
MRS BULLETIN • VOLUME 32 • AUGUST 2007 • www/mrs.org/bulletin 611

Bulk Metallic
Glasses: At the
Cutting Edge of
Metals Research

A.L. Greer and E. Ma, Guest Editors

Abstract
Glassy alloys (metallic glasses) are currently the focus of intense research in the

international metals community. Setting aside elevated-temperature applications, these
amorphous metals have exciting potential for structural applications. When metallic
glasses were first widely studied in the 1960s, the alloy compositions then known to be
quenchable into the glassy state from the liquid required high cooling rates on the order
of 106 K s−1 and were consequently restricted to thin sections. The current interest in
metallic glasses has its origin mainly in the increasing range of compositions that can
now be cast into glasses at much lower cooling rates, permitting minimum sections of
1 mm to 1 cm or even larger. These bulk metallic glasses (BMGs) are the focus of the
articles in this issue of MRS Bulletin. Our goal is to illustrate the major materials issues
for BMGs, from processing to structures to properties and from the fundamental
science of glasses to viable industrial applications. We hope that the articles, in
providing a snapshot of a rapidly moving field, show why BMGs are attracting such
intense interest and serve to highlight some challenging issues awaiting resolution.

Introduction
The glassy state is reached when a

cooled liquid solidifies without crystal-
lization, which is associated with the phe-
nomena of the glass transition. The focus
of this issue of MRS Bulletin is on glasses
strictly defined in this way, although it
should be noted that glasses are but one
category of noncrystalline (or amorphous)
solids, which in general can be prepared
by a variety of methods.1

The best known natural glass is obsid-
ian, formed by solidification after volcanic
activity. The capability to work obsidian to
create extremely sharp cutting edges for
knives, spears, and arrowheads made this
glass attractive to early humans.

Glassmaking by humans is thought to
have begun in Mesopotamia (modern
Iraq) around 2500 BCE with the fashioning
of beads in imitation of precious stones. In
the context of this long history of usage,
glasses with nondirectional metallic bond-
ing are parvenus among their established
cousins. The metallic glasses (also often

referred to as glassy alloys or amorphous
alloys) emerged some 50 years ago,2 defy-
ing the expectation that solid metallic
states would always be crystalline due to
the nature of metallic bonding.

Metallic glasses offer attractive benefits,
combining some of the desirable proper-
ties of conventional crystalline metals and
the formability of conventional oxide
glasses. For example, in the absence of the
well-defined dislocation defects ubiqui-
tous in crystalline alloys, metallic glasses
exhibit room-temperature strength much
closer to the theoretical strength of the
material than their crystalline counter-
parts. Meanwhile, near-net-shape process-
ing can be realized by exploiting the
viscous flow in the supercooled-liquid
regime. Cast glassy alloys exhibit a shiny
finish and maintain dimensional accu-
racy, avoiding shrinkage associated with
crystallization. The absence of grain
boundaries in glassy alloys contributes to
unique combinations of magnetic, electri-

cal, chemical, and tribological properties.
In what follows, we highlight the state of
the art of research on bulk metallic glasses
(BMGs) and introduce the individual arti-
cles in this issue, where in-depth discus-
sions can be found on several key issues.

Processing and Glass-Forming
Ability

No pure metals and few metallic alloys
are natural glass-formers. A major chal-
lenge, therefore, is to obtain glassy alloys
in bulk form in a simple operation such as
casting. The critical size of BMGs is
defined as the maximum possible value of
the minimum dimension (such as the
diameter of a rod) that permits the sample
to be fully glassy. BMGs have indeed been
difficult to come by; despite encouraging
results on noble-metal–based composi-
tions in the early 1980s,3 BMG-forming
compositions mostly have been discov-
ered only since 1990.4,5 Systematic
research has identified the key thermody-
namic and kinetic factors that lead to
some alloy compositions with particularly
good glass-forming ability (GFA), as ana-
lyzed in the article by Busch et al.6 in this
issue. In essence, the alloy melt should
have (1) a low entropy and enthalpy and
therefore a low thermodynamic driving
force for crystallization, and (2) low
atomic mobility associated with a viscos-
ity that is high and comparatively weakly
temperature-dependent, kinetically sup-
pressing the crystallization. These factors
are linked, having their origin in a densely
packed liquid structure with pronounced
short- and medium-range order.

Guided by such insights, and armed
with knowledge of phase equilibria from
measurements and calculations, shortcuts
to the location of BMG compositions on a
phase diagram have been developed in
recent experimental searches. These short-
cuts have identified a number of new
compositions with large GFA, as indicated
by the minimum dimension of the largest
samples that can be made fully glassy.
These developments are summarized in
the overview by Li et al. in this issue.7 As
shown in Figure 1, these recently devel-
oped BMGs can be cast into rods with
diameters in the 1–2.5 cm (1 in.) range and
often in systems based on engineering
metals such as Mg, Ti, Cu, and Fe. The fast
progress on this front during the past few
years has several implications. First, it
shows that many compositions based on
common engineering metals can be
processed into BMGs. We are no longer
limited to a handful of compositions often
containing expensive (such as Pd) or
undesirable (such as toxic Be) elements.5
Second, the high GFAs provide the leeway
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in processing parameters or composition
necessary for reproducibility in industrial
mass production. Third, these macro-
scopic sizes expand the range of possible
applications and are in many cases ade-
quate to replace the crystalline counter-
parts currently in use.8 Fourth, by moving
to nearby compositions on the phase dia-
gram that sacrifice the GFA to some
extent, BMG-matrix composites can be
designed for a better combination of prop-
erties.7 Ultimately, one would want to pre-
dict BMG formation using any chosen
element combinations, rather than ration-
alizing the composition after the fact. We
are still far away from such a predictive
capability at present. In particular, it is still
an unraveled mystery that a small change
in composition or a minor addition of
alloying elements can drastically change
the GFA.

Structure
Structure determines the properties of

materials, and the BMG case is no excep-
tion. These glasses exhibit no long-range
order, as they are solidified from liquid
without reaching the crystalline ground
state. But short- to medium-range struc-
tural order does develop to a considerable
extent, under the given kinetic constraints,
as the atoms strive to find comfortable
configurations to lower their energy.
Short-range order (SRO) develops over
the first couple of coordination shells
 (typically <0.5 nm), beyond which

medium-range order (MRO) may extend
to beyond ~1 nm. By SRO and MRO, we
mean inherent local structures in the
glassy state, not just quenched-in crystal-
lizing phases that are not fully suppressed
during solidification. For a monolithic
glass, it is the short- and medium-range
order that is expected to control its proper-
ties, such as the initiation of plastic flow,
given the absence of dislocations with
defined Burgers vectors.

Understanding how atoms pack in
metallic glasses is obviously no trivial
task. The structure of metallic liquids, first
analyzed by Bernal,9 was described as
dense random packing. For glass-forming
alloys in particular, it is clear that dense
packing is characteristic. Random packing
is certainly incorrect, however, as the
densest possible packing of atoms of dif-
ferent sizes can be achieved only with
well-developed local order. Structural fea-
tures of metallic glasses are the focus of
the article by Miracle et al. in this issue,10

where the concept of efficient filling of
space is advocated. Importantly, the
analysis of dense packing permits ration-
alization of the good glass-forming com-
positions. For relatively low solute
contents, recent research has established
the preference for, and dense packing of,
solute-centered quasi-equivalent clusters
(Figure 2).11 An example of a simple
binary metallic glass is shown in Figure 2.
These structural motifs arise from the
strong tendency to form as many bonds as

possible between unlike species because
of the large negative heat of mixing that is
usual in good glass-formers. The cluster
size and its type (coordination polyhe-
dron) depend on the relative sizes of the
solvent (the majority element) and solute.
For example, replacing the Pt solute in
Figure 2 with much smaller Be would sig-
nificantly reduce the number of Zr neigh-
bors that can be accommodated around
the solute, and the solute concentration in
the alloy would be correspondingly much
higher. The clusters overlap via various
solvent-atom sharing schemes, leading to
medium-range order and dense packing
in three-dimensional space.10,11 Complex
structures at more concentrated composi-
tions or in multicomponent systems are
yet to be understood.

The dense packing in metallic glasses is
of course not unique nor ideal. The cluster
packing exhibits a distribution in terms of
cluster size, types, and sharing schemes.11

The concept of free volume,12 long used to
describe the deviation from ideal packing,
is critically assessed by Miracle et al. in
their article in this issue;10 recent measure-
ments suggest that microscopic free vol-
ume is rather unevenly distributed. The
full implications of the structural informa-
tion acquired so far for atomic diffusion
and plastic flow remain to be elaborated.
How the structures transform upon
changes in thermodynamic and process-
ing variables,13 or under deformation,14–16

is only beginning to be investigated. It also
seems that our current understanding of
metallic glass structures does not yet
enable predictions of their stability.
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Figure 1. Record-size bulk metallic glasses (BMGs) developed in various alloy systems
and the year of their discovery. The first metal (e.g., Zr in ZrTiCuNiB) is the base element in
each alloy; details about the compositions can be found in Reference 7. Alloy systems in
which the BMG diameter has not reached 1 cm in copper mold casting are not included.

Figure 2. Model of a simple binary
metallic glass: interpenetrating quasi-
equivalent clusters sharing faces,
edges, or vertices in the atomic packing
configuration of a Zr-Pt metallic glass.
The blue balls represent the solvent Zr
atoms centered around Pt solute
atoms.11



Mechanical Behavior
From the earliest studies of metallic

glasses, it was clear that they have a range
of interesting properties. Early work
focused on the soft magnetic iron-based
glasses, which are highly applicable in the
electronics industry. Current work, made
possible by the availability of bulk sam-
ples, is largely on mechanical properties.
As pointed out in the article by Yavari
et al. in this issue,17 these properties are
outstandingly good for a variety of struc-
tural applications. For example, Figure 3
shows that in comparison with conven-
tional crystalline alloys, BMGs show out-
standing strength, elastic strain, and
elastic energy storage.18 Interestingly,
BMGs make very good surgical blades, an
application harking back to the early use
of obsidian glass. But metallic glasses
have an Achilles’ heel: an almost total lack
of tensile ductility at room temperature.
This problem, to some extent, hampers
application. However, most BMGs are not
intrinsically brittle, as are the vast majority
of ceramics and glasses, and do possess
mechanisms for plastic flow. Metallic
glasses just tend to suffer from work-
 softening and extreme localization of plas-
tic flow into shear bands. Yavari et al.17 have
the difficult task of reviewing a fast-
 moving subject in which great advances
are being made in improving plasticity.
The guiding principle so far is to facilitate
the formation of multiple shear bands so
that strains are not concentrated in one or
few shear bands that can wreak havoc, not
least by evolving into cracks. Large plas-
ticity, in terms of compressive ductility,
has been achieved in a number of BMGs,17

and there are emerging hints that ductility
can be achieved even in tension.19

In conventional metallurgy, a suitable
matrix can be just the basis upon which to
optimize microstructure and properties
through the dispersion of a second phase.
The same is the case with metallic glasses.
Many second-phase dispersions are
found to be beneficial in improving the
strength–plasticity balance. Whereas a
range of possibilities is outlined in the arti-
cles by Li et al.7 and by Yavari et al.,17 the
article by Brothers and Dunand in this
issue20 focuses on a gas (or empty space)
as the dispersed phase. Porous and
foamed metallic glasses as a novel form of
BMGs offer nice examples of property tai-
loring, the benefits of which include lower
density, greater plasticity in compression,
and greater energy absorption.

Despite recent progress, much remains
to be understood about the deformation
behavior of BMGs, including the initiation
and percolation of plastic flow in the
absence of dislocations, the nature and

operation of the shear bands,21–24 the
 correlation between the plasticity and the
internal structure, the role of nano- to
micro-heterogeneities in influencing
shear-band nucleation and propagation,25

and any possible work-hardening mecha-
nisms.

An important step in understanding the
rheology of metallic glasses and their par-
ent liquids is described in the article by
Johnson et al. in this issue.26 Such emerg-
ing fundamental understanding is a major
driver for research on metallic glasses.
During the last three decades, several phe-
nomenological models have been pro-
posed to explain flow in metallic glasses,
most of which are founded on two hypo-
thetical flow mechanisms. By analogy to
granular materials, flow was pictured to
occur by deformation-induced dilatation,
describable in terms of the creation of
microstructural free volume. The latter is
responsible for flow localization and con-
sequent softening.27 In an alternative
approach, flow was thought to be accom-
modated by cooperative shearing of a
group of atoms, referred to as the shear
transformation zone.28 Johnson et al.
employ a cooperative-shear flow analysis,
modeling the shear flow as configura-
tional hopping between inherent states
that overcomes an activation barrier in the
potential energy landscape.29,30 They sys-

tematically illustrate, from experimental
and simulation results for metallic glass-
forming liquids, the key correlations
established between viscosity, shear mod-
ulus, and potential energy, for a wide tem-
perature range encompassing both
Newtonian and non-Newtonian flow
regimes.

Applications
The final article in this issue, by Inoue

and Nishiyama,8 provides an overview of
their recent work on applications. They
have taken advantage of a number of new
BMGs that have recently reached ade-
quate size or possess unique combinations
of properties. Many examples in mechan-
ical, chemical, and magnetic applications
are explored in their article. In the breadth
of their coverage, these authors provide a
sense that we are only in the early stages
of exploiting the full potential of metallic
glasses and there are many opportunities
worth pursuing.

Applications in microelectromechani-
cal systems (MEMS) are particularly
attractive. This is because metallic glasses
offer the complete range of properties
desired in such applications, including
high strength, extraordinary hardness,
superior resistance to wear and corrosion,
and the ability to be molded on a very
fine scale based on processing in the
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Figure 3. Elastic limit (strength, σy) and Young’s modulus E for bulk metallic glasses (with
compositions shown) compared with more than 1500 conventional metals, alloys, and
metal-matrix composites. In terms of the σy/E (elastic strain) and σy

2/E (resilience, or elastic
energy storage) contours and of their strength approaching the theoretical limit, BMGs are
exceptional.18



supercooled-liquid regime. Meanwhile,
the inadequate room-temperature ductil-
ity exhibited by large samples becomes
irrelevant for small parts, as their size is
now below the plastic-zone size of many
of the metallic glasses.18

As pointed out by Inoue and
Nishiyama, the rapid additions of vari-
ous new BMGs and their composites to
the designers’ repertoire in recent years
greatly facilitate the search for expanded
applications. Better GFA and inexpensive
compositions based on engineering met-
als such as Cu, Ni, Fe, Mg, and Al are still
being sought after. This effort should
 continue to be encouraged, especially
because a broader impact of BMGs on
engineering requires simpler mixtures of
elements to lower the cost and facilitate
processing, recycling, and commercial-
ization. Mechanical and other property
data need to be carefully and systemati-
cally documented for metallic glasses to
find their niche applications. The contin-
uing development of applications, of
course, is a major driver for the research

focus on these materials. It is also our
hope that this set of articles can attract
the attention of engineers working out-
side this field to consider BMGs as a new
form of material suitable for selection in
their innovations.

Summary and Outlook
As a frontier of metals research, the field

of bulk metallic glasses is progressing at a
fast pace. At the same time, the unre-
solved issues in every area of the materials
science of these still-novel glasses present
major challenges and offer tremendous
opportunities for future exploration.

Before closing, we single out one aspect
that in our opinion deserves to be high-
lighted as a key observation and fruitful
research direction. Despite many gaps in
our knowledge, some of which are high-
lighted in this collection of articles, it is
becoming clear that the properties of
metallic glasses are remarkably well corre-
lated with each other. For example, the
plastic flow stress scales closely with
 elastic moduli (Figure 4a).29 The glass-

transition temperature Tg provides a suit-
able basis for normalization of the temper-
ature scale in comparing different glasses,
and it too is correlated with elastic mod-
uli31 and with flow stress (Figure 4b).32

Furthermore, the elastic moduli are
closely correlated with the strong/fragile
characteristics of the glass-forming
liquid,31 therefore possibly also with glass-
forming ability,6 and with the tough-
ness/brittleness of the glass (Figure 4c).33

The close links between the thermody-
namic, kinetic, elastic, and plastic proper-
ties of metallic glasses are remarkable, and
appear to provide predictability for these
apparently disordered systems at a level
that far exceeds that for their ordered crys-
talline cousins. A key challenge now is to
understand these correlations, which may
have common structural origins, and
exploit such understanding to develop
new glass compositions that combine
desirable GFA with mechanical tough-
ness. This would in turn permit more
widespread, cost-effective application of
these paradigm-shifting materials.
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