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Abstract  
Cloud resource scheduling requires mapping of cloud resources to cloud workloads. Scheduling results can be 
optimized by considering Quality of Service (QoS) parameters as inherent requirements of scheduling. In existing 
literature, only a few resource scheduling algorithms have considered cost and execution time constraints but 
efficient scheduling requires better optimization of QoS parameters. The main aim of this research paper is to 
present an efficient strategy for execution of workloads on cloud resources. A Particle Swarm Optimization (PSO) 
based resource scheduling technique has been designed named as BULLET which is used to execute workloads 
effectively on available resources. Performance of the proposed technique has been evaluated in cloud environment. 
The experimental results show that the proposed technique efficiently reduces execution cost, time and energy 
consumption along with other QoS parameters. 

Keywords: Cloud Workload, Cloud Computing, Resource Scheduling, Quality of Service, Particle Swarm 
Optimization, Energy Consumption, Resource Provisioning 
 
1. Introduction 

Cloud computing enables resources (Infrastructure, Platform or Software) to be offered as services. These resources 
are provided using a pay-as-you-use pricing plan [1]. The services offered to the users consist of set of components, 
which may be offered by different providers. To satisfy the request of customers, service must be provided in 
accordance with the required level of Quality of Service (QoS). QoS is the capability to guarantee a definite level of 
performance based on the parameters described by consumer and Service Level Agreement (SLA) in an authorized 
agreement that describes QoS [2].  One of the major challenges in the current cloud solutions is to provide the 
required services according to the QoS level expected by the user. Cloud service providers want to confirm that 
sufficient amount of resources are provisioned to ensure that QoS requirements of cloud service consumers such as 
deadline, execution time and budget restrictions are met. However, executing too many workloads on a single 
resource will cause workloads to interfere with each other and result in degraded and unpredictable performance 
which, in turn, discourages the users [3]. The mapping of workloads to appropriate resources for execution in cloud 
environment is a complex task and it can be solved by using optimization algorithms. Through these techniques, 
effective scheduling of resources can be done after resource provisioning. Dispersion, heterogeneity and uncertainty 
of resources brings challenges to resource allocation, which cannot be satisfied with traditional resource allocation 
policies in Cloud [4]. Thus, there is a need to make cloud services and cloud-oriented applications efficient by 
taking care of these properties of the cloud environment. Resource scheduling aims to allocate appropriate resources 
at the right time to the right workloads, so that applications can utilize the resources effectively which leads to 
maximization of scaling advantages [17] [18]. The minimum amount of resources should be used for a workload 
execution to maintain a desirable level of QoS, or minimize workload completion time of a workload. To address 
this problem, efficient solution should be developed which schedules the provisioned resources efficiently by 
considering energy consumption, execution cost and execution time as important QoS parameters. 

In our earlier work [5] [6] [23], we have identified various research issues related to QoS and SLA for cloud 
resource scheduling and based on these challenges, we have developed a QoS based resource provisioning technique 
(Q-aware) to map the resources to the workloads based on user requirements. The main aim of Q-aware is to analyze 
the workloads, categorize them on the basis of common patterns and then provision the resources for execution of 
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cloud workloads before actual resource scheduling. For resource scheduling, resource scheduling framework 
(QRSF) has been proposed, in which resources have been scheduled by using different resource scheduling policies 
(cost, time, cost-time and bargaining based). Earlier research work [5] [6] have been implemented in simulated 
cloud environment and only focus on two QoS parameters (execution cost and time). 

The motivation of our research work emerges from the challenge of finding the best resource workload pair 
according to customer requirements. In real life situations, there are three main QoS constraints that need to be 
considered for efficient utilization of resources: i) minimizing the execution time and energy consumption, ii) 
minimizing the execution cost and at the same time meeting the cloud workload deadline and iii) increasing user 
satisfaction. In this research work, we have extended our previous research work [5] by proposing particle swarm 

optimization Based resource provisioning and schedULing technique in cLoud EnvironmenT called BULLET 

which focuses on other QoS parameters (availability, resource utilization, latency and reliability) also along with 
energy consumption, execution cost and time and requires minimum user involvement during execution of 
workload. The main objectives of proposed technique are: i) identifying the QoS requirements of a workload, ii) 
clustering of workloads is done through workload patterns, iii) k-means-based clustering algorithm is used for re-
clustering of workloads after assigning weights to quality attributes of each workload and iv) resources are 
provisioned for clustered workloads by the resource provisioner based on their QoS requirements before actual 
resource scheduling. Further, proposed technique is implemented on real cloud environment using Aneka to validate 
and optimize QoS parameters.  

Initially, resource provisioning takes slight more time to identify the best resources based on QoS requirements of a 
particular workload, but later on it improves overall efficiency of resource management. Thus, the queuing time and 
over-utilization and under-utilization of resources can be avoided or be assuaged. Further, proposed technique 
outperforms as it adjusts the resources at runtime according to the QoS requirements of workload. The paper is 
structured as follows: In Section 2, related work of resource scheduling along with paper contribution has been 
presented. PSO based resource scheduling technique has been presented in Section 3. Experimental setup and results 
has been presented in Section 4. In Section 5, conclusions and the future scope have been presented. 

2. Related Work 

Scheduling of workloads in a cloud environment is challenging due to dynamic and heterogeneous resources spread 
over geographical area. Most of the reported research deals with workload management systems in a cloud 
computing environment on the basis of resource requirements. Cloud computing offers dynamic and flexible 
resource allocation for reliable and guaranteed services in pay according to use fashion. Many cloud consumers can 
demand number of cloud services concurrently [20] [21]. Subsequently, there is a need to provide all the resources 
to requesting cloud consumer in a well-organized way to fulfill their requirements.  

2.1 Cloud Resource Scheduling   

Varalakshmi et al. [7] described an OWS (Optimal Workflow based Scheduling) framework to discover a solution 
that tries to meet the user-desired QoS constraints i.e. execution time. This research shows little improvement in 
resource utilization and it does not consider cost as one of the QoS parameters. Xing et al. [8] presented an ACO 
(Ant Colony Optimization) based job scheduling framework, which adapts to dynamic characteristics of Cloud 
computing and incorporates particular benefits of ACO in NP-hard problems. This approach reduced only job 
completion time based on pheromone. Topcuoglu et al. [9] presented the HEFT (Heterogeneous Earliest Time First) 
framework to discover the average execution time of each workload and also the average communication time 
among the resources of two workloads. The workload with higher rank value is given higher priority. In the resource 
selection stage workloads are scheduled in priorities and each workload is allocated to the resource that complete the 
workload at the earliest time. The framework not designed to reduce cost and time. El-kenawy et al. [10] proposed a 
RASA based scheduling framework to select the jobs based on execution time instead of overall completion time.  
This technique shows achieving schedules with comparable lower execution time as compared to original Max-Min 
and RASA (Resource Aware Scheduling Algorithm) by considering only provider’s benefit. Lin et al. [11] 
suggested compromised cost time based resource scheduling policy which considers cost-constrained workflows and 
taking execution time and cost as QoS parameters. This approach meets user designed deadline and achieve lower 
cost simultaneously but not considering heterogeneous workflow instances. Verma et al. [12] presented Deadline 
and Budget Distribution-based Cost-Time Optimization (DBD-CTO) workflow scheduling framework that 
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minimizes execution cost while meeting deadline without considering energy consumption and heterogeneous cloud 
workloads.  

2.2 PSO based Cloud Resource Scheduling   
Pandey et al. [13] introduced a Particle Swarm Optimization (PSO) based heuristic framework (PSO-H) to schedule 
the applications to Cloud resources that proceeds both computation and data transmission cost.  It is used for 
workflow applications by changing its computation and communication costs. The assessment results show that PSO 
can reduce the cost and good sharing of workload onto resources. They did not consider execution time of 
workloads. Selvi et al. [14] presented PSO based resource scheduling mechanism (PSO-HPC) to reduce makespan, 
price, job rejection ratio and maximize jobs meeting deadline for HPC applications. MATLAB programming 
environment is used to simulate the HPC applications and resources and verified this technique on Eucalyptus-based 
cloud environments and results depicted that this technique is efficient in reducing job rejection ratio and execution 
cost, and improves user’s satisfaction without focusing energy consumption. Nuttapong et al. [15] described PSO 
based scheduling technique (PSO-SW) to achieve scientific workflow execution within the particular deadlines. This 
approach is used to identify the configuration requirements with minimum cost to execute the particular workflow 
application and executed the applications with minimum cost without degradation in performance but execution 
time is not considered as a QoS parameter. Sonia et al. [16] described Dynamic Voltage and Frequency Scaling 
(DVFS) and PSO based scheduling policy (PSO-DVFS) for scientific workloads to reduce consumption of power in 
which different levels of voltage supply workloads are used through sacrificing clock frequencies. This multiple 
voltage involves a compromise between the quality of schedules and energy but execution time and cost are not 
considered as a QoS parameter. Proposed technique (BULLET) has been compared with existing resource 
scheduling techniques as described in Table 1. 

Table 1: Comparison of Proposed Technique With Existing Resource Scheduling Techniques 
Technique Provisioning based 

Scheduling 
Workload Type Clustering of Workloads QoS Parameters 

OWS [7] × Homogenous × Execution Time 

ACO [8] × Homogenous × Completion Time 
HEFT [9] × Homogenous × Communication Time 
RSA [10] × Homogenous and 

Heterogeneous 
× Execution Time 

CTC [11] × Homogenous × Communication Cost 
DBD-CTO [12] × Homogenous × Execution Time 

PSO-H [13] × Homogenous × Computation and communication cost 
PSO-HPC [14] × Homogenous and 

Heterogeneous 
× Execution cost 

PSO-SW [15] × Homogenous × Execution Time 
PSO-DVFS [16] × Homogenous × Energy  

BULLET 
(Proposed) 

 
√ 

Homogenous and 
Heterogeneous 

 
√ 

Execution Time, cost, energy, availability, 
resource utilization, latency and reliability 

 

These research works have considered only one of the QoS parameters from energy, cost and time but all the three 
parameters have not been considered simultaneously in any of the existing work to the best of the knowledge of the 
authors. Moreover, most of the existing work considers homogeneous cloud workloads. PSO based resource 
scheduling technique considers the basic features of cloud computing in order to execute the heterogeneous cloud 
workloads with minimum execution cost, time and energy consumption along with other QoS parameters.   

2.3 Our Contributions  
We present a PSO based resource scheduling technique for both homogenous and heterogeneous cloud workloads. 
This is an extension of our previous work [5]. The proposed technique focuses on how to map the cloud workload in 
order to improve execution cost, time and energy along with other QoS parameters (availability, resource utilization, 
latency and reliability). The proposed technique has been evaluated in real cloud environment. Aneka application 
development platform is used as a scalable cloud middleware to make interaction between SaaS and IaaS to deploy 
proposed technique on real cloud environment. The performance of proposed technique has also been tested on 
cloud testbed using synthetic workloads for different QoS parameters. We have then compared the experimental 
results of proposed technique with existing PSO based resource scheduling techniques. The main contribution of this 
paper is: i) scheduling technique for effective management of resources is proposed, ii) used real cloud platform to 
deploy proposed technique, iii) performance of proposed technique has been evaluated in cloud environment iv) 
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optimized important QoS parameters such as execution cost, energy consumption and execution time and v) 
improved the customer satisfaction and queuing time, over and under-utilization of resources can be avoided or be 
assuaged.   

3. BULLET: Proposed PSO Based Resource Scheduling Technique 

In cloud computing, resource scheduling is the core of resource management system. It essentially indicates 
mapping of cloud workloads to the appropriate resources from the available resource pool. This process searches the 
best resource and maps with cloud workload based on consumer requirements. Process of resource scheduling 
comprises of four steps. In First step, workloads are analyzed and clustered based on their requirements. Second 
step, identifies the required set of resources from resource pool. Third step, maps the cloud workload with 
appropriate resources based on QoS requirements as specified by user. In Final step, schedule the resources to 
execute workloads therefore further guaranteeing near optimal satisfaction of QoS requirements. Need of optimized 
resource scheduling in cloud is achieved using proposed technique. For example, assume that a customer wants to 
purchase some items from grocery store, then salesman would ask the requirements in terms of budget etc. and then 
salesman will display the items accordingly. Based on the money they want to spend and other requirements and 
constraints, select the particular item among all the displayed items. Figure 1 shows the architecture of proposed 
technique.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Architecture of BULLET 
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i) Bulk of Workloads: Bulk of Workloads (BoW) are coming for execution and are processed and stored in 
workload queue. 

ii) Workload Resource Manager: Workload Resource Manager (WRM) contains the information about resources, 
QoS metrics and SLA to provision the resources for execution of workloads based on QoS requirements 
described by cloud consumer. 

iii) SLA Measure: WRM receipts the information from the suitable Service Level Agreement (SLA). After studying 
and confirming the various QoS constraints which the workload has required, WRM checking the availability of 
resources.  

iv) QoS Metric Data: It contains the information regarding QoS metrics used to calculate weight for clustering of 
workloads. 

v) Workload Analyzer: The aim of Workload Analyzer is to look at different characteristics of a cloud workload to 
determine the feasibility of porting the application in the cloud. The different cloud workloads have different set 
of QoS requirements and characteristics. All the workloads are submitted to WRM are analyzed based on their 
QoS requirements. For QoS, the required workload patterns are identified for clustering of workloads then 
identifies the metrics required to assign the weights based on level of measurement (Section 3.1.1) described in 
QoS requirements specified in SLA. K-Means based clustering algorithm is used for re-clustering the workloads 
for execution on different set of resources.   

vi) Resource Information: The resource details include the number of CPU using, size of memory, cost of 
resources, type of resources and number of resources. All the common resources are stored in resource pool. 

vii) Resource Provisioner: It provides the demanded resources to the workload for their execution in cloud 
environment only if required resources are available in resource pool. If the required resources are not available 
according to QoS requirement then the WRM asks to resubmit the workload with QoS requirement in the form 
of SLA. After the provisioning of resources, workloads are submitted to resource scheduler. Then the resource 
scheduler will ask to submit the workload for resources provisioned. After this resource scheduler send back the 
results to WRM, cloud workload contains the resource information.  

viii) Resource Scheduler: It will execute all the workloads on provisioned resources efficiently and described in 
Section 3.2.  

Cloud workload is an abstraction of work of that instance or set of instances executing on the appropriate resources 
with different QoS requirements submitted by cloud consumer as a type of application. The types of workload that 
have been considered for this research work are: websites, technological computing, endeavor software, 
performance testing, online transaction processing, e-commerce, central financial services, storage and backup 
services, production applications, software/project development and testing, graphics oriented, critical internet 
applications and mobile computing services [5] [6]. 

3.1.1 Clustering of Workloads 

Based on the important features of Cloud workloads and workload patterns the clustering of Cloud workloads has 
been done and process of clustering has been described in our previous research work in detail [5]. The outcome of 
pattern based workload clustering is shown in Table 2. 

Table 2: Cloud Workloads and Their QoS Requirements After Pattern Based Clustering 

Workload QoS Requirements 
Websites Reliable storage, High network bandwidth, High availability 
Technological Computing Computing capacity, Reliable storage 
Endeavour Software Security, High availability, Customer Confidence Level, Correctness 
Performance Testing Execution time, energy consumption and execution cost 
Online Transaction Processing Security, High availability, Internet accessibility, Usability 
E-Com Variable computing load, Customizability 
Central Financial Services Security, High availability, Changeability, Integrity 
Storage and Backup Services Reliability, Persistence 
Productivity Applications Network bandwidth, Latency, Data backup, Security 
Software/Project Development and 
Testing 

User self-service rate, Flexibility, Creative group of infrastructure services , Testing time 

Graphics Oriented Network bandwidth , Latency, Data backup, Visibility 
Critical Internet Applications High availability, Serviceability, Usability 
Mobile Computing Services High availability, Reliability, Portability 
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 Further, K-means based clustering algorithm is used for re-clustering the workloads for execution on different set of 

resources and process of clustering using K-means based clustering algorithm has been described in our previous 

research work in detail [6]. Final set of workloads is shown in Table 3. 

 
Table 3: K-Means Based Clustering of Workloads 

Cluster  Cluster Name Workloads 
C1 Compute Technological Computing, Performance Testing 
C2 Storage E-Com and Storage and Backup Services 
C3 Communication Websites, Critical Internet Applications, Mobile Computing Services 
C4 Administration Endeavour Software, Online Transaction Processing, Central Financial Services, Productivity 

Applications, Software/Project Development and Testing and Graphics Oriented 

 

3.2 Resource Scheduling 

We have designed Particle Swarm Optimization (PSO) based resource scheduling algorithm by considering different 

QoS parameters (Execution Time, Cost and Energy Consumption).  

3.2.1 Requirements 

Following are some important requirements to design an efficient resource scheduling algorithm: 

Efficiency: Provisioning of resources offers the facility to reduce the cloud overheads which requires QoS based 

efficient management of resources.  

Efficient Resource Usage: Efficient scheduling of resources should minimize wastage of the resources. Different 

cloud workloads are waiting for execution should be executed with maximum resource utilization of resources and 

optimizing QoS parameters (execution time and cost). 

Fair Scheduling: The number of resources allotted to every consumer should be independent of number of cloud 

workloads each user submits.  

Adaptability and scalability: A smart scheduler adapts as per the resources, i.e., whenever resources join or leave 

(dynamically), it manages the resources and workloads’ execution process efficiently.  

3.2.2 Problem formulation 

Cloud resource scheduling is a tedious task due to the problem of finding the best match of resource-workload pair 
based on the user QoS requirements. The goal of Cloud workload analyzer is to categorize the workloads and the 
goal of resource scheduler is to map and schedule the workloads effectively and efficiently. The resources and 
Cloud workloads can leave and join the Cloud dynamically. Cloud resources are heterogeneous and dynamic in 
nature. In this work, independent Cloud workloads have been considered to handle the realistic scenarios as there are 
many scenarios in which the need of scheduling Cloud workloads arises. Firstly, this problem is suitable to Cloud 
systems because of the nature of Cloud customers, who submit Cloud workloads in an independent manner to the 
system. Secondly, Cloud systems are most useful for massive parallel processing, in which large amounts of data are 
processed independently. In this work, the scheduling of workloads has been considered from both the Cloud 
customer and Cloud provider’s point of view. The user wants to minimize the cost whereas the Cloud provider 
wants to minimize the execution time and energy consumption. In this problem, the most popular and extensively 
studied optimization criteria, i.e. the minimization of the execution time has been considered. Execution time is used 
to indicate the general productivity of the Cloud systems. Smaller values of execution time and energy consumption 
indicate that the scheduler is planning the Cloud workloads in an efficient manner. Cost is another optimization 
criterion, which refers to the total cost of the Cloud workload execution on a particular resource. The problem has 
been derived to get an optimal solution.  
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The problem can be expressed as: To consider this problem, a set of independent Cloud workloads {  ,  ,  , . . . 
,  } to map on a set of heterogeneous and dynamic resources {  ,  ,  , . . . ,  } has been taken. For continuous 
problem, R = {   | 1 ≤ k ≤ n} is the collection of resources and n is the total number of resources. W = {  |1 ≤ i ≤ 
m} is the collection of Cloud workloads and m is the total number of Cloud workloads. The estimated time to 
compute the value of each Cloud workload on each resource is assumed to be given by the consumer-supplied 
information (data-driven). Under the Predictable Time to Compute (PTC), the following assumptions have been 
considered: 

1. Each Cloud workload to be scheduled for application’s execution has a unique workload id. 
2. Cloud workloads are independent. 
3. Arrival of Cloud workloads for execution of application is random and Cloud workloads are placed in a 

queue of unscheduled Cloud workloads. 
4. The processing speed of the resources is measured in Multiple Instructions Per Second (MIPS) as per the 

Standard Performance Evaluation Corporation (SPEC) benchmark. 
5. The processing requirement of a Cloud workload is measured in Million Instructions (MIs). 
6. Execution time for every Cloud workload on a resource is obtained from objective function. [Number of 

workloads   number of resources] for every workload on resources is calculated from PTC matrix. 
Columns of PTC matrix demonstrate the estimated execution time for a specific resource while rows on 
PTC matrix demonstrate the execution time of a workload on every resource. PTC (     ) is the expected 
execution time of workload    and the resource     

3.2.3 Objective function 

In Cloud computing, provider wants to minimize the execution time and energy consumption while user wants to 
minimize the cost for Cloud workload. The goal of an objective function is to optimize the QoS parameters 
(execution cost, time and energy consumption) for finishing all n workloads of a given Bulk of Workloads (BoW). 
This objective function successfully captures the compromise among QoS parameters as specified in Equation (1). 
Further formally, the workload assignment problem with the energy, cost and time function of each resource r can 
be generally formulated as follows:  

                                                                                                 (1) 

where           ,           and         are weights to prioritize components of fitness function.  

a) Execution Cost (             ): It is the cost spend to execute workload and measured in terms of Cloud 

Dollars (C$):                                                                               (2) 

                     ) is the cost of workload    which executes on resource    as defined below: 

                                                                          
       W is the collection of cloud workloads.  

                                                                          
       where as:                                                                                                                                                       
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b) Execution Time (             ): It is the finishing time    of the latest workload and can also be represented 

as PTC workload    on resource   . Before estimation of execution time, completion time of a resource should be 

defined. Completion time can be defined as the time in which resource can finish the execution of all the previous 

workloads in addition to the execution of workload    on resource    as described as:                                                         (7) 

               where as:                                                        
c) Energy Consumption (  ): The energy model is devised on the basis that resource utilization has a 
linear relationship with energy consumption [22]. Energy Consumption of using resources can be expressed as 
the following formula [Eq. 9]: 

                                                                                                           represents the datacenter's energy consumption,                represents the energy 
consumption of all the switching equipment.          represents the energy consumption of the storage 

device.         represents the energy consumption of other parts, including the fans, the current conversion 
loss and others.        is the energy consumption at given time   is defined in [Eq. 10]:  

                                                                           
Where        is maximum energy consumption while resource is fully utilized, q is fraction of energy consumed by 

idle resource and ru is resource utilization. Resource utilization is change over time and it is function of time and 

presented as      . For a resource    at given time  , the resource utilization       is defined as [Eq. 11]: 

                    
                                       

where n is the number of cloud workloads running at time t. The actual energy consumption           of a resource     at given time t is defined as [Eq. 12]:                                                             
where       is the energy consumption at the peak load (or 100% utilization) and       is the minimum energy 
consumption in the active/idle mode (or as low as 1% utilization).  

. 
   

3.2.4 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a group based intelligence algorithm which is inspired by the social behavior 
such as school of fish defending themselves from a hunter (predator) or group of birds finding a source of food [19]. 
Population in PSO algorithm is defined as the total number of particles in a problem space and particles in 
population are initialized randomly. In every generation, fitness value of every particle is estimated by a fitness 
function to be improved. Both the positions of the particle is known: i) best position (local best i.e.    ) of a particle 

and global best (the best position so far among the whole group of particles (   )).     is s the best particle in 
terms of fitness in an whole population, whereas     of a particle is the best result (fitness value) so far reached by 
the particle. Particle’s position and velocity is updated in every generation by using [Eq. 1]. 

PSO optimization technique which works based on global search. There is no straight re-combination of individuals 
of the population in algorithm of PSO like other population-based algorithms (or evolutionary algorithms) such as 
GA (Genetic Algorithm) etc. Algorithm of PSO is dependent on particle’s social behavior. Every individual particle 
regulates its path based on the position of the best particle (global best) of the whole population and its best position 
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(local best) in every generation. Stochastic nature of the particle increases due to this property of PSO and touches 
rapidly to global minima with a realistic noble solution [19]. PSO has become prevalent due to its easiness and its 
usefulness in extensive range of application with little cost of computation. Applications like pattern recognition, 
reactive data mining etc. have used PSO mostly. Along with these applications PSO has been solved various NP-
Hard problems like workload allocation and resource scheduling.  

3.2.4.1 PSO Terminology 

The PSO terminology used in this research paper is described below: 

a) Particle: A particle in Particle Swarm Optimization is similar to a fish or bird flying through a search space 
(problem area). Every particle’s movement is synchronized by a velocity which has both direction and 
magnitude. Position of every particle at any time instance is influenced by its best position (   ) and the 

position of the best particle (   ) in a search space. Fitness value is used to measure the performance of a 
particle, which is problem oriented. For this research work, a workload is considered as a particle.    

b) Population Size: In this research work, size of set of workloads (number of workloads considered as a 
population size).  

c) Random Velocity: Every particle's movement is the composition of an initial random velocity and two randomly 
weighted effects: i) the affinity to return to the best previous position of particle and ii) the affinity to move 
towards the best previous position of neighborhood. Based on these two affinities of workload, the mapping of 
workload with resources is done. Workload will be executed only with that resource which has high value of 
fitness.  

d) Particle Velocity: It is calculated based on the probability distribution for the particle position, that is, the 
particle (workload) position in a dimension is randomly generated using that distribution. 

e) Particle Position: Current state of particle (workload), state may be submission state, waiting state, ready state, 
execution state and completion state.  

f) Global Best Position (   ): Best position of particle (workload) among the whole group of particles (set of 
workloads). 

g) Local Best Position (   ): Best position of particle (workload) as reached by the particle (workload regulates its 
path based on its best resource which executes workload with minimum fitness value). 

3.2.4.2 PSO Based Resource Scheduling Algorithm 

In this section, we present the pseudo code of PSO-based algorithm for resource scheduling in the Cloud 
environment. Each particle in genome is a partial solution and is represented as a resource identifier (e.g., select, 
move, swap, drop) or a sequence of resource identifiers. The non-PSO based resource identifier can be simple or 
complex and are implemented as follows: 

a. Workload selection and scheduling: the resource identifiers select workload from the unscheduled list and 
schedule it in to the best available resource.  

b. Try for the best combination of all workloads and resources until the best combination is found.  
c. Move workload (  ) from its current resource/schedule.  
d. Swap workloads: select the workloads randomly which can swap. 
e. Remove a randomly selected workload from workload queue already scheduled.  
 
This is the only heuristic which will move the search into an infeasible region because any workload may be 
unscheduled. We make sure that the search can move back into its feasible region by un-scheduling workload that 
has other valid resources so that it can move into the next iteration.  The non-PSO based resource identifier is then 
applied so as to find an optimal solution of the problem instance. The objective of PSO is to find the best resource 
identifier that generates the best solution for resource scheduling problem. The selection process of non-PSO based 
resource identifier stops after a pre-defined number of iterations. We set a fixed number of iterations to keep the 
computation time low. The particle rejects the new solution if it is poorer than the current solution. The pseudo code 
of PSO based resource scheduling algorithm in Figure 2. 
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Algorithm 1: PSO based Resource Scheduling Algorithm 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 

Input Data: Number of workloads and number of available resources. 
Result: Mapping of the each workloads to the resources. 
start 
      initialize Resource list [Number of Resources] 
      initialize Workload List [Number of Jobs] 
      initialize a random feasible solution 
      S= The number of particles in the population 
      PS = Population Size 
      RV = Random Velocity 
         = Particle Velocity 
         = Particle Position 

          = Population 

          = Global Best Position 
          = Local Best Position 
      for i = 1 To Populationsize do 

                ← RV() 

                ← Random_Position (PS) 

                ←     

            For each particle, calculate the fitness value using [Eq. 1]  
            if Fitness (   ) ≥ Fitness (   ) then 
                      ←     

      while maximum iteration is not satisfied do 
            for P        do 

                ← UpdateVelocity (  ,         ) 
               ← UpdatePosition (     ) 

            if Fitness (  ) ≤ Fitness(   ) 

            then 
                     ←      

                if (   ) ≤ Fitness(   ) then 
                           ←     

      Return (   ) 
      while there are unscheduled workloads in the queue do 
            for every resource is in resource list do 
                   get the next workload from queue 
                  schedule the workload on the resource on the basis of fitness 
      Repeat each and every step till all the workloads are allocated 
End 

Figure 2: PSO Based Resource Scheduling Algorithm 

 
 A resource list is then obtained from the resource provisioning unit after provisioning of user’s workloads [5]. 

Once the resource list has been obtained, a workload list and a random feasible solution are initialized. 

 The task to choose the best heuristic from low-level heuristics is started. 

 We have a number of workloads, each of which represents a resource identifier supplied with an initial solution 

in the solution space and an access to the evaluation function. 

 Workload’s position and Workload’s velocity would be randomly initialized. 
 It will then select a low-level heuristic at each workload position and compute its fitness function i.e. Fitness 

(   ). 

 If at   , Fitness (   ) is better than Fitness (   ) then    takes the value of    .  

 We will try to find the Fitness value at best global position of the workload. 

 After a workload has been chosen from the population, its position and velocity would be updated using [Eq. 1]. 

Then, its fitness at the new position is calculated and compared with its previous position. 

 If it is better than the local best value then we will assign workload’s current position to the local best value. 

 Now, we will compare fitness at      and    . If the fitness at     is better than at     then we will assign the 

value of     to    . 

 After selection of a low-level heuristic, it is then applied to the problem. Resource scheduling is performed till 

there are no unscheduled jobs in the queue. 
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3.3 Cloud Workload Execution Design 

There are eight different classes created to represent the interaction among different workload related entities. 
Workloads are scheduled  to the appropriate resources based on the workload description by taking care of QoS. 
Fitness value for every workload is calculated and analysed. Schedule the resources to cloud workloads and execute 
within the defined budget and desired deadline with minimum energy consumption. The interaction among different 
classes for workload execution  is shown in Figure 3. In the course of its lifetime, a workload passes through many 
states as is outlined in Figure 4. A workload is an input to the scheduler which allocates it to a set of provisioned 
resources based on its requirements. The workload’s status is then changed to SCHEDULED. During the 
STAGE_IN state, input files and executables required for the workload are staged to the available provisioned 
resource. When this process is completed successfully, then a workload is considered to be SUBMITTED. The 
workload may be queued while waiting for an available processor and its state changes to PENDING. When the 
workload starts its execution, it is considered ACTIVE. After the workload has finished executing, it enters the 
STAGE_OUT stage where its output files are transferred back to the broker. If all its outputs are received and are as 
expected by the task requirements, then the workload is considered as “DONE". If one of state transition fails on the 
available side or the workload is completed on the available side but has not produced the expected result files, then 
it is considered FAILED and is reset and marked for re-scheduling. 

3.4 QoS Metrics 

The following other metrics ([Eq. 13] – [Eq. 18]) are selected from our previous work [5] [6] [23] to measure the 

value of QoS parameters other than energy, cost and time.   

Availability (A): It is a ratio of Mean Time Between Failure (MTBF) to addition of Mean Time Between Failure 

(MTBF) and Mean Time To Repair (MTTR). We have used following formula to calculate availability [Eq. 13]. 

                                     
Where Mean Time Between Failure (MTBF) is ratio of total uptime to number of breakdowns [Eq. 14]. 

                                                         
Where Mean Time To Repair (MTTR) is ratio of total downtime to number of breakdowns [Eq. 15]. 

                                                          
 

Reliability (re): Reliability of the resource has to be checked for scheduling of the resources. With the help of 

reliability parameter, we can check the fault tolerance of the resource. Reliability of the resource is calculated with 

the following formula [Eq. 16] as:                                   
re = reliability of resource, e = exponential function, t = time for resource to deal with its request for any workload’s 
execution and λ= the failure rate of the resource at the give time.  

Resource Utilization (RU): It is a ratio of execution time of a workload executed by a particular resource to total 

uptime of that resource. We have used following formula to calculate resource utilization [Eq. 17]. 
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Where n is number of workloads.  

Latency (L): It is defined as a difference between expected execution time and actual execution time. We have used 
following formula to calculate Latency [Eq. 18]:                                                                 

    

Where n is number of workloads. 

 
                                      1                              1 
 
 
 
 
 
 
 
 
 
 
 
 
                                               1                                           0…..* 
                                                      1 
 
 
 
 
 
 
 
 
 
                                                                                                                                
 
 
 
 
 
 
 

Figure 3: Interaction Among Different Classes For Workload Execution 

+ Cluster 

ClusterName: String 

 

+ WorkloadFitnessFunction 

 
+Calculate (cost, time, energy) 

+ CalculateFitnessValue 

 
+Calculate (cost, time, energy) 

+ WorkloadCluster 

– Instance: WorkloadCluster                                                                         

–Worklods:List<wWorkloads>                                                                                  

–resources:List<rResources> 

+ getInstance(): WorkloadCluster                   

+getWorkload():List<wWorkloads>                 

+getResources():List<rResources>               

+CreateCluster(workloads:List, resource:List): ListWorkloadToResourceMapping 

+WorkloadWrapper 
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+ Workload 

+Workloadid:Int 

+WorkloadName:String 

+WorkloadType:String 

+Submit()             

+Execute() 

+ workloadDescriptionAnalyzer 

+AnalyzeworkloadDescription (workloadDescFile:String):List<workload> 

+ workloadDescription 

+WorkloadName: String                                                                                     

+WorkloadProcessingCapacity: Double                                                                                    

+CostPerHour: Double 

+WorkloadDescription(WorkloadName:String, ProcessingSpeed: double, CostPerHour:double)  

+getWorkloadName(): String                                                                                      

+setWorkload(name:String)                                                                             

+getProcessingCapacity():Double                                                                            

+setProcessingCapacity(PC: Double)                                                                                              

+getCostPerHour(): Double                                                                                              
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Figure 4: Different Stages For Cloud Workload 

4. Experimental Setup and Results   

Tools used for setting up cloud environment for performance analysis are Microsoft Visual Studio 2010 (SaaS), 
Aneka (PaaS), SQL Server 2008, and Citrix Xen Server (IaaS). Aneka has been installed along with its requirements 
on all the nodes that provide cloud service. Nodes in this system can be added or removed based on the requirement. 
PSO based resource scheduling technique (BULLET) is installed on main server and tested on virtual cloud 
environment that has been established at CLOUDS Lab, The University of Melbourne, Australia. We installed 
different number of virtual machines on different servers, and deployed the BULLET to measure the variations. In 
this experimental setup, three different cloud platforms are used: Software as a Service (SaaS), Platform as a Service 
(PaaS) and Infrastructure as a Service (IaaS) as shown in Figure 5.  
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Figure 5: Cloud Testbed  

At SaaS level, Microsoft Visual Studio 2010 is used to develop Cloud Workload Management Portal (CWMP) to 
provide user interface in which user can access service from any geographical location. At PaaS level, Aneka cloud 
application platform [19] [23] is used as a scalable cloud middleware to make interaction between IaaS and SaaS, 
and continually monitor the performance of the system. Aneka task model has been used in this research work. A 
task is a single unit of work processed (request) in a node. It is independent from other tasks that may be executed 
on the same or any other node at the same time. At IaaS level, three different servers (consist of virtual nodes) have 
been created through Citrix Xen Server and SQL Server has been used for data storage. Scheduler as shown in 
Figure 5, runs at IaaS level on Citrix Xen Server. Computing nodes used in this experiment work are further 
categorized into three categories as shown in Table 4. A detailed discussion of the implementation using Aneka can 
be found in [23]. 

Table 4: Configuration Details  

Resource_Id Configuration Specifications Operating 

System 

Number of 

Virtual Node 

Number of 
ECs 

Price 
(C$/EC time 

unit) 

R1 Intel Core 2 Duo - 2.4 GHz 1 GB RAM and 160 GB HDD Windows 6 18 2 

R2 Intel Core i5-2310- 2.9GHz 1 GB RAM and 160 GB HDD Linux 4 12 3 

R3  Intel XEON E 52407-2.2 GHz 2 GB RAM and 320 GB HDD Linux 2 6 4 

The execution cost is calculated based on user workload and deadline (if deadline is too early (urgent) it will be 
more costly because we need a greater processing speed and free resources to process particular workload with 
urgency. There individual price is fixed (artificially) for different resources because all the resources are working in 
coordination manner to fulfill the demand of user (demand of user is changing dynamically). Experiment setup using 
3 servers in which further virtual nodes (12 = 6 (Server 1) +4 (Server 2) +2 (Server 3)) are created.  Every virtual 
node has different number of Execution Components (ECs) to process user workload and every EC has their own 
cost (C$/EC time unit (Sec)). Table 4 shows the characteristics of the resources used and their Execution 
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Component (EC) access cost per time unit in Cloud Dollars (C$) and access cost in C$ is manually assigned for 
experimental purposes. The access cost of an EC in C$/time unit does not necessarily reflect the cost of execution 
when ECs have different capabilities. The execution agent needs to translate the access cost into the C$ for each 
resource. Such translation helps in identifying the relative cost of resources for executing user workloads on them.   

Due to limited number of resources, cost increases with increase in user workloads. Cost is varying in two different 
cases: i) relaxed deadline and ii) tight deadline. In both cases, when the deadline is low (e.g. 200 secs), the number 
of user workloads processed increases as the budget value increases. When a higher budget is available, the 
execution agent uses expensive resources to process more user workloads within the deadline. Alternatively, when 
scheduling with a low budget, the number of user workloads processed increases as the deadline is relaxed. 
Execution agent allocates as many user requests as the first cheapest resource can complete by the deadline, and then 
allocates the remaining user workloads to the next cheapest resources. When the deadline is tight (e.g. 100), there is 
high demand for all the resources in a short time. All the resources are used up so long as budget is available to 
process all user workloads within the deadline. However, when the deadline is relaxed (e.g. 700 secs), it is likely 
that all user workloads can be completed using the first few cheapest resources. As the deadline increases, execution 
agent schedules user workloads on the available resources to finish earlier as possible.  The aim of this performance 
evaluation is to demonstrate that it is feasible to implement and deploy the proposed technique on real cloud 
resources. The key components of the cloud environment are: user interface (CWMP), workload analyzer and 
resource scheduler. Figure 6 enables the understanding of the cloud based environment in which the proposed 
technique is implemented. 

 
 
 

                                                     
                                               
                         Submit Workload Details (Name and Type) 
                                                                                                                            Get Workload Details  
                                                                                                                            Processed Workload Details  
                                    Ask Budget and Deadline Info 
                                Provide Budget and Deadline Info 
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                                                                                                                    Generate Tentative Workload Schedule 
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                                                                                                                             Get Confirmation 
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                                                Confirm 
                                               Fill SLA 
                                      Submit Signed SLA 
                                                                                                                              Get Signed SLA 
                                                                                                                                Approved SLA   
                                    Request for Payment                                                                               
                                    Pay Required Amount 
                                                                                                                                 Schedule Resources 
                                                                                                                                   Execute Workloads  
                                                                                                                                Monitor QoS Variation  
                                                                                                                  <<Workloads Executed Successfully>> 
                                                                                                                              Resources Scaled Back  
                                      Return Experimental Data 

Figure 6: Workload Execution  

4.1 Performance Evaluation  

In order to evaluate the performance of BULLET, we have compared the value of QoS parameters (execution time, 
cost, energy consumption, reliability, availability, latency and resource utilization) of BULLET with existing PSO 
based cloud based resource scheduling techniques (PSO-HPC [14], PSO-SW [15] and PSO-DVFS [16]) and all the 
three existing techniques have been described in Section 2.2. Formals used to measure the value of QoS parameters 
have been described in Section 3. We have performed experiments to determine the effect of an increase in number 

:Cloud_User 

  

:Workload_Analyser 

 

:Resource_Manager 
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of workloads and resources on QoS parameters such as energy consumption, cost and time. All the experiments 
were started with workload name: Performance Testing [Processing Larger Image File of Size 713 MB], in which 
BULLET converts an image file from JPEG format to PNG format. Conversion of a single JPEG file into PNG is 
considered as a single workload. We have created the PTC matrix which is computed as ratio of workload and 
computing capacity of virtual machines.  
 
4.2 Experimental Results  

Experiment has been conducted with different number of cloud workloads (15-90) for verification of QoS 
parameters.   

Test Case 1: Energy Consumption vs. Number of Workloads 

By increasing the number of cloud workloads, the value of energy consumption is increasing. The minimum value 
of energy consumption is 69 kWh at 15 cloud workloads for BULLET.  BULLET performs better than PSO-HPC, 
PSO-SW and PSO-DVFS in terms of energy consumption at different number of cloud workloads as shown in 
Figure 7. The average value of energy consumption in BULLET is 7.61%, 11.45% and 17.19% lesser than PSO-
HPC, PSO-SW and PSO-DVFS respectively.   

 

Figure 7: Effect of Change in Number of Workloads Submitted on Energy Consumption 

Test Case 2: Execution Cost vs. Number of Workloads 

With the increase in number of workloads, execution cost rises as shown in Figure 8. As per the number of 
workloads increases, BULLET performs better than PSO-HPC, PSO-SW and PSO-DVFS. BULLET outperforms as 
it adjusts the resources at runtime according to the QoS requirements of workload. The minimum cost used in 
BULLET is 171 C$ at 15 workloads and maximum is 416 C$ at 90 workloads. The average value of execution cost 
in BULLET is 3.16%, 4.72% and 9.16% lesser than PSO-HPC, PSO-SW and PSO-DVFS respectively.    
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Figure 8: Effect of Execution Cost with Change in Number of Workloads 

 

Test Case 3: Execution Time vs. Number of Workloads 

As shown in Figure 9, the execution time increases with increase in number of workloads. At 30 workloads, 

execution time in BULLET is 6.69% lesser than PSO-HPC, 7.12% lesser than PSO-SW and 7.59% lesser than PSO-

DVFS. At 90 workloads, execution time in BULLET is 8.72% lesser than PSO-HPC, 11.39% lesser than PSO-SW 

and 14.79% lesser than PSO-DVFS. Figure 9 show that execution time varies in same ratio but BULLET performs 

better than PSO-HPC, PSO-SW and PSO-DVFS.  

 
Figure 9: Effect of Execution Time with Change in Number of Workloads 

The number of workloads considered for Test Case 4, Test Case 5 and Test Case 6 is 90.       

Test Case 4: Energy Consumption vs. Number of Resources 

By increasing the number of resources, the value of energy consumption increases. The minimum value of energy 
consumption is 22 kWh at 6 resources for BULLET.  BULLET performs better than PSO-HPC, PSO-SW and PSO-
DVFS in terms of energy consumption at different number of resources as shown in Figure 10. The average value of 
energy consumption in BULLET is 4.41%, 8.54% and 12.36% lesser than PSO-HPC, PSO-SW and PSO-DVFS 
respectively.  
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Figure 10: Effect of Change in Number of Resources Submitted on Energy Consumption 

Test Case 5: Execution Cost vs. Number of Resources 

With the increase in number of resources, execution cost rises as shown in Figure 11. As per the number of 
resources increases, BULLET performs better than PSO-HPC, PSO-SW and PSO-DVFS. The cause is that 
BULLET adjusts the resources at runtime according to the QoS requirements of workload. The minimum cost is 
used in BULLET is 45 C$ at 6 resources and maximum is 137 C$ at 36 resources. The average value of execution 
cost in BULLET is 5.41%, 6.26% and 8.78% lesser than PSO-HPC, PSO-SW and PSO-DVFS respectively.      

 
Figure 11: Effect of Execution Cost with Change in Number of Resources 

 

Test Case 6: Execution Time vs. Number of Resources 

As shown in Figure 12, the execution time decreases with increase in number of resources. At 18 resources, 

execution time in BULLET is 7.42% lesser than PSO-HPC, 8.91% lesser than PSO-SW and 12.52% lesser than 

PSO-DVFS. At 36 resources, execution time in BULLET is 3.49% lesser than PSO-HPC, 4.64% lesser than PSO-

SW and 7.93% lesser than PSO-DVFS. Figure 12 show that execution time varies in same ratio but BULLET 

performs better than PSO-HPC, PSO-SW and PSO-DVFS. 
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Figure 12: Effect of Execution Time with Change in Number of Resources 

Test Case 7: Availability 
 
We have calculated the percentage of availability for BULLET and existing scheduling algorithms (PSO-HPC, PSO-

SW and PSO-DVFS) with different number of cloud workloads. With increasing the number of cloud workloads, 

the percentage of availability is decreasing. The percentage of availability in BULLET is more as compared to PSO-

HPC, PSO-SW and PSO-DVFS at different number of cloud workloads as shown in Figure 13. The maximum 

percentage of availability is 88.7 % at minimum number of cloud workloads. At 75 workloads, percentage of 

availability in BULLET is 7.42% more than PSO-HPC, 9.91% more than PSO-SW and 13.72% more than PSO-

DVFS.  

 

 

Figure 13: Effect of Change in Number of Workloads Submitted on Availability 

Test Case 8: Reliability  

We have calculated the percentage of reliability for BULLET and existing scheduling algorithms (PSO-HPC, PSO-

SW and PSO-DVFS) with different number of cloud workloads. By increasing the number of cloud workloads, the 

percentage of reliability is decreasing. The percentage of reliability in BULLET is more as compared to PSO-HPC, 

PSO-SW and PSO-DVFS at different number of cloud workloads as shown in Figure 14. The maximum percentage 

of reliability is 94.65 at 15 cloud workloads. At 60 workloads, percentage of reliability in BULLET is 4.91% more 

than PSO-HPC, 8.76% more than PSO-SW and 17.22% more than PSO-DVFS.   
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Figure 14: Effect of Change in Number of Workloads Submitted on Reliability 

 

Test Case 9: Resource Utilization  

With increasing number of cloud workloads, the percentage of resource utilization is increasing. The percentage of 

resource utilization in BULLET is more as compared to PSO-HPC, PSO-SW and PSO-DVFS at different number of 

cloud workloads as shown in Figure 15. The maximum percentage of resource utilization is 88.4% at 90 cloud 

workloads and minimum percentage is 71.96 at 15 workloads in BULLET but BULLET performs better than PSO-

HPC, PSO-SW and PSO-DVFS for any number of workloads. 

 

Figure 15: Effect of Change in Number of Workloads Submitted on Resource Utilization 

Test Case 10: Latency 

With increasing number of cloud workloads, the value of latency is increasing. The value of latency in BULLET is 

lesser as compared to PSO-HPC, PSO-SW and PSO-DVFS at different number of cloud workloads as shown in 

Figure 16. The minimum value of latency is 1.24 seconds at 15 cloud workloads and maximum is 9.13 seconds at 90 

cloud workloads in BULLET. At 15 workloads, latency in BULLET is 2.23% lesser than PSO-HPC, 1.91% lesser 

than PSO-SW and 5.66% lesser than PSO-DVFS but at 90 workloads, latency in BULLET is 6.11% lesser than 

PSO-HPC, 14.92% lesser than PSO-SW and 17.59% lesser than PSO-DVFS.  

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

15 30 45 60 75 90 

R
el

ia
b

il
it

y
 (

%
) 

Number of Workloads 

BULLET 

PSO-HPC  

PSO-SW  

PSO-DVFS 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

15 30 45 60 75 90 

R
es

ou
rc

e 
U

ti
li

za
ti

on
 (

%
) 

Number of Workloads 

BULLET 

PSO-HPC  

PSO-SW  

PSO-DVFS 



21 

 

 

Figure 16: Effect of Change in Number of Workloads Submitted on Latency 

 

Test Case 11: Convergence of PSO  
Figure 17 plots the convergence of total cost computed by PSO over the number of iterations for different value of 
Resource Utilization (RU): 85%, 75% and 65% by executing different number of workloads. Initially the workloads 
are randomly initialized. Therefore, the total initial cost is very high at 0th iteration. As the algorithm progresses, the 
convergence is drastic and achieves global minima very quickly. The number of iterations required for the 
convergence is seen to be 50-60, for our cloud environment.   

 

Figure 17: Convergence Curve of Total Cost 

Table 5 describes the comparison of execution cost, execution time and energy consumption used to process same 

number of workloads (50 workloads of same type) on real cloud environment for PSO-HPC [14], PSO-SW [15] and 

PSO-DVFS [16]. In this experiment, we have considered three different cloud infrastructures with different 

processor configurations (2 core processor, 4 core processor, 8 core processor and 16 core processor) to measure the 

variation of execution cost, execution time and energy consumption.   
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Table 5: Summary of Experimental Statistics on Real Cloud Environment 

Configuration 

QoS Parameter 

Execution Cost (C$) Energy Consumption (kWh) Execution Time (Seconds) 

PSO-
HPC 

PSO-
SW 

PSO-
DVFS 

BULLET PSO-
HPC 

PSO-
SW 

PSO-
DVFS 

BULLET PSO-
HPC 

PSO-
SW 

PSO-
DVFS 

BULLET 

2 Core 
Processor 

102 78 49 37 145 118 77 55 321 356 301 229 

4 Core 
Processor 

310 289 155 83 178 152 141 125 669 587 671 491 

8 Core 
Processor 

451 371 299 151 415 372 237 195 1391 1423 1293 908 

16 Core 
Processor  

522 439 391 203 564 456 389 225 1820 2109 2201 1423 

 

Figure 18, Figure 19, Figure 20, Figure 21, Figure 22, Figure 23 and Figure 24 describes the comparison of QoS 

parameters (execution cost, execution time, energy consumption, availability, resource utilization, latency and 

reliability) used to process different number of workloads (45 and 90) on cloud environment for BULLET with 

different number of Virtual Machines (VMs).  The number of VMs used to execute the workloads was incremented 

gradually showing how the QoS parameters are optimized when more VMs were added to the cloud. As shown in 

Figure 18-24, with one virtual node running on Server R1, execution of 45 workloads finished in 636.12 seconds. 

With 12 virtual nodes (6 running on R1, 4 running on R2 and 2 running on R3), the application took 476.16 seconds. 

We note that the execution time is reduced by adding additional virtual nodes.  
 

The value of reliability, availability, resource utilization, latency, execution time, execution cost and energy 

consumption has been calculated for 45 and 90 cloud workloads with different number virtual machines (VM 

nodes). By increasing the number of VMs, the percentage of reliability is increasing. The percentage of reliability 

with 45 workloads is more as compared to 90 Cloud workloads as shown in Figure 18. The maximum percentage of 

reliability is 94.65 at 12 VMs.  

 

 

Figure 18: Effect of Change in Number of VMs on Reliability 

By increasing the number of VMs, the percentage of availability is increasing as shown in Figure 19. The percentage 

of availability with 90 workloads is lesser as compared to 45 cloud workloads. The maximum percentage of 

reliability is 93.46 for 45 workloads and 92.44 for 90 workloads at 12 VMs.    
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Figure 19: Effect of Change in Number of VMs on Availability 

As shown in Figure 20, the percentage of resource utilization with 90 workloads is more as compared to 45 

workloads. The maximum percentage of resource utilization is 89.68 at 90 workloads and minimum percentage is 

88.41 at 45 workloads with 12 VMs. 

 

Figure 20: Effect of Change in Number of VMs on Resource Utilization 

As shown in Figure 21, the execution time decreases with increase in number of VMs. At 45 workloads, execution 
time is lesser than 90 workloads. Figure 21 shows that the execution time reduces rapidly in 90 workloads as 
compared to 45 workloads. 

 

Figure 21: Effect of Change in Number of VMs on Execution Time 
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With the increase in number of VMs, execution cost rises as shown in Figure 22. The minimum cost used is 47.58C$ 
at 45 workloads and 322.31 C$ at 90 workloads with 1 VM. The average value of execution cost at 45 workloads is 
22.16% lesser than 90 workloads. 

 

Figure 22: Effect of Change in Number of VMs on Execution Cost 

With increasing the number of VMs, the value of latency is decreasing as shown in Figure 23. Initially, the value of 

latency is more for 90 workloads with 1 VM. At 12 VMs, maximum resources are utilized and value of latency for 

both 45 and 90 workloads is approximately same.  

 

Figure 23: Effect of Change in Number of VMs on Latency 

By increasing the number of VMs, the value of energy consumption increases as shown in Figure 24. The minimum 
value of energy consumption is 20.25 kWh for 45 workloads at 1 VM.  The average value of energy consumption 
with 45 workloads is 22.36% lesser 90 workloads.     

 

Figure 24: Effect of Change in Number of VMs on Energy Consumption 
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4.3 Statistical Analysis 

Statistical significance of the results has been analyzed by Coefficient of Variation (  ), a statistical method.    is 
statistical measure of the distribution of data about the mean value.    is used to compare to different means and 
furthermore offer an overall analysis of performance of the technique used for creating the statistics.  It states the 
deviation of the data as a proportion of its average value, and is calculated as follows [Eq. 19]:                   (19) 

Where    is a Standard Deviation and   is Mean.    of execution time, cost and energy consumption has been 
studied of Cloud workload of proposed technique (BULLET) and existing algorithms (PSO-HPC, PSO-SW and 
PSO-DVFS) as shown in Figure 25, Figure 26 and Figure 27.   

 
Figure 25:     for Execution Time with each scheduling Algorithm    calculated for execution time and cost results attained by proposed algorithm and existing algorithms. Range of    (0.25% - 1.69%) for execution time, (0.37% - 1.96%) for cost and (0.61% - 2.47%) for energy consumption 

approves the stability of BULLET as shown in Figure 25, Figure 26 and Figure 27. Small value of    signifies 
BULLET is more efficient in resource scheduling in the situations where the number of cloud workloads has 
changed. Value of    decreases as the number of workloads is increasing. Statistical analysis demonstrates the  

 
Figure 26:     for Execution Cost with Each Scheduling Algorithm 
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Figure 27:      for Energy Consumption with Each Scheduling Algorithm 

BULLET outperforms existing scheduling algorithms for large numbers of cloud workloads. With small value of    system is more stable and BULLET attained the best results in the cloud for cost and execution time as QoS 
parameters.   

The statistical analysis of QoS parameters (Figure 18-24) is described in Table 6. The number of samples considered 
is 12. The value of confidence interval is calculated using IBM SPSS 24. Table 6 lists the 95% Confidence Intervals 
and the estimations of the medians of the differences of the values of QoS parameters of the servers with 45 and 90 
workloads. From the Table 6, we can see that the estimated error (the pseudo-median of the differences) is less than 
3% for all characteristics. This is representative of the fact, the mean value of all the QoS parameters with 95% 
confidence interval from its lower value to upper value.  
 

Table 6: Statistical Analysis of QoS Parameters 

QoS Parameter Number of 
Workloads 

Standard 
Deviation 

Standard 
Error 
Mean 

95% Confidence Interval 
of the Difference 

Mean      
Value 

Lower Upper 
Execution Time (Sec) 45 53.34805 15.40026 532.6884 600.4799 566.5842 

90 100.56821 29.03154 1190.6220 1318.4180 1254.52 
Execution Cost (C$) 45 55.75 16.09364 958.2748 166.1185 130.6967 

90 49.34614 14.24500 369.6428 432.3489 400.9958 
Latency (Sec) 45 2.61545 0.75502 6.3633 9.6869 8.0251 

90 3.90714 1.127889 9.2759 14.2408 11.7583 
Availability (%) 45 1.65032 0.47641 89.8914 91.9886 90.94 

90 3.19012 0.92091 85.1339 89.1877 87.1608 
Reliability (%) 45 4.92129 1.42065 83.6493 89.9030 86.7762 

90 3.29977 0.95256 80.6493 84.2875 82.1909 
Resource Utilization 

(%) 
45 4.97449 1.43601 78.2951 84.6164 81.4557 
90 3.45959 0.99870 81.7377 86.1340 83.9358 

Energy Consumption 
(kWh) 

45 31.37344 9.05673 49.2559 89.1234 69.1897 
90 38.66417 11.16138 183.3145 232.4465 207.8805 

 

The variation of mean value of execution cost with different number of workloads and number of VMs is shown in 

Figure 28. With increasing the number of VMs, the execution cost increases. It is clearly shown that the execution 

cost for 15 workloads is 31.82% lesser than 90 workloads with 2 VMs. For 60 workloads, execution cost with 12 

VMs is 22.61% more than 2 VMs.  
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Figure 28: Statistical Analysis of Execution Cost 

Figure 29 shows the variation of mean value of latency with different number of workloads and number of virtual 

nodes. It clearly shows the latency for 15 workloads is 42.52% lesser than 90 workloads with 2 VMs. With 

increasing the number of workloads, the latency increases but due to increasing in number of VMs, latency 

decreases. For 90 workloads, latency with 12 VMs is 27.92% lesser than 2 VMs.  

 

Figure 29: Statistical Analysis of Latency 

The variation of mean value of availability with different number of workloads and number of VMs is shown in 

Figure 30. With increasing the number of VMs, the availability increases. It is clearly shown that the availability 

with 12 VMs is 4.25% more than 2 VMs for 15 workloads. With increasing the number of workloads, the 

availability decreases. The availability for 90 workloads is 7.52% lesser for 45 workloads with 12 VMs.  
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Figure 30: Statistical Analysis of Availability  

Figure 31 shows the variation of mean value of reliability with different number of workloads and number of virtual 

nodes. With increasing the number of VMs, the reliability increases. It is clearly shown that the availability with 12 

VMs is 7.61% more than 2 VMs for 30 workloads. With increasing the number of workloads, the reliability 

decreases. The reliability for 75 workloads is 6.96% lesser for 15 workloads with 12 VMs.  

 

 

Figure 31: Statistical Analysis of Reliability  
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The variation of mean value of resource utilization with different number of workloads and number of VMs is 

shown in Figure 32. With increasing the number of VMs, resource utilization decreases. It is clearly shown that the 

resource utilization for 30 workloads is 9.42% more than 75 workloads with 6 VMs. With increasing the number of 

workloads, resource utilization increases. For 60 workloads, resource utilization with 12 VMs is 4.61% lesser than 2 

VMs.  

 

Figure 32: Statistical Analysis of Resource Utilization  

Figure 33 shows the variation of mean value of energy consumption with different number of workloads and number 

of virtual nodes. It is clearly shown that the energy consumption increases with increasing the number of VMs and 

number of workloads. Energy consumption for 15 workloads is 14.75% lesser than 90 workloads with 2 VMs. With 

12 VMs, energy consumption for 90 workloads is 17.56% more than 15 workloads. 

 

Figure 33: Statistical Analysis of Energy Consumption 
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Figure 34 shows the variation of mean value of execution time with different number of workloads and number of 

virtual nodes (VMs). It clearly shows the execution time for 15 workloads is 34.152% lesser than 90 workloads with 

2 VMs. With increasing the number of VMs, the execution cost decreases. For 90 workloads, execution time with 12 

VMs is 25.44% lesser than 2 VMs.  

 

Figure 34: Statistical Analysis of Execution Time 

4.4 Discussions   

The performance of proposed PSO based resource scheduling technique (BULLET) has been compared with the 
existing scheduling algorithms (PSO-HPC, PSO-SW and PSO-DVFS). The performance of BULLET has been 
analyzed with different number of cloud workloads and resources. The performance of BULLET has been evaluated 
with respect to execution time, cost, energy and other QoS parameters like availability, reliability, latency and 
resource utilization. Execution cost permits the evaluation for selection of resources whereas duration of workload 
execution evaluates by execution time. The workload execution using the BULLET performs better as shown by all 
the experimental results. The overall cost for cloud consumer’s workload execution is less. With the increase in 
budget, the more number of resources are provided to reduce the execution time. BULLET executes the same 
number of cloud workloads at maximum availability and reliability. The average value of energy consumption in 
BULLET is 7.61%, 11.45% and 17.19% lesser than PSO-HPC, PSO-SW and PSO-DVFS respectively.  The 
minimum cost used in BULLET is 171 C$ at 15 workloads and maximum is 416 C$ at 90 workloads. The average 
value of execution cost in BULLET is 3.16%, 4.72% and 9.16% lesser than PSO-HPC, PSO-SW and PSO-DVFS 
respectively.    

At 30 workloads, execution time in BULLET is 6.69% lesser than PSO-HPC, 7.12% lesser than PSO-SW and 
7.59% lesser than PSO-DVFS. At 90 workloads, execution time in BULLET is 8.72% lesser than PSO-HPC, 
11.39% lesser than PSO-SW and 14.79% lesser than PSO-DVFS. The maximum percentage of availability is 88.7 % 
at minimum number of cloud workloads. At 75 workloads, percentage of availability in BULLET is 7.42% more 
than PSO-HPC, 9.91% more than PSO-SW and 13.72% more than PSO-DVFS. The maximum percentage of 
reliability is 19.2 at 15 cloud workloads. At 60 workloads, percentage of reliability in BULLET is 4.91% more than 
PSO-HPC, 8.76% more than PSO-SW and 17.22% more than PSO-DVFS.  The maximum percentage of resource 
utilization is 88.4% at 90 cloud workloads and minimum percentage is 71.96 at 15 workloads in BULLET. The 
minimum value of latency is 1.24 seconds at 15 cloud workloads and maximum is 9.13 at 90 cloud workloads in 
BULLET. At 15 workloads, latency in BULLET is 2.23% lesser than PSO-HPC, 1.91% lesser than PSO-SW and 
5.66% lesser than PSO-DVFS but at 90 workloads, latency in BULLET is 6.11% lesser than PSO-HPC, 14.92% 
lesser than PSO-SW and 17.59% lesser than PSO-DVFS. Considering all these QoS parameters (execution time, 
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cost, energy, availability, reliability, latency and resource utilization) and experimental result outcomes, it is shown 
that BULLET delivers a superior solution for heterogeneous cloud workloads and approximate optimum solution for 
challenges of resource scheduling.       

5. Conclusions and Future Scope 

In this paper, we have proposed PSO based resource scheduling technique called BULLET for scheduling of 
workloads in cloud environment so as to minimize the execution cost, time and energy. Experimental results 
demonstrate that BULLET is effective in decreasing the execution time, cost and energy consumption of cloud 
workloads along with other QoS parameters like availability, reliability, latency and resource utilization. Proposed 
scheduling technique provides effective outcomes as compared to existing PSO based scheduling algorithms at 
different levels of cost, time and energy as shown in test cases. Thus, resources can be scheduled easily and 
workloads can be executed effectively through proposed scheduling algorithm and this will further reduce queuing 
time which leads to effective resource execution. Proposed scheduling technique maps and executes the workloads 
based on workload details given by user and resource details given by providers. In future, we will further develop 
an autonomic resource management technique that efficiently schedules the provisioned cloud resources and 
maintains the SLA based on user’s QoS requirements to reduce the above mentioned dependency. IaaS providers 
can use these results to quickly assess possible reductions in execution time and execution cost, hence having the 
potential to save energy. This framework can also be extended by identifying relationship between workload 
(patterns) and the resource demands (demands for compute, storage, and network resources) in the cloud.  
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