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Abstract

MP2 provides a good description of hydrogen bonding in water clusters and includes long

range dispersion interactions without the need to introduce empirical elements in the description

of the interatomic potential. To assess its performance for bulk liquid water under ambient

conditions, an isobaric-isothermal (NpT) Monte Carlo simulation at the second-order Møller-

Plesset perturbation theory level (MP2) has been performed. The obtained value of the water

density is excellent (1.02 g/mL) and the calculated radial distribution functions are in fair

agreement with experimental data. The MP2 results are compared to a few density functional

approximations, including semi-local functionals, hybrid functionals, and functionals including

empirical dispersion corrections. These results demonstrate the feasibility of directly sampling

the potential energy surface of condensed phase systems using correlated wavefunction theory,

and their quality paves the way for further applications.

keywords: Liquids, Hydrogen Bonding, Electron Correlation, Density Functional Theory,

Monte Carlo
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Understanding the structural and electronic properties of liquid water at ambient conditions is a

major challenge in condensed matter simulations. Water is a crucial ingredient for a large variety

of systems of prime importance in basic chemistry, biology, and physics, as well as in the applied

fields of catalysis and energy production. The water molecule has a large dipole moment and

polarizability, is a multiple hydrogen donor and acceptor and can easily build network structures.

The total cohesive energy in the condensed phase is, as a consequence of these properties, a sum of

many weak interactions. Theoretical models face therefore the challenge to describe many different

effects and their subtle interplay at a high precision. The development of sophisticated empirical

potentials for water1–10, allowed to gain insights into water’s behavior and its thermodynamic

properties11–13, such as, density maxima, heat capacity and effects of supercooling. However,

empirical models lack transferability and might fail if used under conditions away from their fitting

range. Most importantly, as soon as water takes an active role in a chemical process, either as a

strongly interacting solvent, or for example as a source of protons, the electronic properties of the

water molecule need to be taken into account. In this respect, first-principles methods offer the

possibility to describe all the underlying physics on the same footing, simplifying the treatment of

intra- and inter-molecular interactions. The capability to reproduce properties of complex systems

such as liquid water can therefore be used to judge the sophistication and predictive power of a

given quantum mechanical model. Density functional theory (DFT) is the most used quantum

mechanical method employed for studying physical and chemical properties of condensed phase

systems. Many DFT based simulation of bulk water have been reported in the literature, and in this

context three main methods of sampling the phase space can be recognized14: the Car-Parrinello

molecular dynamics (CPMD) and related variants15–21, Born-Oppenheimer molecular dynamics

(BOMD)22–26 and Monte Carlo (MC) sampling.27

Most of the CPMD and BOMD simulations were carried out in either the microcanonical

(NVE) or canonical (NVT) ensemble by constraining the volume to reproduce the experimental

density ρ . First principles MD simulations in the isobaric-isothermal (NpT) ensemble are much less

common26,28, in part due to the need for different integration schemes, the increased requirements

3



on plane waves basis sets in variable cell simulations, and the long simulation time that is needed

to equilibrate and to sample volume fluctuations. Moreover, in the MD sampling of the NpT

ensemble, the calculation of the virial and thus stresses is required to change the volume as a

response to the imbalance between internal stress and external pressure.29 In this respect, the

appealing feature of the MC method is that thermodynamic constraints are explicitly included

into the acceptance rule for each trial move, solely based on the energy. This allows to perform

simulations in different ensembles, e.g. NpT, in a relatively straightforward manner. On the

other hand, an efficient sampling of phase space in MC requires smart and system dependent trial

moves30–34, making the application of the method more intricate than molecular dynamics where

configurational sampling follows a general principle. Within the framework of MC, McGrath

and coworkers27 reported the first results from first-principles simulations of liquid water in the

isobaric-isothermal ensemble at ambient pressure. These NpT-MC simulations performed at ambient

conditions using the Becke-Lee-Yang-Parr (BLYP)35,36 functional gave a significantly less dense

(about 20%) liquid than observed experimentally. These results were confirmed and extended by

Schmidt et al.26 using very similar computational setups, but within the framework of NpT-MD.

In the latter work, in addition to BLYP, also the Perdew-Burke-Ernzerhof (PBE)37 functional has

been tested, and, in both cases, the influence of an empirical dispersion correction (DFT-D)38 has

been investigated. It was shown that pure PBE and BLYP are indeed underestimating the water

density, but the inclusion of the dispersion correction significantly improves the results giving a

density as well as oxygen-oxygen radial distribution function (RDF) closer to the experimental

data. From these calculations the important role played by the van der Waals interactions in bulk

water clearly emerged, and it was shown that this missing interaction in standard local functionals

can be efficiently included using empirical corrections.38–40 Furthermore, it became clear that NpT

simulations are essential to quantify the quality of the intermolecular interaction potential and that

a fixed simulation volume should be considered an influential constraint. Despite this progress, a

truly first principles simulation of liquid water in the NpT ensemble is still missing.

Here, we present the results of MP2 based NpT-MC simulation of liquid water at ambient
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conditions. The second-order Møller-Plesset energy41,42 is an effective correction to the Hartree–

Fock (HF) ground state energy that accounts for electron correlation effects. It recovers a relatively

large part of the dynamic correlation, while the HF ground state ensures the inclusion of exact

non-local exchange. Most notably, MP2 introduces dispersion interactions in a completely non-

empirical way. For water clusters, MP2 produces results that are in excellent agreement with

coupled cluster theory43–46, and is one of the best methods for the WATER27 benchmark.47

However, the advantages of MP2 come at a computational cost that is high compared to traditional

DFT using local functionals. Furthermore, MP2 calculations need larger basis sets than DFT

to reach a similar state of convergence. Therefore, only few applications of MP2 to condensed

phase systems have been reported (see e.g.48–50) and condensed phase sampling has not yet been

performed. The extensive calculations reported here have become possible by combining large

computer resources with an efficient algorithm for the MP2 energy calculation, which we named the

Resolution of Identity Gaussian and Plane Wave (RI-GPW) approach51,52 and implemented in the

CP2K53 program. In addition to the new MP2 results, we report also results of NpT-MC simulations

obtained from a selection of density functional approximations, namely, BLYP, PBE and PBE054,

including empirical dispersion corrections of the D3 type40, which have been generated to validate

the approach.

All calculations presented have been performed with the CP2K program.53 The energy at the

Hartree–Fock and DFT level is computed using the Gaussian and Plane Wave (GPW)55,56 method.

Within the GPW approach a Gaussian basis is used to expand molecular orbitals and an auxiliary

plane wave basis for the expansion of the electronic density. In order to efficiently expand the density

in plane waves, core electrons are replaced by pseudopotentials.57 The non-local HF exchange

calculations have been performed employing a robust Γ-point implementation,58,59 and, only in

the case of hybrid functional (PBE0), the calculations have been performed using the auxiliary

density matrix method (ADMM)60 that allows for an approximate calculation of the non-local

exchange energy at much reduced cost. The calculation of the MP2 energy within the RI-GPW52

approach (RI-MP2) is closely related to the original GPW method. Here, the dual representation
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of the electronic density is applied to the fitting density arising from the resolution of identity

approximation61–63, where the RI fitting densities are obtained by introducing an auxiliary Gaussian

basis and employing the Coulomb metric.64

The model system consists of 64 water molecules in a cubic simulation cell under periodic

boundary conditions (PBC). All simulations have been obtained with thermodynamic constraints set

to ambient conditions, that is, T = 295K and p = 1bar and for all the theoretical models presented

(DFT or RI-MP2) the MC settings are kept the same. The MC efficiency is improved with the

presampling of moves.30,32 In this method an additional inexpensive (approximated) potential is

introduced and used to generate a short sequence of MC moves which is entirely accepted or rejected

based on the difference between the exact and approximated potential functions. The employed

approximate potential is a classical but refitted force field based on Ref.65 for the DFT simulations,

and a semi-local density functional method for MP2.

Representative run times for a single energy calculation on a Cray XE6 (32 cores per node)

computer are 218 seconds for RI-MP2 on 400 nodes, 34 seconds for ADMM-PBE0 on 24 nodes,

and 17 seconds for local density functionals on 16 nodes. The detailed description of the employed

methods together with the related computational setups are reported in the supporting information

(SI).

Table 1: Average density and structural data obtained from the MC NpT simulations at the

various level of theory considered (T = 295K and p = 1bar). Experimental values taken from

Ref.66. CN is the average coordination number calculated from the integral 4πρnr2gOO(r) up

to the first minimum, where ρn is the average number density of Oxygen atoms.

Density [g/mL] 1st Max 1st Min 2nd Max CN

ρ RMSD r [Å] gOO(r) r [Å] gOO(r) r [Å] gOO(r) nOO

BLYP 0.797 0.018 2.83 2.44 3.46 0.35 4.65 1.10 3.1

BLYP-D3 1.066 0.018 2.78 3.01 3.51 1.00 4.37 1.18 6.2

PBE-D3 1.055 0.015 2.73 3.24 3.15 0.73 4.43 1.28 4.1

PBE0-ADMM-D3 1.023 0.013 2.74 3.23 3.30 0.67 4.44 1.27 4.5

RI-MP2 1.020 0.015 2.76 3.12 3.32 0.73 4.41 1.23 4.6

exp. 1.00 - 2.80 2.57 3.45 0.84 4.5 1.12 4.3
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(a) (b)

(c) (d)

(e)

Figure 1: Fluctuation of the instantaneous density as a function of the Monte Carlo cycles for the
NpT simulation at the various level of theory considered (T = 295K and p = 1bar). The red portion
of the plots denotes the cycles considered for equilibration, the green parts refers to that used for the
calculation of the average properties, the blue line shows the running average density. In each plot
the horizontal black line represents the experimental density. Note the different ordinate scale in
panel (a). (a) BLYP, (b) BLYP-D3, (c) PBE-D3, (d) PBE0-ADMM-D3, (e) RI-MP2.

A central result of this work is the computed value of the density of liquid water. This quantity is

obtained from averaging the fluctuating instantaneous density as obtained during the MC simulation.

The instantaneous density and the corresponding running average are depicted in Figure 1, while the

calculated average value with the associated root mean square deviations (RMSD) are reported in

Table 1. Our MP2 result for the density of liquid water at ambient conditions is ≈ 1.020 g/mL. We

consider this to be in excellent agreement to the experimental value, since it implies an error in the

lattice parameters of less than 1%. We attribute this to the known quality of MP2 for describing water

hydrogen bonds, and the presence of dispersion interactions. Moreover, it is known from classical

7



and DFT based simulations that, for flexible water models, the inclusion of nuclear quantum effects

leads to less structured liquid and improve the density behavior.67–70 By observing that these effects

are less pronounced in D2O than in H2O and that the former has a molar density 1.3% higher than

the latter, we expect the inclusion of this correction to reduce further the density.69,71 This result

stands also in sharp contrast to that of BLYP, a dispersion free functional that yields 0.797 g/mL. The

reason for this is that the water density depends crucially on the medium to long range part of the

potential.23,72 Dispersion corrected density functionals, BLYP-D3, PBE-D3, and PBE0-ADMM-D3

all have densities that are much closer to experiment, albeit slightly too dense. The density obtained

for PBE0-ADMM-D3 (1.023 g/mL) is of MP2 quality, but this might be in part fortuitous, as the

small basis employed in the ADMM approach could influence this result. Nevertheless, it is known

that the PBE0 functional improves PBE results for structural, spectroscopic and thermodynamics

properties54,73,74, and yields good results for water dimer interactions when compared to high level

coupled cluster calculations.75

Computing a first principles estimate of the density is challenging, and long simulations are

essential to sample fluctuations and to equilibrate the system. If a significant structural reorganization

would be needed, equilibration times could easily exceed simulation times. In this respect, our

RI-MP2 simulation is a ’best effort’ simulation, with a length constrained by the high computational

cost. The number of MC cycles is larger in the corresponding DFT simulations. However, two

observations enhance our confidence in the computed MP2 value. First, the total number of accepted

MC cycles is similar for all reported calculations. This can be attributed to the high quality of DFT

presampling in the MP2 case, which results in a much higher acceptance rate (∼ 50%) compared to

the other simulations using presampling based on a classical force field (15−17%). Second, those

methods that remain close to the experimental density (RI-MP2 and PBE0-ADMM-D3) are likely,

and observed, to require shorter equilibration periods.

Further support for the employed methodology, but also insight in the typical error bars, comes

from a comparison with literature DFT results. At the BLYP level, the calculated density is 0.797

g/mL, in agreement with the results reported by McGrath and coworkers27 (0.8 g/ml), obtained
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by NpT-MC, Schmidt et al.26 (0.73-0.78 g/mL) calculated employing NpT-BOMD, and Wang et

al.72 (0.76-0.85 g/mL). In the latter case, the water density is inferred from pressure density curves

obtained from series of NVT-MD simulations performed at different volumes. A larger deviation is

observed when the BLYP density is compared to the value calculated by Ma and coworkers28 (0.92

g/mL) from NpT-CPMD using a DVR basis set. In that work, the large deviation is attributed to the

usage of a converged basis set that contributes to softening the structure and improving diffusivity.76

However, even though the basis set used in this work is significantly larger than in Ref.26 and 27, a

strong basis set dependence of the density at the BLYP level is not observed. The value calculated

at the BLYP-D3 level (1.066 g/mL) is in agreement with that reported by Ma et al.28 (1.07 - 1.13

g/mL). When comparing our BLYP-D3 and PBE-D3 with BLYP-D2 and PBE-D2 results reported

by Schmidt and coworkers26 deviations of 7% and 11% are observed, respectively. These deviations

have to be attributed to the use of the D3 correction instead of D2, or potentially the use of larger

basis sets and simulation lengths in this work.

The more detailed structure of the liquid is summarized in Figure 2 by the radial distribution

functions for Oxygen-Oxygen (gOO(r)) and Oxygen-Hydrogen (gOH(r)), and quantified in Table 1.

The MP2 results are in good agreement with experiment, in particular the mid and long range parts.

The first minimum is relatively shallow, suggesting that a diffusive liquid is obtained. However,

MD is required to obtain a precise value for the diffusion constant, as time correlation functions can

not be extracted from these MC simulations. The maximum of the first peak is too pronounced, i.e.

3.12 vs 2.57. This difference is in part explained by the fact that our simulations ignore nuclear

quantum effects, which influence this property.67–70 The coordination number, which condenses the

shape of the first peak into a single number, is in fair agreement with experiment 4.6 vs. 4.3. The

DFT results are less satisfactory, in particular BLYP without dispersion produces a very structured

liquid as quantified by the low value of the first minimum. Note that the gOO(r) obtained under NpT

conditions is significantly different from the one obtained in the NVE ensemble (see e.g. Ref.24)

at experimental density. In particular, a low coordination number is observed. The D3 dispersion

correction leads to a gOO(r) that is almost featureless after the first peak, such a smearing out of the
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Figure 2: Radial distribution functions for Oxygen-Oxygen (left) and Oxygen-Hydrogen (right)
distances obtained from the NpT-MC simulations at the various level of theory considered (T = 295K
and p = 1bar). (a),(d) BLYP (green dashed) and BLYP-D3 (red dotted); (b),(e) PBE-D3 (green
dashed) and PBE0-ADMM-D3 (red dotted); (c),(f) RI-MP2 (green dashed line). The most recent
experimental Oxygen-Oxygen RDF, obtained from x-ray diffraction and taken from Ref.66, is
depicted as a solid black line.
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second peak with inclusion of dispersion has been discussed by Møgelhøj et al. in Ref.25. The large

coordination number can be considered an artefact of the shallow minimum observed, and depends

strongly on the precise location of the minimum. PBE-D3 and PBE0-ADMM-D3 give very similar

gOO(r), as was previously observed58 in simulations without the dispersion correction. Whereas

these functionals lead to a slightly more structured liquid, they are similar to the MP2 results,

in particular PBE0-ADMM-D3. The latter functional could thus be a computational expedient

alternative to MP2, for example to investigate nuclear quantum effects.

Results have been reported for liquid water at ambient conditions as obtained from NpT-MC

simulations at the MP2 level theory, which is free from empirical parameters. The obtained density

of 1.02 g/mL is in excellent agreement with the experimental value, and the gOO(r) generally agrees

well with the most recent experimental observations, albeit with a slightly too high first maximum.

Other popular DFT methods have been tested, in particular showing good results for the water

density at the PBE0-ADMM-D3 level, while being generally in agreement with previously reported

work for other DFT methods. It is clear that the inclusion of dispersion interactions and an accurate

description of the hydrogen bond are crucial ingredients for the correct simulation of liquid water at

ambient conditions. The quality and accuracy of the obtained MP2 results paves the way to further

applications of this technique for challenging questions in the field of aqueous solutions, e.g. the

structures of the solvated electron and hydroxyl ion.
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