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We investigate the effect of the bulk gravitational field on the cosmological perturbations on a brane

embedded in 5D anti–de Sitter ~AdS! spacetime. The effective 4D Einstein equations for the scalar cosmo-

logical perturbations on the brane are obtained by solving the perturbations in the bulk. Then the behavior of

the corrections caused by the bulk gravitational field to the conventional 4D Einstein equation is determined.

Two types of correction are found. First we investigate the corrections that become significant at scales below

the AdS curvature scales and in the high energy universe with an energy density larger than the tension of the

brane. The evolution equation for the perturbations on the brane is found and solved. Another type of correc-

tion is induced on the brane if we consider the bulk perturbations, which do not contribute to the metric

perturbations but do contribute to matter perturbations. At low energy, they have an imaginary mass m2
5

2(2/3)k2 in the bulk where k is the 3D comoving wave number of the perturbations. They diverge at the

horizon of the AdS spacetime. The induced density perturbations behave as sound waves with a sound velocity

of 1/A3 in the low energy universe. At large scales, they are homogeneous perturbations that depend only on

time and decay like radiation. They can be identified as the perturbations of dark radiation. They produce

isocurvature perturbations in the matter dominated era. Their effects can be observed as shifts of the location

and the height of the acoustic peak in the cosmic microwave background spectrum.

DOI: 10.1103/PhysRevD.65.023514 PACS number~s!: 98.80.Cq, 04.50.1h

I. INTRODUCTION

Recent developments in particle physics revive the old
idea that we are living in a 4D brane in higher dimensional
spacetime @1,2#. Since Randall and Sundrum proposed the
fascinating model of the brane world, much work has been
done concerning the consistency of the model with observa-
tions @3#. In their model, our three-brane universe is located
in 5D anti–de Sitter ~AdS! spacetime. The essence of the
model is that the spacetime is effectively compactified with
the curvature scale l of the AdS spacetime. Thus, although
gravity can propagate in the whole higher dimensional
spacetime, 4D Newtonian gravity is reproduced at scales
larger than l on the brane.

After their work, the cosmological consequences of the
model have been actively investigated @4–15#. The setup of
the model is as follows. The action describing the brane
world picture is given by

S5

1

2k2
E d5xA2gS R

5
1

12

l2 D 2sE d4xA2gbrane

1E d4xA2gbrane Lmatter , ~1!

where R
5 is the 5D Ricci scalar, l is the curvature radius of

the AdS spacetime, and k2
58pG5, where G5 is Newton’s

constant in the 5D spacetime. The brane has a tension s and
the induced metric on the brane is denoted as gbrane . The
tension s of the brane is taken as k2s56/l to ensure that the
brane becomes Minkowski spacetime if there is no matter on
the brane. Matter is confined to the 4D brane world and is

described by the Lagrangian Lmatter . We will assume Z2

symmetry across the brane. It has been shown that the spa-

tially homogeneous and isotropic universe can also be em-

bedded in this model. In order to study the consistency of the

model with observations, it is necessary to study the behav-

ior of the cosmological perturbations @16–18#. The cosmo-

logical perturbations in the brane world provide useful tests

for the brane world idea. This is because the perturbations in

the brane world interact with the bulk gravitational field; this

is the inherent nature of perturbations in the brane world.

Several formalisms and applications have been developed

@19–29#. In particular, we showed that the evolution of the

perturbations is the same as that obtained in conventional 4D

theory at low energies when the Hubble horizon of the brane

universe is larger than l. We also pointed out that the evolu-

tion of the perturbations changes significantly at high energy

@19#.
The purpose of this paper is to clarify the difference be-

tween the behavior of the perturbations in the brane world
model and that in the conventional 4D model. For this pur-
pose, it is desirable to obtain the effective 4D Einstein equa-
tions on the brane. There is some work that investigates the
effective 4D Einstein equations with a projective approach
@30,31#. The effective 4D Einstein equations are obtained as

Gmn1Emn5

k2

l
Tmn1k4Pmn , ~2!

where
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Pmn52

1

4
TmaTn

a
1

1

12
Ta

aTmn1

1

24
~3TabTab

2~Ta
a!2!gmn ,

~3!

and Emn is the projected 5D Weyl tensor. In @29#, the large
scale cosmological perturbations are analyzed using Eq. ~2!.
With a projective approach, the equations are used solely on
the brane and the perturbations are not solved in the bulk.
Although significant results can be obtained, this approach is
clearly limited because the behavior of Emn cannot be deter-
mined without solving the bulk perturbations. In a previous
paper @19#, we developed a method to solve the perturbations
in the bulk. In this paper, using our method, we obtain the
effective Einstein equation for the scalar cosmological per-
turbations by solving the perturbations in the bulk @see Eqs.
~40! and ~41! below#. Then we can determine the behavior of
the corrections caused by the bulk gravitational field to the
conventional 4D Einstein equations. This is an essential part
of the work, predicting the cosmic microwave background
~CMB! anisotropies in the brane world.

We will obtain the effective Einstein equations in two
ways. First we derive the effective Einstein equations with a
projective approach using the equations solely on the brane
as in @29#. We observe the limitations of this approach. Then
we construct the effective Einstein equations again by solv-
ing the bulk perturbations. The evolution of the perturbations
on the brane is investigated using the effective Einstein equa-
tions. We concentrate our attention on the scalar perturba-
tions on a brane in AdS spacetime. A new type of correction
arises if we choose appropriate boundary conditions for the
perturbations in the bulk so that they do not contribute to the
metric perturbations but do contribute to the matter perturba-
tions. They induce density perturbations on the brane, which

behave as sound waves with sound velocity 1/A3 in the low
energy universe. At large scales, they are homogeneous per-
turbations that depend only on time and decay like radiation.
We will discuss the effects of these perturbations on the
CMB spectrum.

The structure of the paper is as follows. In Sec. II, we
construct the effective Einstein equation for the background
spacetime in two ways as an example. In Sec. III, the effec-
tive Einstein equations for perturbations are constructed from
the equations on the brane. Two types of correction to the
conventional 4D Einstein equations are found. We see that a
complete set of effective 4D Einstein equations cannot be
derived from equations solely on the brane. In Sec. IV, the
effective Einstein equations are obtained again by solving the
perturbations in the bulk and imposing the junction condi-
tions. A complete set of equations is obtained. We find again
two types of correction, but now they are obtained according
to the boundary conditions of the perturbations in the bulk.
In Sec. V, we take the boundary condition that the perturba-
tions do not diverge at the horizon of the AdS spacetime, and
investigate the modifications of the evolution. In Sec. VI, we
allow the existence of perturbations that do not contribute to
the metric perturbations but do contribute to the matter per-
turbations. The modifications of the evolution caused by
these perturbations are studied. In Sec. VII, we summarize
the results. In Appendix A, the equations used in Sec. II are

derived. In Appendix B, we review the formalism needed to
solve the perturbations in the bulk and impose the junction
conditions. Then the effective Einstein equations are ob-
tained. In Appendix C, the generation of the primordial fluc-
tuations is discussed. The Mukhanov equation for the infla-
ton confined to the brane is obtained.

II. BACKGROUND SPACETIME

It is instructive to consider the background spacetime as
an example for constructing the effective Einstein equations.
We take the background metric as

ds2
5e2b(y ,t)~dy2

2dt2!1e2a(y ,t)d i jdx idx j. ~4!

We will denote the power series expansion near the brane as

a~y ,t !5a0~ t !1a1~ t !uy u1
a2~ t !

2
y2

1••• . ~5!

The tension s of the brane is taken as k2s56/l and the 5D
energy-momentum tensor of the matter confined to the brane
is

TN
M

5diag~0,2r ,p ,p ,p !d~y !. ~6!

The calculations that are necessary to obtain the equations
used in the following discussion are performed in Appendix
A.

We first employ a projective approach to obtain the effec-
tive Friedmann equation. We use the power series expansion
of the 5D Einstein equation to obtain the equations solely on
the brane. From the junction conditions, the first derivatives
of the metric with respect to y are written by means of the
matter on the brane. Then we can obtain equations that con-
tain only the variables on the brane from the 5D Einstein
equations, which do not contain the second derivatives of the
metric with respect to y. From these equations on the brane,
we can construct the effective Einstein equations on the
brane. The junction conditions are given by

a1~ t !52

1

l
2

k2r~ t !

6
,

b1~ t !52

1

l
1

k2r~ t !

3
1

k2p~ t !

2
, ~7!

where we take eb0(t)
51. The equations for a0 and r can be

obtained from the power series expansion of the 5D Einstein
equation near the brane. The y0th order of the (y ,0) and
(y ,y) components is given by

ä012ȧ0
2
5

k2

2l
S r

3
2p D2

k4r~r13p !

36
,

ṙ13ȧ0~r1p !50. ~8!

At low energies r/s;k22lr!1, the former is identical with
the trace part of the conventional 4D Einstein equations with
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8pG45k2/l , ~9!

where G4 is Newton’s constant in the 4D spacetime. The
latter is the usual energy-momentum conservation law for the
matter. The integration of the first equation gives the effec-
tive Friedmann equation:

ȧ0
2
5

k2

3l
r1

k4r2

36
1e24a0C0 , ~10!

where C0 is the constant of integration. This is the (t ,t)
component of the effective Einstein equations. In conven-
tional 4D Einstein theory, the (t ,t) component of the Ein-
stein equations gives

ȧ0
2
5

8pG4

3
r . ~11!

Thus the constant of integration C0 should be zero in order
to match the 4D Einstein theory at low energy. However, a
nonzero C0 is not forbidden in the brane world. Indeed, it is
known that C0 is related to the mass of the 5D AdS-
Schwartzschild black hole. Thus the nonzero C0 indicates the
effect of the bulk. The lesson is that even if we have a com-
plete set of equations ~8! for a0 and r which are identical
with those in conventional 4D theory at low energy, the cor-
rection to the Friedmann equation can exist. Because the
term proportional to C0 in Eq. ~10! behaves like radiation, it
is often called dark radiation. The important point is that we
cannot determine C0 from the equations on the brane ~8!. We
need a different method to determine C0 which describes the
effect of the bulk.

Another way is to solve the 5D Einstein equation in the
bulk. We should impose the boundary conditions ~7! on the
brane. The equations for b and a in the bulk are given by

2b̈1b92

1

l2
e2b

50,

2ä1a92

1

l2
e2b

50, ~12!

where we assumed that the bulk is purely AdS spacetime
without Schwartzschild mass ~see Appendix A!. We can ob-
tain the solution

e2b(y ,t)
54

f 8~u !g8~v !

@ f ~u !2g~v !#2
, e2a(y ,t)

5

1

@ f ~u !2g~v !#2
,

~13!

where u5(t2y)/l , v5(t1y)/l , and f (u) and g(v) are ar-
bitrary functions. Thus the matter on the brane is written
using f and g from the junction conditions ~7! as

a15

1

l
S f ~ t/l !81g~ t/l !8

f ~ t/l !2g~ t/l !
D52

1

l
2

k2r

6
. ~14!

Usually, we find the solutions of f and g from the junction
condition ~14!. However, it is difficult to find solutions for

the perturbations in this way. Thus we propose a new way to
find the solutions, namely, transforming the junction condi-
tion ~14! into the effective 4D Einstein equation. From Eq.
~13!, we obtain

ȧ052

1

l
S f ~ t/l !82g~ t/l !8

f ~ t/l !2g~ t/l !
D ,

e2b054
f ~ t/l !8g~ t/l !8

@ f ~ t/l !2g~ t/l !#2
51. ~15!

Then the term written using f and g in Eq. ~14! can be written

using the metric a0. We find a1
2
5ȧ0

2
11/l2. Thus the junc-

tion condition ~14! gives the effective Friedmann equation on
the brane:

ȧ0
2
5

k2

3l
r1

k4r2

36
. ~16!

Comparing this with Eq. ~10!, we can determine C050 for
the AdS bulk. We will consider the perturbations on this
background.

III. EFFECTIVE EINSTEIN EQUATIONS FROM

EQUATIONS ON THE BRANE

In this section we will derive the effective 4D Einstein
equations for scalar cosmological perturbations with a pro-
jective approach. The perturbed 5D energy-momentum ten-
sor is taken as

dTN
M

5S 0 0 0

0 2dr 2~r1p !ea0v ,i

0 ~r1p !e2a0v ,i dp d i j

D d~y !,

~17!

where we assume that the isotropic stress of the matter per-
turbations vanishes. The perturbed metric on the brane is
taken as

dsbrane52~112F0!dt2
1e2a0(t)~122C0!d i jdx idx j.

~18!

As we did in the background case, we obtain the equations
on the brane from a power series expansion of the 5D Ein-
stein equations. From the (y ,y), (y ,0), and (y ,i) compo-
nents of the 5D Einstein equations, we obtain @19#

C̈014ȧ0Ċ01ȧ0Ḟ012~ ä012ȧ0
2!F02

1

3
e22a0~2¹2C0

2¹2F0!5

k2

3
S b1

2
dr2

3a1

2
dp D , ~19!

ḋr5~r1p !~3Ċ01e2a0¹2
v !

23ȧ0~dr1dp !, ~20!
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@~r1p !ea0v#•
523ȧ0~r1p !ea0v1dp1~r1p !F0 .

~21!

Equation ~19! is the same as the trace of the conventional 4D
Einstein equations at low energy and Eqs. ~20! and ~21! are
the usual energy-momentum conservation law for the matter
perturbations. From these equations, we construct the effec-
tive 4D Einstein equations. The Einstein equation gives a
relation between the matter perturbations and the metric per-
turbations. Thus we try to write the matter perturbations in
terms of the metric perturbations from Eqs. ~19!, ~20!, and
~21!. The equations can be regarded as differential equations
for dr , dp , and v with the source given by F0 and C0. Then
the solutions for dr , dp , and v are given by particular solu-
tions written using F0 and C0 and the homogeneous solu-
tions drx ,dpx , and vx which are independent of F0 and
C0. The homogeneous solutions satisfy

dpx5

1

3 S 11

ä0

a1
2D drx ,

ḋrx5~r1p !e2a0¹2
vx23ȧ0~drx1dpx!,

~~r1p !ea0vx!•
523ȧ0~r1p !ea0vx1dpx , ~22!

where we used the background equations ~A12!. From these
equations, we can construct the second order differential
equation for dr . Putting

drx52

1

a1l
e24a0x , ~23!

and substituting the first equation into the second and third
equations, we get

ẋ5~2a1le2a0!~r1p !ea0¹2
vx , ~24!

~~r1p !ea0vx!•
523ȧ0~r1p !ea0vx2

1

a1l
e24a0

1

3

3S 11

ä0

a1
2D x . ~25!

Then taking the time derivative of Eq. ~24! and using Eq.
~25!, we obtain the equation for x as

ẍ1ȧ0S 12

ä0

a1
2D ẋ2

1

3 S 11

ä0

a1
2D e22a0¹2x50. ~26!

Particular solutions can be obtained perturbatively by assum-

ing that ue22a0¹2C/C̈0u!1. The solutions up to order
¹4C0 including the homogeneous solutions using x are
given by

2

k2a1

2
dr523~ ȧ0Ċ01ȧ0

2F0!1e22a0¹2C0

2

k2a1

2
dr (4)

1

k2

2l
drx ,

2

k2a1

2
dp5C̈01S 3ȧ02

ȧ0ä0

a1
2 D Ċ01ȧ0Ḟ0

1S 2ä02

ȧ0
2ä0

a1
2

13ȧ0
2D F0

1

1

3
e22a0¹2F02

1

3 S 12

ä0

a1
2D

3e22a0¹2C02

k2a1

2
dp (4)

1

k2

2l
dpx ,

2

k2a1

2
~r1p !ea0v5Ċ01ȧ0F01

1

3
a1e23a0

3E dt8ea0a1
21

3F¹2F02S 12

ä0

a1
2D ¹2C0G

2

k2a1

2
~r1p !ea0v

(4)
1

k2

2l
~r1p !

3ea0vx , ~27!

where dr (4), dp (4), and v
(4) satisfy

ḋr (4)
23ȧ0~dr (4)

1dp (4)!52

2

3k2
e25a0E dt8ea0a1

21

3F¹4F02S 12

ä0

a1
2D ¹4C0G ,

dp (4)
5

1

3 S 11

ä0

a1
2D dr (4),

@~r1p !ea0v
(4)#•

523ȧ0~r1p !ea0v
(4)

1dp (4),
~28!

and drx , dpx , and vx are given by

drx5e24a0x~ t ,x i!,

dpx5

1

3 S 11

ä0

a1
2D e24a0x~ t ,x i!,

~r1p !ea0¹2
vx5e22a0ẋ~ t ,x i!, ~29!

where x satisfies Eq. ~26!.
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Equations ~27!, ~28!, and ~29! are the effective 4D Ein-
stein equations in the brane world. The crucial difference
between the background and the perturbations is that we can-
not have a complete set of equations. In conventional 4D
Einstein theory, in addition to these equations, we have the
(iÞ j) component of the Einstein equation

C02F050. ~30!

Then we have a closed set of equations. In the brane world,
however, the corresponding equation derived from the pro-
jection of the 5D Einstein equation is

C02F05e2a0E21N0 , ~31!

where E is the (iÞ j) component and N is the (y ,y) compo-
nent of the metric perturbations @see Eq. ~B11! in Appendix
B#. The equation contains E2, so it is not a closed system.
The effect of the bulk perturbation E2 and N0 will alter the
relation F05C0. This is because the inhomogeneous fluc-
tuations on the brane inevitably produce perturbations in the
bulk, which give an effective anisotropic stress to the pertur-
bations on the brane. We will see this in detail in Sec. IV. The
important point is that we cannot know the behavior of the
effective anisotropic stress caused by the bulk gravitational
field, i.e., the right hand side of Eq. ~31!, with a projective
approach.

To clarify the deviation from conventional 4D theory, we
consider the perturbations at low energy with r/s!1 and
then take

a1
2
@ȧ0

2 , ä0 . ~32!

If we take F05C0, we have a complete set of equations
with Eqs. ~19!, ~20!, and ~21!, which are identical with those
obtained in conventional 4D theory. The interesting point is
that, even if we take C05F0, corrections to the matter per-
turbations can exist. Taking C05F0, we find that dr (4),
dp (4), and v

(4) and the higher order solutions satisfy the
homogeneous equations ~22! which do not include C0 and
F0. Thus they can be absorbed into drx , dpx , and vx .
Then Eq. ~27! becomes the same as the conventional 4D
Einstein equation except for drx , dpx , and vx . Thus, even
though we have a complete set of equations for metric per-
turbations and matter perturbations that are identical to those
obtained in conventional 4D theory, corrections to the 4D
effective Einstein equation can exist. We have already noted
the similar situations in the background spacetime where the
nonzero constant of integration C0 gives a correction to the
Friedmann equation. For the perturbations, x plays the same
role as C0. At low energy, the equation for x @Eq. ~26!#
becomes

x92

1

3
¹2x50, ~33!

where a prime denotes the derivative with respect to the con-
formal time h . At large scales and at low energy, drx is
given by

drx5Ce24a0, ~34!

where x5C5const. Thus drx can be regarded as the per-
turbations of the energy density of the dark radiation. At
small scales they behave as sound waves with sound velocity

1/A3.
Hence we found two types of correction to the matter

perturbations. One type of correction is given by the gradient
of the metric perturbations that arise if the bulk gravitational
field makes F0ÞC0. The other type of corrections x is in-
dependent of the metric perturbations. At large scales they
behave as dark radiation. Now we face the limitation of a
projective approach, that is, the method using equations
solely on the brane. We cannot obtain the relation between
F0 and C0; thus the corrections given by the gradient of the
metric perturbations cannot be determined. The existence of
the correction given by x also cannot be determined, as the
constant of integration C0 in the background cannot be de-
termined in this approach. So far we have treated only equa-
tions that do not involve the second derivative with respect
to y. As we showed in the background case, the evolution
equation for the perturbations in the bulk should be solved in
order to know the behavior of the corrections to the matter
perturbations and the relation between F0 and C0.

IV. EFFECTIVE EINSTEIN EQUATIONS FROM

BULK GRAVITATIONAL FIELD

In this section, we solve the perturbations in the bulk and
obtain the behavior of the corrections to the matter perturba-
tions and the relation between C0 and F0. The formalism to
solve the perturbations in the bulk was developed in @19#. In
this section, we show only the results of the calculations. The
detailed calculations are given in Appendix B. In the bulk,
the perturbations satisfy the wave equation

h913a8h82 ḧ23ȧ ḣ1e22(a2b)¹2h50, ~35!

where h is the scalar perturbation in the bulk and we used the
transverse-traceless gauge. It is difficult to solve this equa-
tion. The essence of our method is to a the coordinate trans-
formation from Poincaré coordinates to Gaussian normal co-
ordinates. The metric ~4!,~13! is obtained by coordinate
transformation from the Poincaré coordinates of the 5D AdS
spacetime

ds2
5S l

z
D 2

~dz2
2dt2

1d i jdx idx j!. ~36!

In these coordinates, the perturbations can be easily solved.
Then the perturbations in the metric ~4! can be obtained by
performing the coordinate transformation:

z5z~y ,t !5l„f ~u !2g~v !…5le2a(y ,t),

t5t~y ,t !5l„f ~u !1g~v !…. ~37!

The solution of the perturbations h can be written as
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h5e22a(y ,t)E d3k

~2p !3

3E dmE~m ,k!Z2~mle2a(y ,t)!e2ivt(t ,y)e ik•x, ~38!

where Z2 is defined as a combination of the Hankel functions
of the first kind and of the second kind:

Z2~mz !5H2
(1)~mz !1a~m !H2

(2)~mz !, ~39!

and v2
5m2

1k2. So far E(m ,k) and a(m) are arbitrary co-
efficients. We should impose the junction conditions for the
perturbations ~38! at the brane. As we showed for the back-
ground case, the junction conditions are nothing but the ef-
fective 4D Einstein equations. In a previous paper @19#, we
gave the matter perturbations in terms of E(m ,k) using the
junction conditions. We also gave the metric perturbations in
terms of E(m ,k). Thus we have the equations that corre-
spond to Eqs. ~14! and ~15! in the case of the background
spacetime. The effective Einstein equations can be obtained
by combining these equations as is done in Eq. ~16!. The
details can be found in Appendix B 2 and the results are
given by

2

k2a1

2
dr~k!523~ ȧ0Ċ01ȧ0

2F0!2e22a0k2C0

1

1

3
e24a0E dmE~m ,k!k4l2Z0~mle2a0!

3e2ivT(t),

2

k2a1

2
dp~k!5C̈01S 3ȧ02

ȧ0ä0

a1
2 D Ċ01ȧ0Ḟ0

1S 2ä02

ȧ0
2ä0

a1
2

13ȧ0
2D F0

2

1

3
e22a0k2F0

1

1

3 S 12

ä0

a1
2D e22a0k2C0

1

1

9 S 11

ä0

a1
2D e24a0

3E dmE~m ,k!k4l2Z0~mle2a0!

3e2ivT(t),

2

k2a1

2
~r1p !ea0v~k!5Ċ01ȧ0F0

1

1

3
e23a0E dmE~m ,k!

3@a1ivk2l3Z0~mle2a0!

2ȧ0mk2l3Z1~mle2a0!#e2ivT(t),

~40!

where we considered the Fourier components of the pertur-
bations with respect to x i and denoted t(0,t)5T(t). We can
also obtain the metric perturbations in terms of E(m ,k) as

C0~k!5E dmE~m ,k!S mle2a0Z1~mle2a0!

1

1

3
~kle2a0!2Z0~mle2a0! D e2ivT(t),

F0~k!5E dmE~m ,k!S mle2a0Z1~mle2a0!

2

1

3
~k2

13m2!l2e22a0Z0~mle2a0! D e2ivT(t)

1~ ȧ0l !2E dmE~m ,k!@mle2a0Z1~mle2a0!

2~k2
12m2!l2e22a0Z0~mle2a0!#e2ivT(t)

22a1ȧ0l2E dmE~m ,k!

3~ ivml2e22a0!Z1~mle2a0!e2ivT(t). ~41!

Equation ~40! should be compared with Eqs. ~27!, ~28!,
and ~29!. First let us identify the corrections ~29!, drx , dpx ,
and vx . There are two arbitrary coefficients E(m ,k) and
a(m) in the bulk perturbations ~38!. They should be deter-
mined by the boundary conditions in the bulk. The correc-
tions ~29! are independent of the metric perturbations. Thus,
the perturbations in the bulk should not contribute to the
metric perturbations but only to the matter perturbations.
Then we impose the boundary condition that the metric per-
turbations vanish on the brane, i.e., F05C050. From these
two boundary conditions, the coefficients E(m ,k) and a(m)
are determined. Let us consider the low energy universe with

ȧ0l!1 and construct these perturbations explicitly. We first
impose the boundary condition C05F0. It can be imple-
mented by choosing E(m ,k) to have a peak at

2k2
13m2

50. ~42!

Then the metric perturbations can be written as

C05F05

1

2
E (x)~k!~mkle2a0!2Z2~mkle2a0!e ikh/A3,

~43!
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where we used T52h and Z2(z)5(2/z)Z1(z)2Z0(z). It
should be noted that h is the conformal time @see Eq. ~B7! in

Appendix B#. We denoted mk5A2/3ki and

E (x)~k!5E~mk ,k!. ~44!

Next, we impose the boundary condition that the metric per-
turbations vanish on the brane by choosing an appropriate
coefficient a(m). At low energy, we can neglect the time
dependence in mkle2a0 since

~d/dt !~mkle2a0!

~d/dt !~e ivh!
;ȧ0l!1, ~45!

where we used dh/dt5e2a0. The condition F05C050 can
be implemented by taking a(m)5a (x)(m) where

a (x)~m !52

H2
(1)~mkle2a0!

H2
(2)~mkle2a0!

. ~46!

The important point is that these perturbations do contribute
to the matter perturbations. The density perturbations dr in-
duced by these perturbations are given by

k2

2l
dr5

1

3
e24a0k4l2E (x)~k!Z0

(x)~mkle2a0!e ikh/A3,

~47!

where Z0
(x)

5H0
(1)

1a (x)(m)H0
(2) . Because these perturba-

tions do not contribute to the metric perturbations, they
should be identified with drx . Indeed, from Eqs. ~23! and
~33!, drx is given by

drx5e24a0x , x91

1

3
k2x50. ~48!

If we neglect the time dependence in mkle2a0, the density
perturbation ~47! satisfies Eq. ~48!. Thus we found that the
existence of drx depends on the behavior of the bulk pertur-
bations. At low energies, they should have imaginary mass

mk5A2/3ki and diverge at the horizon of the AdS spacetime

(z5le2a(y ,t)
→`) because Z2

(x)(mkz) contains H2
(2)(mkz)

which is proportional to exp(A2/3kz) for z→` . Thus if we
restrict our attention to the bulk perturbations with real mass
or with regular behavior in the bulk, the corrections from x
do not exist on the brane.

Therefore the existence of the corrections from x depends
on the boundary condition for the perturbations ~38!. The
general solutions for perturbations in the bulk can be written
as

h~k!5e22a(y ,t)E dm@E (1)~m ,k!Z (1)~mle2a(y ,t)!

1E (2)~m ,k!Z (2)~mle2a(y ,t)!#e2ivt(y ,t), ~49!

where Z (1) and Z (2) are two independent combinations of the
Hankel functions of the first and second kinds. E (1)(m ,k)
and E (2)(m ,k) are arbitrary coefficients which should be de-
termined by the boundary conditions. One of the choices is

the boundary condition that allows the existence of the cor-
rections drx . We choose E (2)(m ,k) and Z (2) so that the
perturbations contribute to the matter perturbations and do
not contribute to the metric perturbations. For example, at
low energies, we can take

Z (1)~mle2a!5H (1)~mle2a!,

Z (2)~mle2a!5Z (x)~mkle2a!,

E (2)~m ,k!5E (x)~k!. ~50!

Then the metric perturbations and the density perturbation
induced by these perturbations are given by

k2

2l
dr523~ ȧ0Ċ01ȧ0

2F0!2e22a0k2C0

1

1

3
e24a0E dmE (1)~m ,k!k4l2H0

(1)~mle2a0!e ivh

1

k2

2l
drx ,

C0~k!5E dmE (1)~m ,k!S mle2a0H1
(1)~mle2a0!

1

1

3
~kle2a0!2H0

(1)~mle2a0! D e ivh, ~51!

where

drx5e24a0x ,

x5

2l

3k2
@k4l2E (x)~k!#Z0

(x)~mkle2a0!e ikh/A3.

~52!

Another choice is the boundary condition that the perturba-
tions are outgoing at the horizon of the AdS spacetime
@19,28,34#. Then we should take

Z (1)~mle2a!5H (1)~mle2a!,

E (2)~m ,k!50. ~53!

Note that for imaginary mass m5im I ,m I.0, this condition
implies that the perturbations do not diverge at the horizon of
the AdS spacetime because H (1)(im Iz)}exp(2mIz) at z

→` . Hence if we take the boundary condition that the per-
turbations are outgoing, the corrections given by x are not
allowed:

drx5dpx5vx50. ~54!

The matter perturbations and the metric perturbations are
given by Eqs. ~40! and ~41! with E(m ,k)5E (1)(m ,k) and
Z(mle2a0)5H (1)(mle2a0).

It seems difficult to determine what kind of perturbations
are allowed in the bulk. We will discuss the effects of the
corrections from x separately according to the choice of the
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boundary condition in Sec. V. For a while we take the bound-
ary condition ~53! and then drx5dpx5vx50. The terms
containing E (1)(m ,k) in the matter perturbations ~40! corre-
spond to the corrections written using the gradient of the
metric perturbations in Eqs. ~27! and ~28!. In fact, if we take
k→0, the terms containing E (1)(m ,k) in the matter pertur-
bations vanish. Now, from Eqs. ~40! and ~41!, we observe
that the bulk perturbations alter the relation C05F0 and
induce corrections to the matter perturbations. In Eq. ~49!,
E (1)(m ,k) is still an arbitrary coefficient. The coefficient
E (1)(m ,k) can be determined once we impose the equation

of state of the matter perturbations, such as dp5cs
2dr where

cs
2 is the sound velocity. However, it is difficult to solve the

equations for E (1)(m ,k). In the following section, we try to
obtain the evolution of the perturbations without solving
E (1)(m ,k). The price to pay is that we must make an as-
sumption about the contribution from the massive modes as
in @19#. Recently Gorbunov et al. have shown that the cre-
ation of heavy gravitons is negligible in the inflationary
brane world @31#. Thus we will assume that the modes with
mle2a0.1 do not contribute to the perturbations in the bulk.
More precisely, we take

mle2a0→0. ~55!

From the effective Einstein equations ~40! and ~41!, we
find that there are two situations in which the deviation from
conventional 4D theory becomes large. One is given by

kle2a0@1, ~56!

which means that the physical scale of the perturbations is
smaller than the curvature scale l. This is reasonable since
the gravity behaves like that in 5D spacetime at scales
smaller than l. The other is given by

ȧ0l@1, ~57!

which means that the energy density of the matter exceeds
the tension of the brane. In the Friedmann equation ~16!, the
term proportional to r2 becomes dominant and the evolution
of the universe changes significantly.

V. MODIFICATIONS OF THE EVOLUTION

In this section, we take the boundary condition that the
perturbations are outgoing at the horizon of the AdS space-
time ~53!. Then we have

drx5dpx5vx50. ~58!

In the following sections, we assume that the matter pertur-
bations are adiabatic.

A. Evolution at superhorizon scales

Let us consider the long-wavelength perturbations. We
take

kle2a0→0; ~59!

then the corrections to the matter perturbations in Eq. ~40!
written using E (1)(m ,k) vanish. From Eq. ~40!, the evolution
equation for the metric perturbations can be obtained by im-

posing dp2cs
2dr50. The equation can be simplified using

the Bardeen parameter

z5C02

ȧ0
2

ä0

S 1

ȧ0

Ċ01F0D . ~60!

At superhorizon scales kȧ0
21e2a0!1, dp2cs

2dr50 can be

written as

ż50, ~61!

where we used

ẇ523ȧ0~11w !~cs
22w!. ~62!

Then the Bardeen parameter is conserved even in the high
energy regime, namely,

z5z
*

5const. ~63!

We should note that the constancy of the Bardeen parameter
does not mean that the behavior of the perturbations in the
brane world is the same as that obtained in conventional 4D
theory. The Bardeen parameter is written in terms of F0 and
C0. In conventional 4D theory we have the equation F0

5C0. In the brane world, however, it is modified by the
perturbations in the bulk. An equation that gives the relation
between C0 and F0 is needed. From Eq. ~41!, the metric
perturbations are given by

C05E dmE (1)~m !mle2a0H1
(1)~mle2a0!e2imT,

F05@11~ ȧ0l !2#C02@112~ ȧ0l !2#E dmE (1)~m !

3~mle2a0!2H0
(1)~mle2a0!e2imT

22ia1ȧ0l2E dmE (1)~m !

3~mle2a0!2H1
(1)~mle2a0!e2imT. ~64!

As mentioned in the previous section, we should make some
assumption about the contribution from massive modes. We
will assume that the modes with mle2a0.1 do not contrib-
ute to the perturbations in the bulk and thus take

mle2a0→0. ~65!

Then using the asymptotic forms of the Hankel functions

H1
(1)(z)}1/z and H0

(1)(z)}const, we obtain

F05@11~ ȧ0l !2#C0 . ~66!

At high energy, we have

F05~ ȧ0l !2C0 ; ~67!
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thus F0@C0. From the conservation of the Bardeen param-
eter Eqs. ~60! and ~63!, we get

F053~11w !z
*

, C05~ ȧ0l !22F0 ,

dr

r
52F0 , ~68!

for w5const. Note that the curvature perturbation increases
as C0}r22 at high energy.

At low energy, ȧ0l!1, we have

C05F0 . ~69!

Then the metric perturbations are obtained as

F05C05

3~11w !

513w
z
*

,

dr

r
522F0 , ~70!

for w5const.
The CMB anisotropies at large scales can be obtained

using the above solutions. At the decoupling of the photon
and baryon, the energy of the universe is lower than the

tension of the brane ȧ0l!1. The temperature anisotropies
caused by the ordinary Sachs-Wolfe effect are given by

DT

T
5

1

4

drr

rr

1F05

1

3

dr

r
1F0 , ~71!

where rr is the density of the radiation and drr is its pertur-
bation. From Eqs. ~40! and ~60!, we can show the Bardeen
parameter is given by

z5C02

1

3

dr

r
. ~72!

Then the temperature anisotropies can be evaluated as

DT

T
52z1C01F0 . ~73!

If we neglect the effect of the massive graviton with
mle2a0.1, we can evaluate the temperature anisotropies as

DT

T
5

1

5
z
*

, ~74!

where we used the solution ~70! with w50.
The massive graviton will modify the relation between

F0 and C0 and thus the temperature anisotropies. At low
energy, the metric perturbations are given by

C05E dmE (1)~m !mle2a0H1
(1)~mle2a0!e imh,

F05C02E dmE (1)~m !

3~mle2a0!2H0
(1)~mle2a0!e imh. ~75!

Then at the lowest order corrections in mle2a0 we have

F05C02E dmC0~m !~mle2a0!2GKK~mle2a0!e imh.

~76!

Here C0(m) denotes the Fourier transformation of C0(h)
with respect to h and

GKK~mle2a0!5 lim
mle2a0→0

S H0
(1)~mle2a0!

mle2a0H1
(1)~mle2a0!

D
5ln~2ea0!2g1

p

2
i2ln~ml !. ~77!

Here g is the Euler number. The important point is that GKK

contains a nonanalytic term proportional to ln m. Thus Eq.
~76! becomes nonlocal when we make a Fourier transforma-
tion to real spacetime. The reason can be understood as fol-
lows. The massive modes with mÞ0 can propagate into the
bulk. These modes affect the metric perturbations nonlocally
if they are observed on the brane. Thus the nonlocality of the
evolution equation is an essential feature of the brane world
@20#.

The contributions from the massive modes are determined
by E (1)(m), which is determined by the primordial fluctua-
tions and later evolution. It is difficult to know E (1)(m), but
it should be noted that in Eq. ~76! m appears in the form
mle2a0. Thus, as the energy of the universe becomes lower
e2a0→0, the mass of the massive modes that can modify the
relation F05C0 becomes larger. Then for late times we can
safely use the standard result ~74!. The constant z

*
should be

determined by the primordial fluctuations. We discuss the
generation of the primordial fluctuations in Appendix C.

Here is a point we should emphasize. At high energy, the
Hubble scale itself is smaller than the curvature scale of the
AdS spacetime. Thus we should be careful in using the result
kle2a0→0 even at superhorizon scales in the high energy
universe.

B. Evolution at subhorizon scales

In this section we investigate the corrections that arise for

kle2a0Þ0. ~78!

We will assume the universe is in the low energy era ȧ0l

!1 and take

mle2a0→0. ~79!
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At subhorizon scales kȧ0
21e2a0@1, the density perturbation

~40! is given by

k2

2l
e2a0dr52k2C01

1

3
e22a0

3E dmE (1)~m ,k!k4l2H0
(1)~mle2a0!e ivh

52E dmE (1)~m ,k!k2mle2a0H1
(1)~mle0

2a!e ivh.

~80!

On the other hand the metric perturbations ~41! are given by

k2F05E dmE (1)~m ,k!k2S mle2a0H1
(1)~mle2a0!

2

1

3
~k2

13m2!l2e22a0H0
(1)~mle2a0! D e ivh.

~81!

For mle2a0!1 we can rewrite Eq. ~81! into the effective
Poisson equation:

k2F052

k2

2l
e2a0dr1

k2l

6
e22a0E dm~k2

13m2!

3GKK~mle2a0!@e2a0dr#~m ,k!, ~82!

where GKK is given by Eq. ~77! and @e2a0dr#(m ,k) denotes
the Fourier transformation of e2a0dr with respect to h and
x i. For kle2a0→0, Eq. ~82! is the usual Poisson equation.
The evolution equation for dr can be derived from the con-
servation laws of the matter perturbations ~20! and ~21!. For
example, in the matter dominated era w50, we get

D91a08D82

3

2
a08

2D1

k2l

6
e22a0E dm~k2

13m2!

3GKK~mle2a0!@e2a0dr#~m ,k!e2ivh
50, ~83!

where the prime denotes the derivative with respect to h and
D5dr/r . The last term represents the correction from the
bulk perturbations. Note that for kle2a0Þ0 a nonlocal term
arises even if we take mle2a0→0. This is because the gravi-
ton can easily propagate into the bulk at scales smaller than
l (kle2a0.1). Thus the bulk gravitational field affects the
evolution of the density perturbation nonlocally.

It is well known that in the Minkowski brane Newton’s
law is modified due to the 5D graviton @3,32–34# This modi-
fication can be derived from the effective Poisson equation.
Let us consider the situation where ea051. We assume that
the source is static v2

5m2
1k2

50, and derive the lowest
order corrections in (kl)2

,1. Taking the nonanalytic term,
the metric perturbations are written as

C0~k!52

k2

2l
S k22

2

1

3
l2 ln~ml ! D dr~k!,

F0~k!52

k2

2l
S k22

2

2

3
l2 ln~ml ! D dr~k!.

~84!

To compare the result with the one obtained in @31–33#, we
consider a spherically symmetric source and derive the met-
ric perturbations far away from the source. We obtain the
metric perturbations by Fourier transformation as

C0~r !52

G4M

r S 11

l2

3r2D ,

F0~r !52

G4M

r S 11

2l2

3r2D , ~85!

where 8pG45k2/l , M5*dx3dr(x), and the source is lo-
cated at r50. This result completely agrees with the one
obtained in @31–33#.

VI. CORRECTIONS FROM PERTURBATIONS

OF DARK RADIATION

In this section we choose the boundary condition so that
the corrections drx , dpx , and vx are induced on the brane.
Then we investigate the effects of the corrections on the
evolution of the perturbations.

A. Evolution at superhorizon scales

Let us consider the long-wavelength perturbations with
kle2a0→0. The corrections to the matter perturbations given

by E (1)(m ,k) vanish. At superhorizon scales kȧ0
21e2a0!1,

the density perturbation and the pressure perturbation are ob-
tained from Eqs. ~29! and ~40! as

2

k2a1

2
dr523~ ȧ0Ċ01ȧ0

2F0!1

k2

2l
Ce24a0,

2

k2a1

2
dp5C̈01S 3ȧ02

ȧ0ä0

a1
2 D Ċ01ȧ0Ḟ0

1S 2ä02

ȧ0
2ä0

a1
2

13ȧ0
2D F0

1

k2

2l
Ce24a0

1

3 S 11

ä0

a1
2D , ~86!

where we put x5C5const, which can be deduced from Eq.

~26!. Then, using the Bardeen parameter ~60!, dp2cs
2dr

50 can be written as

ż5

k2

2l
Ce24a0

ȧ0

ä0
F 1

3 S 11

ä0

a1
2D 2cs

2G . ~87!

We see that the term proportional to C breaks the constancy
of the Bardeen parameter. The results can be understood as
follows. The density perturbations drx induce isocurvature
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perturbations on the brane. In 4D theory, it is well known
that the isocurvature perturbations break the constancy of the
Bardeen parameter. In fact, if we consider the perturbations
in the radiation dominated era at low energy

cs
2
5

1

3
, a1@ȧ0 , ~88!

then ż50. This is reasonable since drx behaves as radiation

@dpx5(1/3)drx# at low energies, so there are no isocurva-
ture perturbations. The equation can be integrated using the
background equations ~A12! and ~62!. We get

z5z
*

2

k2

2l

Ce24a0

3ä0

5z
*

2

1

3~11w !

1

la1
S rr

r
DC

*
, ~89!

where we defined

C
*

5C
e24a0

rr

5const. ~90!

Using the expression for the Bardeen parameter in terms of
the metric perturbations ~60!, we can obtain the solutions for
the metric perturbations.

At high energy, using

C05

1

~ ȧ0l !2
F0!F0 , ~91!

we get

F053~11w !z
*

1

1

ȧ0l
S rr

r
DC

*
~92!

for w5const. Note that the contribution from C
*

is sup-

pressed by the factor (ȧ0l)21.
At low energy, using

C05F0 , ~93!

we get

F05

3~11w !

513w
z
*

1

1

3~113w !
S rr

r
DC

*
~94!

for w5const.
The CMB anisotropies ~73! caused by the ordinary Sachs-

Wolfe effect in the matter dominated era are given by

DT

T
52z12F0

5

1

5
z
*

1

1

3
S rr

r
DC

*
. ~95!

From the observations, the magnitude of the anisotropies is
known as DT/T;1025 and the fraction of the radiation com-
ponent in the total density is rr /r;0.1 at decoupling. Then
the constraint on C

*
is obtained as @29#

C
*

,1024. ~96!

B. Evolution at subhorizon scales

Now consider the evolution of the perturbations at sub-

horizon scales kȧ0
21e2a0@1. For simplicity, we consider the

low energy regime. We also assume that the length scale of
the perturbations is larger than l (kle2a0!1). Then the cor-
rections due to E (1)(m ,k) can be neglected. In order to de-
scribe the evolution of the density perturbation, it is conve-
nient to introduce the gauge invariant variable defined by

rD5dr13ȧ0~r1p !ea0v . ~97!

From Eqs. ~40! and ~29! the Poisson equation is given by

k2F052

3

2
a08

2D1e22a0
k2

2l
~x23a08k22x8!. ~98!

Equations ~20! and ~21! become

D823wa08D52~11w !k2
v1

3k2

2l
~11w !e22a0k22x8,

v81a08v5F01

cs
2

11w
D , ~99!

where we used the formula ~62!. Then the evolution equation
for D can be obtained as

D92@3~2w2cs
2!21#a08D813S 3

2
w2

24w2

1

2
13cs

2Da08
2D

1cs
2k2D52

k2

l
~11w !e22a0x . ~100!

The initial condition for D can be set in the radiation domi-

nated era. In the radiation dominated era, w5cs
2
51/3 and

ea05h , the evolution equation ~100! becomes

D92

2

h2
D1

1

3
k2D52

4k2

3l

1

h2
x . ~101!

Then we can easily find the solution as

D5AUG~h !1BUD~h !1

2k2

3l
x , ~102!

where

UG52cos~ksh !1S 1

ksh
D sin~ksh !,
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UD52sin~ksh !2S 1

ksh
D cos~ksh !, ~103!

A and B are constants of integration, and ks5k/A3. Note
that for kh→0, UG and UD behave as UG5k2h2/9 and
UD}h21. Then UG matches the growing mode solution at
superhorizon scales. From Eq. ~98!, the metric perturbation
is given by

F052

1

k2h2 F3

2
~AUG1BUD!1

k2

2l
S x1

3

h
k22x8D G .

~104!

From Eq. ~48!, the solution for x is given by

x5C cos~ksh !1D sin~ksh !, ~105!

where D is an arbitrary constant. Then F0 becomes

F052

1

k2h2 F S 3

2
A2

k2

2l
C DUG1S 3

2
B2

k2

2l
D DUDG .

~106!

We take only the growing mode solution; then B5D50. In
the radiation dominated era, we obtain

a08
2e22a05

k2

3l
rr , ~107!

and ea05h . Then Eq. ~90! becomes

C
*

5

k2

3l
C . ~108!

At superhorizon scales, using UG5k2h2/9, we get

F052

A

6
1

1

6
C

*
. ~109!

Comparing the solution Eq. ~109! with ~94!, we find A5

24z
*

. Thus, we can set the initial condition for D in the
radiation dominated era as

D524z
*

UG12C
*

cos~ksh !. ~110!

In the radiation dominated era, the perturbations are constant
D;2C

*
at superhorizon scales and then oscillate as a cosine

function once they enter the horizon. Thus, at subhorizon
scales, the density perturbation behaves like the usual adia-
batic perturbations in 4D theory. However, as the matter be-
comes dominant, isocurvature perturbations are generated.
This is because, while the frequency of UG changes from ks ,
x always oscillates with frequency ks . Thus there is a pos-
sibility that the amplitude and phase of the oscillations of D
change from the adiabatic cosine mode. These deviations can
be directly observed as the shifts of the location and height
of the peak of the acoustic oscillation in the CMB spectrum.
We solved Eq. ~100! numerically with the initial condition
given by Eq. ~110!. In Fig. 1, the density perturbation D(k)
at the time rr /rm50.1 is shown with various wave numbers
k. Here rm is the density of matter. For C

*
50, D(k) is

given by a cosine function. If we include the effect of C
*

,
the location and height of the peak of the oscillations change
as expected. Thus, if we include the effect of the corrections
drx , dpx , and vx , the effects from the bulk can be ob-
served even in the low energy universe.

VII. CONCLUSION

In this paper we obtained the effective 4D Einstein equa-
tions ~40! and ~41! that describe the scalar cosmological per-
turbations on the brane. Then we investigated the effect of
the bulk gravitational field on the evolution of the cosmo-
logical perturbations on the brane.

We first used the equations on the brane obtained from a
power series expansion of the 5D Einstein equations. From
the equations on the brane, we obtained the effective Einstein
equations ~27!, ~28!, and ~29!. It should be mentioned that
we cannot derive the equation that contains only the vari-
ables on the brane and gives the relation between the metric
perturbations F0 and C0. Two types of correction are found.
One is given by the gradient of the metric perturbations. The
other is independent of the metric perturbations ~29! and
induces density perturbations, which behave like sound

FIG. 1. D(k) at rr /rm50.1 with C
*

50,

2z
*

, 4z
*

, 22z
*

, 24z
*

where we take z
*

51. The horizontal coordinate is the value ke f f

5ȧ0
21e2a0k at rr /rm51. The perturbation with

ke f f51 crosses the horizon at rr /rm51. The ini-

tial conditions are set at rr /rm5100.
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waves with the sound velocity 1/A3 at low energy. At large

scales, they are homogeneous perturbations that depend only

on time and decay like radiation. We identified them with the

perturbations of the dark radiation.

Then we derived the effective Einstein equations again in

another way by solving the perturbations in the bulk and

imposing the junction conditions ~40! and ~41!. We obtained

an equation that gives the relation between F0 and C0. We

identified the perturbations in the bulk that induce perturba-

tions of the dark radiation. These perturbations do not con-

tribute to the metric perturbations but do contribute to the

matter perturbations on the brane. At low energy, they have

imaginary mass 2k2
13m2

50 in the bulk and diverge at the

horizon of the AdS spacetime. Their existence in the bulk

depends on the boundary conditions of the perturbations. We

should impose two boundary conditions to completely deter-

mine the perturbations in the bulk. One is given by the equa-
tion of state of the matter on the brane. The other choice of
boundary condition at the horizon determines the existence
of the perturbations of the dark radiation.

If we take the boundary condition that the perturbations
do not diverge at the horizon of the AdS spacetime, the per-
turbations of the dark radiation do not appear. The other
corrections are suppressed by kle2a0. Thus they correspond
to correction terms given by the gradient of the metric per-
turbations. Corrections also arise in the relation between F0

and C0. The corrections become large at scales smaller than
the curvature scales of the AdS spacetime (kle2a0@1) and
in the high energy universe with energy density larger than

the tension of the brane (ȧ0l@1). In particular, at high en-

ergy ȧ0l@1, the potential perturbation F0 becomes domi-
nant over the curvature perturbation C0. We discuss the evo-
lution of the adiabatic perturbations including these
corrections. The interesting point is that at sufficiently large
scales (kle2a0→0) the Bardeen parameter is constant even
at high energies. Then the potential perturbations F0 are al-
ways constant if the barotropic parameter of the matter w is
constant. On the contrary, at scales below l, the correction
becomes large. In order to illustrate how these corrections
modify the evolution of the density perturbations, we ob-
tained the effective Poisson equation in the low energy uni-
verse at subhorizon scales. Using the effective Poisson equa-
tion, the evolution equation for the matter perturbations was
given. The important point is that the evolution equation be-
comes nonlocal once we incorporate the effect of the pertur-
bations in the bulk. This is the essential feature of the per-
turbations at scales below l. We emphasized that one should
be careful to use the result kle2a0→0 in the high energy
universe even at superhorizon scales. This is because at high
energy the horizon scale of the universe itself is smaller than
the curvature scale l.

We should comment on our limitation in obtaining the
evolution of the perturbations using the effective Einstein
equations. It is in general difficult to obtain the spectrum
E (1)(m ,k) of the perturbations in the bulk by imposing the
equation of state of the matter perturbations. As a result, we
should make an assumption about the contribution of the
massive perturbations. We used the assumption that the

modes with mle2a0.1 do not contribute to the perturba-
tions in the bulk; thus we take mle2a0→0. At low energy
e2a0→0, the assumption seems to be valid. The coefficient
E (1)(m ,k) is determined by the primordial fluctuations and
later evolution @31,36,37#. Further studies are needed to
know the exact form of E (1)(m ,k).

If we choose appropriate boundary conditions in the bulk
~50!, perturbations of the dark radiation arise. They induce
isocurvature perturbations in the dust dominated universe.
Their key feature is that they can play a role even in the low
energy universe at scales larger than l where the previous
corrections are suppressed. We gave an evolution equation
for the density perturbation including the corrections from
them. The large scale CMB anisotropies were estimated and
the constraint on the amplitude was derived. At subhorizon
scales, they act as an extra force on the acoustic oscillations
of the density perturbation. In the matter dominated era, the
location and the height of the acoustic peak are shifted due to
the extra force ~see Fig. 1!. These shifts can be directly ob-
served by CMB anisotropies. Recently, much work has been
done to test the correlation between adiabatic and isocurva-
ture perturbations using the CMB spectrum @35#. Detailed
analysis of the CMB spectrum will reveal the existence of
the dark sound waves.
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APPENDIX A: BACKGROUND EQUATIONS

In this Appendix, we derive the equations used in Sec. II.
The 5D Einstein equations are given by

GN
M

5

6

l2
dN

M
1k2

A2gbrane

A2g
TN

M

5

6

l2
dN

M
1e2bk2TN

M ~M ,N5y ,t ,x i!. ~A1!

We take the energy-momentum tensor in the 5D spacetime as

TN
M

5S 2

6

k2l
diag~0,1,1,1,1 !1diag~0,2r ,p ,p ,p !D d~y !.

~A2!

The Einstein tensor is given by

G0
0
523e22b~ ȧ2

1ȧḃ2a922a8
2
1a8b8!,

Gy
y
53e22b~2ä22ȧ2

1ȧḃ1a8
2
1a8b8!,

Gy
0
523e22b~b8ȧ1a8ḃ2ȧ82ȧa8!,

G j
i
5d j

ie22b~22ä23ȧ2
2b̈12a913a8

2
1b9!.

~A3!

In the (0,0) and (i , j) components of the Einstein equations,
the jump of the first derivative of a(y ,t) and b(y ,t) gives
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the d(y) function. This should be equated with the d(y)
function of the matter. Thus we obtain the junction condi-
tions ~7!

a1~ t !52

1

l
2

k2r~ t !

6
,

b1~ t !52

1

l
1

k2r~ t !

3
1

k2p~ t !

2
, ~A4!

where we take eb051. The y0th order of the (y ,y) and (y ,0)
components of the Einstein equations gives

2ä022ȧ0
2
1a1

2
1a1b15

2

l2
,

b1ȧ02ȧ12ȧ0a150. ~A5!

Using the junction condition ~A4!, we get Eq. ~8!.
Next let us derive the wave equations for b and a in the

bulk. The (0,0) and (i , j) components of the 5D Einstein
equations in the bulk can be rewritten using u5(t2y)/l and

v5(t1y)/l as

a ,uv
13a ,ua ,v1e2b

50,

b ,uv
23a ,ua ,v2

1

2
e2b

50. ~A6!

We assume that the bulk is AdS spacetime, so we take
CMyNy50 where CMNKL is the Weyl tensor. This condition
is given by

a ,uv
2b ,uv

50. ~A7!

Then the wave equations for a and b become

b ,uv
1

1

4
e2b

50,

a ,uv
1

1

4
e2b

50. ~A8!

Thus we derived Eq. ~12! in Sec. II. Instead of solving the
wave equations directly, it is convenient to rewrite the equa-
tion for a using Eq. ~A6! as

a ,uv
2a ,ua ,v50. ~A9!

The solution can be found easily as

ea
5

1

f ~u !2g~v !
, ~A10!

where f (u) and g(v) are arbitrary functions. Then b can be
obtained from Eq. ~A6! as

e2b
52a ,uv

23a ,ua ,v

54
f 8~u !g8~v !

@ f ~u !2g~v !#2
. ~A11!

Finally, we show some background equations that are
used in the calculations of the perturbations. From the junc-
tion conditions ~A4! and equations on the brane ~8!, we can
deduce the following equations:

ä05

k2a1

2
~r1p !5a1~b12a1!,

a1
2
5

1

l2
1ȧ0

2 ,

b1

a1

511

ä0

a1
2

,

ȧ15

ȧ0ä0

a1

5ȧ0~b12a1!. ~A12!

To calculate the perturbations, we need a2 and b2. From the
y0th order of the (0,0) and (i , j) components of the Einstein
equations, we can write a2 and b2 in terms of a0 , a1, and
b1:

a25ȧ0
2
22a1

2
1a1b11

2

l2
,

b25ȧ0
2
12ä01a1

2
22a1b11

2

l2
. ~A13!

APPENDIX B: DERIVATION OF THE EFFECTIVE

EINSTEIN EQUATIONS „40… AND „41…

In this Appendix we review the formalism used to solve
the perturbations in the bulk and impose the junction condi-
tions developed in @11#. Using the formalism, we obtain the
effective Einstein equations ~40! and ~41!.

1. Review of the formalism

First let us review the formalism for obtaining the pertur-
bations in the bulk. We start with the perturbed AdS space-
time in Poincaré coordinates:

ds2
5S l

z
D 2

$dz2
2~112f !dt2

12b ,idx idt

1@~122Ĉ !d i j12Ê ,i j#dx idx j%. ~B1!

Here f , b , Ĉ , and Ê are given by

h5S z

l
D 2E d3k

~2p !3
E dm h~m ,k!Z2~mz !e2ivte ik•x

~h5f ,b ,Ĉ ,Ê !, ~B2!
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where Z2 is a combination of the Hankel functions of the
first and second kinds of the second rank, Z2(mz)

5H2
(1)(mz)1a(m)H2

(2)(mz). Here we used the transverse-

traceless gauge conditions

f23Ĉ1¹2Ê50,

2
df

dt
1¹2b50,

db

dt
12Ĉ22¹2Ê50. ~B3!

Thus the coefficients h(m ,k) satisfy

f~m ,k!5

2k4

3m2
l2E~m ,k!,

b~m ,k!524i
Ak2

1m2k2l2

3m2
E~m ,k!,

Ĉ~m ,k!52

k2l2

3
E~m ,k!,

Ê~m ,k!5

2k2
13m2

3m2
l2E~m ,k!,

~B4!

where E(m ,k) is an arbitrary coefficient.
The perturbation in the metric ~4! is obtained by the co-

ordinate transformation

z5z~y ,t !5le2a(y ,t), t5t~y ,t !. ~B5!

The Jacobian of the transformation is given by

]t

]y
5lȧe2a,

]z

]y
52la8e2a,

]t

]t
5la8e2a,

]z

]t
52lȧe2a. ~B6!

Note that at late times

dT

dt
5la1e2a052e2a0. ~B7!

Thus we obtain T5t(0,t)52h , where h is the conformal
time. After the coordinate transformation, the resulting met-
ric is given by

ds2
5e2b(y ,t)@~112N̂ !dy2

2~112F̂ !dt2
12Âdt dy #

1e2a(y ,t)$@~122Ĉ !d i j12Ê ,i j#dx idx j
12B̂ ,idx idt

12Ĝ ,idx idy%, ~B8!

where

F̂5~ la8!2e22bf ,

B̂5~ la8!e2ab ,

N̂52~ lȧ !2e22bf ,

Â522~ l2ȧa8!e22bf ,

Ĝ5~ lȧ !e2ab . ~B9!

There are three degrees of freedom in the gauge transforma-
tions:

xM
→xM

1jM , jM
5~jy,j t,j ,i!. ~B10!

After this gauge transformation, the perturbed metric is given
by

ds2
5e2b(y ,t)@~112N !dy2

2~112F !dt2
12Adt dy #

1e2a(y ,t)$@~122C !d i j12E ,i j#dx idx j
12B ,idx idt

12G ,idx idy%, ~B11!

where

F5F̂1 j̇ t
1b8jy

1ḃj t,

C5Ĉ2ȧj t
2a8jy,

E5Ê1j ,

B5B̂1 j̇2e2(b2a)j t,

A5Â1 j̇y
2j t8,

G5Ĝ1e2(b2a)jy
1j8,

N5N̂1jy8
1ḃj t

1b8jy. ~B12!

Using these degrees of freedom, we perform the gauge trans-
formation to the Gaussian normal ~GN! coordinates in which
the junction conditions will be imposed. In the GN coordi-
nates, the transverse components of the metric vanish (G

5A50) and the brane is located at y50. The former con-
ditions are achieved by j and j t. We can also take the gauge
E05B050 using the residual gauge transformations in j and
j t. Then j and j t are determined in terms of jy as

j t
5E

0

y

dy~ Â1 j̇y!1T̂0 , T̂05e2a0~ B̂02 Ė̂0!,

j52E
0

y

dy~Ĝ1e2(b2a)jy!2Ê0 . ~B13!

The condition that the brane is located at y50 is achieved by
jy which will be determined by the matter perturbations on
the brane.

The metric perturbations on the brane are obtained as
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F05F̂01b1j0
y
1 Ṫ̂0 ,

C05Ĉ02a1j0
y
2ȧ0T̂0 ,

N05N̂01j1
y
1b1j0

y , ~B14!

and the first derivatives of the metric perturbations are given
by

F15 j̈0
y
1b1j1

y
1b2j0

y
1F̂11Â

˙
01ḃ1T̂0 ,

C152a1j1
y
2ȧ0j̇0

y
2a2j0

y
1Ĉ12ȧ0Â02ȧ1T̂0 ,

N15j2
y
1b1j1

y
1b2j0

y
1N̂11ḃ1T̂0 ,

B15e22a0~22 j̇0
y
12ȧ0j0

y
22~b12a1!T̂02Â0

1e2a0B̂12e2a0Ĝ
˙

0!,

E15Ê12e22a0j0
y
2Ĝ0 . ~B15!

Combining Eq. ~B15! with the junction conditions @19#

C152a1N01

1

6
k2dr ,

F15b1N01k2S dr

3
1

dp

2
D ,

B1522~b12a1!e2a0v ,

E150, ~B16!

we can write the matter perturbations in terms of j0
y and

E(m ,k):

k2dr526@ ȧ0j̇0
y
1~a22a1b1!j0

y
2Ĉ11ȧ0Â01ȧ1T̂0

2a1N̂0# ,

k2dp52@ j̈0
y
12ȧ0j̇0

y
1~2a21b22b1

2
22a1b1!j0

y
1F̂1

22Ĉ11 Ȧ̂012ȧ0Â01~ ḃ112ȧ1!T̂0

2~b112a1!N̂0# ,

k2~r1p !ea0v

52 j̇0
y
22ȧ0j0

y
2e2a0B̂112~b12a1!T̂01e2a0Ġ̂0

1Â0 ,

0522e22a0j0
y
12Ê122Ĝ0 , ~B17!

where T̂05e2a0(B̂02 Ė̂0). From the last equation in ~B17!,

j0
y is written using E(m ,k). Thus the matter perturbations are

written in terms of the perturbations in the bulk ~B2! and

~B4!. These equations correspond to Eq. ~14! in the back-
ground spacetime. The solutions for the perturbations are
obtained by determining E(m ,k) and a(m) by imposing the
equations of state of the matter perturbations such as dp

5cs
2dr and the appropriate boundary conditions in the bulk.

In @11#, E(m ,k) is obtained for perturbations at superhorizon
scales in the low energy universe with a constant barotropic
parameter. The boundary condition was taken so that the
perturbations are outgoing at the horizon of the AdS space-
time. In general, however, it is rather difficult to obtain the
solution for E(m ,k). Thus we use the method described in
Sec. II. We rewrite Eq. ~B17! as the effective Einstein equa-
tions. To do so, we should rewrite the right-hand side of Eq.
~B17! in terms of the metric perturbations F0 and C0.

2. Derivation of the equations „40… and „41…

We rewrite the right-hand side of Eqs. ~B17! by using
metric perturbations F0 and C0 to derive Eqs. ~40! and ~41!.

We will write F̂ , B̂ , N̂ , Â , and Ĝ in terms of f and b using
Eq. ~B9!. First let us consider the density perturbation dr .
From Eq. ~B17!, dr is given by

k2dr526S ȧ0j̇0
y
2ȧ0

2j0
y
2ȧ0

2a1l2f01ȧ0ä0ea0lb0

2

ȧ0ä0

a1

e2a0Ė̂02Ĉ1D , ~B18!

where we used Eq. ~A13! to write a22a1b152ȧ0
2 and

ȧ15ȧ0ä0 /a1. The strategy is to write j0
y using C0 and F0.

From Eq. ~B14!, the metric perturbations C0 and F0 are
given by

C05Ĉ02a1j0
y
1ȧ0e2a0Ê

˙
02ȧ0a1ea0b0 ,

F05a1
2l2f01S 11

ä0

a1
2D a1j0

y
2e2a0Ë̂0

22ȧ0e2a0Ê
˙

01~a1ȧ01ȧ1!lea0b0

1a1ea0l ḃ0 , ~B19!

where we used Eq. ~A12! to write b15(11ä0 /a1
2)a1. From

Eq. ~B19!, we can show that

ȧ0Ċ01ȧ0
2F052a1S ȧ0j̇0

y
2ȧ0

2j0
y
2ȧ0

2a1l2f0

1ȧ0ä0ea0lb02

ȧ0ä0

a1

e2a0Ê
˙

0D 1ȧ0Ĉ
˙

0 .

~B20!

Thus the terms written using j0
y in Eq. ~B18! can be rewritten

using F0 and C0. We obtain
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2

a1k2

2
dr523~ ȧ0Ċ01ȧ0

2F01a1Ĉ12ȧ0Ĉ
˙

0!.

~B21!

The remaining task is to rewrite the terms written in terms of

Ĉ in terms of C0. First, using the solution of the perturba-
tions ~B2! and ~B4!, we rewrite C0 in terms of E(m ,k).

From Eq. ~B17!, j0
y is given by

j0
y
5e2a0Ê12ȧ0ea0lb0 . ~B22!

Then we can rewrite C0 as

C05Ĉ02a1e2a0Ê11ȧ0e2a0Ê
˙

0 . ~B23!

Using the Jacobian of the transformation ~B6! and

d

dz
@z2Z2~mz !#5mz2Z1~mz !, ~B24!

we can get the following equations:

a1e2a0Ê1~k!52E dmÊ~m ,k!@a1
2mle2a0Z1~mle2a0!

1ȧ0a1ivle2a0Z2~mle2a0!#e2ivT,

ȧ0e2a0Ê
˙

0~k!52E dmÊ~m ,k!@ ȧ0
2mle2a0Z1~mle2a0!

1ȧ0a1ivle2a0Z2~mle2a0!#e2ivT. ~B25!

Thus we find

2a1e2a0Ê11ȧ0e2a0Ė̂05E dmE~m ,k!S 2k2
13m2

3m
le2a0D

3Z1~mle2a0!e2ivT, ~B26!

where we used Eq. ~B4! and a1
2
51/l2

1ȧ0
2 @Eq. ~A12!#. Ĉ0

is given by

Ĉ0~k!5e22a0E dmĈ0~m ,k!Z2~mle2a0!e2ivT

52E dmE~m ,k!S 2k2

3m
le2a0Z1~mle2a0!

2

1

3
~kle2a0!2Z0~mle2a0! D e2ivT, ~B27!

where we used Eq. ~B4! and Z2(mz)5(2/mz)Z1(mz)
2Z0(mz). Then we can write C0 in terms of E(m ,k) as

C0~k!5E dmE~m ,k!S mle2a0Z1~mle2a0!

1

1

3
~kle2a0!2Z0~mle2a0! D e2ivT(t). ~B28!

On the other hand, the same calculation as for Eq. ~B26!
yields

a1Ĉ1~k!2ȧ0Ĉ
˙

0~k!5

1

3
E dmE~m ,k!k2mle23a0

3Z1~mle2a0!e2ivT(t). ~B29!

Thus Eq. ~B21! becomes

2

k2a1

2
dr~k!523~ ȧ0Ċ01ȧ0

2F0!2e22a0k2C0

1

1

3
e24a0E dmE~m ,k!k4l2Z0~mle2a0!

3e2ivT(t). ~B30!

The other quantities dp and v can be calculated in the
same way. The calculations are straightforward but lengthy.
It is easier to derive dp and v using the equations on the
brane ~19!, ~20!, and ~21!. The pressure perturbations dp can
be obtained from Eq. ~19! as

2

k2a1

2
dp~k!5C̈014ȧ0Ċ01ȧ0Ḟ012~ ä012ȧ0

2!F0

1

1

3
e22a0~2k2C02k2F0!2

k2b1

6
dr~k!.

~B31!

Substituting Eq. ~B30! into Eq. ~B31!, we get dp as

2

k2a1

2
dp~k!5C̈01S 3ȧ02

ȧ0ä0

a1
2 D Ċ01ȧ0Ḟ0

1S 2ä02

ȧ0
2ä0

a1
2

13ȧ0
2D F02

1

3
e22a0k2F0

1

1

3 S 12

ä0

a1
2D e22a0k2C0

1

1

9 S 11

ä0

a1
2D e24a0

3E dmE~m ,k!k4l2Z0~mle2a0!

3e2ivT(t). ~B32!

The velocity perturbation v is also obtained from the equa-
tion on the brane ~21!:

~r1p !ea0v5k22e2a0@2 ḋr13~r1p !Ċ0

23ȧ0~dr1dp !# . ~B33!

Substituting Eqs. ~B30! and ~B32! into Eq. ~B33!, we can
show that v is given by
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2

k2a1

2
~r1p !ea0v~k!5Ċ01ȧ0F01Dv , ~B34!

where Dv is given by

Dv52k22e22a0
d

dt
F1

3
E dmE~m ,k!k4l2Z0~mle2a0!

3e2ivT(t)G

5

1

3
e23a0E dmE~m ,k!@a1ivk2l3Z0~mle2a0!

2ȧ0mk2l3Z1~mle2a0!#e2ivT(t). ~B35!

Finally, let us rewrite the metric perturbations F0 in terms
of E(m ,k) to derive Eq. ~41!. From Eqs. ~B19! and ~B22!,
F0 is given by

F05a1
2l2f01a1ea0l ḃ01S 11

ä0

a1
2D a1e2a0Ê122ȧ0e2a0Ê

˙
0

2e2a0Ê
¨

0 . ~B36!

From Eq. ~B25!,

S 11

ä0

a1
2D a1e2a0Ê122ȧ0e2a0Ê

˙
02e2a0Ë̂0

5E dmE~m ,k!S ~a1l !2
2k2

1m2

m
le2a0Z1~mle2a0!

2~v2a1
2
1m2ȧ0

2!l4e22a0Z0~mle2a0!

22~a1ȧ0l2!ivml2e22a0Z1~mle2a0! D
3

2k2
13m2

3m2
e2ivT, ~B37!

where we used d@zZ1(mz)#/dz5mzZ0(mz). In addition, we
can show that

a1
2l2f05~a1l !2E dmE~m ,k!S 4k4

3m3
le2a0Z1~mle2a0!

2

2k4

3m2
l2e22a0Z0~mle2a0!D e2ivT, ~B38!

a1ea0l ḃ05E dmE~m ,k!S 2~a1l !2
8v2k2

3m3
le2a0

3Z1~mle2a0!1~a1l !2
4v2k2

3m2
l2e22a0

3Z0~mle2a0!1~a1ȧ0l2!
4ivk2

3m
l2e22a0

3Z1~mle2a0!D e2ivT, ~B39!

where we used Z2(mz)5(2/mz)Z1(mz)2Z0(mz). Then F0

can be written using E(m ,k) as

F0~k!5E dmE~m ,k!S mle2a0Z1~mle2a0!

2

1

3
~k2

13m2!l2e22a0Z0~mle2a0! D e2ivT(t)

1~ ȧ0l !2E dmE~m ,k!@mle2a0Z1~mle2a0!

2~k2
12m2!l2e22a0Z0~mle2a0!#e2ivT(t)

22a1ȧ0l2E dmE~m ,k!

3~ ivml2e22a0!Z1~mle2a0!e2ivT(t), ~B40!

where we used (a1l)2
511(ȧ0l)2.

APPENDIX C: PRIMORDIAL FLUCTUATIONS

The CMB anisotropies at large scales are determined by
z
*

which should be determined by the primordial fluctua-
tions. We consider the inflaton f confined to the brane with
potential V(f) @38#. The background equations are given by

f̈13ȧ0ḟ52

dV~f !

df
,

k2a1

2
ḟ2

5ä0 . ~C1!

The perturbed energy-momentum tensor of the inflaton is
given by

dr52ḟ2F01ḟ ḋf1V8~f !df ,

dp52ḟ2F01ḟdḟ2V8~f !df ,

~r1p !ea0v5ḟdf , ~C2!

where df are the fluctuations of the inflaton. It is useful to
use the Mukhanov variable to describe the evolution of the
perturbations:
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Q5df1

ḟ

ȧ0

C0 . ~C3!

Combining Eqs. ~C2! and ~40! and the equation of motion
for df ,

d̈f13ȧ0ḋf1e22a0k2df1V9~f !df

53ḟĊ01ḟḞ022V8~f !F0 , ~C4!

we can obtain the evolution equation for Q as

Q̈13ȧ0Q̇1e22a0k2Q1S ȧ̈0

ȧ0

22
ä0

ȧ0

V8~f !

ḟ
22S ä0

ȧ0

D 2

1V9~f !D Q5J , ~C5!

where

J5

ḟ0

ȧ0

F S 2 ȧ̈0

ä0

2

ä0

ȧ0

D Dv1

1

3
e22a0k2F02

1

3 S 12

ä0

a1
2D

3e22a0k2C01

1

3 S 2

3
2

1

3

ä0

a1
2D e24a0

3E dmE~m ,k!k4l2Z0~mle2a0!e2ivT(t)G , ~C6!

and Dv is given by Eq. ~B35!. We take the boundary condi-
tion so that drx5dpx5vx50. At large scales the source
term J goes to zero. Then we can find the solution for Q as

Q5

ḟ

ȧ0

S AQ1BQE t

dt8
ȧ0

2

e3a0ḟ2D , ~C7!

where AQ and BQ are constants of integration. The amplitude
AQ of the growing mode solution is determined once Q is
quantized. Denoting the power spectrum of AQ as PAQ

, we

get

PAQ
5

ȧ0

ḟ
PQU

large scales

, ~C8!

where the right-hand side is the power spectrum of the quan-
tized Q evaluated at large scales. The important point is that
Q is related to the Bardeen parameter by Eqs. ~C2!, ~40!, and
~60! as

Q5

ḟ

ȧ0

S z2

ȧ0

ä0

Dv D . ~C9!

Thus at large scales AQ5z
*

and

Pz
*
5PQu large scales . ~C10!

The problem is how to quantize the system of ~C5!. As in the
evolution equation for the density perturbations, the equation
becomes nonlocal at scales below l (kle2a0.0). In particu-
lar, at high energies, the Hubble horizon is smaller than the
curvature scale l. Thus even at the horizon scale the correc-
tions are significant. One way is to construct the effective
action that gives Eq. ~C5! and do path-integral quantization
as is done in @28#. Further investigations are needed to obtain
the spectrum of z

*
.
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