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1 Introduction

Almost twenty years after its initial formulation, the AdS/CFT correspondence remains

our best-understood example of a precise theory of quantum gravity. It has shed light

on many deep puzzles in quantum gravity, and has also been of practical use in studying

the dynamics of strongly interacting quantum field theories. One aspect that remains

mysterious, however, is the emergence of approximate bulk locality. Locality near the
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boundary is straightforward. In the “extrapolate” version of the AdS/CFT dictionary we

have a simple relation [1, 2]

lim
r→∞

r∆φ(r, x) = O(x) (1.1)

between limiting values of a bulk field φ and a conformal field theory operator O; this

dictionary manifestly respects locality in the x directions since the CFT does. The radial

direction, however, is more subtle. One way to see this is to observe that naively a local

operator in the center of the bulk should commute with every local operator at the boundary

on a fixed time slice containing that bulk operator. This is not consistent, however, with

a standard property of quantum field theory; any operator that commutes with all local

operators at a fixed time must be proportional to the identity.1 Bulk locality thus cannot

be respected within the CFT at the level of the algebra of operators; we’d then like to

know in what sense it is respected.2

The basic idea of this paper is that bulk locality is a statement about certain subspaces

of states in the CFT. That these subspaces can be large is a consequence of the large-N

properties of the CFT, but the large degree of non-local entanglement in finite energy

states of the CFT also plays an essential role. Our strategy will be to gradually back away

from the r → ∞ limit in equation (1.1) and study how the the CFT representations of

bulk operators spread in spatial support as we do so. On the bulk side the tool we will

mostly use is the AdS-Rindler reconstruction of bulk fields introduced in [7] and refined

in [8]. We will observe that this construction has several paradoxical features, which we

will illuminate by recasting it on the CFT side in the language of quantum error correcting

codes [9, 10]. This language gives a new, more general perspective on the issue of bulk

reconstruction, and we believe that it is the natural framework for understanding the idea

of “subregion-subregion” duality [11–14]. In particular, the radial direction in the bulk

is realized in the CFT as a measure of how well CFT representations of bulk quantum

information are protected from local erasures. The holographic principle also naturally

arises in the guise of the general statement that there is an upper bound on how much

quantum information a given code can protect from erasures.

One point that will appear in this analysis is that truncated subalgebras of bulk ob-

servables are of interest; these were also advocated in [15] in the context of describing the

black hole interior. Aspects of our proposal are inspired by their construction, but here

1In lattice theories with scalars and fermions coupled to abelian gauge fields this property is essentially

obvious in the Hamiltonian formulation. Showing it for non-abelian gauge fields on the lattice requires more

work. In either case the idea is to show that the algebra generated by local operators on a time-slice acts

irreducibly on the Hilbert space; the statement then follows from Schur’s lemma. In the continuum this

idea is called the “time-slice axiom” [3, 4]; for recent rigorous discussions, see, e.g., [5, 6]. There are actually

topological theories where the time-slice axiom is false, for example in Chern-Simons theory quantized on

a topologically nontrivial Riemann surface, but we don’t expect this loophole to be relevant for CFTs with

ordinary gravity duals.
2One subtlety in this argument is that to put the operator at a definite bulk point in a diffeomorphism-

invariant way we need to include “gravitational dressing” that will allow the operator to not necessarily

commute with local operators at the boundary at subleading order in 1/N . We will discuss this more in

section 5, where we will see that this level of non-locality is not enough to avoid a contradiction between

the bulk and boundary algebras.
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we do not discuss black hole interiors and we are not violating quantum mechanics [16]. A

connection between black holes and quantum error correction was also made in [17], which

is essentially an earlier version of the proposal of [15], but again the context was different

and our work here should be uncontroversial by comparison.

Before proceeding, let us establish a few conventions used throughout this paper. We

will frequently discuss subspaces and tensor factors of the Hilbert space. When we say that

an operator acts within a subspace we also mean that the same is true for its hermitian

conjugate. If the Hilbert space is a tensor product HE ⊗ HE , for any operator OE that

acts on E we may trivially form an operator IE⊗OE that acts on the entire Hilbert space.

We will often drop the identity operator IE and write it simply as OE . The reader should

also keep in mind that the CFT regions A and A that we will talk about in section 4

unfortunately correspond to E and E respectively in the language of section 3.

2 Bulk reconstruction and an AdS-Rindler puzzle

2.1 Global AdS reconstruction

We begin by briefly recalling the standard CFT construction of local bulk fields in AdS [1, 7,

18]. We will first work in global coordinates, where the metric asymptotically has the form

ds2 ∼ −(r2 + 1)dt2 +
dr2

r2 + 1
+ r2dΩ2

d−1. (2.1)

The CFT dual to this system lives on Sd−1 × R, with the R being the time direction.

The Hilbert space of states is the set of field configurations on Sd−1. The idea is then to

perturbatively construct operators in the CFT which obey the bulk equations of motion,

with the boundary conditions set by the dictionary (1.1). For simplicity we will assume

that all bulk interactions are suppressed by inverse powers of a quantity N , which will also

set the AdS radius in Planck units. At leading order in 1/N , this procedure results in a

straightforward prescription for the CFT representation of a bulk field φ(x); we simply have

φ(x) =

∫
Sd−1×R

dY K(x;Y )O(Y ), (2.2)

where the integral is over the conformal boundary and K(x, Y ) is a so-called “smearing

function”. The smearing function obeys the bulk wave equation in its x index, and leads

to (1.1) as we take x to the boundary. It can be chosen to only have support when x and

Y are spacelike separated, which we illustrate for AdS3 in the left diagram of figure 1; the

point x is represented by a boundary integral over the green region only. In the case of

empty AdS, where we take (2.1) to hold everywhere, explicit representations of the smearing

function can be found in [7, 18].3 1/N corrections can be systematically included [18, 19],

3One subtlety here is that for more general asymptotically AdS backgrounds, we are not aware of a

rigorous argument for the existence of K, even in the distributional sense that we will see we need to

allow in the following subsection. One obvious problem is that x could be behind a horizon, but even

for geometries with no horizons the only precise argument for the existence of K (or more precisely the

existence of the “spacelike Green’s function” it is built from) requires spherical symmetry [18]. We are not

aware of any obstruction to its existence, but it would nonetheless be very interesting to see a detailed

analysis of this somewhat nonstandard problem in partial differential equations.
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A Σ
xx Σ χA

Figure 1. AdS3 reconstruction globally, and in an AdS-Rindler wedge.

although we won’t really need to discuss them here. At higher orders in this perturbation

theory we will need to confront the problem of defining local operators in a diffeomorphism

invariant theory, but we postpone discussion of this until section 5.

It is not obvious from the definition that the operators (2.2) have the expected com-

mutators in the bulk; this has been checked perturbatively within low point correlation

functions in [19], but must eventually break down in states with enough excitations to

avoid a contradiction with the argument in our introduction. We will argue below that,

within the subspace of states that are “perturbatively close” to the vacuum, it breaks down

only at the level of non-perturbatively small corrections.

Note that once we have a representation of the form (2.2), we can use the CFT Hamil-

tonian to re-express all operators on the right hand side in terms of Heisenberg picture

fields on a single Cauchy surface in the CFT, denoted as Σ in figure 1. This representation

is quite nontrivial, in general it involves severely nonlocal and multitrace operators. It

also has the property that if we take x to be near the boundary but not quite on it, the

single-time CFT representation of φ(x) still involves operators with support on all of Σ.

We might hope to find a representation whose boundary support shrinks as the operator

approaches the boundary, and indeed the AdS-Rindler representation does exactly this, as

we will now explain.

2.2 AdS-Rindler reconstruction

Consider a subregion A of a CFT Cauchy surface Σ. The boundary domain of dependence

of A, denoted D[A], is defined as the set of points on the boundary with the property that

every inextendible causal curve, meaning a curve whose tangent vector is never spacelike

and which is not part of a larger curve with this property, that passes through it must also

intersect A. This is illustrated for the boundary of AdS3 in the right diagram of figure 1,

where A is the boundary interval lying between the two vertical hash marks and D[A] is

– 4 –
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Σ

τ=

τ= -

ρ=
1 ρ=

Figure 2. Coordinates for the AdS-Rindler wedge for AdS3, shaded in blue. In this case we have

−∞ < x <∞.

shaded green. For any boundary region R, its bulk causal future/past J ±[R] is defined

as the set of bulk points which can be reached by bulk causal curves evolving from/to

the region R. The causal wedge of a CFT subregion A [14] (for earlier related definitions

see [20]) is defined as

WC [A] ≡ J +[D[A]] ∩ J −[D[A]]. (2.3)

In the right diagram of figure 1,WC [A] roughly lies between the dashed lines and D[A]. The

bulk codimension-two surface χA in the figure is the “rim” of the wedge and is commonly

referred to as the causal surface of A [14]; more precisely it is defined as the part of

the intersection of the boundaries of J ±[D[A]] that does not also intersect the conformal

boundary at infinity. χA can also be described as the intersection of the past and future

horizons of D[A].

A simple example of these definitions is where we take the geometry to be pure AdSd+1,

Σ = Sd−1 to be the t = 0 slice of the boundary, and A to be one hemisphere of Σ. In this

case WC [A] becomes what is usually referred to as the AdS-Rindler wedge. A natural set

of bulk coordinates on the AdS-Rindler wedge gives a metric with the form

ds2 = −(ρ2 − 1)dτ2 +
dρ2

ρ2 − 1
+ ρ2

(
dx2 + sinh2 xdΩ2

d−2

)
, (2.4)

where the coordinate ranges are ρ > 1, x ≥ 0,−∞ < τ < ∞ and the geometry in paren-

theses is just the d− 1 dimensional hyperbolic disc. The causal surface χA is given by the

limit ρ → 1 at fixed τ , and A itself is given by ρ → ∞ and τ = 0. We illustrate this for

AdS3 in figure 2. By acting on this example with bulk isometries (or equivalently boundary

conformal transformations), we can arrive at the causal wedge for any round disc in Σ. The

case of AdS3 is especially simple; all connected boundary regions are intervals and thus

can be produced in this way.

The point then is that the construction of CFT representations of bulk fields in the

previous subsection can also be implemented purely within the causal wedge [7].4 At

4This has been worked out explicitly only at leading order in 1/N for the case of the AdS-Rindler wedge,

the 1/N corrections should basically be treatable using the same methods as for the global construction

and the existence for more general geometries has the same caveats as before.
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O(Y) φ(x)

A B

x

A B

C
Figure 3. Three examples of AdS3-Rindler reconstruction. Shown here is a top-down view of a

bulk Cauchy slice whose boundary is Σ. On the left, the blue shaded region is the intersection

of this Cauchy slice with the causal wedge for a CFT region A that is the complement of a small

boundary interval around the boundary point Y . In the center we have the point x lying in the

causal wedge of two different CFT regions, A and B. A borders the blue and green regions, while

B borders the green and yellow regions. The black circle segments are χA, χB , and χA∩B . On the

right we have split Σ into a union of three disjoint intervals, A, B, and C, and the circle segments

are χA, χB , and χC .

leading order in 1/N , the claim is that for any φ(x) with x ∈ WC [A], we can again represent

φ(x) via the expression (2.2), but with the Y integral now taken only over D[A]. This is

illustrated for AdS3 in the right diagram in figure 1, where we have allowed for a conformal

transformation that changes the size of the boundary interval A. We review more details

of this construction in appendix A; the only major subtlety is that the smearing function

K no longer exists as a function and must be understood as a distribution for integration

against CFT expectation values [8] (see also [21] for some related discussion).

Thus we see that the AdS-Rindler construction of φ indeed has the property that if

x is close to the boundary, only a small boundary region A localized near x is needed to

be able to reconstruct φ in D(A). Moreover, by making use of the CFT evolution we can

again rewrite the expression (2.2) entirely in terms of nonlocal Heisenberg operators acting

at t = 0, but now they will act only on A.

2.3 Overlapping wedges

The AdS-Rindler construction of bulk fields we have just described has the somewhat

counter-intuitive property that the same bulk field operator φ(x) lies in multiple causal

wedges, and thus can be represented as an operator on distinct regions A,B, . . . in Σ. One

consequence of this is shown in the left diagram of figure 3; for any bulk field operator

φ(x) and any CFT local operator O(Y ) such that x and Y are spacelike separated, we

can choose a causal wedge WC [A] such that O(Y ) lies in the complement of A in Σ. By

CFT locality O(Y ) then must exactly commute with our representation of φ(x) in that

wedge. This is coming dangerously close to contradicting the theorem mentioned in the

introduction, that is that no nontrivial operator in the CFT can commute with all local

CFT operators on Σ.

To avoid this contradiction it must be the case that the representations of φ(x) in

different wedges are not really all the same operator on the CFT Hilbert space. We can

– 6 –
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see this in another way by considering the setup of the center diagram in figure 3, where

we have two overlapping wedges WC [A] and WC [B] that both contain the point x but x

is not contained in WC [A ∩ B]. For a CFT operator defined with support only on A to

really be equal to a CFT operator defined with support only on B, it must be that the

operator really only has support on A∩B. But given that we have chosen x to lie outside

of WC [A ∩ B], we do not expect the operator to have such a representation. In fact in

this example the operator has a representation on the complement of A ∩ B, and we will

see in section (3.5) that when this is so a version of the no-cloning theorem of quantum

mechanics forbids an accurate representation of the operator on A ∩B.

We can see the non-equivalence of the operators even more clearly by considering a

third example, shown in the right diagram in figure 3. Now a bulk field at the point x

lies outside of the causal wedge for any one of the regions, but it can be reconstructed in

A∪B, B ∪C, or A∪C. The mutual intersection of these regions is just three points, and

if we consider another set of three regions slightly rotated from these we can come up with

a set of six possible reconstructions whose mutual intersection is genuinely empty. There

is simply no possible way that they can all be equal as operators. For future reference we

will refer to the three operators as φAB(x), φBC(x), and φAC(x).

We thus need to decide how we are to reconcile these operator inequivalences with the

fact that in the bulk theory it seems that the operators are equivalent. There will clearly

be some CFT states where they act quite differently, and we would like to understand the

physics of the subset of states where their action is equivalent. This problem can be nicely

understood in the language of quantum error correction, to which we now turn.

3 Correcting quantum erasures

Say Alice wants to send Bob a quantum state of k qubits in the mail, but she is worried

that some of the qubits might get lost on the way. Quantum error correction is a procedure

that allows her to embed this state into n > k qubits in such a way that even if some qubits

are lost, Bob can still recover it. In this section we review some basic facts about this,

beginning with an example.5

3.1 A simple example of erasure correction

The simplest example of quantum error correction actually involves three-state “qutrits”

instead of two-state qubits, and it uses three qutrits to send a single-qutrit message [25].

Say Alice wishes to send the state

|ψ〉 =
2∑
i=0

ai|i〉. (3.1)

The idea is to instead send the state

|ψ̃〉 =

2∑
i=0

ai |̃i〉, (3.2)

5Our presentation of quantum error correction is somewhat nonstandard, since we are interested only

correcting for the erasure of a known set of qubits. This allows us to omit many of the usual topics,

such as quantum channels, ancilla, check operators, etc. Standard reviews of this more general formalism

are [22, 23]; for a concise description of the basic ideas see section 4 of [24].

– 7 –
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where

|0̃〉 =
1√
3

(|000〉+ |111〉+ |222〉)

|1̃〉 =
1√
3

(|012〉+ |120〉+ |201〉) (3.3)

|2̃〉 =
1√
3

(|021〉+ |102〉+ |210〉) .

This protocol has two remarkable properties. First of all for any state |ψ̃〉, the reduced

density matrix on any one of the qutrits is maximally mixed. Thus no single qutrit can

be used to acquire any information about the state. Secondly, from any two of the qutrits

Bob can reconstruct the state. For example, say he has access to only the first two qutrits.

He can make use of the fact that there exists a unitary transformation U12 acting only on

the first two qutrits that implements

(U12 ⊗ I3) |̃i〉 = |i〉 ⊗ 1√
3

(|00〉+ |11〉+ |22〉) . (3.4)

Acting with this on the encoded message, we see that Bob can recover the state |ψ〉:

(U12 ⊗ I3) |ψ̃〉 = |ψ〉 ⊗ 1√
3

(|00〉+ |11〉+ |22〉) . (3.5)

Explicitly U12 is a permutation that acts as

|00〉 → |00〉 |11〉 → |01〉 |22〉 → |02〉
|01〉 → |12〉 |12〉 → |10〉 |20〉 → |11〉
|02〉 → |21〉 |10〉 → |22〉 |21〉 → |20〉

. (3.6)

Clearly by the symmetry of (3.3) a similar construction is also possible if Bob has access

only to the second and third, or first and third qutrits. Thus Bob can correct for the

loss of any one of the qutrits; in quantum information terminology one describes this as

a quantum error correcting code that can protect against arbitrary single qutrit erasures.

The subspace spanned by (3.3) is called the code subspace; the entanglement of the states

in the code subspace is essential for the functioning of the protocol.

In our discussion of reconstruction in the previous section we were interested in the

action of operators rather than the recovery of states, and we can rephrase the error

correction protocol in this language. Indeed, say that O is an operator that acts on the

single qutrit Hilbert space as6

O|i〉 =
∑
j

(O)ji|j〉. (3.7)

For any such O we can always find a (non-unique) three-qutrit operator Õ which implements

the same transformation on the code subspace:

Õ|̃i〉 =
∑
j

(O)ji |̃j〉. (3.8)

6Here we write (O)ij to indicate the matrix elements of the operator O on the code subspace, with the

parentheses there to distinguish this from the operators O12, O23, etc to be defined momentarily.

– 8 –
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In quantum computing language, operators like Õ that act directly on the code subspace

in this manner are called logical operations, since they are the types of things that we want

to implement when performing a fault-tolerant quantum computation.

For a general code subspace, Õ would need to have nontrivial support on all three

qutrits. For the code subspace in question, however, is straightforward to see that

the operator

O12 ≡ U †12OU12, (3.9)

where O is taken to act on the first qutrit, acts as

O12 |̃i〉 =
∑
j

(O)ji |̃j〉. (3.10)

O12 is thus an Õ that has support only on the first two qutrits. Since we can also analo-

gously construct O23 or O13, we have realized a situation where operators with nontrivial

support on different qutrits have the same action on the code subspace. This should be

reminiscent of our discussion of overlapping wedges in the previous section; we will make

the connection more explicit soon but first we need to discuss some general properties of

quantum erasure correction.

Before moving on, however, we want to introduce a notational simplification. So

far we have been careful to distinguish the single-qutrit operator O from its three-qutrit

representations Õ. We find it convenient, however, to from now on abuse notation by

instead thinking of “O” as an abstract logical operation and using it both cases; which

operator we mean should always be clear from the context. So for example we can write

O12 |̃i〉 = O|̃i〉. (3.11)

3.2 General erasure correction

We now describe a natural generalization of the protocol of the previous subsection. For

familiarity we will describe it using qubits, although none of the results rely on this. Say

that we want to protect a k-qubit code subspace of an n-qubit system against the loss of

some collection of E of l of the qubits. We define the code subspace HC as the span of the

orthonormal states

|̃i〉 = Uenc|i1 . . . ik0k+1 . . . 0n〉, (3.12)

where Uenc is called the encoding unitary transformation. There is a necessary and sufficient

condition for the correctability of the erasure of E [26]. Say that we adjoin to our system

a reference system R of k additional qubits. We then consider the state

|φ〉 = 2−k/2
∑
i

|i〉R |̃i〉EE , (3.13)

where E denotes the set of n− l qubits that aren’t erased. The code (3.12) can correct for

the erasure of E if and only if we have

ρRE [φ] = ρR[φ]⊗ ρE [φ]. (3.14)

– 9 –
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Here ρR[φ], ρE [φ], etc are the reduced density matrices obtained from |φ〉 by partial trace.

This is equivalent to saying that the mutual information IRE = SR + SE − SRE vanishes,

where SX is the Von Neumman entropy, SX ≡ −trρX log ρX . Let us first see that this en-

sures we can correct the erasure. The Schmidt decomposition7 of |φ〉, together with (3.14),

ensures us that there exists a basis |e〉 for E and a set of orthonormal states |ψi,e〉E in E

such that

|φ〉 = 2−k/2
∑
i,e

Ce|i〉R|e〉E |ψi,e〉E , (3.16)

where Ce are some non-negative coefficients obeying
∑

eC
2
e = 1. In other words there

exists a unitary transformation UE acting only on E such that

UE |φ〉 = 2−k/2
∑
i

|i〉R|i〉E1
⊗ |χ〉E2E

, (3.17)

where we have denoted the first k qubits of E as E1 and the rest as E2. |χ〉 is some state

that is independent of i. This then implies that we must have

UE |̃i〉EE = |i〉E1
⊗ |χ〉E2E

, (3.18)

which is the analogue of (3.4) above and demonstrates that we can use UE to correct the

erasure. If we do not have (3.14), then there is nonzero correlation between R and E,

so we can learn about the state of R by doing measurements on E. Since any successful

protocol must not care about what happens to the qubits we lose, this prevents us from

being able to correct the erasure. We can thus loosely rephrase (3.14) as the statement

that the erasure of E is correctable if and only if no information about i can be obtained

from E. This is related to the no-cloning theorem; if we were able to get the same quantum

information about the encoded state |ψ̃〉 from both E and E then we would have built a

machine for cloning that information.

There is a useful reformulation of the condition (3.14) as the statement that for any

operator XE acting on E, we must have [28]

〈̃i|XE |̃j〉 = δijC(X). (3.19)

In other words we must have the projection of XE onto the code subspace be proportional

to the identity. One immediate consequence of this is that in any state |ψ̃〉 in the code

subspace, the correlation function of XE with any operator O that acts within the code

subspace8 must vanish:

〈ψ̃|OXE |ψ̃〉 − 〈ψ̃|O|ψ̃〉〈ψ̃|XE |ψ̃〉 = 0. (3.20)

7The Schmidt decomposition of a pure state |ψ〉 in a bipartite Hilbert space HA⊗HB is the observation

that for any |ψ〉 ∈ HA⊗HB there exists a set of orthonormal states |i〉A in HA, a set of orthonormal states

|i〉B in HB , and a set of non-negative real numbers Ci such that

|ψ〉 =
∑
i

Ci|i〉A|i〉B . (3.15)

For a derivation and some more details see for example [27].
8Throughout this paper, when we say that an operator acts within a subspace we mean that the same

is true for its hermitian conjugate as well.
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This is another manifestation of the idea that E has no access to the encoded information.

As in the previous subsection, we can use UE to realize any operator O acting within

the code subspace as an operator OE that acts just on E. Indeed we have both

OE |ψ̃〉 = O|ψ̃〉

O†
E
|ψ̃〉 = O†|ψ̃〉. (3.21)

In fact the converse of this statement also holds; if any operator on the code subspace can

be realized as an operator on E as in (3.21), then the code is able to correct for the loss

of E. The proof is simple. Say that the code were not correctable; then as just discussed

there must exist an operator XE on E where (3.19) does not hold. By Schur’s lemma, there

must then exist an operator O on the code subspace that does not commute with XE on

HC , that is with 〈̃i|[O,XE ]|̃j〉 6= 0 for some i and j. But this operator O can’t be realized

on HC by an operator OE that acts only on E, since any such operator by definition would

commute with XE .

We now turn to the question of when we should expect (3.14) (or equivalently (3.19)

or (3.21)) to hold. In situations where we would like our code to be able to correct against

a wide variety of erasures, we expect that ρE [φ] will have full rank.9 In that case, in order

to be able to have the orthonormal set of states |ψi,e〉 we need the dimensionality of E to

be at least as large as dimensionality of RE. In other words we need

n ≥ 2l + k. (3.22)

This condition is quite intuitive; wanting to send a larger message or correct larger erasures

requires more qubits.

In fact for large systems (3.22) is typically not only necessary but sufficient. Say we take

|φ〉 to be a random state of 2k+n qubits in the Haar measure. By Page’s theorem [29],10

the density matrix of R will be exponentially close to maximally mixed provided that

n − k � 1, so by the Schmidt decomposition this is equivalent to choosing a random k-

qubit code subspace of n qubits. The condition (3.14) will hold if RE is maximally mixed,

which again by Page’s theorem should be true provided that n − 2l − k � 1. Thus, not

only is (3.22) necessary for a typical code to correct for the loss of a particular set E of l

qubits, it is basically sufficient for the code to correct for the loss of any set of l qubits.

3.3 Quantum secret sharing

The three-qutrit example of section 3.1 has the interesting property that every collection

of qutrits either can perfectly reconstruct the state |ψ〉 or has no information about it

at all. General error correcting codes do not have this property, since sometimes we can

9This excludes trivial cases like Uenc = 1 with E chosen to be the last n − k qubits. This code is

completely defeated by erasing any of the first k qubits, and if we knew that erasures would only affect the

last n− k qubits why would we include those qubits at all?
10Page’s theorem is the statement that a random state of a bipartite Hilbert space HA ⊗ HB will be

maximally mixed on the smaller factor up to corrections that go like the ratio of dimension of the smaller

factor to the dimension of the larger factor. For more details see e.g. [27].
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have erasures which can be “partially corrected”, but it is interesting to think about the

codes that do. Say that we have a Hilbert space that is a tensor product of p factors

of not necessarily equal size, which in this context we will refer to as shares. A code

subspace C of this Hilbert space is called a Quantum Secret Sharing Scheme if it has the

property that every collection of shares either can distinguish perfectly different elements of

C, meaning given access to it we can correct for the erasure of its complement, or it cannot

distinguish different elements at all [25]. Collections which enable erasure correction are

called authorized and collections which do not are called unauthorized. We will see a

possible application of quantum secret sharing to AdS/CFT in section 4.3 below.

3.4 Approximate erasure correction

So far we have discussed exact quantum error correction, but in AdS/CFT we only expect

the emergence of the bulk to be approximate. It will thus be important for us to get a

sense of how badly we might want to allow our three necessary and sufficient conditions for

correctability to be violated. The simplest way to relax the condition (3.14) is to require

only [30]

||ρRE − ρR ⊗ ρE ||1 � 1. (3.23)

Here ||M ||1 ≡ tr
√
M †M is the trace norm of M ; two density matrices whose difference has

trace norm ε are “operationally close” in the sense that the probability distributions they

predict for arbitrary measurements differ by at most ε. This essentially says that typical

states in the code subspace can be reconstructed to accuracy ε; following [30] we take this

to be the definition of approximate error correction. We would like to relate this to our

second condition for correctability, (3.19), but we need a convenient way to quantify the

violation of (3.19). One good choice is to use correlation functions of the form

Cφ(O,XE) ≡ 〈φ|OTRXE |φ〉 − 〈φ|OTR|φ〉〈φ|XE |φ〉 = trRE
[
OTRXE (ρRE − ρR ⊗ ρE)

]
. (3.24)

Here OTR denotes taking the transpose of an operator O on the code subspace and acting

with it on the reference system R; by construction acting on the state |φ〉 this is equivalent

to acting with O on EE. Cφ(O,XE) is essentially the average of the correlation func-

tion (3.20) over all |ψ̃〉 ∈ HC ; they become equal in the limit of a large code subspace.11

From the right hand side of (3.24) it is not difficult to show that [31]

||ρRE − ρR ⊗ ρE ||1 ≥
∣∣∣∣Cφ(O,XE)

λOλX

∣∣∣∣, (3.25)

where λO and λX are the largest eigenvalues of their respective operators. Thus we see

that, as one might expect from our discussion around (3.19), the presence of nonzero

correlation between O and XE puts a limit on how accurately we can correct for the

erasure of E. This inequality will be very useful in our discussion of AdS/CFT, since after

all computing correlation functions in the bulk theory is much easier than computing the

trace norm directly.

11This average can be computed using the unitary integration technology described for example in ap-

pendix D of [27]; the corrections vanish like powers of 2−k, which will be exponentially small in N for our

AdS-CFT construction.

– 12 –



J
H
E
P
0
4
(
2
0
1
5
)
1
6
3

3.5 Operator algebra quantum error correction

In our discussion of AdS/CFT we will soon see that the presence of bulk correlation puts

nontrivial restrictions on the correctability of errors via the inequality (3.25). There is,

however, a generalized version of quantum error correction, called operator algebra quan-

tum error correction, that is able to accommodate such correlation by requiring that our

third necessary and sufficient condition (3.21) apply only to a subalgebra of operators on the

code subspace [32, 33]. This requirement is greatly illuminated by the following theorem:

Theorem. Say that we have a code subspace HC ⊂ HE ⊗ HE and an operator O that,

together with its hermitian conjugate, acts within the code subspace. In other words we have

O|̃i〉 =
∑
j

Oji |̃j〉 ,

O† |̃i〉 =
∑
j

O∗ij |̃j〉 . (3.26)

Then there exists an operator OE acting just on E that obeys

OE |ψ̃〉 = O|ψ̃〉 ,

O†
E
|ψ̃〉 = O†|ψ̃〉 (3.27)

for any |ψ̃〉 ∈ HC if and only if O commutes with the projection of any operator XE onto

the code subspace, where XE acts on E. In other words

〈̃i|[O,XE ]|̃j〉 = 0 ∀i, j. (3.28)

We give a proof of this theorem in appendix B. It is clear that the set of O’s that satisfy

the assumptions of the theorem form a unital *-subalgebra A of the operators on the code

subspace, meaning they include the identity and are closed under addition, multiplication,

and hermitian conjugation. If we take A to be the entire algebra of operators on HC then

we recover our condition (3.21). Notice, however, that when A is a proper subalgebra we

cannot use our previous argument to derive the condition (3.19) from (3.21), since the O

that we constructed that doesn’t have an OE will not be in A. This gives a loophole that

simultaneously allows correlation between O and XE and the existence of OE .

For example in the two qubit system, consider a code subspace spanned by
1√
2

(|00〉+ |11〉) and 1√
2

(|01〉+ |10〉). The operator X that exchanges these two states

can be realized just on the first qubit as the X1 operator that flips it, even though in either

state this operator is perfectly correlated with the X2 operator that flips the second qubit.

This is possible because the Z operator on the code subspace, for which the first state is

a +1 eigenstate and the second state is a −1 eigenstate, cannot be realized as an operator

just on the first qubit; this code corrects only the subalgebra generated by 1 and X.

This example has the perhaps surprising property that the encoded 1 and X operators

can be realized on either of the two qubits, which seems in tension with our discussion

of the no-cloning theorem above (3.19). This is an artifact, however, of the fact that this

– 13 –



J
H
E
P
0
4
(
2
0
1
5
)
1
6
3

Figure 4. Correcting for erasures in AdS/CFT. Bulk quantum information at point in the center

is protected in the CFT against the erasure of the boundary of any one of the green regions, but

bulk information at the point near the boundary is completely lost by an erasure of the boundary

of the red region.

subalgebra is abelian, and is thus in some sense classical. It is easy to prove that as long as

the subalgebra is non-abelian, if it can be represented on E then it cannot be represented

on E; the proof follows immediately by contradiction if we look at the commutator of two

non-commuting elements of the algebra, but with one represented on E and one represented

on E. We used this “algebraic no-cloning theorem” above in our discussion of figure 3.

4 AdS/CFT as quantum error correction

We now return to our discussion of bulk reconstruction. Consider again the right diagram

in figure 3. We argued using the AdS-Rindler reconstruction that the operator in the center

can be represented either as an operator φAB with support on A ∪ B, an operator φBC
with support on B ∪ C, or an operator φAC with support on A ∪ C. By now it should be

obvious that this is directly analogous to the situation with O12, O23, and O13 in the three

qutrit example, or more generally the existence of the operator OE . The main proposal of

this paper is that this is more than an analogy, it is actually how AdS/CFT is reproducing

the bulk! In other words we can think of local bulk operators as logical operations on an

encoded subspace, which becomes better and better protected against localized boundary

errors as we move the operators inwards in the radial direction.12 We illustrate this in

figure 4. In the remainder of the paper we will spell out this idea in more detail, giving

the bulk versions of most of the statements of the previous section.

4.1 Defining code subspaces

We begin by defining a set of candidate code subspaces for AdS/CFT. Our proposal is that

we should pick some finite set of local bulk operators φi(x), realized in the CFT via the

12One detail here is that in defining the “center” of AdS we are implicitly choosing a conformal frame in

the CFT; otherwise AdS is a homogeneous space and no point is special. This is also implicit in our notion

of “small” and “large” erasures in the CFT.
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global representation of section 2.1. We then define a code subspace HC as the linear span

of states of the form

|Ω〉, φi(x)|Ω〉, φi(x1)φj(x2)|Ω〉, . . . , (4.1)

where we take the range of i, the number of φi(x)’s we act with, and the number of points

x where the operators can be located to be bounded by some fixed finite number. Here

|Ω〉 is the ground state of the system; we could also do a similar construction around other

sufficiently “semiclassical” states, but for rigor we will stick to |Ω〉 since, as mentioned

in section 2.1, the existence of appropriate smearing functions has not been completely

established in the general case. We postpone to section 5 the question of how large HC
can be. It is essential that our definition of the code subspace will be different for different

choices of the operators φi(x); the set of erasures that are correctable will depend on this

choice, and we can learn about the way that the bulk theory is realized in the CFT by

studying this dependence. For example, in figure 4 we see that moving the operators closer

to the boundary makes our code subspace less protected against small erasures. The CFT

is not just one error-correcting code, it is many at once!

We would like to think of the operators φi(x) as logical operations on this code sub-

space, but this does not quite work since by construction acting repeatedly with φi(x) will

eventually take us out of HC . To get a set of operators that really act within HC we can

include projection operators onto HC on both sides of φi; these will be irrelevant except

in studying high-point correlation functions, so we will not carry them around explicitly

here.13 Now consider a decomposition of the boundary Cauchy surface Σ into A and A. If

our code subspace HC can protect against the erasure of A, then by our condition (3.21)

it must be that we can find a representation of any operator on HC with support only in

A. In fact, this is what the AdS-Rindler reconstruction we reviewed in section 2.2 provides

us; any causal wedge WC [A] which contains the locations of the φi(x)’s used in defining

HC will allow a set of operators φA,i(x) with support only on A and whose action on HC
is the same as that of φi(x). We now see that in the CFT this is a statement about being

able to correct for the erasure of A.

To avoid confusion, we stress that, just because we do not include some φ(x) in defining

the code subspace, we do not mean to imply that its AdS-Rindler reconstruction does not

work on that subspace. We could easily consider a slightly larger subspace where we include

it, and we could then interpret its AdS-Rindler reconstruction as arising from quantum error

correction. The only fundamental limitation on the AdS-Rindler reconstruction comes from

the backreaction considerations we discuss in section 5 below.

13A subtlety here is that the states (4.1) are not mutually orthogonal; a state of the form φm|Ω〉 has a

normalized overlap with the vacuum of order 〈Ω|φm|Ω〉√
〈Ω|φ2m|Ω〉

∼ 2−m. The scaling with m follows from counting

Wick contractions at leading order in 1/N . If we choose our code subspace such that the maximum power

of each φ grows like some power of N , then for states on which the projection onto HC is nontrivial this

overlap will be exponentially small in N . It then will be okay to conjugate the φ’s by these projectors

without ruining their low-point correlation functions.
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A φ(x) φ(y)

Figure 5. Potentially troublesome bulk correlation. Here φ(x) is an operator that acts within the

code subspace HC , and which we thus expect can be represented as an operator on A. φ(y) we

similarly expect to reconstructed on A, but there is nonvanishing correlation between them in the

ground state |Ω〉. Using inequality (3.25), this correlation puts a lower bound on the accuracy with

which we can view AdS/CFT as quantum error correction in the conventional sense of section 3.2.

4.2 Bulk correlation and smearing

It is illuminating to understand in more detail to what extent the AdS-Rindler reconstruc-

tion is consistent with our three equivalent conditions (3.14), (3.19), (3.21) for quantum

erasure correction. We clearly do not expect them to hold exactly, but we might hope for

them to hold in the approximate sense of (3.23). As we explained in section 3.4, a good

diagnostic for approximate quantum erasure correction is that the correlation functions

between operators acting within the code subspace and operators acting on the set to be

erased are small enough that the inequality (3.25) does not preclude (3.23) from holding.14

In fact it is a basic property of bulk physics that there is correlation between fields in

WC [A] and fields inWC [A], as we indicate in figure 5. In deciding whether or not this bulk

correlation interferes with our interpretation of AdS-Rindler reconstruction as quantum

error correction, we need to properly take into account the operator eigenvalues in the

denominator of (3.25). Formally these are infinite in a continuum quantum field theory,

but every quantum field theorist knows that field operators are not really well-defined until

they are integrated against smooth test functions with support over some region of nonzero

measure, which we will take to have linear size εs. For simplicity we will take the bulk

fields to be massless scalars and take their separation to be small compared to the AdS

radius, in which case we have

〈Ω|φ(x)φ(y)|Ω〉
λ2
φ

∼
(

εs
d(x, y)

)d−1

. (4.2)

Here d is the spacetime dimension of the boundary theory and d(x, y) is the geodesic

distance between x and y. This formula also holds in other states we produce by acting on

|Ω〉 with smeared operators near x, and thus on average in the code subspace HC . We thus

14We thank Juan Maldacena for pointing out the relevance of (3.25) in this situation.
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see that the right hand side of (3.25) will be small in our case provided that the operators

φi(x) used in constructing HC are smeared over a distance which is small compared to

their distance to the causal surface χA of the wedge WC [A] in which we are trying to

reconstruct them.

This observation does much to justify our interpretation of AdS-Rindler reconstruction

as quantum error correction, but it is somewhat unsatisfactory in the sense that the AdS-

Rindler reconstruction still seems to work in the situation where we smear the operators

over a distance that is comparable to their distance to the bifurcate Rindler horizon χA,

even though the bulk correlation is then too large to be ignored. Indeed we interpret this as

saying that the conventional quantum error correction of section 3.2 does not fully capture

the mechanism by which AdS/CFT realizes bulk locality. The operator algebra quantum

error correction introduced in section 3.5, however, provides precisely the generalization we

need to fix this. Consider for example an operator S which acts on φ(x)|Ω〉 as Sφ(x)|Ω〉 =

|Ω〉, and which annihilates any state orthogonal to φ(x)|Ω〉. This is an operator that acts

within the code subspace, but its commutator with an operator φ(y) in WC [A] obeys

〈Ω|[S, φ(y)]|Ω〉 = 〈Ω|φ(x)φ(y)|Ω〉 6= 0. (4.3)

Thus S clearly cannot have a representation as an operator just on A. Fortunately there is

no reason to expect this operator to have an AdS-Rindler reconstruction, but the broader

lesson is that we should really expect AdS-Rindler reconstruction to in general produce

only a subalgebra of the operators on HC . We saw in section 3.5 that the condition a

subalgebra must obey for this to be possible is that the subalgebra must commute with

the projection onto HC of any operator on A. In fact this is precisely the condition that

we expect to be true for local operators inWC [A] (and their sums and products), which by

bulk causality should commute with operators inWC [A].15 That this commutator vanishes

with the projections onto HC of all CFT operators in A is not something we can prove

directly, but AdS-Rindler reconstruction requires it.

A second reason to prefer operator algebra quantum error correction is that even when

the right hand side of (4.2) is small, it will at most be suppressed by some fixed power of

1/N . This is because we should not smear the operators over distances shorter than the

Planck length. Since we in principle would like a version of AdS-Rindler reconstruction that

works to all orders in 1/N , it would be unsatisfying if our error correction interpretation

failed at some finite order because of bulk correlation.

We can now state our final proposal: the AdS-Rindler reconstruction of local bulk

operators in [7, 8] is dual in the CFT to the operator algebra quantum error correction

of [32, 33]. An erasure of a region A is correctable if the φi(x)’s used in defining the

code subspace all lie within the causal wedge WC [A]. In cases where the operators we are

interested in are well-localized away from the causal surface χA of WC [A], the situation is

well-approximated by conventional quantum error correction. Either way, the further the

φi(x)’s are from the asymptotic boundary, the better they are protected from CFT erasures.

15This statement is rendered somewhat more subtle by the need for gravitational dressing to localize

operators in a gravitational theory; we will see in section 5 that this commutator continues to vanish at

higher orders in 1/N , as required by operator algebra quantum error correction.
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A

A

A

A

Figure 6. A reconstruction phase transition? As we increase the region A, the extremal-area

codimension two surface of smallest area whose boundary is ∂A, shown as the solid lines, changes

discontinuously. Does this mean that we can now reconstruct the point in the center as an operator

on A?

It is worth emphasizing that in the case where a bulk operator is of order an AdS radius

distance from WC [A], our approximate equivalence between conventional and operator

algebra quantum error correction requires sub-AdS scale bulk locality. This is a special

property of those CFTs that have local holographic duals, which we have here reformulated

in the language of quantum information theory.

4.3 Disconnected regions and quantum secret sharing

So far we have only discussed the erasure of connected regions of the boundary. More

general erasures are also interesting. Consider for example the AdS3 situation depicted in

figure 6. Here we consider a region A which is the union of two disjoint intervals; in other

words we have erased two disjoint intervals. Can we choose a code subspace where we can

realize the bulk operator in the center as an operator acting on A or A? If the AdS-Rindler

reconstruction is the last word on bulk reconstruction [11], then the answer is clearly no;

this point lies neither in WC [A] nor in WC [A]. This is possible within the context of

quantum error correction, but only if both A and A can access partial information about

the code subspace. For example, say that A had no information whatsoever about which

state of the code subspace we are in. Then by definition (3.14) would hold, so we could

recover the information from A. We are not, however, able to determine whether or not

such partial information is really present.

In fact there have been recent conjectures in the literature that this operator can still

be reconstructed in A as long as A is bigger than A; more generally, the claim is that one

can do reconstruction throughout the entanglement wedge, which is defined as the bulk

domain of dependence of any bulk spacelike surface whose boundary is the union of A and

the codimension two extremal-area surface of minimal area whose boundary is ∂A [12, 34–

36].16 In the figure, the intersection of the entanglement wedge with a bulk Cauchy surface

16One argument that this must be the case is as follows: the extension by [37] of the Ryu-Takayanagi

proposal [38] to next to leading order in 1/N claims that bulk entanglement entropy in the entanglement

wedge contributes to the Von Neumann entropy SA. So for example if we have a spin sitting in the

entanglement wedge of A that is entangled with another spin in WC [A], then the spin in the entanglement
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is shaded blue; the minimal area condition causes a discontinuous change as we increase

the size of A. Is this conjecture compatible with our proposal? Indeed it is; we saw below

equation (3.22) that in a generic code subspace any A which is greater than half of the

system can correct for the erasure of its complement A.17 The sharp jump in correctability

as A surpasses A in size is consistent with our analysis around (3.22), where from Page’s

theorem we expect that the density matrix of A together with the reference system will

approach being maximally mixed exponentially fast once we cross the transition.

In section 3.3 we saw that a division of the CFT into a union of shares with the property

that any collection of the shares has either complete information or no information about

the encoded state is called a quantum secret sharing scheme; we now see that in the

situation of figure 6 we will be able to reconstruct the operator in the center if and only if

our boundary division into four regions gives a quantum secret sharing scheme.

4.4 MERA as an error correcting code?

One shortcoming of our work so far is that, although we have laid out a plausible CFT in-

terpretation of AdS-Rindler reconstruction as quantum error correction, we have ultimately

relied on the bulk in deriving this reconstruction. This boils down to the assumption that

there exist operators in the CFT that obey the bulk equations of motion and algebra on

a subspace. We then use this assumption to perform the Bogoliubov transformation that

relates the global and the Rindler reconstructions. This assumption is quite plausible, and

essentially follows from the assumed large-N structure of the CFT [39], but it would still

be nice if we could explicitly demonstrate the structure of the quantum error correcting

code in the CFT. In particular, in section 4.2 we had to use bulk causality to argue that

the necessary and sufficient condition (3.28) for operator algebra quantum error correction

held, and we were not able to check it explicitly for all possible CFT operators on A. Simi-

larly we were unable to determine whether or not the central point could be reconstructed

in the two-interval A of the previous subsection.

A promising starting point for addressing these issues is the MERA tensor network

construction of a discrete version of AdS/CFT [40–42]. It seems possible that in that fairly

controlled setting one could rigorously confirm the quantum error correction structure we

have motivated in this paper. Moreover, one could attempt to determine explicitly whether

or not the example of the previous subsection allows reconstruction of the operator in the

center; this could be done by using the global construction to make a code subspace,

entangling this code subspace with a reference system R to prepare a state |φ〉, and then

seeing whether there is mutual information between R and A. The state |φ〉 would still be

prepared by a tensor network, with tensors acting both on the CFT and/or the reference

system. This calculation would go a long way towards settling the “causal wedge vs.

wedge contributes log 2 to SA. It is hard to see how this could be the case if we could not project the

spin onto a definite state by doing some measurement on A, but the operator we measure would then be a

representation on A of a logical operator on the spin.
17More carefully it has to be greater than half by an amount that depends on the size of the code subspace,

which we can think of as being parametrically smaller than the full Hilbert space. We explore this in more

detail in the following section.
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r=0 r=

Figure 7. Locating bulk points using spatial geodesics. By construction we can only define points

that lie in the bulk domain of dependence of any bulk Cauchy surface with boundary Σ.

entanglement wedge” debate of bulk reconstruction.18 We will not attempt this calculation

here, but the typicality argument leading to (3.22) favors the entanglement wedge; we will

say more about this in section 5.3.

5 Backreaction and holography

We now turn to the question of how large we can make the code subspace HC . Each φi(x)

that we act with raises the energy of the state, so doing so repeatedly will eventually lead to

backreaction becoming important. When this happens it is clear that the approximation

of perturbation theory around a fixed background geometry will break down. In this

section we argue that this is related to a basic property of error correcting codes: the

larger the code subspace, the fewer correctable errors. For erasures we quantified this in

equation (3.22) above.

5.1 Defining local operators

Once we allow nontrivial backreaction, it is no longer possible to ignore the issue of how

we define bulk local operators in a diffeomorphism-invariant way. Following [43, 44], we do

this by choosing a cutoff surface at large but finite radius, with induced metric Sd−1 × R,

and then specifying bulk points by sending in spacelike geodesics from the t = 0 slice of

this cutoff surface that start out orthogonal to the Sd−1 directions. We then take the limit

as the cutoff surface approaches the boundary. Points are labeled by a location on Sd−1, a

renormalized proper distance along the geodesic, and an angle in the radial/temporal plane.

This is illustrated in figure 7. These geodesics can be thought of as the “gravitational

18One challenge in doing this is that the region of discrepancy between the entanglement wedge and the

causal wedge in that example has a size which is only of order the AdS radius, and it is not so clear how to

represent sub-AdS scale physics using MERA. One strategy for getting around this is to consider the limit

of A being a union of a large number of smaller disjoint intervals of equal size; this allows a parametrically

large separation between the causal wedge and the entanglement wedge.
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Figure 8. Two dressed bulk local operators. If the operator on the right is to be reconstructed on

the boundary of the green wedge, and the operator on the left to be reconstructed on the boundary

of the blue wedge, then they must be commuting operators. By taking one of these operators to

the boundary, we conclude that any dressed bulk local operator must commute with all boundary

local operators except possibly those at the endpoint of its geodesic.

dressing” of the bulk operator, analogous to the Wilson line one would use to connect a

charged operator to the boundary to make it gauge-invariant in electrodynamics.

As in the electromagnetic case, the operators defined in this way will have nonlocal

commutators due to their nontrivial Dirac brackets. The study of these commutators was

initiated in [18], and more recently elaborated in [44].19 A full analysis has not yet been

completed, however, and one point that has not yet been addressed is essential for the

consistency of the AdS/Rindler reconstruction at higher orders in 1/N : to all orders in

1/N perturbation theory around a fixed background, two dressed bulk operators with the

property that all points on their dressing geodesics are mutually spacelike separated in that

background must commute.20 The reason this must be the case is illustrated in figure 8.

We can use this observation to verify that bulk non-locality from the gravitational

dressing of operators does not invalidate some of our previous claims. In the introduction we

argued that, because in the bulk theory a local operator in the center of the space commutes

with all local operators at the boundary, the bulk operator algebra is inconsistent with the

CFT algebra. We can now give a version of this argument that includes the gravitational

dressing; from figure 8, we see that we should modify the previous statement to “commutes

with all local operators at the boundary except at one point”. Were this to hold as an

operator equation in the CFT, it would now not imply that the operator in the center

must be trivial in the CFT, but it would imply that this operator can be nontrivial at

19A subtlety here is that they send their geodesics from arbitrary boundary times, but take them to be

orthogonal to the boundary in the temporal direction as well as the Sd−1 directions. These operators agree

with ours at t = 0, which is where we will study them, but as a matter of principle we have not made

their choice because we want to restrict to Schrodinger-picture operators acting on a fixed time slice at the

boundary. As explained in more detail in section 4.2 of [18], this is the natural way to define the fixed-time

Hilbert space in the bulk, since it makes it clear that expectation values are independent of possible sources

on the boundary at later times.
20More carefully, we should hold the boundary endpoints of the geodesics fixed as we take N → ∞ for

this statement to hold. One of us (DH) has checked this statement directly in bulk canonical gravity in

the setup of [44], by computing the Dirac brackets and seeing that they are local in the x̂ directions to any

finite order in perturbation theory, but we postpone discussion of this to a future publication.
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Σ

x
X

Y

Figure 9. An algebraic paradox: a bulk operator at φ(x) is dressed by a geodesic ending at X.

The bulk algebra suggests this operator commutes with all local CFT operators on the Cauchy

surface Σ except those at X, and is thus a local operator there. However, we can find a boundary

point Y which is both spacelike separated from X and causally separated from x; the bulk would

then require local operators there which don’t commute with φ(x), while the CFT would require

them all to commute.

t = 0 only at the point where the dressing geodesic ends.21 This statement, however, is

not consistent with bulk causality, as we illustrate in figure 9. So we thus indeed find that

the bulk operator algebra cannot be realized in the CFT at the level of operator equations.

As already explained, the resolution is that the bulk algebra holds in the CFT only acting

on a code subspace of states.

Similarly we can now revisit our claim that bulk operators in WC [A] perturbatively

commute with bulk operators in WC [A], which was a necessary condition for our interpre-

tation of the AdS-Rindler construction as operator algebra quantum error correction. But

this is exactly what the argument of figure 8 accomplishes; as long as the gravitational

dressing of an operator at x ∈ WC [A] also lies entirely in WC [A], meaning that the spatial

geodesic connecting x to the boundary also lies in WC [A], then it will only have non-local

commutators with operators that are also located in WC [A]; any operator whose localizing

geodesic is entirely in one wedge will still perturbatively commute with any operator whose

localizing geodesic is entirely in the complementary wedge.

In this subsection, to connect to the formalism of [44] we studied only operators at-

tached to geodesics that start out orthogonal to the boundary time direction at t = 0. It

would be interesting to do the analogue of their analysis at arbitrary temporal-radial angle;

this amounts to working with boundary conditions that approach the “open-FRW” slicing

of AdS

ds2 = −dt2 + sin2 t
(
dχ2 + sinh2 χdΩ2

d−1

)
(5.1)

21As before this statement is straightforwardly true for scalars, fermions, and/or abelian gauge fields on

a lattice, and we expect it to hold also for non-abelian lattice gauge fields. In the continuum it follows from

a combination of the time-slice axiom and “Haag duality”, which says that if we split a time-slice into two

regions the commutant of the set of local operators in the domain of dependence of one of the regions is

the set of local operators in the domain of dependence of the other region. In the case of gauge theories

one has to be careful since Haag duality does not quite hold, since there can be a nontrivial center of the

algebra for a region, but the center is always localized near the boundary [45] and shouldn’t disrupt this

argument.
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as χ→∞. As explained in [18], this would be a natural bulk construction of Schrodinger

picture gauge-invariant operators on the fixed-boundary-time Hilbert space.

5.2 Shrinking of the causal wedge

We now return to the question of how backreaction affects causal wedge reconstruction. Our

basic proposal is that adding energy in the bulk causes the causal wedge of a fixed boundary

region A to recede towards the boundary, giving it less access to bulk operators defined at

fixed renormalized geodesic distance (for some related discussion see [14, 34, 35, 46, 47]).

Consider for example the AdS-Schwarzschild geometry in d+ 1 dimensions.

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−1, (5.2)

with

f(r) ≡ r2 + 1− α

rd−2
. (5.3)

α is proportional to the ADM mass of this geometry. Now consider a boundary disc A of

angular size θ; its causal wedge reaches a radius rθ(α) in the bulk defined implicitly by

θ

2
=

∫ ∞
rθ(α)

dr′

f(r′)
. (5.4)

The proper distance of this radius to a cutoff surface at r = rc is∫ rc

rθ(α)

dr′√
f(r′)

=

∫ rc

rθ(α)
dr′

(
1√
f(r′)

− 1

r′

)
+ log

rc
rθ(α)

, (5.5)

so we can subtract log rc to define a renormalized proper distance

dθ(α) ≡
∫ ∞
rθ(α)

dr′

(
1√
f(r′)

− 1

r′

)
− log rθ(α). (5.6)

We claim that dθ(α) is a decreasing function of α at fixed θ, which by differentiating under

the integral sign is equivalent to the claim that∫ ∞
r

dr′

r′d−2

1

f(r′)3/2

[√
f(r)

f(r′)
− 1

2

]
> 0 (5.7)

for all α > 0 and for all r > r+(α), where r+(α) is the positive root of f . This can be

shown analytically in various limits, and is easily checked numerically in the general case.

One can also study the asymptotically-AdS3 BTZ black hole, where a similar result holds

and all integrals can be done analytically. Thus we see that indeed the causal wedge has

access to fewer and fewer bulk observables as we increase the mass of the matter in the

center. This after all must be the case, since as we keep increasing the mass a point at fixed

renormalized geodesic distance from the boundary will eventually go through the horizon.

It is interesting to think about how general this statement is; under what circumstances

can the causal wedge move inwards in renormalized geodesic distance as we insert energy?
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One might guess that the null energy condition should generically prevent this, but to test

that we need a more precise conjecture. One first guess is that in any geometry obeying the

null energy condition the causal wedge of a fixed boundary region can see at most as far in

renormalized geodesic distance as it can in the vacuum. In fact this conjecture is false, we

have constructed explicit counterexamples. Indeed a weaker conjecture, where we replace

the null energy condition by the dominant energy condition,22 still has counterexamples.

One counterexample is given by a small perturbation of AdS4, with the metric

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

2 , (5.8)

where

f(r) = r2 + 1 + εh(r) , h(r) = − r2(√
r2 + 1 + 10

)3 . (5.9)

With a small positive ε, the causal wedges of certain fixed boundary regions can see farther

in renormalized geodesic distance than they can in the vacuum. These boundary regions

include spherical regions whose causal wedges probe deep into the bulk geometry.

Although these counterexamples prevent any straightforward “monoticity of causal

wedge recession theorem”, we expect that the Schwarzschild calculation we have just dis-

cussed captures the general tendency. It would be nice to prove a more general theorem

verifying this, but we have not succeeded in finding one.

5.3 Counting states

The recession of the causal wedge has a nice quantum error correction interpretation; as

we allow the code subspace to have more and more excited states, a bulk operator localized

at some fixed geodesic distance will eventually no longer lie in the causal wedge of a fixed

boundary region. In other words, the code will lose some of its ability to correct erasures;

we will need access to more of the boundary to study the same bulk observables. In

this subsection we study this a bit more quantitatively, making contact with the general

condition (3.22) for typical correctability.

To apply (3.22) to AdS/CFT, we need to identify CFT analogues of the quantities n,

l, and k. n is the total number of qubits used in doing the encoding, and should roughly

correspond to the total number of CFT degrees of freedom relevant for reconstructing a

particular bulk region of interest. This is somewhat nontrivial; the CFT has an infinite

number of degrees of freedom in the UV which are needed to reconstruct bulk operators

that are arbitrarily close to the boundary. To deal with this we take our code subspace to

only involve states where we act on the vacuum with operators φi(x) that are all localized

within a region R at the center of the AdS space that has proper size of order the AdS

radius. We will also take them to be smeared over distances that are small compared

to their separation from the boundary of R, so that we do not have to worry about the

difference between conventional and operator algebra quantum error correction. The global

22With the presence of a negative cosmological constant, we only impose the dominant energy condition

on the “matter” part of stress tensor which does not include the cosmological constant. This was used

in [48] to prove the positive mass theorem in asymptotically anti-de Sitter space.
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reconstructions (2.2) of these operators involve integrals over functions that vary smoothly

on the scale of the radius of curvature of the boundary Sd−1, so we can integrate out all

CFT degrees of freedom with shorter wavelength.23 For concreteness we will consider the

case of the N = 4 super Yang-Mills theory in 3 + 1 boundary dimensions with gauge group

SU(N), in which case we have

n ∼ N2. (5.10)

Erasing a disc of angular size θ will then correspond to erasing

l =
θ − sin θ

2π
n (5.11)

qubits, where this function is just n times the ratio of the area of the disc to the area

of the S3.

Let us first consider the case where the code subspace is small, that is when k ∼ 1.

From (3.22) we then expect that we can correct for the erasure as long as n− 2l� 1, or in

other words θ < π. But this is exactly what we expect from the AdS-Rindler reconstruction;

once θ < π, WC [A] will contain the center of the space. It is interesting to note that the

derivation of (3.22) applied to an erasure of an arbitrary collection of ` qubits, so this

suggests that we should also be able to reconstruct operators in the center on a union of

disconnected regions, provided that together they make up more than half of the boundary.

With regards to our discussion of section 4.3, this gives support to the entanglement wedge

over the causal wedge.

We can now start increasing k; nothing interesting will happen until we get k ∼ N2,

after which the set of erasures we are able to correct will start decreasing. But this is

exactly the condition for backreaction to become important in the center; with k ∼ N2 the

entropy of the code subspace is comparable to that of a black hole filling R and thus most

states in the code subspace must actually be black holes. So both on the CFT side through

equation (3.22) and the bulk side via backreaction we arrive at the same conclusion for

when correctability should break down. This is a manifestation of the holographic entropy

bound of [50].

6 Conclusion

In this paper we have provided what we consider to be a new understanding of how the

holographic principle is realized in AdS/CFT. Bulk effective field theory operators emerge

as a set of logical operations on various encoded subspaces, which are protected against

local errors in the boundary CFT. The bulk algebra is realized only on these subspaces,

and only if we do not try to describe too many operations at once. Asking for more causes

the error correction procedure to fail, which in the bulk is manifested by the formation of

a black hole.

To some extent we have only recast known facts about the AdS-Rindler reconstruction

in a new language, but in our view that construction is quite opaque once the operators in

23It is not hard to generalize to the case where R is taken to be parametrically larger than the AdS

radius, this essentially involves a repeat of the analysis of [49].
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the boundary domain of dependence of A are evolved back to the boundary Cauchy surface

Σ at t = 0. Our description in terms of error correction is phrased entirely on this Cauchy

surface, and gives what we feel to be a satisfying interpretation of how the AdS-Rindler

reconstruction is realized in the CFT that cleanly resolves some of its paradoxical features.

It is of course interesting to ask if there are any implications of this work for the recent

controversy on whether or not the interiors of black holes are describable in AdS/CFT; for

now we leave this for future study.
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A More details on AdS-Rindler reconstruction

In this appendix we review a bit more about the AdS-Rindler reconstruction. The AdS-

Rindler wedge has metric

ds2 = −(ρ2 − 1)dτ2 +
dρ2

ρ2 − 1
+ ρ2dH2

d−1, (A.1)

where dH2
d−1 is the standard metric on the d−1 dimensional hyperbolic ball Hd−1. We will

refer to coordinates on Hd−1 collectively as α. A free real scalar field on this background

can be expressed in the Heisenberg picture as

φ(ρ, τ, α) =

∫ ∞
0

dω

2π

∑
λ

(
fωλ(ρ, τ, α)aωλ + f∗ωλ(ρ, τ, α)a†ωλ

)
, (A.2)

where fωλ(ρ, τ, α) is a solution of the Klein-Gordon equation of the form

fωλ(ρ, τ, α) = e−iωτYλ(α)ψωλ(ρ). (A.3)

Here Yλ(α) is an eigenfunction of the Laplacian on Hd−1 with eigenvalue −λ; the set of

λ’s is continuous (and positive) so “
∑

λ” should really be understood as shorthand for an

integral together with a sum over degeneracies. ψωλ is explicitly given by

ψω,λ(ρ) = Nωλρ−∆

(
1− 1

ρ2

)− iω
2

F

(
− (d− 2)

4
+

∆

2
− iω

2
+

1

2

√
(d− 2)2

4
− λ,

− (d− 2)

4
+

∆

2
− iω

2
− 1

2

√
(d− 2)2

4
− λ,∆− d− 2

2
,

1

ρ2

)
,

(A.4)
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with

Nωλ =
1√
2|ω|

Γ
(
− (d−2)

4 + ∆
2 + iω

2rs
+ 1

2

√
(d−2)2

4 − λ
r2
s

)
Γ
(
− (d−2)

4 + ∆
2 + iω

2rs
− 1

2

√
(d−2)2

4 − λ
r2
s

)
Γ
(
∆− d−2

2

)
Γ
(
iω
rs

)
(A.5)

and

∆ =
d

2
+

1

2

√
d2 + 4m2. (A.6)

The normalization is chosen to ensure that a and a† have the usual algebra, and implies

that for ρ large and negative, ψωλ is of order 1√
ω

. F is a hypergeometric function that goes

to one as ρ→∞. By comparing to the extrapolate dictionary (1.1) we can read off that

Oωλ =

∫
dτdαeiωτY ∗λ (α)O(τ, α) = Nωλaωλ, (A.7)

and substituting back into (A.2) and formally exchanging the τα integral with the ωλ

integral/sum we arrive at

φ(ρ, τ, α) =

∫
dτ ′dα′K(ρ, τ, α; τ ′α′)O(τ ′, α′). (A.8)

The “smearing function” K is given by

K(ρ, τ, α; τ ′α′) =

∫ ∞
−∞

dω

2π

∑
λ

1

Nωλ
fωλ(ρ, τ, α)eiωτ

′
Y ∗λ (α′)eiωτ

′
. (A.9)

K can be understood as a kernel for constructing a bulk solution of the KG equation in the

AdS-Rindler wedge given arbitrary boundary conditions at spatial infinity as a function of

τ and α. It was immediately realized, however, that in fact this expression for K is not well-

defined [7] (see also [51, 52]); the reason is that from Stirling’s formula it is straightforward

to see that at large λ we have

|Nωλ|2 ∼ e−π
√
λ. (A.10)

This is problematic for the convergence of the λ integral in (A.9), and using the WKB

approximation for Y and ψ at large λ it is not hard to see that indeed the integral does

not converge for any choice of bulk and boundary points [8, 51, 52].

In fact, the nonconvergence of K is necessary to avoid the following paradox; say that

we have two overlapping Rindler wedges, WC [A] and WC [B], as in figure 10. If K existed

then since the fωλ solutions are complete it would construct a unique solution of the KG

equation in WC [A] with some particular boundary conditions in D[A]. We can, however,

imagine modifying the spatial boundary conditions at a point x that is in D[B] but not

in D[A], such that x is nonetheless causally separated from a point in WC [A]. We then

should be able to send a signal to WC [A] without modifying the boundary conditions in

D[A], which contradicts the uniqueness of the solution.

In [7] it was argued that one should analytically continue in the boundary spatial

coordinates to avoid this divergence, but this is a rather unusual thing to do to a quantum

field theory and would be rather problematic from the point of view of our analysis in this
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x

Figure 10. Overlapping Rindler wedges, shown in the boundary. D[A] is in blue, D[B] is in yellow,

and their overlap is in green.

paper. The issue was recently illuminated considerably in [8] (see also [21]), where it was

argued that as long as we are careful to think of K as a distribution for integration against

CFT correlation functions we are allowed to use it without any analytic continuations.

The key point of [8] was that at least at leading order in 1/N , if we integrate K against

appropriate bulk test functions then its singularity structure is such that we are always able

to integrate it against CFT expectation values and get a reasonable answer. Intuitively, the

reason that this is able to avoid the contradiction of the previous paragraph is that in the

CFT O obeys a boundary equation of motion; we are not free to choose it independently

at different boundary times. Turning on a source at x will necessarily propagate in the

boundary into D[A] ∪ D[B], so we will not be able to change the boundary data at x

without also changing it in D[A].

The argument of [8] does not immediately generalize to higher order corrections in

1/N , but we expect a more detailed analysis will show that it can be improved order by

order in 1/N .24

B The basic theorem of operator algebra quantum error correction

In this appendix we prove the theorem of section 3.5. The proof is original, but the theorem

is a special case of the results of [32, 33].

Proof. Indeed say that we have a code subspace HC spanned by an orthonormal basis |̃i〉EE .

Moreover say that O is an operator which acts as

O|̃i〉 =
∑
j

Oji |̃j〉

O† |̃i〉 =
∑
j

O∗ij |̃j〉. (B.1)

24Recently it was argued that AdS/CFT in the AdS-Rindler wedge cannot be understood as a statement

about subregions in the global CFT [53]. It is true that there is a subtlety here in that the cutoffs in

the bulk are different in the two cases, but AdS/CFT is really a statement about the continuum CFTs.

The discrepancies discussed in [53] were localized to “cutoff sized regions” in the CFT, which really means

that they are not part of the continuum theory. That CFT expectation values have the right singularity

structure to be integrated against K in (A.9) is related to the fact that they are computed in states that

remain finite energy as we take the continuum limit, and as explained in [8] it is forgetting this that leads

to trouble.

– 28 –



J
H
E
P
0
4
(
2
0
1
5
)
1
6
3

Finally, say that for any operator XE acting on E we have

〈̃i|[O,XE ]|̃j〉 = 0 ∀i, j. (B.2)

We’d then like to show that there exists an operator OE acting only on E and obeying

OE |̃i〉 = O|̃i〉

O†
E
|̃i〉 = O† |̃i〉. (B.3)

Let us first observe that in general in a bipartite system in a state

|ψ〉 =
∑
ab

Cba|a〉A|b〉B, (B.4)

operators OA on A and OB on B will obey

OB|ψ〉 = OA|ψ〉 (B.5)

if and only if

OBC = COTA. (B.6)

Now in the setup of the theorem, let us consider the state25

|φ〉 =
∑
i

|i〉R |̃i〉EE . (B.7)

The properties (B.3) will clearly hold if and only if they hold on |φ〉, ie if

OE |φ〉 = O|φ〉

O†
E
|φ〉 = O†|φ〉, (B.8)

so this is all we need to show ((B.3) follows from applying projections to R).

Our strategy then is to notice that we can decompose REE into a bipartite system in

two different ways, either as the R system and the EE system or as the E system and the

RE system. The first decomposition is manifest in (B.7), and since in this case C is just

the identity we see that (B.6) holds and we have

OR|φ〉 = O|φ〉, (B.9)

where OR ≡ OT acts just on R. The point then is that we can interpret OR as OR ⊗
IE , and then see if we can mirror it back onto E using (B.6). If so then we succeed in

constructing OE .

To proceed, we can define

|̃i〉 =
∑
a,m

Ciam|m〉E |a〉E , (B.10)

25For convenience we have dropped the overall normalization, it will cancel between the two sides of (B.6).
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in which case we have

|φ〉 =
∑
i,a,m

Ciam|im〉RE |a〉E . (B.11)

It will be very convenient in what follows to treat C as a rectangular matrix, with a

being the first index and im being the second index. For example, we have the reduced

density matrices

ρE = CC† ≡ g
ρRE = CTC∗. (B.12)

Since g is a non-negative hermitian matrix with positive trace, it will be invertible on a

subspace of E. Moreover, any state orthogonal to this subspace will also be orthogonal to

all of the |̃i〉’s, so we can just take E to be given by this subspace; g is then invertible. This

then means that C has a right inverse C†g−1.

Now observe that the commutator condition (B.2) implies that

C†CO = OC†C, (B.13)

or equivalently that

[OR ⊗ IE , ρRE ] = 0. (B.14)

If C†g−1 were a left inverse of C, then (B.6) would hold if we define

OE = COC†g−1, (B.15)

which would then give us the first equation in (B.8) (remember that OR = OT ). In fact it

is a right inverse, but we can use (B.13) to show that (B.6) holds nonetheless:26

OEC = COC†g−1C

= g−1CC†COC†g−1C

= g−1COC†CC†g−1C

= g−1COC†C

= g−1CC†CO

= CO. (B.16)

Moreover

O†
E

= g−1CO†C†

= g−1CO†C†CC†g−1

= CO†C†g−1, (B.17)

where we’ve used (B.13), so the second equation in (B.8) is also satisfied. This concludes

the proof.

26Intuitively this is because if we do a Schmidt decomposition of |φ〉 into RE and E, we can choose a

basis where C is actually a square matrix, so there is no difference between its left and right inverses. The

condition (B.13) ensures us that OR acts within the subspace defined by the Schmidt decomposition.
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