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Some aspects of the AdSd+1/CFT correspondence, inspired by the original conjecture

by Maldacena[1], and subsequently sharpened by Gubser, Klebanov, Polyakov and Witten

[2,3], are considered in this paper1. The maximal supersymmetric case, corresponding to

the horizon geometry of D3 branes in type IIB strings, is considered as basic example.

More specifically, we describe the relation between interacting non-abelian singletons

on ∂AdS5, i.e. N=4 SU(n) super Yang-Mills theory and the bulk supergravity theory on

AdS5 × S5.

In section 1, we review some properties of primary conformal fields on ∂AdS5 and, in

section 2, their superextension. In sections 3 and 4, we describe several types of N=4 mul-

tiplets, realized in N=4 super Yang-Mills theory, which in the AdS/CFT correspondence,

are related to singletons, massless and massive KK chiral primary supermultiplets as well

as massive higher spin multiplets. In section 5, we briefly describe manifestly covariant

OPE on ∂AdS5 which can be used to compute boundary correlation functions of primary

operators corresponding to states in the spectrum of the type IIB string compactified on

AdS5 × S5. In particular, the contribution to the four-point function of chiral primaries,

due to the non-chiral primaries corresponding to string states, is exhibited. The latter may

be used to connect string corrections to the four-point graviton amplitude in AdS5 × S5

geometry to four-point stress-energy tensor correlation functions on the boundary.

1. Conformal fields on ∂AdS5

The 15 generators JAB = −JBA of the conformal algebra O(4,2) can be defined in

terms of the Poincaré generators Pµ,Mµν , the dilatation D and the special conformal

transformation Kµ, by the relations,

Jµν = Mµν , J5µ =
1

2
(Pµ −Kµ), J6µ =

1

2
(Pµ +Kµ), J65 = D. (1.1)

The irreducible representations of the conformal algebra are specified by the values of the

three Casimir operators [5],

CI = JABJAB =

CII = εABCDEF J
ABJCDJEF

CIII = JBA J
C
BJ

D
C J

A
D

(1.2)

1 For earlier work on the connection between branes geometry, Anti-de-Sitter space and sin-

gletons, see [4]
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Every irreducible (infinite dimensional) representation can be specified by an irreducible

representation of the Lorentz group with definite conformal dimension and annihilated by

Kµ. In terms of the stability algebra at x = 0 (Kµ, D,Mµν), we define a primary conformal

field, in a generic representation of the Lorentz group, by

[O{α}(0), D] = ilO{α}(0)

[O{α}(0), Kµ] = 0.
(1.3)

The descendents ∂....∂O{α}(0) fill an infinite dimensional representation specified by three

numbers (l, jL, jR), which contain the conformal dimension and the Lorentz quantum num-

ber of the primary operator.

In terms of the three Casimirs of the stability algebra,

D = l,
1

2
MµνM

µν = jL(jL + 1) + jR(jR + 1),
1

2
εµνρσM

µνMρσ = jL(jL + 1)− jR(jR + 1)

(1.4)

the O(4,2) Casimirs take the following values[6]:

CI = l(l− 4) + 2jL(jL + 1) + 2jR(jR + 1)

CII = (l− 2)(jL(jL + 1)− jR(jR + 1))

CIII = (l− 2)4 − 4(l− 2)2[jL(jL + 1) + jR(jR + 1) + 1] + 16jLjR(jL + 1)(jR + 1)

(1.5)

In the particular case of a tensor representation of spin s (l, jL = jR = s/2), we have:

CI = l(l− 4) + s(s+ 2)

CII = 0

CIII = [l(l− 2)− s(s+ 2)][(l− 2)(l− 4)− s(s+ 2)]

(1.6)

Let us consider, for example, the case of a conformal scalar. It is convenient to consider

a six-dimensional space with signature (+−−−,−+) where the O(4,2) generators act on

the coordinates ηA, A = 0, ..., 5 as LAB = i(ηA∂B − ηB∂A) [7,5]. The conformal compact-

ification of Minkowski space-time can be identified with the hypercone ηAη
A = 0, with

projectively identified coordinates (ηA = ληA). A conformal scalar can be represented as

a homogeneous function on the hypercone ηAη
A = 0 [7,5],

(η∂)Φ = λΦ, (λ = −l) (1.7)
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The quadratic Casimir
1

2
LABL

AB = −η2∂2 + η∂(4 + η∂) (1.8)

on the hypercone reduces to CI = l(l− 4).

To describe tensor conformal fields, we can consider homogeneous tensors OA1...As(η)

on the hypercone. The irreducible representations of the conformal algebra are specified

by the symmetric-traceless tensors which also satisfy refs[5],[8],

ηA1OA1...As(η) = 0

∂A1OA1...As(η) = 0
(1.9)

Acting on these tensors, the Casimirs are not purely orbital, but they must be supple-

mented with an internal part, corresponding to a finite dimensional representation of

O(4,2), LABδ
B1....Bs
A1...As

+ ΣB1....Bs
A1...As

.

Unitarity imposes the following bounds [9],

l ≥ 1 + j (jLjR = 0) (1.10)

l ≥ 2 + jL + jR (jLjR 6= 0) (1.11)

The two unitarity thresholds are satisfied by massless fields and conserved tensors field,

respectively [8]. The equations

∂2Φ(0,j) = 0 (1.12)

∂α1α̇1Oα1..α2jL
,α̇1..α̇2jR

= 0 (1.13)

are indeed conformal covariant only if l = 1 + j and l = 2 + jL + jR, respectively. This can

be easily proved by considering the O(4,2) commutation rule [Kµ, Pµ] = −2i(gµνD+Mµν).

In the AdS5/CFT correspondence, all gauge invariant composite operators in the CFT

can be associated with fields in AdS5 [2,9,3]. O(4,2) is reinterpreted as the isometry group

of AdS5, and particles in AdS5 are classified by the quantum number (E0, jL, jR) of the

maximal compact subgroup O(2)×O(4). In the identification with CFT operators, E0 is

identified with the scaling dimension and (jL, jR) with the 4-dimensional Lorentz quantum

number of the primary conformal operator.

The O(4,2) covariant wave equation for a particle with quantum numbers (E0, jL, jR)

in AdS5 can be expressed in terms of the Casimirs of the conformal algebra. In this way,

the mass of a particle can be expressed as a function of (E0, jL, jR). In the case of a scalar,
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for example, the Laplace operator in AdS5 coincides with the quadratic Casimir CI and

the wave equation reads,

∂2Φ− η∂(4 + η∂) = −
1

2
LABL

ABΦ = E0(E0 − 4)Φ, (1.14)

where we used eq. (1.6) with l → E0. We see that the mass square of a scalar field in AdS5

can be expressed in terms of the conformal dimension E0 of the field by m2 = E0(E0− 4).

In general we obtain the following relations [10]:

– Scalars: φ

D(E0, 0, 0) : m2 = CI = E0(E0 − 4) (1.15)

– Vector field: Aµ

D

(
E0,

1

2
,

1

2

)
: m2 = CI = (E0 − 1)(E0 − 3) (1.16)

– Symmetric tensor: gµν = gνµ

D(E0, 1, 1) : m2 = CI − 8 = E0(E0 − 4) (1.17)

– Antisymmetric tensor: Aµν = −Aνµ

D(E0, 1, 0)⊕D(E0, 0, 1) : m2 = CI = (E0 − 2)2 (1.18)

and for fermions,

– Fermions of spin 3/2: ψµ

D

(
E0, 1,

1

2

)
+D

(
E0,

1

2
, 1

)
; m = E0 − 2 (1.19)

– Fermions of spin 1/2: λ

D

(
E0, 0,

1

2

)
+D

(
E0,

1

2
, 0

)
; m = E0 − 2 (1.20)

Of particular relevance also in AdS5 are the representations of O(4,2) which saturate

the unitarity bounds. The states which saturate the bound (1.10) in AdS5 are called

singletons and are topological fields living at the boundary of AdS5[11,12,13]. They cannot

be associated with any gauge invariant operator in the CFT, but it is suggestive that they

have the same quantum number of the conformal (generally colored) fundamental fields

appearing in the CFT. In particular, in the well known case of the duality between type
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IIB on AdS5 × S5 and N=4 SYM, the singletons in AdS5 are in correspondence with the

fundamental N=4 SYM multiplet. All the other unitary representations in AdS5 propagate

inside the bulk of AdS5 and are in correspondence with gauge invariant composite operators

in the CFT.

Let us discuss also the meaning of the second unitarity bound in AdS (1.11). This is

the case of conserved currents in the CFT. The associated fields in AdS5 are massless fields

sustaining a gauge invariance. In this way, the global symmetries in CFT are associated

with local symmetries in AdS5 [9]. Here are the simplest examples of this correspondence:

– stress-energy tensor/graviton Tµν → gµν

– global current/gauge field Jµ → Aµ

– supercurrent/gravitino Jµα → Ψµα.

The conserved tensors in this list satisfy in CFT an equation like (1.13). This garantees

that the number of degrees of freedom contained in a conserved tensor matches with those

of a massless particle in AdS5. The number of degrees of freedom of a conserved tensor is

(2jL+1)(2jR+1)−4jLjR = 2(jL+jR)+1, which can exactly substain a representation of

spin (jL + jR) of the little group O(3) of massless particles in the Poincaré limit of AdS5.

In the case of representations for which l > 2+jL+jR, the fields in AdS5 are massive,

and the corresponding CFT operators are not conserved.

2. The maximal supersymmetric case

In the AdS/CFT correspondence, the conformal dimension E0 is not in general an

integer. Only the conserved currents, in general, are protected under renormalization and

have integer conformal dimensions; they are indeed associated with massless states in AdS.

On the other hand, the generic CFT operator is expected to have anomalous dimensions.

Introducing supersymmetry in the game, we have the notion of a “chiral” primary con-

formal operator, whose dimension is not renormalized even if it is not a conserved tensor.

In the familiar case of N=1 theories, the non-renormalization of the conformal dimension

follows from the relation with the U(1)R charge (E0 = q). The notion of chirality is

associated with a shortening of the supersymmetric multiplet.

The Maldacena’s conjecture [1] relates a SCFT in d spacetime dimensions with N

extended supersymmetries with the type IIB string (or M theory) on AdSd+1 ×H, where

H is an Einstein manifold which gives rise, after dimensional reduction, to a 2N extended

gauged supergravity in AdSd+1. Let us focus on the maximal supersymmetric case for d=3
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or d=4. The conformal groups O(3,2) and O(4,2) are enlarged to the supergroups O(8/4)

and SU(2,2/4), with 32 conformal supercharges.

The superconformal algebra representations which saturate the bound (1.10) corre-

spond to the AdSd+1 singletons, which are associated with the fundamental massless con-

formal fields defining the SCFT. The superconformal algebra representations which satu-

rate the bound (1.11) correspond to the massless multiplets in AdSd+1, associated with the

CFT multiplet of global currents. Other fields besides the conserved tensors are, in gen-

eral, required to close a supersymmetric multiplet2; in the same way, the AdSd+1 massless

multiplet contains some massive fields, in addition to the massless graviton, gravitinos and

gauge fields [16]. These massless multiplets are automatically short and their dimension is

protected. The massive multiplets can be short (chiral, with canonical dimensions) or long

(with anomalous dimensions). From the supergravity side, we know that all the KK states,

coming from the dimensional reduction on H, are in short representations [17] and have

integer dimensions. On the other hand, a generic string state has a mass which is not an

integer and the corresponding CFT operator acquires anomalous dimension (in generally

very large, in the limit in which supergravity can be trusted) [2,3].

The superconformal representations can be induced by conformal primary fields. A

generic scalar superfield has 216 components with spin range from 0 up to 4. The degener-

acy of representations of the Lorentz group O(d-1,1) is Sp(16) for d=3 and Sp(8) for d=4.

Generic superfields correspond to representations of the Clifford algebra of O(32) where

left and right representations are the bosons and fermions, respectively.

Chiral primary superfields have 28× l components, where l is the (finite) dimension of

some representation of the Lorentz group and the R-symmetry (O(8) for d=3, SU(4) for

d=4).

Let us now focus on d=4. An unconstrained superfields, with θAα in the (1/2, 0)

representation of SL(2,C) and N of SU(N), has generically 24N components, spanning the

Clifford algebra of SO(4N)[15]. Bosons and fermions, corresponding to the even and odd

powers in the θ’s expansion, are the two chiral spinorial representations of O(4N). These

superfields are extended to a representation of SU(2,2/N).

2 For example, three set of scalars in different representation of SU(4), fermions and tensor

fields are required to close the N=4 SYM supercurrent multiplet [14,15] which contains the con-

served stress-energy tensor, the spinorial supersymmetry currents and the SU(4) R-symmetry

currents.
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There are three types of different supermultiplets.

The ultrashort representations correspond to singleton representations. These multi-

plets have degeneracy 24(2jL+1) with spin range from jL−1 to jL+1[6]. They correspond

to a sequence of massless conformal fields with dimension and spin related as in eq. (1.10).

The N=4 SYM fundamental multiplet belongs to this class of representations, and it is

special because it is self-conjugated.

Short representations correspond to massless or massive representations with degen-

eracy 28r where r is some finite dimensional representation of SL(2, C)× SU(4). Generic

massless representations with spin range from (jL−1, jR−1) to (jL+1, jR+1) can be ob-

tained by tensoring two singleton representations (0, jL)×(jR, 0) giving 28(2jL+1)(2jR+1)

states [6]. The physical sector of these massless representations is obtained by having a

gauge symmetry in AdS5, which reduces the number of components to 28(2(jL + jR) + 1)

[18,9,10]. These massless representations are obtained by a sequence of transverse confor-

mal primary fields with dimension and spin satisfying eq. (1.11). Generically, a N-extended

superfield corresponding to a short multiplet has an expansion in half of the θ’s. It can

be chiral or twisted chiral (for N=4). The spin range in the two cases is (0, 0)→ (N/2, 0)

or (0, 0) → (N/4, N/4). The superfields can be multiplied in a chiral way or in a non

chiral way. In the first case one reproduces a superfield of the same structure, in the

latter case one gets a long multiplet with 24Nr components, with r the (finite) dimen-

sion of some representation of SL(2, C) × SU(N). The spin range of a long multiplet is

(∆jL,∆jR) = (N/2, N/2).

An example of long multiplet is the non-chiral multiplication of two short multiplet

with jL = jR = 0. This has as highest spin component a spin 4 singlet. This should be

contrasted with the massless graviton multiplet obtained by tensoring, in a (twisted) chiral

way, two self-conjugate singleton multiplets (with jL = jR = 0).

3. Short multiplets

Let us consider in details the case of N=4 SYM. An abelian N=4 vector multiplet

corresponds to the self-conjugate representation of SU(2,2/4). The N=4 fundamental

multiplet W[AB](x, θ, θ̄), A = 1, .., 4 satisfies the constraints [15],

W[AB] =
1

2
εABCDW̄[CD]

DαAW[BC] = Dα[AWBC].
(3.1)
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and contains, as first component, a set of six scalars φ[AB] in the 6 of SU(4), which will be

denoted also φl, l = 1, .., 6. The superfield itself will be also denoted Wl.

(x, θ, θ̄) can be extended to an harmonic superspace [19], where the superfield (now

denoted W without indices) can be considered as a twisted chiral superfield [20]. In

this way, all the product W p are still twisted chiral superfields and therefore are short

multiplets[19]. In terms of the superfield defined in eq. (3.1), we have W p = W{l1 ...Wlp}-

traces [20].

The superfield TrW 2 gives the supercurrent multiplet [14,15] and the massless gravi-

ton in AdS5 [21]. Notice that we are taking a trace in color space in order to get gauge

invariant operators. The tower of superfields TrW p is the set of CFT composite oper-

ators in short multiplets which is in one to one correspondence with the KK states in

AdS5×S5 [10]. Using the explicit component expansion of W, given, for example, in [10],

and performing explicitly the superfield multiplication, we obtain the full spectrum of KK

states computed in [16]. The relation between masses and conformal dimensions of the

CFT operators is that predicted by superconformal invariance and discussed in section 1

(formulae (1.15)-(1.20)).

We can explicitly list the operators in Wp which are in a (0,p,0) SU(4) representation

and which therefore survive when fermions are neglected and only constant values of the

bosonic fields φl, Fµν are retained [23].

In terms of the singleton fields φl, Fαβ, Fα̇β̇, (Fαβ = σµναβFµν , Fα̇β̇ = F̄αβ = σµν
α̇β̇
Fµν)

we have,

Tr(φ{l1 · · ·φlp})− traces (0, p, 0) (3.2)

Tr(φ{l1 · · ·φlp−1}Fαβ)− traces (0, p− 1, 0) (3.3)

Tr(φ{l1 · · ·φlp−2}FαβF
αβ)− traces (0, p− 2, 0) (3.4)

Tr(φ{l1 · · ·φlp−2}FαβFα̇β̇)− traces (0, p− 2, 0) (3.5)

Tr(φ{l1 · · ·φlp−3}FαβF
αβFα̇β̇)− traces (0, p− 3, 0) (3.6)
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Tr(φ{l1 · · ·φlp−4}FαβF
αβFα̇β̇F

α̇β̇)− traces (0, p− 4, 0) (3.7)

We observe that SU(4) singlets are possible only up to p=4. There are exactly five of

them [23]:

W 2 →O2 =
1

2
(F 2 ± FF̃ ) (F̃µν =

i

2
εµνρσF

ρσ)

W 2 →Tµν = FµρFνρ −
1

4
ηµν(Fσρ)

2

W 3 →O3 = FµσFρσFρν −
1

4
(Fσρ)

2Fµν

W 4 →O4 =
1

4
[(F 2)2 − (FF̃ )2] = FµρFνρFµσFνσ −

1

4
(F 2)2

(3.8)

In the AdS/CFT correspondence, these operators are seen, by analyzing the Born-Infeld

D3 brane action, to couple to the s-wave of the type IIB (complex) dilaton, graviton, a

self-dual combination of the NS-NS and R-R anti-symmetric tensors and a combination of

the dilation mode of the internal (S5) metric and the four-form anti-symmetric field with

components on S5 [24,2,25,10].

4. Long multiplets

The simplest example of long multiplet is easily constructed. By tensoring two sin-

gleton we can obtain either a spin 2 multiplet (which is again a twisted chiral superfield)

or a spin 4 multiplet. The six scalars have a product which decomposes as 20+1 under

SU(4). The 20 are the first components of the spin 2 multiplet which corresponds to the

massless graviton in AdS5. The singlet is the first component of a spin 4 multiplet which

is not contained in the supergravity states in AdS5, but should correspond to a massive

string state [2,3].

The first component of this long multiplet is [15],

Trφlφ
l : Tr(W[AB]W[CD]ε

ABCD)|θ=0 (4.1)

and can be roughly interpreted as (the non-abelian generalization of) the radial relative

positions of the D3 branes in AdS5, while the highest one is the spin 4, made with combi-

nations of the following operators,

Tr(φlD↔α1
· · · D↔α4

φl), T r(FµρD
↔
α1
D↔α2

Fνρ), T r(λ̄
AγµD

↔
α1
D↔α2
D↔α3

λA)− (traces) (4.2)
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with dimension E0 = 6. There are also spin (1,1) with E0 = 4 in the 1+15+20+... of

SU(4), and spin 1 with E0 = 3 in the 1+15+... of SU(4). In the free-field case, only the

quoted representations appear.

This long multiplet is the N=4 embedding of the Konishi multiplet[26]. In N=1

language, the Konishi multiplet is Σ = Sie
V S̄i, where Si, i = 1, .., 3 are the three chiral

multiplets of the N=4 theory and V is the N=1 vector superfield. Σ satisfies

D̄D̄Σ = W (4.3)

where W is the superpotential multiplet W = gεijkfabcS
iaSjbSkc where fabc are the struc-

ture constants of the gauge group. In the N=4 notations, the superpotential W is in the

10 of SU(4) since it is related to the gravitino mass term:

W |θ=0 →W[AB] = gTrφ[AB]φ
[BC]φ[CD] (4.4)

The θ2 terms in the N=4 superfield are,

θAα θbeta
BεαβW[AB] + h.c.+ θAασ

αβµνθBβ Lµν + θAασ
αα̇
µ θ̄α̇B(JBµA + δBA tµ) + · · · (4.5)

For an unconstrained superfield these 120 terms split into (1/2, 1/2)(15 + 1) + ((1, 0) +

(0, 1))(6) + (0, 0)(10 + 1̄0) i.e. 120=64+36+20. This is the θ2 term of a scalar superfield

with 216 components. In the free field case, W[AB] → 0, ∂µJBµA = ∂µtµ → 0 and we

obtain a massless multiplet with 28 × 5 components. Note that in free field theory there

are additional conserved currents. This can be understood because in free N=4 Maxwell

theory there is an additional SU(4) invariant fermionic current and two SU(4) currents

which rotate independently scalars and fermions. In fact, in the free-field limit, this cor-

responds to the statement that there are infinitely many massless representations in the

product of two singleton representations [12,9]. Since any irreducible representation which

is contained in the product of two singletons is massless in AdS5, in free field theory, the

spin 4,7/2,3,5/2,2,3/2,1 would be conserved conformal fields. If the N=4 abelian multiplet

is extended to a non-abelian SU(N) YM interacting multiplet, as given by eq. (4.3), then

Trφlφm −
1
6Trφpφ

p is the first component of the graviton multiplet, while Trφlφ
l is the

first component of a long massive spin 4 multiplet in AdS5, which now contains all the 216

components. Only in the abelian (free) case, this spin 4 multiplet become massless with

only 28 × 5 physical components.
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In the free-field theory limit the Konishi multiplet corresponds to the jL = jR = 1

massless spin 4 multiplet [6]. In the interacting theory, the OPE of two chiral primary

operators is expected to contain also the higher spin multiplets with jL = jR = s/2

(s=2,...). These massive representations will contain massive states with maximum spin

j = jL + jR + 2 = s+ 2 and contain combinations of operators of the form:

Tr(φlD↔α1
· · ·D↔αs+2

φl), T r(Fα1ρD
↔
α2
· · ·D↔αs+1

Fαn+2ρ), T r(λ̄
Aγα1D

↔
α2
· · ·D↔αs+2

λA)−(traces)

(4.6)

These conformal operators should correspond to string states in N=4 supermultiplets up

to spin jMAX = s+ 2.

In the free field theory limit, the multiplet is massless only if the dimension l(jL, jR)

of a given operator is 2+jL+jR. For other conformal dimensions the multiplet is massive.

Note that, for unconstrained multiplets the conformal dimension l ia an arbitrary real

number satisfying l > 2 + jL + jR. This is consistent with the fact that in N=4 SYM

theory a generic long multiplet has anomalous dimension, eventually related, at strong

coupling, to the stringy massive excitations [2,3].

5. Conformal invariance constraints on the CFT Green functions

The correspondence between N=4 SYM and type IIB string theory on AdS5×S5 can

be explicitly used to compute field theory Green functions in the limit in which the α′

and string loop corrections can be neglected and the string theory reduces to the classical

supergravity [27,28,29]. In the SYM theory this corresponds to the t’Hooft limit N →∞

and x = g2N fixed, when x is also large [1]. The supergravity therefore describes the strong

coupling dynamics of the large N limit of the N=4 SYM. All the long multiplet, which are

associated to string excitations, are predicted to have large anomalous dimension h = x1/4

[2,3], and their contribution to OPE and Green functions disappears in the strong coupling

limit. In this way, at strong coupling, the OPEs and the Green functions get contribution

only from the short (KK) states, whose general form has been discussed in section 3.

However, when the 1/x (α′) corrections are included, we can expect contributions also

from the long multiplets.

A long multiplet contributing to the YM supercurrent Green function is just the

Konishi multiplet discussed in section 4. It is indeed known that, at weak coupling, the

Konishi multiplet appears in the OPE of the supercurrent multiplet [30]. Higher spin
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multiplets, of the form discussed in section 4, are expected to contribute to the OPE as

well. In N=1 notation, indicating with Jαα̇(z), z = (x, θ, θ̄) the supercurrent, we have [30]

J(z)J(z′) =
c

(ss̄)3
+

Σ(z′)

(ss̄)2−h/2
+ · · ·

Σ(z)Σ(z′) =
c′

(ss̄)2+h
+

Σ(z′)

(ss̄)1+h/2
+ · · ·

(5.1)

where s = x− x′ + iθγθ̄′. Here c = 1
24(3Nv +Nχ) and c′ = Nχ, where Nv and Nχ are the

number of vectors and chiral multiplets (including color multiplicities), respectively.

This free field result for c and c′ does not receive corrections up to two loops. For a

generic N=1 theory with Nχ chiral multiplets in the representation T of the gauge group

with a superpotential W = Yijkφ
iφjφk3, the two loop value for c is [31]

c =
1

24
(3Nv +Nχ +Nv

β(g)

g
− γii) (5.2)

where β(g) is the one-loop beta function and γij the one-loop anomalous dimensions [32],

γji =
1

16π2

(
1

2
YikmY

jkm − 2g2Cji (T )

)
(5.3)

The two-loop value of c′ was computed in [30] and reads

c′ = Nχ + 2γii . (5.4)

In the N=4 SYM (Yijk → gfabcεijk) we see that there are no corrections up to two loop to

the free-field value of c and c′. In general, c, which can be related to an R-current anomaly,

can be proved to be not-renormalized at all orders [30]. However, the anomalous dimension

of Σ is not zero also for conformal invariant theories and reads, at the first perturbative

order,

h =
3

16π2

YijkY
ijk

Nχ
(5.5)

For N=4 we have h = 3
16π2x [30], but this value is corrected, at strong coupling, to x1/4

[2,3], and the contribution of the Konishi multiplet to the OPE, as well as of all the other

higher spin long multiplets which acquire the same anomalous dimension x1/4, becomes

subleading.

3 The indices i contain both the color and the flavor indices. Similarly, T is, in general, a

reducible representation of the gauge group.
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We can use conformal invariance to get information on the structure of the OPE and

Green functions [33]. We will give formulae valid for arbitrary space-time dimension d.

Let us consider only the constraints coming from the O(d,2) algebra. Supersymmetry will

further imply selection rules on the operators which may appear in a given OPE expansion.

Consider, for simplicity, the OPE of two primary scalars A and B. On the hypercone,

we can write the following expansion[33]:

A(η)B(η′) =
∞∑
n=0

(η · η′)−
1
2 (lA+lB−ln+n)DnA1...An(η, η′)OA1...An(η′) (5.6)

using the pseudo-differential operator,

DnA1...An(η, η′, ∂′) = ηA1 · · · ηAnD−
1
2 (lA−lB+ln+n)(η, η′, ∂′)

D(η, η′, ∂′) = η · η′∂′2 − 2(η · ∂′)(1 + η · ∂′)
(5.7)

which is well defined when η2 = η′2 = η · η′ = 0.

Let us consider the case of a scalar operator O (n=0). Using the previous formula,

the contribution of all the descendants of a given primary operator O, of dimension l, can

be re-summed [33]

A(x)B(0) =

(
1

x2

)(lA+lB−l)/2 Γ(l)

Γ((l + lA − lB)/2)Γ((l− lA + lB)/2)
COAB×∫ 1

0

duu(lA−lB+l)/2−1(1− u)−(lA−lB+l)/2−1
0F1

(
l + 1− d/2;−

x2

4
u(1− u)∂2

x

)
O(ux) + ...

(5.8)

Here 0F1(ν; z) =
∑∞

h=0
1
h!

Γ(ν)
Γ(ν+h)z

h ia a generalized hypergeometric function.

Using the previous formula for the complete contribution of a given scalar operator O

to the OPE, we can obtain the contribution of O and all its descendents to a four-point

function of scalars.

Conformal invariance implies that an n-point Green’s function depends on an arbitrary

function of n(n-3)/2 parameters if

n(n− 3)

2
≤ nd−

(d+ 2)(d+ 1)

2
(5.9)

and nd-(d+2)(d+1)/2 otherwise. The functional form of two and three-point functions is

therefore completely fixed, while the four-point function depends on an arbitrary function

of two conformal invariant parameters:

< 0|A(x)B(y)C(z)D(t)|0 >= [(x− y)2]−lB [(x− z)2]−
1
2 (lA−lB+lC−lD)×

[(x− t)2]−
1
2 (lA−lB−lC+lD)[(z − t)2]−

1
2 (lC+lD−lA+lB)f(ρ, η)

(5.10)
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where

ρ =
(x− t)2(z − y)2

(x− y)2(z − t)2
, η =

(x− z)2(y − t)2

(x− y)2(z − t)2
. (5.11)

We can analyse the contribution of a conformal scalar and all its descendents to the four-

point function in the s-channel, by simply using twice eq. (5.8). We obtain the formula

[33]:

f(ρ, η) = Γ(l)η
1
2 (lA−lB+lC−lD)ρ−

1
2 (l+lC−lD) Γ(−1

2 (lA − lB + lC − lD))

Γ((l− lA + lB)/2)Γ((l+ lA − lB)/2)

F4

(
1

2
(l+ lC − lD),

1

2
(l + lA − lB); l+ 1−

d

2
; 1 +

1

2
(lA − lB + lC − lD);

1

ρ
;
η

ρ

)
+(

ρ

η

) 1
2 (lA−lB+lC−lD)

[(lA − lB)→ −(lA − lB), (lC − lD)→ −(lC − lD)].

(5.12)

where F4 is a double hypergeometric function.

For identical states and d=4, we obtain (up to a multiplicative constant)

f(ρ, η) = ρ−
l
2F4

(
l

2
,
l

2
; l− 1, 1;

1

ρ
,
η

ρ

)
. (5.13)

This result may be relevant in relating the four-point graviton amplitude in AdS5 to

the boundary correlator of four stress-energy tensors. The tree-level supergravity result

should corresponds, in the boundary CFT, to the exchange of chiral primary operators with

canonical conformal dimension. The α′ (or 1/x) expansion [34] should receive contributions

from the unknown OPE coefficients of the chiral multiplets, which cannot be specified by

simply using conformal invariance, and also from the long multiplets. In the case of a four-

point function, the form of the Green function is not completely specified by conformal

invariance. We can determine the unknown function f(ρ, η) in the case of a long multiplet,

and confront it with the one for the exchange of a chiral multiplet, by expanding eq. (5.12)

for large l = x1/4. Note that the function f(ρ, η) depends only on x. All the N dependence

of the Green’s function is encoded in the OPE coefficients.
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