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Abstract: We formulate a minimum requirement for CFT operators to be localized in

the dual AdS. In any spacetime dimensions, we show that a general solution to the require-

ment is a linear superposition of operators creating spherical boundaries in CFT, with the

dilatation by the imaginary unit from their centers. This generalizes the recent proposal by

Miyaji et al. for bulk local operators in the three dimensional AdS. We show that Ishibashi

states for the global conformal symmetry in any dimensions and with the imaginary di-

latation obey free field equations in AdS and that incorporating bulk interactions require

their superpositions. We also comment on the recent proposals by Kabat et al., and by

H. Verlinde.
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Recently, Miyaji et al. [1] proposed a construction of bulk local states and corresponding

operators in the three-dimensional AdS using Ishibashi states [2], which create spherical

boundaries in the dual CFT in two dimensions. To be precise, the states they proposed

preserve one half of the global conformal symmetry and not of the full Virasoro symmetry.

A similar but different construction was also proposed by H. Verlinde [3]. In this paper, we

will formulate a minimum requirement on bulk local operators in AdS and show that its

solution generalizes the construction by Miyaji et al., both in spacetime dimensions and in

1/N corrections. We will also comment on its relation to the earlier construction using a

bulk-boundary kernel in AdS [4–8].

Consider CFT in d dimensions and its dual AdS gravity in (d+1) dimensions. A bulk

local operator ψ̂ is an operator in the Hilbert space of CFT and is a local probe of the bulk

AdS geometry. As a local probe, it must depend on the position (t, ρ, ~x) in AdS with the

metric,

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ d~x2, (1)

where we set the AdS radius to be 1 and use ~x subject to ~x2 = 1 in d dimensions to

parametrize the sphere Sd−1.

The only requirement we impose on ψ̂ is that the actions of the conformal symmetry

and the bulk isometry on ψ̂ are compatible. Namely,

[J, ψ̂(t, ρ, ~x)] = iLJ ψ̂(t, ρ, ~x) , (2)

where J on the left-hand side is a generator of the conformal symmetry of CFT and LJ

on the right-hand side is the Lie derivative in the AdS coordinates (t, ρ, ~x) with respect to

the Killing vector field J corresponding to J . We will show that a general solution to (2)

is a linear superposition of boundary creating operators in CFT with the dilatation by the

imaginary unit. When ψ̂ is a scalar field in AdS, the Lie derivative on the right-hand side

of (2) acts as,

LJ ψ̂ = J µ∂µψ̂ . (3)

In general, ψ̂ may carry a spin, i.e., belong to a finite dimensional representation of the

isotropy group SO(1, d) ⊂ SO(2, d) preserving a point in AdS.

The SO(2, d) conformal generators on the cylinder R× Sd−1 can be organized as J =

(H,Mab, Pa,Ka), where a, b = 1, · · · d, H is the global Hamiltonian along R, Mab = −Mba

generate rotations on Sd−1, and Pa and Ka are the translation and the special conformal

generators when R×Sd−1 is mapped onto R
d. Their commutation relations relevant in the

following discussion are

[Ka, Pb] = 2δabH − 2iMab ,

[H,Pa] = Pa , [H,Ka] = −Ka . (4)

The Belavin-Polyakov-Zamolodchikov conjugation rule is K†
a = Pa. H

† = H, M †
ab = Mab.

Let us examine implications of the requirement (2) when ψ̂ is located at the origin

ρ = 0 on the t = 0 slice. The isotropy group SO(1, d) of this point is generated by Mab and
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Pa +Ka. Therefore, if ψ̂ is a scalar field, (2) combined with (3) gives,

[Mab, ψ̂(0)] = 0 ,

[Pa +Ka, ψ̂(0)] = 0 . (5)

More generally, if ψ̂ is in a finite dimensional representation of the isotropy group SO(1, d),

[Mab, ψ̂(0)] = sabψ̂(0) ,

[Pa +Ka, ψ̂(0)] = s0aψ̂(0) , (6)

for some matrices sab = −sba and s0a characterizing the spin of ψ̂.

Acting ψ̂(0) on the conformally invariant vacuum |0〉, we obtain the state |ψ(0)〉 ≡
ψ̂(0)|0〉, which satisfies

Mab|ψ(0)〉 = sab|ψ(0)〉 ,
(Pa +Ka)|ψ(0)〉 = s0a|ψ(0)〉 . (7)

The Hilbert space of CFT is decomposed into a sum of irreducible highest weight repre-

sentations of the conformal algebra. These equations have a unique solution within each

of the representations.

For example, when ψ̂ is a scalar field, the corresponding state |ψ(0)〉 satisfies,

Mab|ψ(0)〉 = 0 ,

(Pa +Ka)|ψ(0)〉 = 0 . (8)

We can solve these equations by starting with any conformal primary state |φ〉 satisfying,

H|φ〉 = ∆φ|φ〉 , Ka|φ〉 = 0 , Mab|φ〉 = 0 , (9)

and by adding its descendants as,

|φ〉〉 =
∞
∑

n=0

(−1)nCn(P
2)n|φ〉 , (10)

where P 2 =
∑d

a=1 PaPa and

Cn =
n
∏

k=1

1

4k∆φ + 4k2 − 2kd
, (11)

up to an overall normalization independent of n. It turns out that the sum over n can be

expressed in term of the Bessel function Jν(x) of the first kind as,

|φ〉〉 = Γ

(

∆φ − d

2
+ 1

)(

√
P 2

2

)
d
2
−∆φ

J∆φ−
d
2

(

√
P 2

)

|φ〉 . (12)

We note that it is related to the Fourier transform of a bulk-boundary Green function in

AdS. A general solution to (7) is then a linear combination of |φ〉〉 over primary states φ,

|ψ(0)〉 =
∑

φ

ψφ|φ〉〉 . (13)
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These states are naturally related to boundary conditions in CFT. To see this, perform

time evolution on |φ〉〉 to define a new state, |φIshibashi〉〉 = ei
π
2
H |φ〉〉. It satisfies,

Mab|φIshibashi〉〉 = 0 ,

(Pa −Ka)|φIshibashi〉〉 = 0 , (14)

and is expressed as,

|φIshibashi〉〉 = ei
π
2
∆φ

∞
∑

n=0

Cn(P
2)n|φ〉 , (15)

with the coefficients Cn given by (11). We recognize that (14) are exactly the conditions

on conformal boundary states located at the equator of the Euclidean Sd related to the

the t = 0 slice of the Lorentzian R × Sd−1 by the Wick rotation t = −iτ . They preserve

SO(1, d) ⊂ SO(1, d+ 1) of the Euclidean conformal group.

Our boundary states |φIshibashi〉〉, defined in any dimensions, generalize Ishibashi states

for two dimensional CFT [2]. For this reason, we call |φ〉〉 = e−iπ
2
H |φIshibashi〉〉 as a “twisted

Ishibashi state.” The global Hamiltonian H acting on a boundary state is the dilatation

operator from the center of the spherical boundary generated by the state. Therefore, we

may interpret e−iπ
2
H as the dilatation by the imaginary unit, eiπ/2 = i.

When d = 2, the state |φ〉〉 = e−iπ
2
H |φIshibashi〉〉 reduces to the one proposed by [1] as

a bulk state localized at the origin ρ = 0 on the t = 0 slice. Note, however, that a general

solution to (8) is a superposition of twisted Ishibashi states (13). As we shall see below,

bulk interactions and the microscopic causality require a non-trivial superposition since

each twisted Ishibashi state obeys a free field equation in AdS.

More generally, when the bulk local operator ψ̂ carries a non-trivial spin, |ψ(t =

−π/2)〉 = ei
π
2
H |ψ(0)〉 satisfies,

Mab|ψ(t = −π/2)〉 = sab|ψ(t = −π/2)〉 ,
(Pa −Ka)|ψ(t = −π/2)〉 = is0a|ψ(t = −π/2)〉 . (16)

A solution to these equations can also be found by starting with a primary state |φ〉 in

the same representation {sab, s0a} of SO(1, d) and by adding conformal descendants, whose

coefficients are fixed by (16) iteratively, except when there are null vectors in the represen-

tation, in which case the solution is not unique (this correspond to gauge degrees of freedom

in the bulk). Existence of these states suggests that conformal boundary conditions (14)

can be generalized so that boundary states are not invariant under the SO(1, d) subgroup

of the conformal symmetry but are in its finite dimensional representation. It would be

interesting to explore their interpretation from the point of view of CFT.

The relation between the bulk local state |ψ(0)〉 at the origin of AdS and a boundary

state of CFT can be explained intuitively as follows. The conformal generators Mab and

Pa − Ka, which annihilate boundary states, generate isometry on the t = 0 slice of AdS.

Therefore, if a boundary state is dual to a gas of free massive particles in AdS, these

particles must be uniformly distributed at t = 0. Now, geodesics in AdS are 2π periodic

in the global time t. If a massive particle has zero orbital angular momentum, it comes to

– 3 –



J
H
E
P
1
0
(
2
0
1
5
)
1
1
4

the origin at ρ = 0 at every half period π. Therefore, the uniformly distributed gas of free

massive particles at t = 0 will converge at the origin ρ = 0 on the t = π/2 slice, showing

how time evolution of the boundary state by a quarter of the period gives a localized state.

Once a state |ψ(0)〉 localized at the origin of AdS is constructed, it can be moved to

an arbitrary point by the AdS isometry. More explicitly, we can map the origin ρ = 0 to

any point (ρ, ~x) on the t = 0 slice using the generators Pa −Ka, and we can then use H to

move to a different time slice as,

|ψ(t, ρ, ~x)〉 = e−iHteρ(Pa−Ka)xa |ψ(0)〉 . (17)

Since the AdS coordinates (t, ρ, ~x) are coupled to the generators H and Pa − Ka of

the coset SO(2, d)/SO(1, d) by the exponential map in (17), their infinitesimal variations

automatically give,

J |ψ(t, ρ, ~x)〉 = iLJ |ψ(t, ρ, ~x)〉 , (18)

for each generator J = (H,Mab, Pa,Ka) of SO(2, d). Therefore, the corresponding operator

ψ̂(r, ρ, ~x) satisfies our requirement (2) for bulk local operators.

So far, we have studied solutions to (8) and found that they are linear superpositions

of twisted Ishibashi states as in (13). We would like to discuss how the superposition

coefficients ψφ are determined.

For each primary state |φ〉,

|φ(t, ρ, ~x)〉〉 = e−iHteρ(Pa−Ka)xa |φ〉〉 , (19)

obeys a free field equation in AdS. To see this, note that |φ(t, ρ, ~x)〉〉 is constructed in a

single irreducible representation and therefore is an eigenstate of the quadratic Casimiar

operator of SO(2, d) with the eigenvaluem2 = ∆φ(∆φ−d). The compatibility condition (18)

of the conformal symmetry of CFT and the isometry of AdS then turns the operator into

the Laplace-Beltrami operator on |φ(t, ρ, ~x)〉〉, and the free field equation with mass m

follows.

For example, we can compute an overlap of a scalar primary state |φ〉 and the corre-

sponding twisted Ishibashi state |φ(t, ρ, ~x)〉〉 as,

〈φ|φ(t, ρ, ~x)〉〉 = 〈φ|e−iHteρ(Pa−Ka)xa |φ〉〉

=
e−i∆φt

cosh ρ∆φ
, (20)

which indeed satisfies the Klein-Gordon equation in AdS.

Thanks to the state-operator correspondence of CFT, we can construct an operator

φ̂(t, ρ, ~x) for the twisted Ishibashi state |φ(t, ρ, ~x)〉〉. Could it be a bulk local operator? We

can answer this question by computing the two-point function,

〈0|φ̂(t, ρ, ~x)φ̂(t′, ρ′, ~x′)|0〉 = 〈〈φ(t, ρ, ~x)|φ(t′, ρ′, ~x′)〉〉 . (21)

Since |φ(t, ρ, ~x)〉〉 belongs to a highest weight representation, it is a sum of positive energy

states. Together with the free field equation on |φ(t, ρ, ~x)〉〉 and the boundary condition on
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the two-point function at t = t′, the two-point function is uniquely determined to be the

Wightman function of a free field in AdS (see also appendix B of [1]). If φ̂(t, ρ, ~x) is a truly

local operator in the bulk, the Reeh-Schlieder theorem would imply that its higher point

correlation functions are trivial [9]. Namely, φ̂(t, ρ, ~x) would be a free field in the bulk.

At this point, it is instructive to compare our requirement on bulk local operators with

the proposal by Kabat, Lifshytz, and Lowe (KLL) [4–6] (see also [10–12] for earlier papers).

Their construction at the leading order in 1/N expansion is

φ̂KLL
0 (t, ρ, ~x) =

∫

dt′dx′K(t, ρ, ~x|t′, ~x′)φ(t′, ~x′) , (22)

where φ(t′, ~x′) is the primary field in CFT corresponding to |φ〉. The bulk-boundary kernel

K(t, ρ, ~x|t′, ~x′), which is called as a smearing function in [4–6], can be extracted from the

boundary behavior ρ′ → ∞ of a bulk Green’s function G(t, ρ, ~x|t′, ρ′, ~x′) as,

G(t, ρ, ~x|t′, ρ′, ~x′) ∼ e−ρ′∆φL(t, ρ, ~x|t′, ~x′) + e−ρ′(d−∆φ)K(t, ρ, ~x|t′, ~x′)
2∆φ − d

. (23)

We can choose the Green’s function G so that K(t, ρ, ~x|t′, ~x′) is non-zero only when (t, ρ, ~x)

and (t′, ~x′) are space-like separated [4, 7].

We claim that the operator φ̂(t, ρ, ~x) corresponding to the twisted Ishibashi state

|φ(t, ρ, ~x)〉〉 is identical to φ̂KLL
0 (t, ρ, ~x) given by (22). This follows from the facts that

both satisfy the compatibility condition (2) and that both generate states in the same ir-

reducible representation with the highest weight state |φ〉. Since these conditions uniquely

determine the twisted Ishibashi state |φ(t, ρ, ~x)〉〉, the two states must be identical, and so

are the corresponding operators,

φ̂(t, ρ, ~x) = φ̂KLL
0 (t, ρ, ~x) , (24)

by the state-operator correspondence of CFT.

Due to the periodicity of the Green’s function in t, the KLL state φ̂KLL
0 (t, ρ, ~x)|0〉 at

t and t + 2π are identical modulo a phase factor exp(−2πi∆φ). The twisted Ishibashi

state |φ(t, ρ, ~x)〉〉 has the same periodicity since it consists of eigenstates of the global

Hamiltonian H with eigenvalues equal to ∆φ plus integers.

When the bulk gravity theory is interacting, the leading order KLL operator φ̂KLL
0

does not satisfy the microscopic causality. One can incorporate effects due to interactions

by modifying the bulk-boundary map (22) perturbatively so that the microscopic causality

is satisfied [5–7]. Recently, it was shown in [8] that effects in the next leading order in

1/N can be expressed as a sum of (22) for different primary fields φ, whose coefficients are

determined by the operator product expansion. This procedure can be repeated order by

order in perturbation. Our result guarantees that these perturbative corrections take the

form (22) to all order in perturbation since we have shown that a bulk local operator is

a superposition of twisted Ishibashi operators provided the compatibility condition (2) is

satisfied. The superposition coefficients ψφ in (13) depend on details of the theory, such as

the operator product expansion in CFT or the bulk interactions in AdS. On the other hand,
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we may encounter inconsistency between the microscopic causality and our compatibility

requirement (2) at a non-perturbative level since we do not expect resolution better than

the Planck length in the bulk. We also note that when the bulk thoery has a gauge freedom,

the compatibility requirement (2) may hold only up to gauge transformation [6, 13].

The proposal by H. Verlinde [3] for local operators in AdS3 uses Ishibashi states for

the full Virasoro symmetry as opposed to the global conformal symmetry and without the

imaginary dilatation e−iπ
2
H . In this paper, we have shown that the imaginary dilatation

is required by the compatibility condition (2), which we think is an essential feature for

any bulk local operator in AdS. Each Ishibashi state for the full Virasoro symmetry can

be decomposed into a sum of those for the global conformal symmetry. Therefore, modulo

the imaginary dilatation, the proposal of [3] can be regarded as a particular choice of the

coefficient ψφ in (13). With this choice, only global conformal primaries within a single

Virasoro representation appear in the superposition. However, we expect that 1/N correc-

tions would generate global conformal primaries in other Virasoro representations also.

There are several avenues for future investigations. The use of boundary states in

constructing bulk local operators may be related to the computation of the bulk energy

density by the Radon transform of the entanglement entropy in [14] and to the integral

geometry discussed in [15]. We would also like to find out to what extent our proposal

depends on the AdS background. We note that, for d = 2 and in the leading order in 1/N ,

it has been pointed out in [16] that the same bulk operator φ̂KLL
0 (t, ρ, ~x) can be used to

probe the BTZ black hole as well as the pure AdS vacuum. It would also be interesting to

explore consistency of the microscopic causality and our compatibility requirement (2) to

find out whether bulk local operators can be defined non-perturbatively in the bulk.
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