions

φ ≈ 0.60 for long times, as is demonstrated in Figs. 2(b)

and 2(c). For short times, the theory is a little too broad com-

pared to the experiments, which is to be expected, as here the

decay of the experimental Gs(r, t) is affected by hydrodynamic

effects. For the highest packing fraction φ = 0.65, the com-

parison between the experiment and theory shows some clear

quantitative differences. In particular, at intermediate times

t∗ ≈ 0.2–0.8, the DDFT predicts a clear deviation from a

Gaussian shape (which would be a parabola on the loga-

rithmic scale). While experiments also find that Gs(r, t) is
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FIG. 2. Self-part ρs(r, t) = Gs(r, t) of the van Hove function for area fractions φ = 0.1 (a), 0.39 (b), 0.56 (c), and 0.65 (d). Individual points show the experimental

results at times t∗ = 1.443 (red squares), 0.835 (blue circles), 0.191 (black diamonds), and 0.012 (green triangles). Solid lines show the predictions of DDFT.

non-Gaussian at these times,25 this is not directly inferable on

the scales shown here. For longer times, the agreement between

the theory and experiment becomes quantitatively good

again.

In Fig. 3, we plot the respective MSD, δr2(t), normalized

with respect to the ideal-gas result δr2
ideal

(t) = 16R2t∗. The

MSD is obtained from Gs(r, t) (solid lines) via

δr2(t) =

∫
dr r2Gs(r, t), (15)

whereas experimentally the MSD is obtained from its statis-

tical definition δr2
exp(t) = 〈[r(t) − r(0)]2〉, where r(t) is the

position of a tagged test-particle at time t and 〈·〉 is an average

over distinct time origins and all particles. The experimental

area fractions are φ = 0.1 (green diamonds), 0.25 (blue stars),

0.39 (pink squares), 0.56 (orange up-triangles), and 0.65 (red

down-triangles). Note that the renormalization with respect

to the infinite-dilution single-particle diffusion coefficient is

a deliberate choice: in Ref. 7, it has been demonstrated that

at long times, the reduction in the diffusion coefficient with

increasing density is precisely that expected from only the

FIG. 3. Mean-square displacement δr2 normalized to the ideal-gas versus

time t∗ on a double-logarithmic scale of the experiments (individual sym-

bols) for area fractions φ = 0.1 (green diamond), 0.25 (blue stars), 0.39 (pink

squares), 0.56 (orange up-triangles), and 0.65 (red down-triangles). The black

solid lines are the respective DDFT results.

effect of direct interactions; i.e., the reduction in the short-time

diffusion coefficient due to solvent-mediated hydrodynamic

interactions (HI) does not change the time scales relevant at

long times. Hence, to compare experiments to theory (or sim-

ulations), it is only necessary to take into account the single

particle diffusivity.

As indicated by the self-part of the van Hove function,

Gs(r, t), we see that theory accurately captures the experi-

mental long-time behavior up to φ = 0.56. By contrast, the

short-time dynamics in the experiments are clearly slowed

down with respect to the DDFT due to the fact that with increas-

ing φ, experimentally, the short-time relaxation is found to

be significantly affected by HI (see Ref. 7). Physically, this

corresponds to the regime, where the test (or, equivalently,

self-particle) has not experienced direct interactions with the

shell of neighbouring particles but has been affected by HI.

The agreement between the MSD from the experiment and

theory at long times but not at short times again highlights

that HI effectively do not affect the long time self-diffusion in

the experiment; i.e., the reduction in the long-time diffusion

coefficient of the particles can be accounted for by direct inter-

actions alone and does not appear to reflect the reduced short

time mobility of the particle.

The differing short-time behavior between DDFT and

experiments results in a significant crossover from free dif-

fusion to the slowed down long-time self-diffusion at inter-

mediate times t∗ ≈ 0.05–0.5 in the DDFT results, which is

less pronounced in the experiments. We have verified that the

behavior of the MSD given by the theory is in good quantita-

tive agreement with simulations up to φ ≈ 0.56 for all times

(not shown here). However, as indicated by the behavior of the

self-part, at φ = 0.65, the respective MSD seems to capture the

desired long-time diffusivity, but its intermediate time behav-

ior between t∗ ≈ 0.3 and 1.0 shows a curve with a slope that is

greater than unity. Considering that the present DDFT aims to

describe overdamped equilibrium dynamics, such a behavior

of the MSD is strictly speaking unphysical. This inadequacy

can be traced back to the weighted-density approximation

employed in order to obtain a space- and time-dependent

diffusivity Ds(r, t): for φ = 0.65, the density distribution of

Gd(r, t) exhibits strong oscillations [cf. Fig. 4(d)] at times

t∗ ≈ 0.1–0.5, resulting in a highly inhomogeneous Ds(r, t),
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FIG. 4. Distinct part ρd (r, t) = Gd (r, t) of the van Hove function for area fractions φ = 0.1 (a), 0.39 (b) 0.56 (c), and 0.65 (d) as borne out by the present DDFT

at times t∗ = 0.012 (green), 0.191 (black), 0.835 (blue), and 1.443 (red) in comparison to experimental results (symbols).

thereby overestimating the slowdown of the corresponding

MSD. We are confident that the observed deviations of Gs(r, t)

from a Gaussian shape are, at least by parts, related to this

shortcoming, as standard DDFT with Ds/d(r, t) = D0 here

predicts much less pronounced deviations. Note that the short-

time behavior of Gs(r, t) is only weakly affected by this short-

coming as Gd(r, t) ≈ 0 in vicinity to the origin for t → 0. For

longer times, however, when the correlations have sufficiently

flattened out, the diffusivity increases again. As a result, the

MSD finally approaches the prescribed long-time diffusion,

thereby predicting “superdiffusivity.” From a technical point

of view, this behavior is akin to the incapability of standard

DDFT capturing the correct long-time asymptotics (cf. dis-

cussion in Sec. II). Note that one obtains a similar behavior

when, e.g., making use of the theoretical expression Eq. (12).

In Figs. 4(a)–4(d), we show the distinct part of the van

Hove function Gd(r, t) for the same area fractions as in

Figs. 2(a)–2(d) and times [t∗ = 0.012 (green), 0.191 (black),

0.835 (blue), and 1.443 (red)]. Again, we find excellent agree-

ment between the experimental data and the DDFT for all

times for low and intermediate packing fractions [cf. Figs. 4(a)

and 4(b)]. Note that the pronounced fluctuations in the exper-

imental data for φ = 0.1 are due to poorer statistics arising

from the smaller number of particles at this packing fraction

compared to higher packing fractions. For a higher packing

fraction, φ = 0.56, the agreement is satisfactory in the short- as

well as in the long-time limit. However, at intermediate times,

the distinct part given by the DDFT (slightly) overestimates

the particle-correlation peaks. This phenomenon has also been

observed using the present theoretical framework in dense 3D

hard-sphere systems.24 For φ = 0.65, the theory predicts a

significantly slower relaxation of the distinct part at interme-

diate times t∗ ≈ 0.1–0.3 compared to the experiments—see

Fig. 4(d)—in accordance with the behavior of the self-part

and its corresponding MSD. Similarly, for long-times, the

deviations between the theory and experiment again become

smaller, which is in line with the (unphysical) speed-up of the

MSD to the correct long-time diffusivity.

Interestingly, the agreement between theoretical and

experimental results for the distinct part Gd(r, t) is quan-

titatively satisfactory for all area fractions at short times,

t∗ ≈ 0.01, implying that for this quantity, there is no systematic

effect from hydrodynamic interactions. This is in contrast to

the behavior of the self-part Gs(r, t) at short times. In Ref. 48,

DDFT and Stokesian dynamics simulations were used to inves-

tigate the effect of HI on collective diffusion in a system, where

colloidal particles are confined to a plane, but solvent flows in

full 3D. Here, it was found that the density profiles exhibit

an algebraic decay at large distances. However, if we plot our

experimental data as ln (rh(r, t)), where h(r, t) = Gd(r, t) ☞ 1,

we do not observe a systematic deviation from the usual expo-

nential decay of the correlations. This may arise for several

reasons. First, in Ref. 48, the interactions between the particles

have been neglected, which is completely inadequate for high

packing fractions. Second, in Ref. 48, the solvent flows in full

3D; i.e., here the Oseen tensor can be applied. However, in our

experiments, the solvent flow is much more complicated due

to the impenetrable plane, in which the colloids are settled on.

A theoretical model including HI for the present situation thus

should make use of the Blake tensor49 instead of the Oseen ten-

sor, which probably would lead to the reduction of the impact

of hydrodynamic effects, as is demonstrated, e.g., in Ref. 40.

Thus, elucidating the possible effects of HI on collective quan-

tities such as Gd(r, t) for the present system would require a

much more careful and detailed analysis of both theory and

experiments, which goes beyond the scope of the present work.

Considering the overall behavior of the van Hove function

G(r, t), we find that DDFT in its present (nearly standard)

form along with the quenched functional (9) performs remark-

ably well in describing bulk dynamics of colloidal hard disks

compared to experiments, provided that the long-time diffu-

sivity is adequately accounted for as an input and the packing

fractions become not too high. We note that, by contrast,

the recently developed framework of power functional the-

ory (see, e.g., Refs. 15, 50, and 51) is in principle exact and

should yield the correct long-time dynamics without employ-

ing empirical inputs. This is because, unlike DDFT, it accounts

for memory of the past motion of particles. However, up to

this date, power functional theory seems not to be of prac-

tical use for dynamic test particle calculations as explicit

expressions for the power functionals are still currently under

development.52
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V. SUMMARY AND OUTLOOK

We studied the time evolution of the self-part and dis-

tinct part of the van Hove function for Brownian hard disks

by means of dynamical density functional theory within the

framework of dynamic test particle theory. To this end, we

employed an accurate FMT-type excess free-energy func-

tional29,30 along with the so-called “quenched” approach,24

which has proven to yield accurate results in dense 3D

hard-sphere systems.

The results of the theory for the self-part of the van Hove

function, Gs(r, t), and the corresponding mean-squared dis-

placement are directly compared to experimental data on 2D

colloidal hard spheres (Figs. 2 and 3), where we find excel-

lent quantitative agreement up to relatively high fluid packing

fractions of roughly 0.60 at long times. Up to this density

regime, we also find good quantitative agreement between the

experiment and theory for the distinct van Hove function at all

times. At very high fluid packing fractions, close to the exper-

imentally found liquid-hexatic transition, the present DDFT

becomes less reliable, manifested in clear deviations of the

self-part from a Gaussian shape or unphysical behavior of the

MSD at intermediate times. However, it is important to note

that the observed deviations at high volume fractions are not

to be interpreted as a precursor of nucleation or crystallization

but merely are an artifact of the theoretical approach. In par-

ticular, the input of the fitted long-time diffusivity along with

the empirical adoption to the inhomogeneous fluid seems to

become rapidly inadequate for packing fractions φ & 0.60.

In the short-time self-diffusion regime, which in the exper-

iments is strongly affected by solvent-mediated hydrodynamic

interactions,7 deviations are found between the experiment and

DDFT, as the latter predicts ideal-gas diffusion and does not

explicitly take HI into account. While the framework of DDFT

in principle allows for the treatment of HI (see, e.g., Ref. 53)

for concrete applications, in the present case, it is a highly

non-trivial task to theoretically model the boundary condi-

tions exerted by the experimental geometry on the solvent

flow—although a possible approach has recently been pre-

sented in Ref. 40. Nevertheless, from a theoretical point of

view, our present results confirm that dynamic test particle the-

ory along with DDFT and a proper removal of self-interactions

according to Eq. (9) form a valuable and an adequate tool

for investigating the structural relaxation of hard disks subject

to Brownian motion in the overdamped limit. Future inter-

esting questions, besides modeling HI for the present experi-

mental situation properly, include, e.g., the dynamics in con-

fined geometries or an incorporation of additional long-ranged

forces.
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