
1

BULLET: Particle Swarm Optimization based Scheduling
Technique for Provisioned Cloud Resources

Sukhpal Singh Gill1, Rajkumar Buyya2
, Inderveer Chana3, Maninder Singh4 and Ajith Abraham5

1,2
CLOUDS Lab, School of Computing and Information Systems, The University of Melbourne, Australia

3,4
Computer Science and Engineering Department, Thapar University, Patiala, Punjab, India

5
Machine Intelligence Research Labs (MIR Labs), Scientific Network for Innovation and Research Excellence, Auburn, USA

Abstract
Cloud resource scheduling requires mapping of cloud resources to cloud workloads. Scheduling results can be
optimized by considering Quality of Service (QoS) parameters as inherent requirements of scheduling. In existing
literature, only a few resource scheduling algorithms have considered cost and execution time constraints but
efficient scheduling requires better optimization of QoS parameters. The main aim of this research paper is to
present an efficient strategy for execution of workloads on cloud resources. A Particle Swarm Optimization (PSO)
based resource scheduling technique has been designed named as BULLET which is used to execute workloads
effectively on available resources. Performance of the proposed technique has been evaluated in cloud environment.
The experimental results show that the proposed technique efficiently reduces execution cost, time and energy
consumption along with other QoS parameters.

Keywords: Cloud Workload, Cloud Computing, Resource Scheduling, Quality of Service, Particle Swarm
Optimization, Energy Consumption, Resource Provisioning

1. Introduction

Cloud computing enables resources (Infrastructure, Platform or Software) to be offered as services. These resources
are provided using a pay-as-you-use pricing plan [1]. The services offered to the users consist of set of components,
which may be offered by different providers. To satisfy the request of customers, service must be provided in
accordance with the required level of Quality of Service (QoS). QoS is the capability to guarantee a definite level of
performance based on the parameters described by consumer and Service Level Agreement (SLA) in an authorized
agreement that describes QoS [2]. One of the major challenges in the current cloud solutions is to provide the
required services according to the QoS level expected by the user. Cloud service providers want to confirm that
sufficient amount of resources are provisioned to ensure that QoS requirements of cloud service consumers such as
deadline, execution time and budget restrictions are met. However, executing too many workloads on a single
resource will cause workloads to interfere with each other and result in degraded and unpredictable performance
which, in turn, discourages the users [3]. The mapping of workloads to appropriate resources for execution in cloud
environment is a complex task and it can be solved by using optimization algorithms. Through these techniques,
effective scheduling of resources can be done after resource provisioning. Dispersion, heterogeneity and uncertainty
of resources brings challenges to resource allocation, which cannot be satisfied with traditional resource allocation
policies in Cloud [4]. Thus, there is a need to make cloud services and cloud-oriented applications efficient by
taking care of these properties of the cloud environment. Resource scheduling aims to allocate appropriate resources
at the right time to the right workloads, so that applications can utilize the resources effectively which leads to
maximization of scaling advantages [17] [18]. The minimum amount of resources should be used for a workload
execution to maintain a desirable level of QoS, or minimize workload completion time of a workload. To address
this problem, efficient solution should be developed which schedules the provisioned resources efficiently by
considering energy consumption, execution cost and execution time as important QoS parameters.

In our earlier work [5] [6] [23], we have identified various research issues related to QoS and SLA for cloud
resource scheduling and based on these challenges, we have developed a QoS based resource provisioning technique
(Q-aware) to map the resources to the workloads based on user requirements. The main aim of Q-aware is to analyze
the workloads, categorize them on the basis of common patterns and then provision the resources for execution of

mailto:1ssgill@thapar.edu
mailto:2rbuyya@unimelb.edu.au
mailto:3inderveer@thapar.edu
mailto:4msingh@thapar.edu
mailto:5ajith.abraham@ieee.org

2

cloud workloads before actual resource scheduling. For resource scheduling, resource scheduling framework
(QRSF) has been proposed, in which resources have been scheduled by using different resource scheduling policies
(cost, time, cost-time and bargaining based). Earlier research work [5] [6] have been implemented in simulated
cloud environment and only focus on two QoS parameters (execution cost and time).

The motivation of our research work emerges from the challenge of finding the best resource workload pair
according to customer requirements. In real life situations, there are three main QoS constraints that need to be
considered for efficient utilization of resources: i) minimizing the execution time and energy consumption, ii)
minimizing the execution cost and at the same time meeting the cloud workload deadline and iii) increasing user
satisfaction. In this research work, we have extended our previous research work [5] by proposing particle swarm

optimization Based resource provisioning and schedULing technique in cLoud EnvironmenT called BULLET

which focuses on other QoS parameters (availability, resource utilization, latency and reliability) also along with
energy consumption, execution cost and time and requires minimum user involvement during execution of
workload. The main objectives of proposed technique are: i) identifying the QoS requirements of a workload, ii)
clustering of workloads is done through workload patterns, iii) k-means-based clustering algorithm is used for re-
clustering of workloads after assigning weights to quality attributes of each workload and iv) resources are
provisioned for clustered workloads by the resource provisioner based on their QoS requirements before actual
resource scheduling. Further, proposed technique is implemented on real cloud environment using Aneka to validate
and optimize QoS parameters.

Initially, resource provisioning takes slight more time to identify the best resources based on QoS requirements of a
particular workload, but later on it improves overall efficiency of resource management. Thus, the queuing time and
over-utilization and under-utilization of resources can be avoided or be assuaged. Further, proposed technique
outperforms as it adjusts the resources at runtime according to the QoS requirements of workload. The paper is
structured as follows: In Section 2, related work of resource scheduling along with paper contribution has been
presented. PSO based resource scheduling technique has been presented in Section 3. Experimental setup and results
has been presented in Section 4. In Section 5, conclusions and the future scope have been presented.

2. Related Work

Scheduling of workloads in a cloud environment is challenging due to dynamic and heterogeneous resources spread
over geographical area. Most of the reported research deals with workload management systems in a cloud
computing environment on the basis of resource requirements. Cloud computing offers dynamic and flexible
resource allocation for reliable and guaranteed services in pay according to use fashion. Many cloud consumers can
demand number of cloud services concurrently [20] [21]. Subsequently, there is a need to provide all the resources
to requesting cloud consumer in a well-organized way to fulfill their requirements.

2.1 Cloud Resource Scheduling

Varalakshmi et al. [7] described an OWS (Optimal Workflow based Scheduling) framework to discover a solution
that tries to meet the user-desired QoS constraints i.e. execution time. This research shows little improvement in
resource utilization and it does not consider cost as one of the QoS parameters. Xing et al. [8] presented an ACO
(Ant Colony Optimization) based job scheduling framework, which adapts to dynamic characteristics of Cloud
computing and incorporates particular benefits of ACO in NP-hard problems. This approach reduced only job
completion time based on pheromone. Topcuoglu et al. [9] presented the HEFT (Heterogeneous Earliest Time First)
framework to discover the average execution time of each workload and also the average communication time
among the resources of two workloads. The workload with higher rank value is given higher priority. In the resource
selection stage workloads are scheduled in priorities and each workload is allocated to the resource that complete the
workload at the earliest time. The framework not designed to reduce cost and time. El-kenawy et al. [10] proposed a
RASA based scheduling framework to select the jobs based on execution time instead of overall completion time.
This technique shows achieving schedules with comparable lower execution time as compared to original Max-Min
and RASA (Resource Aware Scheduling Algorithm) by considering only provider’s benefit. Lin et al. [11]
suggested compromised cost time based resource scheduling policy which considers cost-constrained workflows and
taking execution time and cost as QoS parameters. This approach meets user designed deadline and achieve lower
cost simultaneously but not considering heterogeneous workflow instances. Verma et al. [12] presented Deadline
and Budget Distribution-based Cost-Time Optimization (DBD-CTO) workflow scheduling framework that

3

minimizes execution cost while meeting deadline without considering energy consumption and heterogeneous cloud
workloads.

2.2 PSO based Cloud Resource Scheduling
Pandey et al. [13] introduced a Particle Swarm Optimization (PSO) based heuristic framework (PSO-H) to schedule
the applications to Cloud resources that proceeds both computation and data transmission cost. It is used for
workflow applications by changing its computation and communication costs. The assessment results show that PSO
can reduce the cost and good sharing of workload onto resources. They did not consider execution time of
workloads. Selvi et al. [14] presented PSO based resource scheduling mechanism (PSO-HPC) to reduce makespan,
price, job rejection ratio and maximize jobs meeting deadline for HPC applications. MATLAB programming
environment is used to simulate the HPC applications and resources and verified this technique on Eucalyptus-based
cloud environments and results depicted that this technique is efficient in reducing job rejection ratio and execution
cost, and improves user’s satisfaction without focusing energy consumption. Nuttapong et al. [15] described PSO
based scheduling technique (PSO-SW) to achieve scientific workflow execution within the particular deadlines. This
approach is used to identify the configuration requirements with minimum cost to execute the particular workflow
application and executed the applications with minimum cost without degradation in performance but execution
time is not considered as a QoS parameter. Sonia et al. [16] described Dynamic Voltage and Frequency Scaling
(DVFS) and PSO based scheduling policy (PSO-DVFS) for scientific workloads to reduce consumption of power in
which different levels of voltage supply workloads are used through sacrificing clock frequencies. This multiple
voltage involves a compromise between the quality of schedules and energy but execution time and cost are not
considered as a QoS parameter. Proposed technique (BULLET) has been compared with existing resource
scheduling techniques as described in Table 1.

Table 1: Comparison of Proposed Technique With Existing Resource Scheduling Techniques
Technique Provisioning based

Scheduling
Workload Type Clustering of Workloads QoS Parameters

OWS [7] × Homogenous × Execution Time

ACO [8] × Homogenous × Completion Time
HEFT [9] × Homogenous × Communication Time
RSA [10] × Homogenous and

Heterogeneous
× Execution Time

CTC [11] × Homogenous × Communication Cost
DBD-CTO [12] × Homogenous × Execution Time

PSO-H [13] × Homogenous × Computation and communication cost
PSO-HPC [14] × Homogenous and

Heterogeneous
× Execution cost

PSO-SW [15] × Homogenous × Execution Time
PSO-DVFS [16] × Homogenous × Energy

BULLET
(Proposed)

√

Homogenous and
Heterogeneous

√

Execution Time, cost, energy, availability,
resource utilization, latency and reliability

These research works have considered only one of the QoS parameters from energy, cost and time but all the three
parameters have not been considered simultaneously in any of the existing work to the best of the knowledge of the
authors. Moreover, most of the existing work considers homogeneous cloud workloads. PSO based resource
scheduling technique considers the basic features of cloud computing in order to execute the heterogeneous cloud
workloads with minimum execution cost, time and energy consumption along with other QoS parameters.

2.3 Our Contributions
We present a PSO based resource scheduling technique for both homogenous and heterogeneous cloud workloads.
This is an extension of our previous work [5]. The proposed technique focuses on how to map the cloud workload in
order to improve execution cost, time and energy along with other QoS parameters (availability, resource utilization,
latency and reliability). The proposed technique has been evaluated in real cloud environment. Aneka application
development platform is used as a scalable cloud middleware to make interaction between SaaS and IaaS to deploy
proposed technique on real cloud environment. The performance of proposed technique has also been tested on
cloud testbed using synthetic workloads for different QoS parameters. We have then compared the experimental
results of proposed technique with existing PSO based resource scheduling techniques. The main contribution of this
paper is: i) scheduling technique for effective management of resources is proposed, ii) used real cloud platform to
deploy proposed technique, iii) performance of proposed technique has been evaluated in cloud environment iv)

4

optimized important QoS parameters such as execution cost, energy consumption and execution time and v)
improved the customer satisfaction and queuing time, over and under-utilization of resources can be avoided or be
assuaged.

3. BULLET: Proposed PSO Based Resource Scheduling Technique

In cloud computing, resource scheduling is the core of resource management system. It essentially indicates
mapping of cloud workloads to the appropriate resources from the available resource pool. This process searches the
best resource and maps with cloud workload based on consumer requirements. Process of resource scheduling
comprises of four steps. In First step, workloads are analyzed and clustered based on their requirements. Second
step, identifies the required set of resources from resource pool. Third step, maps the cloud workload with
appropriate resources based on QoS requirements as specified by user. In Final step, schedule the resources to
execute workloads therefore further guaranteeing near optimal satisfaction of QoS requirements. Need of optimized
resource scheduling in cloud is achieved using proposed technique. For example, assume that a customer wants to
purchase some items from grocery store, then salesman would ask the requirements in terms of budget etc. and then
salesman will display the items accordingly. Based on the money they want to spend and other requirements and
constraints, select the particular item among all the displayed items. Figure 1 shows the architecture of proposed
technique.

Figure 1: Architecture of BULLET

3.1 Resource Provisioning

The resource provisioning technique comprises of following units:

Bulk of Workloads

Workload Resource Manager

Workload Analyzer

Resource Provisioner

QoS Metric

Data
SLA

Measure

Resource

Description

Resource Scheduler

Resource Pool

Pattern Based Clustering

Metric Based Clustering

BULLET PSO Based

5

i) Bulk of Workloads: Bulk of Workloads (BoW) are coming for execution and are processed and stored in
workload queue.

ii) Workload Resource Manager: Workload Resource Manager (WRM) contains the information about resources,
QoS metrics and SLA to provision the resources for execution of workloads based on QoS requirements
described by cloud consumer.

iii) SLA Measure: WRM receipts the information from the suitable Service Level Agreement (SLA). After studying
and confirming the various QoS constraints which the workload has required, WRM checking the availability of
resources.

iv) QoS Metric Data: It contains the information regarding QoS metrics used to calculate weight for clustering of
workloads.

v) Workload Analyzer: The aim of Workload Analyzer is to look at different characteristics of a cloud workload to
determine the feasibility of porting the application in the cloud. The different cloud workloads have different set
of QoS requirements and characteristics. All the workloads are submitted to WRM are analyzed based on their
QoS requirements. For QoS, the required workload patterns are identified for clustering of workloads then
identifies the metrics required to assign the weights based on level of measurement (Section 3.1.1) described in
QoS requirements specified in SLA. K-Means based clustering algorithm is used for re-clustering the workloads
for execution on different set of resources.

vi) Resource Information: The resource details include the number of CPU using, size of memory, cost of
resources, type of resources and number of resources. All the common resources are stored in resource pool.

vii) Resource Provisioner: It provides the demanded resources to the workload for their execution in cloud
environment only if required resources are available in resource pool. If the required resources are not available
according to QoS requirement then the WRM asks to resubmit the workload with QoS requirement in the form
of SLA. After the provisioning of resources, workloads are submitted to resource scheduler. Then the resource
scheduler will ask to submit the workload for resources provisioned. After this resource scheduler send back the
results to WRM, cloud workload contains the resource information.

viii) Resource Scheduler: It will execute all the workloads on provisioned resources efficiently and described in
Section 3.2.

Cloud workload is an abstraction of work of that instance or set of instances executing on the appropriate resources
with different QoS requirements submitted by cloud consumer as a type of application. The types of workload that
have been considered for this research work are: websites, technological computing, endeavor software,
performance testing, online transaction processing, e-commerce, central financial services, storage and backup
services, production applications, software/project development and testing, graphics oriented, critical internet
applications and mobile computing services [5] [6].

3.1.1 Clustering of Workloads

Based on the important features of Cloud workloads and workload patterns the clustering of Cloud workloads has
been done and process of clustering has been described in our previous research work in detail [5]. The outcome of
pattern based workload clustering is shown in Table 2.

Table 2: Cloud Workloads and Their QoS Requirements After Pattern Based Clustering

Workload QoS Requirements
Websites Reliable storage, High network bandwidth, High availability
Technological Computing Computing capacity, Reliable storage
Endeavour Software Security, High availability, Customer Confidence Level, Correctness
Performance Testing Execution time, energy consumption and execution cost
Online Transaction Processing Security, High availability, Internet accessibility, Usability
E-Com Variable computing load, Customizability
Central Financial Services Security, High availability, Changeability, Integrity
Storage and Backup Services Reliability, Persistence
Productivity Applications Network bandwidth, Latency, Data backup, Security
Software/Project Development and
Testing

User self-service rate, Flexibility, Creative group of infrastructure services , Testing time

Graphics Oriented Network bandwidth , Latency, Data backup, Visibility
Critical Internet Applications High availability, Serviceability, Usability
Mobile Computing Services High availability, Reliability, Portability

6

 Further, K-means based clustering algorithm is used for re-clustering the workloads for execution on different set of

resources and process of clustering using K-means based clustering algorithm has been described in our previous

research work in detail [6]. Final set of workloads is shown in Table 3.

Table 3: K-Means Based Clustering of Workloads

Cluster Cluster Name Workloads
C1 Compute Technological Computing, Performance Testing
C2 Storage E-Com and Storage and Backup Services
C3 Communication Websites, Critical Internet Applications, Mobile Computing Services
C4 Administration Endeavour Software, Online Transaction Processing, Central Financial Services, Productivity

Applications, Software/Project Development and Testing and Graphics Oriented

3.2 Resource Scheduling

We have designed Particle Swarm Optimization (PSO) based resource scheduling algorithm by considering different

QoS parameters (Execution Time, Cost and Energy Consumption).

3.2.1 Requirements

Following are some important requirements to design an efficient resource scheduling algorithm:

Efficiency: Provisioning of resources offers the facility to reduce the cloud overheads which requires QoS based

efficient management of resources.

Efficient Resource Usage: Efficient scheduling of resources should minimize wastage of the resources. Different

cloud workloads are waiting for execution should be executed with maximum resource utilization of resources and

optimizing QoS parameters (execution time and cost).

Fair Scheduling: The number of resources allotted to every consumer should be independent of number of cloud

workloads each user submits.

Adaptability and scalability: A smart scheduler adapts as per the resources, i.e., whenever resources join or leave

(dynamically), it manages the resources and workloads’ execution process efficiently.

3.2.2 Problem formulation

Cloud resource scheduling is a tedious task due to the problem of finding the best match of resource-workload pair
based on the user QoS requirements. The goal of Cloud workload analyzer is to categorize the workloads and the
goal of resource scheduler is to map and schedule the workloads effectively and efficiently. The resources and
Cloud workloads can leave and join the Cloud dynamically. Cloud resources are heterogeneous and dynamic in
nature. In this work, independent Cloud workloads have been considered to handle the realistic scenarios as there are
many scenarios in which the need of scheduling Cloud workloads arises. Firstly, this problem is suitable to Cloud
systems because of the nature of Cloud customers, who submit Cloud workloads in an independent manner to the
system. Secondly, Cloud systems are most useful for massive parallel processing, in which large amounts of data are
processed independently. In this work, the scheduling of workloads has been considered from both the Cloud
customer and Cloud provider’s point of view. The user wants to minimize the cost whereas the Cloud provider
wants to minimize the execution time and energy consumption. In this problem, the most popular and extensively
studied optimization criteria, i.e. the minimization of the execution time has been considered. Execution time is used
to indicate the general productivity of the Cloud systems. Smaller values of execution time and energy consumption
indicate that the scheduler is planning the Cloud workloads in an efficient manner. Cost is another optimization
criterion, which refers to the total cost of the Cloud workload execution on a particular resource. The problem has
been derived to get an optimal solution.

7

The problem can be expressed as: To consider this problem, a set of independent Cloud workloads { , , , . . .
, } to map on a set of heterogeneous and dynamic resources { , , , . . . , } has been taken. For continuous
problem, R = { | 1 ≤ k ≤ n} is the collection of resources and n is the total number of resources. W = { |1 ≤ i ≤
m} is the collection of Cloud workloads and m is the total number of Cloud workloads. The estimated time to
compute the value of each Cloud workload on each resource is assumed to be given by the consumer-supplied
information (data-driven). Under the Predictable Time to Compute (PTC), the following assumptions have been
considered:

1. Each Cloud workload to be scheduled for application’s execution has a unique workload id.
2. Cloud workloads are independent.
3. Arrival of Cloud workloads for execution of application is random and Cloud workloads are placed in a

queue of unscheduled Cloud workloads.
4. The processing speed of the resources is measured in Multiple Instructions Per Second (MIPS) as per the

Standard Performance Evaluation Corporation (SPEC) benchmark.
5. The processing requirement of a Cloud workload is measured in Million Instructions (MIs).
6. Execution time for every Cloud workload on a resource is obtained from objective function. [Number of

workloads number of resources] for every workload on resources is calculated from PTC matrix.
Columns of PTC matrix demonstrate the estimated execution time for a specific resource while rows on
PTC matrix demonstrate the execution time of a workload on every resource. PTC () is the expected
execution time of workload and the resource

3.2.3 Objective function

In Cloud computing, provider wants to minimize the execution time and energy consumption while user wants to
minimize the cost for Cloud workload. The goal of an objective function is to optimize the QoS parameters
(execution cost, time and energy consumption) for finishing all n workloads of a given Bulk of Workloads (BoW).
This objective function successfully captures the compromise among QoS parameters as specified in Equation (1).
Further formally, the workload assignment problem with the energy, cost and time function of each resource r can
be generally formulated as follows:

 (1)

where , and are weights to prioritize components of fitness function.

a) Execution Cost (): It is the cost spend to execute workload and measured in terms of Cloud

Dollars (C$): (2)

) is the cost of workload which executes on resource as defined below:

 W is the collection of cloud workloads.

 where as:

8

b) Execution Time (): It is the finishing time of the latest workload and can also be represented

as PTC workload on resource . Before estimation of execution time, completion time of a resource should be

defined. Completion time can be defined as the time in which resource can finish the execution of all the previous

workloads in addition to the execution of workload on resource as described as: (7)

 where as:
c) Energy Consumption (): The energy model is devised on the basis that resource utilization has a
linear relationship with energy consumption [22]. Energy Consumption of using resources can be expressed as
the following formula [Eq. 9]:

 represents the datacenter's energy consumption, represents the energy
consumption of all the switching equipment. represents the energy consumption of the storage

device. represents the energy consumption of other parts, including the fans, the current conversion
loss and others. is the energy consumption at given time is defined in [Eq. 10]:

Where is maximum energy consumption while resource is fully utilized, q is fraction of energy consumed by

idle resource and ru is resource utilization. Resource utilization is change over time and it is function of time and

presented as . For a resource at given time , the resource utilization is defined as [Eq. 11]:

where n is the number of cloud workloads running at time t. The actual energy consumption of a resource at given time t is defined as [Eq. 12]:
where is the energy consumption at the peak load (or 100% utilization) and is the minimum energy
consumption in the active/idle mode (or as low as 1% utilization).

.

3.2.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a group based intelligence algorithm which is inspired by the social behavior
such as school of fish defending themselves from a hunter (predator) or group of birds finding a source of food [19].
Population in PSO algorithm is defined as the total number of particles in a problem space and particles in
population are initialized randomly. In every generation, fitness value of every particle is estimated by a fitness
function to be improved. Both the positions of the particle is known: i) best position (local best i.e.) of a particle

and global best (the best position so far among the whole group of particles ()). is s the best particle in
terms of fitness in an whole population, whereas of a particle is the best result (fitness value) so far reached by
the particle. Particle’s position and velocity is updated in every generation by using [Eq. 1].

PSO optimization technique which works based on global search. There is no straight re-combination of individuals
of the population in algorithm of PSO like other population-based algorithms (or evolutionary algorithms) such as
GA (Genetic Algorithm) etc. Algorithm of PSO is dependent on particle’s social behavior. Every individual particle
regulates its path based on the position of the best particle (global best) of the whole population and its best position

9

(local best) in every generation. Stochastic nature of the particle increases due to this property of PSO and touches
rapidly to global minima with a realistic noble solution [19]. PSO has become prevalent due to its easiness and its
usefulness in extensive range of application with little cost of computation. Applications like pattern recognition,
reactive data mining etc. have used PSO mostly. Along with these applications PSO has been solved various NP-
Hard problems like workload allocation and resource scheduling.

3.2.4.1 PSO Terminology

The PSO terminology used in this research paper is described below:

a) Particle: A particle in Particle Swarm Optimization is similar to a fish or bird flying through a search space
(problem area). Every particle’s movement is synchronized by a velocity which has both direction and
magnitude. Position of every particle at any time instance is influenced by its best position () and the

position of the best particle () in a search space. Fitness value is used to measure the performance of a
particle, which is problem oriented. For this research work, a workload is considered as a particle.

b) Population Size: In this research work, size of set of workloads (number of workloads considered as a
population size).

c) Random Velocity: Every particle's movement is the composition of an initial random velocity and two randomly
weighted effects: i) the affinity to return to the best previous position of particle and ii) the affinity to move
towards the best previous position of neighborhood. Based on these two affinities of workload, the mapping of
workload with resources is done. Workload will be executed only with that resource which has high value of
fitness.

d) Particle Velocity: It is calculated based on the probability distribution for the particle position, that is, the
particle (workload) position in a dimension is randomly generated using that distribution.

e) Particle Position: Current state of particle (workload), state may be submission state, waiting state, ready state,
execution state and completion state.

f) Global Best Position (): Best position of particle (workload) among the whole group of particles (set of
workloads).

g) Local Best Position (): Best position of particle (workload) as reached by the particle (workload regulates its
path based on its best resource which executes workload with minimum fitness value).

3.2.4.2 PSO Based Resource Scheduling Algorithm

In this section, we present the pseudo code of PSO-based algorithm for resource scheduling in the Cloud
environment. Each particle in genome is a partial solution and is represented as a resource identifier (e.g., select,
move, swap, drop) or a sequence of resource identifiers. The non-PSO based resource identifier can be simple or
complex and are implemented as follows:

a. Workload selection and scheduling: the resource identifiers select workload from the unscheduled list and
schedule it in to the best available resource.

b. Try for the best combination of all workloads and resources until the best combination is found.
c. Move workload () from its current resource/schedule.
d. Swap workloads: select the workloads randomly which can swap.
e. Remove a randomly selected workload from workload queue already scheduled.

This is the only heuristic which will move the search into an infeasible region because any workload may be
unscheduled. We make sure that the search can move back into its feasible region by un-scheduling workload that
has other valid resources so that it can move into the next iteration. The non-PSO based resource identifier is then
applied so as to find an optimal solution of the problem instance. The objective of PSO is to find the best resource
identifier that generates the best solution for resource scheduling problem. The selection process of non-PSO based
resource identifier stops after a pre-defined number of iterations. We set a fixed number of iterations to keep the
computation time low. The particle rejects the new solution if it is poorer than the current solution. The pseudo code
of PSO based resource scheduling algorithm in Figure 2.

10

Algorithm 1: PSO based Resource Scheduling Algorithm
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

Input Data: Number of workloads and number of available resources.
Result: Mapping of the each workloads to the resources.
start
 initialize Resource list [Number of Resources]
 initialize Workload List [Number of Jobs]
 initialize a random feasible solution
 S= The number of particles in the population
 PS = Population Size
 RV = Random Velocity
 = Particle Velocity
 = Particle Position

 = Population

 = Global Best Position
 = Local Best Position
 for i = 1 To Populationsize do

 ← RV()

 ← Random_Position (PS)

 ←

 For each particle, calculate the fitness value using [Eq. 1]
 if Fitness () ≥ Fitness () then
 ←

 while maximum iteration is not satisfied do
 for P do

 ← UpdateVelocity (,)
 ← UpdatePosition ()

 if Fitness () ≤ Fitness()

 then
 ←

 if () ≤ Fitness() then
 ←

 Return ()
 while there are unscheduled workloads in the queue do
 for every resource is in resource list do
 get the next workload from queue
 schedule the workload on the resource on the basis of fitness
 Repeat each and every step till all the workloads are allocated
End

Figure 2: PSO Based Resource Scheduling Algorithm

 A resource list is then obtained from the resource provisioning unit after provisioning of user’s workloads [5].

Once the resource list has been obtained, a workload list and a random feasible solution are initialized.

 The task to choose the best heuristic from low-level heuristics is started.

 We have a number of workloads, each of which represents a resource identifier supplied with an initial solution

in the solution space and an access to the evaluation function.

 Workload’s position and Workload’s velocity would be randomly initialized.
 It will then select a low-level heuristic at each workload position and compute its fitness function i.e. Fitness

().

 If at , Fitness () is better than Fitness () then takes the value of .

 We will try to find the Fitness value at best global position of the workload.

 After a workload has been chosen from the population, its position and velocity would be updated using [Eq. 1].

Then, its fitness at the new position is calculated and compared with its previous position.

 If it is better than the local best value then we will assign workload’s current position to the local best value.

 Now, we will compare fitness at and . If the fitness at is better than at then we will assign the

value of to .

 After selection of a low-level heuristic, it is then applied to the problem. Resource scheduling is performed till

there are no unscheduled jobs in the queue.

11

3.3 Cloud Workload Execution Design

There are eight different classes created to represent the interaction among different workload related entities.
Workloads are scheduled to the appropriate resources based on the workload description by taking care of QoS.
Fitness value for every workload is calculated and analysed. Schedule the resources to cloud workloads and execute
within the defined budget and desired deadline with minimum energy consumption. The interaction among different
classes for workload execution is shown in Figure 3. In the course of its lifetime, a workload passes through many
states as is outlined in Figure 4. A workload is an input to the scheduler which allocates it to a set of provisioned
resources based on its requirements. The workload’s status is then changed to SCHEDULED. During the
STAGE_IN state, input files and executables required for the workload are staged to the available provisioned
resource. When this process is completed successfully, then a workload is considered to be SUBMITTED. The
workload may be queued while waiting for an available processor and its state changes to PENDING. When the
workload starts its execution, it is considered ACTIVE. After the workload has finished executing, it enters the
STAGE_OUT stage where its output files are transferred back to the broker. If all its outputs are received and are as
expected by the task requirements, then the workload is considered as “DONE". If one of state transition fails on the
available side or the workload is completed on the available side but has not produced the expected result files, then
it is considered FAILED and is reset and marked for re-scheduling.

3.4 QoS Metrics

The following other metrics ([Eq. 13] – [Eq. 18]) are selected from our previous work [5] [6] [23] to measure the

value of QoS parameters other than energy, cost and time.

Availability (A): It is a ratio of Mean Time Between Failure (MTBF) to addition of Mean Time Between Failure

(MTBF) and Mean Time To Repair (MTTR). We have used following formula to calculate availability [Eq. 13].

Where Mean Time Between Failure (MTBF) is ratio of total uptime to number of breakdowns [Eq. 14].

Where Mean Time To Repair (MTTR) is ratio of total downtime to number of breakdowns [Eq. 15].

Reliability (re): Reliability of the resource has to be checked for scheduling of the resources. With the help of

reliability parameter, we can check the fault tolerance of the resource. Reliability of the resource is calculated with

the following formula [Eq. 16] as:
re = reliability of resource, e = exponential function, t = time for resource to deal with its request for any workload’s
execution and λ= the failure rate of the resource at the give time.

Resource Utilization (RU): It is a ratio of execution time of a workload executed by a particular resource to total

uptime of that resource. We have used following formula to calculate resource utilization [Eq. 17].

12

Where n is number of workloads.

Latency (L): It is defined as a difference between expected execution time and actual execution time. We have used
following formula to calculate Latency [Eq. 18]:

Where n is number of workloads.

 1 1

 1 0…..*
 1

Figure 3: Interaction Among Different Classes For Workload Execution

+ Cluster

ClusterName: String

+ WorkloadFitnessFunction

+Calculate (cost, time, energy)

+ CalculateFitnessValue

+Calculate (cost, time, energy)

+ WorkloadCluster

– Instance: WorkloadCluster

–Worklods:List<wWorkloads>

–resources:List<rResources>

+ getInstance(): WorkloadCluster

+getWorkload():List<wWorkloads>

+getResources():List<rResources>

+CreateCluster(workloads:List, resource:List): ListWorkloadToResourceMapping

+WorkloadWrapper

+WrapWorlkload()

+ Workload

+Workloadid:Int

+WorkloadName:String

+WorkloadType:String

+Submit()

+Execute()

+ workloadDescriptionAnalyzer

+AnalyzeworkloadDescription (workloadDescFile:String):List<workload>

+ workloadDescription

+WorkloadName: String

+WorkloadProcessingCapacity: Double

+CostPerHour: Double

+WorkloadDescription(WorkloadName:String, ProcessingSpeed: double, CostPerHour:double)

+getWorkloadName(): String

+setWorkload(name:String)

+getProcessingCapacity():Double

+setProcessingCapacity(PC: Double)

+getCostPerHour(): Double

+setCostPerHour(CPH: Double)

13

 Reset for rescheduling

 Workload is mapped to available resource

 Start copying inputs

 [No]

 [Yes]

 Finished copying outputs

Figure 4: Different Stages For Cloud Workload

4. Experimental Setup and Results

Tools used for setting up cloud environment for performance analysis are Microsoft Visual Studio 2010 (SaaS),
Aneka (PaaS), SQL Server 2008, and Citrix Xen Server (IaaS). Aneka has been installed along with its requirements
on all the nodes that provide cloud service. Nodes in this system can be added or removed based on the requirement.
PSO based resource scheduling technique (BULLET) is installed on main server and tested on virtual cloud
environment that has been established at CLOUDS Lab, The University of Melbourne, Australia. We installed
different number of virtual machines on different servers, and deployed the BULLET to measure the variations. In
this experimental setup, three different cloud platforms are used: Software as a Service (SaaS), Platform as a Service
(PaaS) and Infrastructure as a Service (IaaS) as shown in Figure 5.

Ready

Scheduled

Finished copying inputs

 Workload is Queued

Failed

Stage_In

Submitted Pending

Active

Stage_Out

Done

Workload is dispatched to

remote resource

Remote Execution

Workload Starts

Running

Workload Starts

Running

Start copying outputs

?

Workload is Completed Successfully?

14

Software as a Service Platform as a Service Infrastructure as a Service
Figure 5: Cloud Testbed

At SaaS level, Microsoft Visual Studio 2010 is used to develop Cloud Workload Management Portal (CWMP) to
provide user interface in which user can access service from any geographical location. At PaaS level, Aneka cloud
application platform [19] [23] is used as a scalable cloud middleware to make interaction between IaaS and SaaS,
and continually monitor the performance of the system. Aneka task model has been used in this research work. A
task is a single unit of work processed (request) in a node. It is independent from other tasks that may be executed
on the same or any other node at the same time. At IaaS level, three different servers (consist of virtual nodes) have
been created through Citrix Xen Server and SQL Server has been used for data storage. Scheduler as shown in
Figure 5, runs at IaaS level on Citrix Xen Server. Computing nodes used in this experiment work are further
categorized into three categories as shown in Table 4. A detailed discussion of the implementation using Aneka can
be found in [23].

Table 4: Configuration Details

Resource_Id Configuration Specifications Operating

System

Number of

Virtual Node

Number of
ECs

Price
(C$/EC time

unit)

R1 Intel Core 2 Duo - 2.4 GHz 1 GB RAM and 160 GB HDD Windows 6 18 2

R2 Intel Core i5-2310- 2.9GHz 1 GB RAM and 160 GB HDD Linux 4 12 3

R3 Intel XEON E 52407-2.2 GHz 2 GB RAM and 320 GB HDD Linux 2 6 4

The execution cost is calculated based on user workload and deadline (if deadline is too early (urgent) it will be
more costly because we need a greater processing speed and free resources to process particular workload with
urgency. There individual price is fixed (artificially) for different resources because all the resources are working in
coordination manner to fulfill the demand of user (demand of user is changing dynamically). Experiment setup using
3 servers in which further virtual nodes (12 = 6 (Server 1) +4 (Server 2) +2 (Server 3)) are created. Every virtual
node has different number of Execution Components (ECs) to process user workload and every EC has their own
cost (C$/EC time unit (Sec)). Table 4 shows the characteristics of the resources used and their Execution

CWMP
Aneka

 Provisioned Resources

Resource Scheduler

Scheduling Policy

Workload Execution

Resource Pool

Workload Info

Workload

Execution Info

Workload

Executed

Workload
PSO Based

Resource Provisioning

Q-aware

Workload
Analyzer

JADE

Agent

Resource
Manager

15

Component (EC) access cost per time unit in Cloud Dollars (C$) and access cost in C$ is manually assigned for
experimental purposes. The access cost of an EC in C$/time unit does not necessarily reflect the cost of execution
when ECs have different capabilities. The execution agent needs to translate the access cost into the C$ for each
resource. Such translation helps in identifying the relative cost of resources for executing user workloads on them.

Due to limited number of resources, cost increases with increase in user workloads. Cost is varying in two different
cases: i) relaxed deadline and ii) tight deadline. In both cases, when the deadline is low (e.g. 200 secs), the number
of user workloads processed increases as the budget value increases. When a higher budget is available, the
execution agent uses expensive resources to process more user workloads within the deadline. Alternatively, when
scheduling with a low budget, the number of user workloads processed increases as the deadline is relaxed.
Execution agent allocates as many user requests as the first cheapest resource can complete by the deadline, and then
allocates the remaining user workloads to the next cheapest resources. When the deadline is tight (e.g. 100), there is
high demand for all the resources in a short time. All the resources are used up so long as budget is available to
process all user workloads within the deadline. However, when the deadline is relaxed (e.g. 700 secs), it is likely
that all user workloads can be completed using the first few cheapest resources. As the deadline increases, execution
agent schedules user workloads on the available resources to finish earlier as possible. The aim of this performance
evaluation is to demonstrate that it is feasible to implement and deploy the proposed technique on real cloud
resources. The key components of the cloud environment are: user interface (CWMP), workload analyzer and
resource scheduler. Figure 6 enables the understanding of the cloud based environment in which the proposed
technique is implemented.

 Submit Workload Details (Name and Type)
 Get Workload Details
 Processed Workload Details
 Ask Budget and Deadline Info
 Provide Budget and Deadline Info
 Get Budget and Deadline Information
 Generate Tentative Workload Schedule
 Get Workload Execution Schedule
 Confirm
 Get Confirmation
 Estimate Execution Charges
 Get Execution Charge Estimation
 Confirm
 Fill SLA
 Submit Signed SLA
 Get Signed SLA
 Approved SLA
 Request for Payment
 Pay Required Amount
 Schedule Resources
 Execute Workloads
 Monitor QoS Variation
 <<Workloads Executed Successfully>>
 Resources Scaled Back
 Return Experimental Data

Figure 6: Workload Execution

4.1 Performance Evaluation

In order to evaluate the performance of BULLET, we have compared the value of QoS parameters (execution time,
cost, energy consumption, reliability, availability, latency and resource utilization) of BULLET with existing PSO
based cloud based resource scheduling techniques (PSO-HPC [14], PSO-SW [15] and PSO-DVFS [16]) and all the
three existing techniques have been described in Section 2.2. Formals used to measure the value of QoS parameters
have been described in Section 3. We have performed experiments to determine the effect of an increase in number

:Cloud_User

:Workload_Analyser

:Resource_Manager

16

of workloads and resources on QoS parameters such as energy consumption, cost and time. All the experiments
were started with workload name: Performance Testing [Processing Larger Image File of Size 713 MB], in which
BULLET converts an image file from JPEG format to PNG format. Conversion of a single JPEG file into PNG is
considered as a single workload. We have created the PTC matrix which is computed as ratio of workload and
computing capacity of virtual machines.

4.2 Experimental Results

Experiment has been conducted with different number of cloud workloads (15-90) for verification of QoS
parameters.

Test Case 1: Energy Consumption vs. Number of Workloads

By increasing the number of cloud workloads, the value of energy consumption is increasing. The minimum value
of energy consumption is 69 kWh at 15 cloud workloads for BULLET. BULLET performs better than PSO-HPC,
PSO-SW and PSO-DVFS in terms of energy consumption at different number of cloud workloads as shown in
Figure 7. The average value of energy consumption in BULLET is 7.61%, 11.45% and 17.19% lesser than PSO-
HPC, PSO-SW and PSO-DVFS respectively.

Figure 7: Effect of Change in Number of Workloads Submitted on Energy Consumption

Test Case 2: Execution Cost vs. Number of Workloads

With the increase in number of workloads, execution cost rises as shown in Figure 8. As per the number of
workloads increases, BULLET performs better than PSO-HPC, PSO-SW and PSO-DVFS. BULLET outperforms as
it adjusts the resources at runtime according to the QoS requirements of workload. The minimum cost used in
BULLET is 171 C$ at 15 workloads and maximum is 416 C$ at 90 workloads. The average value of execution cost
in BULLET is 3.16%, 4.72% and 9.16% lesser than PSO-HPC, PSO-SW and PSO-DVFS respectively.

0

20

40

60

80

100

120

140

160

180

200

15 30 45 60 75 90

E
n

er
g

y
 C

on
su

m
p

ti
on

 (
k

W
h

)

Number of Workloads

BULLET

PSO-HPC

PSO-SW

PSO-DVFS

17

Figure 8: Effect of Execution Cost with Change in Number of Workloads

Test Case 3: Execution Time vs. Number of Workloads

As shown in Figure 9, the execution time increases with increase in number of workloads. At 30 workloads,

execution time in BULLET is 6.69% lesser than PSO-HPC, 7.12% lesser than PSO-SW and 7.59% lesser than PSO-

DVFS. At 90 workloads, execution time in BULLET is 8.72% lesser than PSO-HPC, 11.39% lesser than PSO-SW

and 14.79% lesser than PSO-DVFS. Figure 9 show that execution time varies in same ratio but BULLET performs

better than PSO-HPC, PSO-SW and PSO-DVFS.

Figure 9: Effect of Execution Time with Change in Number of Workloads

The number of workloads considered for Test Case 4, Test Case 5 and Test Case 6 is 90.

Test Case 4: Energy Consumption vs. Number of Resources

By increasing the number of resources, the value of energy consumption increases. The minimum value of energy
consumption is 22 kWh at 6 resources for BULLET. BULLET performs better than PSO-HPC, PSO-SW and PSO-
DVFS in terms of energy consumption at different number of resources as shown in Figure 10. The average value of
energy consumption in BULLET is 4.41%, 8.54% and 12.36% lesser than PSO-HPC, PSO-SW and PSO-DVFS
respectively.

0

100

200

300

400

500

600

15 30 45 60 75 90

E
xe

cu
ti

on
 C

os
t

(C
$
)

Number of Workloads

BULLET

PSO-HPC

PSO-SW

PSO-DVFS

0

200

400

600

800

1000

1200

1400

1600

15 30 45 60 75 90

E
xe

cu
ti

on
 T

im
e

(S
ec

on
d

s)

Number of Workloads

BULLET

PSO-HPC

PSO-SW

PSO-DVFS

18

Figure 10: Effect of Change in Number of Resources Submitted on Energy Consumption

Test Case 5: Execution Cost vs. Number of Resources

With the increase in number of resources, execution cost rises as shown in Figure 11. As per the number of
resources increases, BULLET performs better than PSO-HPC, PSO-SW and PSO-DVFS. The cause is that
BULLET adjusts the resources at runtime according to the QoS requirements of workload. The minimum cost is
used in BULLET is 45 C$ at 6 resources and maximum is 137 C$ at 36 resources. The average value of execution
cost in BULLET is 5.41%, 6.26% and 8.78% lesser than PSO-HPC, PSO-SW and PSO-DVFS respectively.

Figure 11: Effect of Execution Cost with Change in Number of Resources

Test Case 6: Execution Time vs. Number of Resources

As shown in Figure 12, the execution time decreases with increase in number of resources. At 18 resources,

execution time in BULLET is 7.42% lesser than PSO-HPC, 8.91% lesser than PSO-SW and 12.52% lesser than

PSO-DVFS. At 36 resources, execution time in BULLET is 3.49% lesser than PSO-HPC, 4.64% lesser than PSO-

SW and 7.93% lesser than PSO-DVFS. Figure 12 show that execution time varies in same ratio but BULLET

performs better than PSO-HPC, PSO-SW and PSO-DVFS.

0

20

40

60

80

100

120

140

160

180

200

6 12 18 24 30 36

E
n

er
g
y
 C

on
su

m
p

ti
on

 (
k

W
h

)

Number of Resources

BULLET

PSO-HPC

PSO-SW

PSO-DVFS

0
20
40
60
80

100
120
140
160
180
200

6 12 18 24 30 36

E
xe

cu
ti

on
 C

os
t

(C
$

)

Number of Resources

BULLET

PSO-HPC

PSO-SW

PSO-DVFS

19

Figure 12: Effect of Execution Time with Change in Number of Resources

Test Case 7: Availability

We have calculated the percentage of availability for BULLET and existing scheduling algorithms (PSO-HPC, PSO-

SW and PSO-DVFS) with different number of cloud workloads. With increasing the number of cloud workloads,

the percentage of availability is decreasing. The percentage of availability in BULLET is more as compared to PSO-

HPC, PSO-SW and PSO-DVFS at different number of cloud workloads as shown in Figure 13. The maximum

percentage of availability is 88.7 % at minimum number of cloud workloads. At 75 workloads, percentage of

availability in BULLET is 7.42% more than PSO-HPC, 9.91% more than PSO-SW and 13.72% more than PSO-

DVFS.

Figure 13: Effect of Change in Number of Workloads Submitted on Availability

Test Case 8: Reliability

We have calculated the percentage of reliability for BULLET and existing scheduling algorithms (PSO-HPC, PSO-

SW and PSO-DVFS) with different number of cloud workloads. By increasing the number of cloud workloads, the

percentage of reliability is decreasing. The percentage of reliability in BULLET is more as compared to PSO-HPC,

PSO-SW and PSO-DVFS at different number of cloud workloads as shown in Figure 14. The maximum percentage

of reliability is 94.65 at 15 cloud workloads. At 60 workloads, percentage of reliability in BULLET is 4.91% more

than PSO-HPC, 8.76% more than PSO-SW and 17.22% more than PSO-DVFS.

0

50

100

150

200

250

6 12 18 24 30 36

E
xe

cu
ti

on
 T

im
e

(S
ec

on
d

s)

Number of Resources

BULLET

PSO-HPC

PSO-SW

PSO-DVFS

0
10
20
30
40
50
60
70
80
90

100

15 30 45 60 75 90

A
va

il
a

b
il

it
y

 (
%

)

Number of Workloads

BULLET

PSO-HPC

PSO-SW

PSO-DVFS

20

Figure 14: Effect of Change in Number of Workloads Submitted on Reliability

Test Case 9: Resource Utilization

With increasing number of cloud workloads, the percentage of resource utilization is increasing. The percentage of

resource utilization in BULLET is more as compared to PSO-HPC, PSO-SW and PSO-DVFS at different number of

cloud workloads as shown in Figure 15. The maximum percentage of resource utilization is 88.4% at 90 cloud

workloads and minimum percentage is 71.96 at 15 workloads in BULLET but BULLET performs better than PSO-

HPC, PSO-SW and PSO-DVFS for any number of workloads.

Figure 15: Effect of Change in Number of Workloads Submitted on Resource Utilization

Test Case 10: Latency

With increasing number of cloud workloads, the value of latency is increasing. The value of latency in BULLET is

lesser as compared to PSO-HPC, PSO-SW and PSO-DVFS at different number of cloud workloads as shown in

Figure 16. The minimum value of latency is 1.24 seconds at 15 cloud workloads and maximum is 9.13 seconds at 90

cloud workloads in BULLET. At 15 workloads, latency in BULLET is 2.23% lesser than PSO-HPC, 1.91% lesser

than PSO-SW and 5.66% lesser than PSO-DVFS but at 90 workloads, latency in BULLET is 6.11% lesser than

PSO-HPC, 14.92% lesser than PSO-SW and 17.59% lesser than PSO-DVFS.

0
10
20
30
40
50
60
70
80
90

100

15 30 45 60 75 90

R
el

ia
b

il
it

y
 (

%
)

Number of Workloads

BULLET

PSO-HPC

PSO-SW

PSO-DVFS

0
10
20
30
40
50
60
70
80
90

100

15 30 45 60 75 90

R
es

ou
rc

e
U

ti
li

za
ti

on
 (

%
)

Number of Workloads

BULLET

PSO-HPC

PSO-SW

PSO-DVFS

21

Figure 16: Effect of Change in Number of Workloads Submitted on Latency

Test Case 11: Convergence of PSO
Figure 17 plots the convergence of total cost computed by PSO over the number of iterations for different value of
Resource Utilization (RU): 85%, 75% and 65% by executing different number of workloads. Initially the workloads
are randomly initialized. Therefore, the total initial cost is very high at 0th iteration. As the algorithm progresses, the
convergence is drastic and achieves global minima very quickly. The number of iterations required for the
convergence is seen to be 50-60, for our cloud environment.

Figure 17: Convergence Curve of Total Cost

Table 5 describes the comparison of execution cost, execution time and energy consumption used to process same

number of workloads (50 workloads of same type) on real cloud environment for PSO-HPC [14], PSO-SW [15] and

PSO-DVFS [16]. In this experiment, we have considered three different cloud infrastructures with different

processor configurations (2 core processor, 4 core processor, 8 core processor and 16 core processor) to measure the

variation of execution cost, execution time and energy consumption.

0

2

4

6

8

10

12

14

16

15 30 45 60 75 90

L
a
te

n
cy

 (
S

ec
on

d
s)

Number of Workloads

BULLET

PSO-HPC

PSO-SW

PSO-DVFS

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30 35 40 45 50 55 60

C
os

t
(C

$
)

Number of Iterations

RU = 65%

RU = 75%

RU = 85%

22

Table 5: Summary of Experimental Statistics on Real Cloud Environment

Configuration

QoS Parameter

Execution Cost (C$) Energy Consumption (kWh) Execution Time (Seconds)

PSO-
HPC

PSO-
SW

PSO-
DVFS

BULLET PSO-
HPC

PSO-
SW

PSO-
DVFS

BULLET PSO-
HPC

PSO-
SW

PSO-
DVFS

BULLET

2 Core
Processor

102 78 49 37 145 118 77 55 321 356 301 229

4 Core
Processor

310 289 155 83 178 152 141 125 669 587 671 491

8 Core
Processor

451 371 299 151 415 372 237 195 1391 1423 1293 908

16 Core
Processor

522 439 391 203 564 456 389 225 1820 2109 2201 1423

Figure 18, Figure 19, Figure 20, Figure 21, Figure 22, Figure 23 and Figure 24 describes the comparison of QoS

parameters (execution cost, execution time, energy consumption, availability, resource utilization, latency and

reliability) used to process different number of workloads (45 and 90) on cloud environment for BULLET with

different number of Virtual Machines (VMs). The number of VMs used to execute the workloads was incremented

gradually showing how the QoS parameters are optimized when more VMs were added to the cloud. As shown in

Figure 18-24, with one virtual node running on Server R1, execution of 45 workloads finished in 636.12 seconds.

With 12 virtual nodes (6 running on R1, 4 running on R2 and 2 running on R3), the application took 476.16 seconds.

We note that the execution time is reduced by adding additional virtual nodes.

The value of reliability, availability, resource utilization, latency, execution time, execution cost and energy

consumption has been calculated for 45 and 90 cloud workloads with different number virtual machines (VM

nodes). By increasing the number of VMs, the percentage of reliability is increasing. The percentage of reliability

with 45 workloads is more as compared to 90 Cloud workloads as shown in Figure 18. The maximum percentage of

reliability is 94.65 at 12 VMs.

Figure 18: Effect of Change in Number of VMs on Reliability

By increasing the number of VMs, the percentage of availability is increasing as shown in Figure 19. The percentage

of availability with 90 workloads is lesser as compared to 45 cloud workloads. The maximum percentage of

reliability is 93.46 for 45 workloads and 92.44 for 90 workloads at 12 VMs.

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12

R
el

ia
b

il
it

y
 (

%
)

Number of VMs

45 Workloads

90 Workloads

23

Figure 19: Effect of Change in Number of VMs on Availability

As shown in Figure 20, the percentage of resource utilization with 90 workloads is more as compared to 45

workloads. The maximum percentage of resource utilization is 89.68 at 90 workloads and minimum percentage is

88.41 at 45 workloads with 12 VMs.

Figure 20: Effect of Change in Number of VMs on Resource Utilization

As shown in Figure 21, the execution time decreases with increase in number of VMs. At 45 workloads, execution
time is lesser than 90 workloads. Figure 21 shows that the execution time reduces rapidly in 90 workloads as
compared to 45 workloads.

Figure 21: Effect of Change in Number of VMs on Execution Time

70

75

80

85

90

95

1 2 3 4 5 6 7 8 9 10 11 12

A
v

a
il

a
b

il
it

y
 (

%
)

Number of VMs

45 Workloads

90 Workloads

70

75

80

85

90

95

1 2 3 4 5 6 7 8 9 10 11 12

R
es

o
u

rc
e

U
ti

li
za

ti
o

n
 (

%
)

Number of VMs

45 Workloads

90 Workloads

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12

E
x
ec

u
ti

o
n

 T
im

e
(S

ec
)

Number of VMs

45 Workloads

90 Workloads

24

With the increase in number of VMs, execution cost rises as shown in Figure 22. The minimum cost used is 47.58C$
at 45 workloads and 322.31 C$ at 90 workloads with 1 VM. The average value of execution cost at 45 workloads is
22.16% lesser than 90 workloads.

Figure 22: Effect of Change in Number of VMs on Execution Cost

With increasing the number of VMs, the value of latency is decreasing as shown in Figure 23. Initially, the value of

latency is more for 90 workloads with 1 VM. At 12 VMs, maximum resources are utilized and value of latency for

both 45 and 90 workloads is approximately same.

Figure 23: Effect of Change in Number of VMs on Latency

By increasing the number of VMs, the value of energy consumption increases as shown in Figure 24. The minimum
value of energy consumption is 20.25 kWh for 45 workloads at 1 VM. The average value of energy consumption
with 45 workloads is 22.36% lesser 90 workloads.

Figure 24: Effect of Change in Number of VMs on Energy Consumption

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12

E
x
ec

u
ti

o
n

 C
o

st
 (

C
$

)

Number of VMs

45 Workloads

90 Workloads

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5 6 7 8 9 10 11 12

L
a
te

n
cy

 (
S

ec
)

Number of VMs

45 Workloads

90 Workloads

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
k

W
h

)

Number of VMs

45 Workloads

90 Workloads

25

4.3 Statistical Analysis

Statistical significance of the results has been analyzed by Coefficient of Variation (), a statistical method. is
statistical measure of the distribution of data about the mean value. is used to compare to different means and
furthermore offer an overall analysis of performance of the technique used for creating the statistics. It states the
deviation of the data as a proportion of its average value, and is calculated as follows [Eq. 19]: (19)

Where is a Standard Deviation and is Mean. of execution time, cost and energy consumption has been
studied of Cloud workload of proposed technique (BULLET) and existing algorithms (PSO-HPC, PSO-SW and
PSO-DVFS) as shown in Figure 25, Figure 26 and Figure 27.

Figure 25: for Execution Time with each scheduling Algorithm calculated for execution time and cost results attained by proposed algorithm and existing algorithms. Range of (0.25% - 1.69%) for execution time, (0.37% - 1.96%) for cost and (0.61% - 2.47%) for energy consumption

approves the stability of BULLET as shown in Figure 25, Figure 26 and Figure 27. Small value of signifies
BULLET is more efficient in resource scheduling in the situations where the number of cloud workloads has
changed. Value of decreases as the number of workloads is increasing. Statistical analysis demonstrates the

Figure 26: for Execution Cost with Each Scheduling Algorithm

0

2

4

6

8

10

12

14

16

18

15 30 45 60 75 90

C
o

ef
fi

ci
en

t
o

f
V

a
ri

a
n

ce
 (

%
)

Number of Workloads

PSO-DVFS

PSO-SW

PSO-HPC

BULLET

0

2

4

6

8

10

12

14

16

18

20

15 30 45 60 75 90

C
o

ef
fi

ci
en

t
o

f
V

a
ri

a
n

ce
 (

%
)

Number of Workloads

PSO-DVFS

PSO-SW

PSO-HPC

BULLET

26

Figure 27: for Energy Consumption with Each Scheduling Algorithm

BULLET outperforms existing scheduling algorithms for large numbers of cloud workloads. With small value of system is more stable and BULLET attained the best results in the cloud for cost and execution time as QoS
parameters.

The statistical analysis of QoS parameters (Figure 18-24) is described in Table 6. The number of samples considered
is 12. The value of confidence interval is calculated using IBM SPSS 24. Table 6 lists the 95% Confidence Intervals
and the estimations of the medians of the differences of the values of QoS parameters of the servers with 45 and 90
workloads. From the Table 6, we can see that the estimated error (the pseudo-median of the differences) is less than
3% for all characteristics. This is representative of the fact, the mean value of all the QoS parameters with 95%
confidence interval from its lower value to upper value.

Table 6: Statistical Analysis of QoS Parameters

QoS Parameter Number of
Workloads

Standard
Deviation

Standard
Error
Mean

95% Confidence Interval
of the Difference

Mean
Value

Lower Upper
Execution Time (Sec) 45 53.34805 15.40026 532.6884 600.4799 566.5842

90 100.56821 29.03154 1190.6220 1318.4180 1254.52
Execution Cost (C$) 45 55.75 16.09364 958.2748 166.1185 130.6967

90 49.34614 14.24500 369.6428 432.3489 400.9958
Latency (Sec) 45 2.61545 0.75502 6.3633 9.6869 8.0251

90 3.90714 1.127889 9.2759 14.2408 11.7583
Availability (%) 45 1.65032 0.47641 89.8914 91.9886 90.94

90 3.19012 0.92091 85.1339 89.1877 87.1608
Reliability (%) 45 4.92129 1.42065 83.6493 89.9030 86.7762

90 3.29977 0.95256 80.6493 84.2875 82.1909
Resource Utilization

(%)
45 4.97449 1.43601 78.2951 84.6164 81.4557
90 3.45959 0.99870 81.7377 86.1340 83.9358

Energy Consumption
(kWh)

45 31.37344 9.05673 49.2559 89.1234 69.1897
90 38.66417 11.16138 183.3145 232.4465 207.8805

The variation of mean value of execution cost with different number of workloads and number of VMs is shown in

Figure 28. With increasing the number of VMs, the execution cost increases. It is clearly shown that the execution

cost for 15 workloads is 31.82% lesser than 90 workloads with 2 VMs. For 60 workloads, execution cost with 12

VMs is 22.61% more than 2 VMs.

0

5

10

15

20

25

15 30 45 60 75 90

C
o

ef
fi

ci
en

t
o

f
V

a
ri

a
n

ce
 (

%
)

Number of Workloads

PSO-DVFS

PSO-SW

PSO-HPC

BULLET

27

Figure 28: Statistical Analysis of Execution Cost

Figure 29 shows the variation of mean value of latency with different number of workloads and number of virtual

nodes. It clearly shows the latency for 15 workloads is 42.52% lesser than 90 workloads with 2 VMs. With

increasing the number of workloads, the latency increases but due to increasing in number of VMs, latency

decreases. For 90 workloads, latency with 12 VMs is 27.92% lesser than 2 VMs.

Figure 29: Statistical Analysis of Latency

The variation of mean value of availability with different number of workloads and number of VMs is shown in

Figure 30. With increasing the number of VMs, the availability increases. It is clearly shown that the availability

with 12 VMs is 4.25% more than 2 VMs for 15 workloads. With increasing the number of workloads, the

availability decreases. The availability for 90 workloads is 7.52% lesser for 45 workloads with 12 VMs.

2

4

6

8

10
12

0

100

200

300

400

500

15
30

45
60

75
90

M
ea

n
V

al
u

e
(C

$
)

Number of Workloads

Execution Cost
400-500

300-400

200-300

100-200

0-100

2

4

6

8

10
12

0

2

4

6

8

10

12

15
30

45
60

75
90

M
ea

n
V

al
u

e
(S

ec
on

d
s)

Number of Workloads

Latecny
10-12

8-10

6-8

4-6

2-4

0-2

Nu

mb

er

of

VM

s

Nu

mb

er

of

VM

s

28

Figure 30: Statistical Analysis of Availability

Figure 31 shows the variation of mean value of reliability with different number of workloads and number of virtual

nodes. With increasing the number of VMs, the reliability increases. It is clearly shown that the availability with 12

VMs is 7.61% more than 2 VMs for 30 workloads. With increasing the number of workloads, the reliability

decreases. The reliability for 75 workloads is 6.96% lesser for 15 workloads with 12 VMs.

Figure 31: Statistical Analysis of Reliability

2

4

6

8

10

12

78

80

82

84

86

88

90

92

94

15
30

45
60

75
90

M
ea

n
V

al
u

e
(%

)

Number of Workloads

Availability
92-94

90-92

88-90

86-88

84-86

82-84

80-82

78-80

2

4

6

8

10

12

74

76

78

80

82

84

86

88

90

92

15
30

45
60

75
90

M
ea

n
V

al
u

e
(%

)

Number of Workloads

Reliability
90-92

88-90

86-88

84-86

82-84

80-82

78-80

76-78

74-76

Nu

mb

er

of

VM

s

Nu

mb

er

of

VM

s

29

The variation of mean value of resource utilization with different number of workloads and number of VMs is

shown in Figure 32. With increasing the number of VMs, resource utilization decreases. It is clearly shown that the

resource utilization for 30 workloads is 9.42% more than 75 workloads with 6 VMs. With increasing the number of

workloads, resource utilization increases. For 60 workloads, resource utilization with 12 VMs is 4.61% lesser than 2

VMs.

Figure 32: Statistical Analysis of Resource Utilization

Figure 33 shows the variation of mean value of energy consumption with different number of workloads and number

of virtual nodes. It is clearly shown that the energy consumption increases with increasing the number of VMs and

number of workloads. Energy consumption for 15 workloads is 14.75% lesser than 90 workloads with 2 VMs. With

12 VMs, energy consumption for 90 workloads is 17.56% more than 15 workloads.

Figure 33: Statistical Analysis of Energy Consumption

2

4

6

8

10

12

78

80

82

84

86

88

90

92

94

15
30

45
60

75
90

M
ea

n
V

al
u

e
(%

)

Number of Workloads

Resource Utilization
92-94

90-92

88-90

86-88

84-86

82-84

80-82

78-80

2

4

6

8

10

12

0

50

100

150

200

250

15
30

45
60

75
90

M
ea

n
V

al
u

e
(k

W
h)

Number of Workloads

Energy Consumption
200-250

150-200

100-150

50-100

0-50

Nu

mb

er

of

VM

s

Nu

mb

er

of

VM

s

30

Figure 34 shows the variation of mean value of execution time with different number of workloads and number of

virtual nodes (VMs). It clearly shows the execution time for 15 workloads is 34.152% lesser than 90 workloads with

2 VMs. With increasing the number of VMs, the execution cost decreases. For 90 workloads, execution time with 12

VMs is 25.44% lesser than 2 VMs.

Figure 34: Statistical Analysis of Execution Time

4.4 Discussions

The performance of proposed PSO based resource scheduling technique (BULLET) has been compared with the
existing scheduling algorithms (PSO-HPC, PSO-SW and PSO-DVFS). The performance of BULLET has been
analyzed with different number of cloud workloads and resources. The performance of BULLET has been evaluated
with respect to execution time, cost, energy and other QoS parameters like availability, reliability, latency and
resource utilization. Execution cost permits the evaluation for selection of resources whereas duration of workload
execution evaluates by execution time. The workload execution using the BULLET performs better as shown by all
the experimental results. The overall cost for cloud consumer’s workload execution is less. With the increase in
budget, the more number of resources are provided to reduce the execution time. BULLET executes the same
number of cloud workloads at maximum availability and reliability. The average value of energy consumption in
BULLET is 7.61%, 11.45% and 17.19% lesser than PSO-HPC, PSO-SW and PSO-DVFS respectively. The
minimum cost used in BULLET is 171 C$ at 15 workloads and maximum is 416 C$ at 90 workloads. The average
value of execution cost in BULLET is 3.16%, 4.72% and 9.16% lesser than PSO-HPC, PSO-SW and PSO-DVFS
respectively.

At 30 workloads, execution time in BULLET is 6.69% lesser than PSO-HPC, 7.12% lesser than PSO-SW and
7.59% lesser than PSO-DVFS. At 90 workloads, execution time in BULLET is 8.72% lesser than PSO-HPC,
11.39% lesser than PSO-SW and 14.79% lesser than PSO-DVFS. The maximum percentage of availability is 88.7 %
at minimum number of cloud workloads. At 75 workloads, percentage of availability in BULLET is 7.42% more
than PSO-HPC, 9.91% more than PSO-SW and 13.72% more than PSO-DVFS. The maximum percentage of
reliability is 19.2 at 15 cloud workloads. At 60 workloads, percentage of reliability in BULLET is 4.91% more than
PSO-HPC, 8.76% more than PSO-SW and 17.22% more than PSO-DVFS. The maximum percentage of resource
utilization is 88.4% at 90 cloud workloads and minimum percentage is 71.96 at 15 workloads in BULLET. The
minimum value of latency is 1.24 seconds at 15 cloud workloads and maximum is 9.13 at 90 cloud workloads in
BULLET. At 15 workloads, latency in BULLET is 2.23% lesser than PSO-HPC, 1.91% lesser than PSO-SW and
5.66% lesser than PSO-DVFS but at 90 workloads, latency in BULLET is 6.11% lesser than PSO-HPC, 14.92%
lesser than PSO-SW and 17.59% lesser than PSO-DVFS. Considering all these QoS parameters (execution time,

2

4

6

8

10

12

0

200

400

600

800

1000

1200

1400

15
30

45
60

75
90

M
ea

n
V

al
u

e
(S

ec
on

d
s)

Number of Workloads

Execution Time
1200-1400

1000-1200

800-1000

600-800

400-600

200-400

0-200

Nu

mb

er

of

VM

s

31

cost, energy, availability, reliability, latency and resource utilization) and experimental result outcomes, it is shown
that BULLET delivers a superior solution for heterogeneous cloud workloads and approximate optimum solution for
challenges of resource scheduling.

5. Conclusions and Future Scope

In this paper, we have proposed PSO based resource scheduling technique called BULLET for scheduling of
workloads in cloud environment so as to minimize the execution cost, time and energy. Experimental results
demonstrate that BULLET is effective in decreasing the execution time, cost and energy consumption of cloud
workloads along with other QoS parameters like availability, reliability, latency and resource utilization. Proposed
scheduling technique provides effective outcomes as compared to existing PSO based scheduling algorithms at
different levels of cost, time and energy as shown in test cases. Thus, resources can be scheduled easily and
workloads can be executed effectively through proposed scheduling algorithm and this will further reduce queuing
time which leads to effective resource execution. Proposed scheduling technique maps and executes the workloads
based on workload details given by user and resource details given by providers. In future, we will further develop
an autonomic resource management technique that efficiently schedules the provisioned cloud resources and
maintains the SLA based on user’s QoS requirements to reduce the above mentioned dependency. IaaS providers
can use these results to quickly assess possible reductions in execution time and execution cost, hence having the
potential to save energy. This framework can also be extended by identifying relationship between workload
(patterns) and the resource demands (demands for compute, storage, and network resources) in the cloud.

Acknowledgement
One of the authors, Dr. Sukhpal Singh Gill [Post Doctorate Fellow], gratefully acknowledges the CLOUDS Lab,
School of Computing and Information Systems, The University of Melbourne, Australia, for awarding him the
Fellowship to carry out this research work.

References

[1] Moens H, Truyen E, Walraven S, Joosen W, Dhoedt B, De Turck F. Cost-effective feature placement of customizable multi-tenant
applications in the cloud. Journal of Network and Systems Management. 2014 Oct 1;22(4):517-58.

[2] Sukhpal Singh and Inderveer Chana, “QoS-aware Autonomic Resource Management in Cloud Computing: A Systematic Review”,“ACM
Computing Surveys” , Volume 48, Issue 3, pp. 1-46, 2015.

[3] Sukhpal, Singh, and Inderveer Chana and Maninder Singh, “The Journey of QoS based Autonomic Cloud Computing”, IT Professional
Magazine, [IEEE] vol. 19, no. 2, pp. 42-49, 2017.

[4] Singh, Sukhpal, and Inderveer Chana. "Resource provisioning and scheduling in clouds: QoS perspective." The Journal of Supercomputing

72, no. 3 (2016): 926-960.

[5] Sukhpal Singh, and Inderveer Chana, “Q-aware: Quality of Service based Cloud Resource Provisioning”, “Computers & Electrical
Engineering”, [Elsevier], 47, pp. 138-160, 2015

[6] Sukhpal Singh, and Inderveer Chana, “QRSF: QoS-aware resource scheduling framework in cloud computing”, “The Journal of
Supercomputing”, [Springer], Vol. 71, no. 1, pp: 241-292, 2015.

[7] Varalakshmi, P., Aravindh Ramaswamy, Aswath Balasubramanian, and Palaniappan Vijaykumar. "An optimal workflow based scheduling

and resource allocation in Cloud." In Advances in Computing and Communications, pp. 411-420. Springer Berlin Heidelberg, 2011.

[8] Xing, Li-Ning, Ying-Wu Chen, Peng Wang, Qing-Song Zhao, and Jian Xiong. "A knowledge-based ant colony optimization for flexible job

shop scheduling problems." Applied Soft Computing 10, no. 3 (2010): 888-896.

[9] H. Topcuoglu, S. Hariri and M.-Y. Wu, "Task scheduling algorithms for heterogeneous processors," in Heterogeneous Computing

Workshop, (HCW'99), San Juan, Puerto Rico, 1999.

[10] E.-S. T. El-kenawy, A. I. El-Desoky and M. F. Al-rahamawy, "Extended Max-Min Scheduling Using Petri Net and Load Balancing,"
International Journal of Soft Computing and Engineering (IJSCE), vol. 2, no. 4, pp. 198-203, 2012.

[11] K. Liu, H. Jin, J. Chen, X. Liu, . D. Yuan and Y. Yang, "A compromised-time-cost scheduling algorithm in swindew-c for instance-
intensive cost-constrained workflows on a Cloud computing platform," International Journal of High Performance Computing

Applications, vol. 24, no. 4, pp. 445-456, 2010
[12] A. Verma and S. Kaushal, "Deadline and Budget Distribution based Cost-Time Optimization Workflow Scheduling Algorithm for Cloud,"

in IJCA Proceedings on International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT 2012) , 2012.
[13] S. Pandey, L. Wu, S. Guru and R. Buyya, "A particle swarm optimization-based heuristic for scheduling workflow applications in Cloud

computing environments," in Advanced Information Networking and Applications (AINA), 24th IEEE International Conference , Perth,
Australia, 2010.

[14] Somasundaram, Thamarai Selvi, and Kannan Govindarajan. "CLOUDRB: A framework for scheduling and managing High-Performance
Computing (HPC) applications in science cloud." Future Generation Computer Systems 34 (2014): 47-65.

32

[15] Netjinda, Nuttapong, Booncharoen Sirinaovakul, and Tiranee Achalakul. "Cost optimal scheduling in IaaS for dependent workload with
particle swarm optimization." The Journal of Supercomputing (2014): 1-25.

[16] Yassa, Sonia, Rachid Chelouah, Hubert Kadima, and Bertrand Granado. "Multi-objective approach for energy-aware workflow scheduling
in cloud computing environments." The Scientific World Journal 2013 (2013).

[17] Chiang ML. Efficient diagnosis protocol to enhance the reliability of a cloud computing environment. Journal of Network and Systems
Management. 2012 Dec 1;20(4):579-600.

[18] Rodrigo N. Calheiros, Christian Vecchiola, Dileban Karunamoorthy, and Rajkumar Buyya, “The Aneka platform and QoS-driven resource

provisioning for elastic applications on hybrid Clouds”, Future Generation Computer Systems, 28(6), (2012): 861-870, 2012.

[19] Chen, Guo-chu, and Jin-shou Yu. "Particle swarm optimization algorithm." Information and Control-Shenyang- 34, no. 3 (2005): 318.
[20] Daniel LA, Madeira E, Medhi D. On Makespan, Migrations, and QoS Workloads' Execution Times in High Speed Data Centers. IEICE

Transactions on Communications. 2015 Nov 1;98(11):2099-110.
[21] Lago D, Madeira E, Medhi D. High speed network impacts and power consumption estimation for cloud data centers. In Proceedings of the

30th Annual ACM Symposium on Applied Computing 2015 Apr 13 (pp. 615-620). ACM.
[22] Singh, Sukhpal, Inderveer Chana, Maninder Singh, and Rajkumar Buyya. "SOCCER: Self-Optimization of Energy-efficient Cloud

Resources." Cluster Computing 19, no. 4 (2016): 1787-1800.
[23] S. Singh; I. Chana; R. Buyya, "STAR: SLA-aware Autonomic Management of Cloud Resources," in IEEE Transactions on Cloud

Computing , pp.1-14, DOI: https://doi.org/10.1109/TCC.2017.2648788

Author’s Bibliography

Sukhpal Singh Gill is faculty at Computer Science and Engineering Department, Thapar University, Patiala, India. Dr. Gill obtained Master

Degree (Gold Medalist) and Doctoral Degree (DST Inspire Fellow) from Thapar University. Presently, Dr. Gill is working as a Post Doctorate

Fellow at CLOUDS Lab, School of Computing and Information Systems, The University of Melbourne, Australia. His research interests include

Software Engineering, Cloud Computing, Internet of Things and Fog Computing. He has more than 40 research publications in reputed journals

and conferences.

Rajkumar Buyya is a Fellow of IEEE, Professor of Computer Science and Software Engineering and Director of the Cloud Computing and
Distributed Systems (CLOUDS) Laboratory at the University of Melbourne, Australia. He is also serving as the founding CEO of Manjrasoft, a
spin-off company of the University, commercialising its innovations in Cloud Computing. He has authored over 500 publications and four text
books. He is one of the highly cited authors in computer science and software engineering worldwide (h-index 113+, 61000+ citations). He has
served as the founding Editor-in-Chief (EiC) of IEEE Transactions on Cloud Computing and now serving as Co-EiC of Journal of Software:
Practice and Experience.

Inderveer Chana joined Computer Science and Engineering Department of Thapar University, Patiala, India, in 1997 as Lecturer and is
presently serving as Professor in the department. She is Ph.D. in Computer Science with specialization in Grid Computing. She has more than
100 research publications in reputed Journals and Conferences.

Maninder Singh received his Bachelor’s Degree from Pune University in 1994, and holds a Master’s Degree, with honors in Software
Engineering from Thapar Institute of Engineering & Technology, as well as a Doctoral Degree specialization in Network Security from Thapar
University. Dr. Singh is currently working as Professor in Computer Science and Engineering Department at Thapar University.

Ajith Abraham received the Ph.D. degree in Computer Science from Monash University, Melbourne, Australia. He is currently the Director of
Machine Intelligence Research Labs (MIR Labs), Scientific Network for Innovation and Research Excellence, USA. He is an author/co-author of
900+ peer reviewed publications, h-index 68 and has over 25000+ citations.

https://doi.org/10.1109/TCC.2017.2648788

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Gill, SS;Buyya, R;Chana, I;Singh, M;Abraham, A

Title:
BULLET: Particle Swarm Optimization Based Scheduling Technique for Provisioned Cloud
Resources

Date:
2018-04-01

Citation:
Gill, S. S., Buyya, R., Chana, I., Singh, M. & Abraham, A. (2018). BULLET: Particle Swarm
Optimization Based Scheduling Technique for Provisioned Cloud Resources. JOURNAL
OF NETWORK AND SYSTEMS MANAGEMENT, 26 (2), pp.361-400. https://doi.org/10.1007/
s10922-017-9419-y.

Persistent Link:
http://hdl.handle.net/11343/283233

http://hdl.handle.net/11343/283233

