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ABSTRACT

An equation of state for the bulk viscosity of liquid noble gases is proposed. On the basis of dedicated equilibrium molecular dynamics
simulations, a multi-mode relaxation ansatz is used to obtain precise bulk viscosity data over a wide range of liquid states. From this dataset,
the equation of state emerges as a two-parametric power function with both parameters showing a conspicuous saturation behavior over
temperature. After passing a temperature threshold, the bulk viscosity is found to vary significantly over density, a behavior that resembles
the frequency response of a one pole low-pass filter. The proposed equation of state is in good agreement with available experimental sound
attenuation data.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5142364., s

I. INTRODUCTION

In contrast to prevailing opinion, bulk viscous effects have
widely been explored in fluid mechanics and even share a somewhat
controversial history. In 1845, Stokes1 had argued geometrically that
Cauchy’s stress tensor field,2

Πij = (μb − 2
3
μs)∂nvnδij + μs(∂jvi + ∂ivj), (1)

entails not only the well-known shear viscosity μs but also the bulk
viscosity μb, which he concurrently postulated to be zero,

μb
!
= 0. (2)

Stokes, whose proof can hardly be considered rigorous, had
limited his argument to incompressible fluids and remained skep-
tical that his finding (2) would emerge as universally valid. For
more than a century, this hypothesis was afflicted with miscon-
ceptions until the Royal Society hosted “a discussion on the first
and second viscosities of fluids,”3–18 reinvigorating investigations
of bulk viscous effects on a wide variety of fluid mechanical
problems.

Riemann’s solution19 of the Euler equation20 was among the
first. Retaining the bulk viscosity in the stress tensor field21 conclu-
sively solved the problem of insensibly small wave thicknesses that
were predicted22,23 in descriptions limited to shear viscosity.24 The
conjectured increase in wave thickness was qualitatively confirmed
in successive atomistic simulations of non-ideal liquids25,26 and in

numerical investigations of rarefied gases,27–29 given that the shock
structure is symmetric.30

Bulk viscous effects have long been considered mere higher-
order contributions.31 However, including the bulk viscosity in
the acoustic approximation32,33 straightforwardly explained the
observed second-order fields associated with ultrasonic waves. The
vorticity that is generated across a propagating wave’s free sur-
face induces a counter-oriented circulatory flow34–39 that is also
known as acoustic streaming or quartz-wind. In hypersonic bound-
ary layer approximations, bulk viscous effects are promoted to
second-order in the pressure distribution40 and even first-order
in the outer and inner flow velocities of high Reynolds number
flows.41

In fluids confined to capillaries, the bulk viscosity contributes
to first-order in radial pressure and to second-order in the axial
velocity.42–47

Bulk viscous behavior was also investigated for more complex
scenarios. An increased shock wave thickness affects the outer flow’s
adverse pressure gradient and consequently suppresses the shock
induced boundary layer separation,48 while additionally the shock
wave’s location and strength are much more accurately predicted
when bulk viscous effects are included.49 Likewise, bulk viscous
damping has been observed in compressible turbulent flows.50 A
non-zero bulk viscosity enhances kinetic energy dissipation while
additionally inhibiting the energy transfer between translational and
configurational energy, thus rendering the flow effectively incom-
pressible.51
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Each of the aforementioned investigations, however, has suf-
fered frommissing, incomplete, or unreliable bulk viscosity data and
was consequently restricted to predominantly qualitative results.

II. SOUND ATTENUATION

Since its introduction, the bulk viscosity was closely associ-
ated with linear acoustics. Stokes had originally proposed that sound
attenuation measurements could confirm his hypothesis (2) experi-
mentally. A propagating wave’s linear momentum is dissipated by a
surrounding atmosphere, which leads to the exponential decay of its
amplitude A(z) over traveled distance Δz = z2 − z1 and is measured
by an attenuation coefficient α,

A(z2)
A(z1) = exp(−αλ

Δz

λ
), (3)

given here per wavelength λ, i.e., αλ = αλ. In a first estimate of αλ
for one-dimensional motion, limited to shear viscosity μs, Stokes
found that the attenuation factorizes into frequency ω = 2πf and a
transport function ξ,

αλ = ωξStokes = ω
π

K

4
3
μs, (4)

where K = ρc2 is the fluid’s low-frequency modulus of compres-
sion, ρ its density, and c its thermodynamic speed of sound. Kirch-
hoff52 advanced the discussion by including heat conduction and
established that both effects superimpose linearly in the transport
function,

αclassicalλ = ω(ξStokes + ξKirchhoff)
= ω

π

K
(4
3
μs + (κ − 1) γ

cp
), (5)

where κ = cp/cv is the ratio of specific heats and γ is the thermal
conductivity. The attenuation predicted by this classical theory cor-
responds ostensibly well with low frequency acoustic measurements.

Subsequently performed ultrasonic measurements,53–57 how-
ever, disclosed large deviations from the classical description (5)
and motivated Herzfeld58 and Kneser59,60 to introduce an additional
mechanism,

αλ = α
classical
λ + αexcessλ . (6)

Both connected classical hydrodynamics to relaxation theory and
attributed the excess attenuation αexcessλ to a time lag that occurs dur-
ing the transfer of energy between the molecules’ translational and
internal degrees of freedom. In contrast, Tisza61 refrained from any
physical interpretation and incorporated the Herzfeld mechanism
into the transport function ξ by force fitting the complex mechanism
of relaxation into a scalar valued bulk viscosity,62

αλ = ω(ξStokes + ξKirchhoff + ξTisza)
= ω

π

K
(4
3
μs + (κ − 1) γ

cp
+ μb). (7)

This extended theory has been validated experimentally up to mod-
erate ultrasonic frequencies, i.e., f ≤ 280 MHz,63 over a wide range
of thermodynamic states.

In the extended vicinity of the critical point, however, an
anomalously high attenuation was observed64–66 that was conclu-
sively attributed to long-range density correlations,67–73 which are
alterations of structural relaxation effects.74–77 The total attenuation
partitions into the already established background part (7) and a
critical contribution,78,79

αtotalλ = αλ + αcriticalλ . (8)

Acoustic dispersion, i.e., the frequency dependent speed of sound
c(ω), confines this critical attenuation to an extended critical region
in the thermodynamic state space, cf. supplementary material,

αcriticalλ = π
I(ω̃)
J(ω̃)([

c(ω)
c
]2 − 1), (9)

where I(ω̃), J(ω̃) are improper integrals of a characteristic
frequency ω̃.

III. EXPERIMENTAL DATA

At present, the bulk viscosity is determined experimen-
tally either by non-resonant Rayleigh–Brillouin scattering80–90 or
ultrasonic attenuation measurements.91–121 Both techniques have
successfully been applied to a variety of substances, yet each mea-
surement series was restricted to selective thermodynamic states.

A substantially larger dataset, however, can be obtained for
liquid noble gases by utilizing their self-similar behavior. While all
available sound attenuation measurements for neon, argon, kryp-
ton, and xenon were evaluated, data subject to critical attenuation

FIG. 1. Overview of thermodynamic states at which experimental sound atten-

uation data are available for neon106 (circles), argon98–101,110,112,113,115,116

(squares), krypton115–117,119 (triangles), and xenon79,115,116,118,119,122 (diamonds).
Highlighted: Seven isotherms were selected T /Tc = 0.759, 0.76, 0.83, 0.86,
0.863, 0.91, and 0.93, while T /Tc = 0.759 and 0.863 were omitted in the plot
for visibility reasons, along which atomistic simulations were performed to com-
plement and extend the dataset to higher pressures p/pc ≤ 21. All thermodynamic
states were reduced with the respective fluid’s critical pressure pc and density ρc.
The extended critical region was constructed on the basis of sound dispersion
measurements from the literature and is delimited by the dashed line.
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TABLE I. The following parameters for the full, i.e., untruncated Lennard-Jones poten-

tial σ, ϵ, and atomic mass m were used in the canonical transformation130 to reduce

the bulk viscosity and time t⋆ = t
√
ϵ/(mσ2), where kB is Boltzmann’s constant.

ϵ/kB (K) σ (Å) m (u)

Ne 33.92 2.801 20.180
Ar 116.79 3.395 39.948
Kr 162.58 3.627 83.798
Xe 226.14 3.949 131.293

were identified and discarded, cf. Fig. 1. The bulk viscosity was cal-
culated on the basis of the extended classical theory (7) and in con-
trast to previous works, more accurate thermodynamic data were
available by resorting to most recent equations of state.123–127 Sub-
sequently, μb was reduced by a canonical transformation resting on
the Lennard-Jones potential, i.e., μ⋆b = μbσ

2/√mϵ, with the required
set of parameters specified in Table I.

Each contribution to bulk viscosity is afflicted by a different
uncertainty. While the uncertainty of most recent thermodynamic
data are well established to range from Δρ/ρ = 0.005 to Δμs/μs
= 0.3 depending on substance and state, the attenuation coefficient
αλ has been determined by single measurements at the respective
state point, and thus, only its absolute maximum errors Δαλ have
been estimated. Moreover, it is not assured that systematic measure-
ment errors in the literature data, specifically diffraction effects,128

were properly accounted for. Consequently, the reduced bulk vis-
cosity’s uncertainty Δμb was determined to be linearly affected129 by
its various contributions Δαλ, Δc, Δμs, Δγ, Δcv , Δcp,

Δμb = ∣ K
ωπ
∣Δαλ +⋯ + ∣ (κ − 1)γ

c2p
∣Δcp. (10)

FIG. 2. Overview of bulk viscosity data calculated from the extended classical the-
ory on the basis of experimental sound attenuation data, taken from the literature at
the state points indicated in Fig. 1. Highlighted: Experimental data at the selected
isotherms T /Tc = 0.76, 0.83, 0.86, 0.91, 0.96 with their respective uncertainties,
calculated from Eq. (10), indicating a monotonic decline of μb as a function of
density.

After selecting and evaluating the experimental data, a decline of
the bulk viscosity along each isotherm, i.e., from saturation line
toward higher density, can qualitatively be inferred. The effect tends
to increase with temperature, however, due to large errors neither
the function’s gradient nor the curvature can accurately be specified,
cf. Fig. 2.

IV. MOLECULAR DYNAMICS SIMULATION

To interpret and extend the experimental dataset to higher
densities, additional bulk viscosity data were sampled by equi-
librium molecular dynamics (EMD) simulations along seven
selected isotherms T/Tc = 0.759, 0.76, 0.83, 0.86, 0.863, 0.91,
0.93, cf. Fig. 1. The bulk viscosity was determined microscopi-
cally by time-autocorrelation functions of local small-scale, tran-
sient pressure fluctuations131,132 that are intrinsic in any fluid under
equilibrium.133 The Lennard-Jones interaction potential was used,
which has demonstrated to resolve such small-scale dynamics ade-
quately and hence successfully describes macroscopic transport in
liquid noble gases.134–138

In the present work, the bulk viscosity’s autocorrelation func-
tion BA was sampled in the microcanonical (NVE) ensemble, uti-
lizing the fully open source program ms2.139 The necessary average
energies ⟨E⟩were determined by preceding canonical (NVT) ensem-
ble simulations for the given pair of temperature and density. Finite
size effects were minimized by placing N = 4096 particles in cubic
volumes with periodic boundary conditions and choosing a suffi-
ciently large cutoff radius rc ≥ 5.5σ.140–142 The employed particle
number is well chosen, as simulations containing N = 12 000 par-
ticles yielded virtually identical results, cf. supplementary material.
In order to adequately resolve both the existing small-scale dynam-
ics and also the slowly decaying pressure fluctuations,143 a reduced
integrator time step Δt⋆ = 5 ⋅ 10−4 was specified and each autocor-
relation function BA was sampled over a reduced time period of at
least t⋆ ≥ 14.6.

A. Relaxation ansatz

The fluid’s intrinsic small-scale pressure fluctuations have con-
clusively been established to relax in different modes.144–146 Each
mode decays exponentially over time following a Kohlrausch–
Williams–Watts function.147,148 For all of the investigated state
points, three superimposing relaxation modes were found to be
present, leading to the relaxation model’s analytical form,

BR(t) = Cf exp(−( t
δf
)βf) + Cm exp(−( t

δm
)βm)

+Cs exp(−( t

δs
)βs). (11)

The first term describes the fast, and the subsequent terms describe
the intermediate and slow modes, respectively. The weighting fac-
tors are constraint Cf + Cm + Cs = 1, and the Kohlrausch param-
eters δi, βi are a measure of relaxation time scale and distortion
from the exponential function, respectively. The eight independent
parameters of Eq. (11) were determined by fitting the relaxation
model BR to the sampled autocorrelation function BA at each state
point independently.
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Each mode’s average relaxation time τi is properly defined
as integral mean value of its respective contribution BR ,i to the
relaxation model,149

τi =
1
Ci

lim
t→∞
∫

t

0
dt(BR,i(t)). (12)

As originally proposed by Maxwell, the bulk viscosity μb is propor-
tional to the cumulative averaged relaxation time,

μb = Kr ∑
i

Ciτi, (13)

with the proportionality constant Kr being the fluid’s relaxation
modulus.150

V. RESULTS

A. Relaxation times

The present results are exemplary discussed for states along
the isotherm T/Tc = 0.86 yet are qualitatively similar for all other
investigated state points as disclosed in the supplementary material.

The sampled autocorrelation function BA partitions into three
segments, with each segment being dominated by a different mode,
cf. Fig. 3. The two dents in the sampled signal readily indicate the
fast and intermediate mode’s decay. Accompanying the latter, incip-
iently small scale oscillations are amplified, giving rise to substantial
noise contributions in the slow mode. After reconstructing its sig-
nal by post-processing, the good agreement between the sampled
autocorrelation function BA and the proposed relaxation model BR

becomes apparent.
More importantly, in contrast to the sampled autocorrelation

function that is plagued by noise, the employed relaxation model’s
time integral properly converges to a definite value, thus allowing to
determine the bulk viscosity unambiguously at each state point, cf.
Fig. 4.

FIG. 3. Comparison of sampled autocorrelation function and relaxation model
including all three relaxation modes. The gray line constitutes BA sampled at T /Tc

= 0.86 and ρ/ρc = 2.06, while the solid black line represents the relaxation model
(11), and its fast, intermediate, and slow modes are depicted by dashed, short-
dashed, and dashed–dotted lines, respectively. The post-processed simulation
signal (dotted line) is in good agreement with the relaxation model.

FIG. 4. Comparison of the integrated autocorrelation function BA with the relaxation
model’s (11) integral at T /Tc = 0.86 and ρ/ρc = 2.06. Due to noise contribu-
tions to BA, the bulk viscosity μb is difficult to determine precisely by molecular
dynamics simulation (gray line). In contrast, the proposed relaxation model (solid
black line) converges toward an unambiguous value at finite times. The dashed,
short-dashed, and dotted–dashed lines represent the fast, intermediate, and slow
modes, respectively.

The average reduced relaxation times τi were found to decline
exponentially with density for each mode and to differ roughly
by one order of magnitude among the modes up to ρ/ρc ≤ 2.2.
While all relaxation modes are increasingly damped with rising den-
sity, facilitating shorter relaxation times, the slow mode is damped
disproportionately, cf. Fig. 5.

FIG. 5. Distribution of average reduced relaxation times τi for all three modes
along the isotherm T /Tc = 0.86. While each mode is identified to relax
exponentially, the slow mode is predominantly affected by increasing den-
sity. The symbols represent the relaxation times of the fast τs (white circles),
the intermediate τm (black triangles), and the slow mode τs (gray squares),
respectively.
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B. Equation of state

The most recognized equation of state, of the very few that
have actually been discussed in the literature,151,152 relates the bulk
viscosity to a power function of density,

μb ∝ ρα, (14)

for which special case solutions with fixed exponents
2α = −1, 0, 1, 3 exist.153–156 This proportionality, which was origi-
nally proposed in the context of viscous cosmological fluids, is much
more universal and also applies to liquid noble gases if the observed
temperature dependence is included.

After consolidating all relaxation results, a threshold tempera-
ture Tt/Tc ∼ 0.74 emerges below which the reduced bulk viscosity
indicates virtually no variation with density.

In contrast, at higher temperatures, μb increases progressively
toward saturated liquid states, an effect that intensifies with rising
temperature, cf. Fig. 6.

TABLE II. Best fit parameters ai , bi , ci of Eq. (16).

ai bi ci

α1 −0.93 5.91 8.67
α2 −0.53 −1.49 7.86

While any physically sound equation of state must necessar-
ily establish a unique one-to-one relation between μb and each state
point, i.e., being bijective, entropy constraints additionally restrict
this equation to be non-negative157,158 and the present results fur-
ther specify it to be convex with monotonically decreasing gradient
and curvature. Satisfying all conditions, a reduced two-parametric
power function is proposed

μ⋆b = ( ρρc − 1)
α1

+ α2, (15)

FIG. 6. Outline of bulk viscosity variations from the saturation line toward high density along four isotherms (a) T /Tc = 0.759, (b) T /Tc = 0.83, (c) T /Tc = 0.86, and (d) T /Tc

= 0.863. The gray shaded areas represent the experimentally determined bulk viscosity, according to Eq. (7), including its absolute maximum error, i.e., μb ± Δμb, according
to Eq. (10). The symbols indicate bulk viscosity data obtained by the employed relaxation ansatz (11) on the basis of the present EMD simulations. The solid line constitutes
the present equation of state (15).
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FIG. 7. Variation of parameters α1 (circles) and α2 (squares) over temperature.
Above the threshold temperature T /Tc ∼ 0.74 indicated by the vertical line, the
bulk viscosity shows a substantial density dependence.

with parameters α1, α2 depending exclusively on temperature,

αi = ai + bi ⋅ tanh(ci( T
Tc
− 1)). (16)

Both parameters, as specified in Table II, offer a salient saturation
behavior that closely resembles the frequency response of a one

TABLE III. Comparison of the bulk viscosity from the present equation of state
(15) with literature data that have either been obtained by molecular dynamics

simulation140,159 or by theoretical calculations.160

μb σ
2/√mϵ μb σ

2/√mϵ
T/Tc p/pc ρ/ρc Eq. (15) literature

0.795 0.545 2.196 1.17 1.20 ± 0.37140

. . . 3.616 2.353 0.99 0.93 ± 0.05

. . . 8.727 2.510 0.92 0.87 ± 0.05

. . . 16.558 2.667 0.88 0.89 ± 0.05
0.875 1.118 2.039 1.42 1.10 ± 0.36
. . . 3.274 2.196 0.98 1.03 ± 0.05
. . . 6.966 2.353 0.79 0.79 ± 0.04
0.674 0.473 2.448 1.00 0.97 ± 0.10159

0.679 0.707 . . . 1.00 0.98 ± 0.10
0.826 7.875 . . . 0.89 0.75 ± 0.08
0.699 17.065 2.773 0.94 1.10 ± 0.11
0.763 21.558 . . . 0.91 1.00 ± 0.11
0.802 24.239 . . . 0.87 0.96 ± 0.10
0.605 3.117 2.640 0.96 1.05160

0.652 6.149 . . . 0.96 0.93
0.667 7.126 . . . 0.96 1.01
0.678 7.800 . . . 0.96 1.00
0.747 12.086 . . . 0.93 0.86
0.792 14.845 . . . 0.89 0.86

FIG. 8. Illustration of the present equation of state (15). The solid lines constitute
the bulk viscosity’s variation over density at constant temperature, and the dashed
lines constitute its variation at constant pressure. The present results straightfor-
wardly explain the experimental results in Fig. 2, which already suggested the
bulk viscosity to be a monotonically declining function of density with increasing
gradient for higher temperatures.

pole low-pass filter, cf. Fig. 7, causing the fluid to become increas-
ingly more bulk viscous after passing the threshold temperature.
This observed temperature dependence is caused by a transition
from short-range order, that is present at low temperatures,150 to the
long-range density correlations that are intrinsic within the extended
critical region. The present equation of state is in good agreement
not only with experimental sound attenuation data but also with
concurrent MD simulations, cf. Table III.

VI. CONCLUSION

An equation of state for the bulk viscosity of liquid noble
gases is proposed. The bulk viscosity originates microscopically
from relaxations of small-scale pressure fluctuations which were
found to decay in three different modes following stretched expo-
nential functions. The slow mode was observed to be dispropor-
tionately affected by high density and the average relaxation times
τi between the modes to differ roughly by one order of magni-
tude. Each mode was determined on the basis of an autocorrelation
function that was straightforwardly sampled by EMD simulations
at the respective state point. In order to adequately resolve the slow
mode, considerably long autocorrelation functions were necessary.

The equation of state emerges as a two-parametric power func-
tion with parameters depending exclusively on temperature, cf.
Fig. 8. This temperature dependence is attributed to a transition
from short-range order that is present at high densities to long-range
density correlations that arise when approaching the extended criti-
cal region. After a threshold T/Tc ∼ 0.74 is passed, the fluid becomes
increasingly more bulk viscous. This effect causes sound attenua-
tion to rise progressively with temperature, closely resembling the
frequency response of a one pole low-pass filter. In addition, both
bulk viscosity coefficients were observed to exhibit opposing behav-
ior, i.e., an increase in bulk viscosity corresponds to a decline of
shear viscosity and vice versa, causing the viscosities’ ratio to peak
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μb/μs ∼ 5 at the highest investigated temperature close to the satura-
tion line.

SUPPLEMENTARY MATERIAL

See the supplementary material for the construction of the crit-
ical region, as well as for a full disclosure of all data associated with
this manuscript.
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