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Abstract

Background: oscillatory activity, which can be separated in background and oscillatory burst
pattern activities, is supposed to be representative of local synchronies of neural assemblies.
Oscillatory burst events should consequently play a specific functional role, distinct from
background EEG activity – especially for cognitive tasks (e.g. working memory tasks), binding
mechanisms and perceptual dynamics (e.g. visual binding), or in clinical contexts (e.g. effects of brain
disorders). However extracting oscillatory events in single trials, with a reliable and consistent
method, is not a simple task.

Results: in this work we propose a user-friendly stand-alone toolbox, which models in a
reasonable time a bump time-frequency model from the wavelet representations of a set of signals.
The software is provided with a Matlab toolbox which can compute wavelet representations before
calling automatically the stand-alone application.

Conclusion: The tool is publicly available as a freeware at the address: http://
www.bsp.brain.riken.jp/bumptoolbox/toolbox_home.html

Background
The structural organization (which elements are relevant)
and associated functional role (how these elements play a
role in brain dynamics) of electroencephalographic (EEG)
oscillations are still far from being completely under-
stood. Oscillatory activity can be separated in background
(or ongoing) and transient burst pattern activities. The
background EEG is constituted by regular waves, whereas
bursts are transient and with higher amplitudes: cortical
dynamics do not follow continuous patterns, but instead
operates in steps, or frames [1]. These bursts are organized

local activities, most likely to be representative of local
synchronies. Synchrony among oscillating neural assem-
blies is a plausible candidate to mediate functional con-
nectivity, and therefore to allow the formation of
spatiotemporal representations [2,3]. Oscillatory bursts
should consequently play a specific functional role, dis-
tinct from ongoing background EEG activity (which does
not mean however that background activity cannot con-
vey information). They are correlated with reciprocal
dynamic connections of neural structures, which can be
considered as distributed local networks of neurons [4].
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Together, distant neural assemblies are involved in collec-
tive dynamics of synchronous neuronal oscillations [3],
taking the shape of oscillatory patterns.

EEG activities are usually analyzed using either time or fre-
quency representations of event related potentials (ERP),
which can be interpreted as the reorganization of the
spontaneous brain oscillations in response to the stimu-
lus [5,6]. ERP can be further seprated into two sub-groups:
event related synchronization (ERS), and similarly event
related desynchronization (ERD). The simplest hypothe-
sis concerning the origins of ERP would be additive: fol-
lowing the stimulus onset, in each trial, a transient change
of amplitude is observed in a given frequency range, inde-
pendent of the ongoing signal (the signal is synchronized
or dissynchronized in all trials). However, other compet-
ing theories could also explain the ERP patterns. The stim-
ulus could induce a change in the phase of ongoing
oscillations, without power changes. If the phases of all
trials were aligned or dialigned, then after averaging ongo-
ing oscillations an ERS or ERD pattern would arise: this is
the so-called theory of phase resetting (e.g. [7,8]; see also
[9]). Another recent theory explains the generation of
event related potentials as a consequence of a baseline
shift of ongoing activity [10]. Confronting these three
competing theories with experimental facts seems neces-
sary in order to understand the basis of neural dynamics.

It should be noted however that all the above ERP theories
are interested in the study of averages of electrophysiolog-
ical signals in the time domain. ERP were observed in sev-
eral studies to have visible outcomes even in single trials
[11,12], especially observable when using wavelets
[6,12,13] which represent the signal with optimal time-
frequency resolutions. Local oscillatory events are present
in single trials, appearing as transient oscillatory synchro-
nizations (TOS) or transient oscillatory desynchroniza-
tions (TOD), corresponding to the presence or absence of
a coherent neural assembly [6]. If the additive theory was
right, ERS and ERD could be assumed to be the outcome
of an average of TOS and TOD events respectively – if not
(especially in the phase shift theory), they would have an
independent meaning, and it would be even more worth-
wile to study them. We are not interested here in an aver-
aged outcome (we do not want to study ERP, but TOS and
TOD), because the brain itself usually processes informa-
tion in single trials.

Instead of using average approaches, one could try to ana-
lyze directly single trials in the time-frequency plane.
However, in the case of time-frequency planes, hundreds
of thousands of coefficients are used to represent a signal;
and when a large set of signals is to be compared, the com-
plexity of simple graphical matching methods becomes
intractable. Analyzing directly this large amount of infor-

mation leads to complex computations, and either
approximate or over-fitted models (this problem is usu-
ally termed as the "curse of dimensionality"). We instead
advocate a sparsification approach. The main purpose of
sparsification approaches is to extract relevant informa-
tion within redundant data. Sparse time-frequency bump
modeling, a 2D extension of the 1D bump modeling
described in [14], was developed for this purpose: sparse
time-frequency bump modeling extracts the most promi-
nent bursts within a normalized time-frequency map, by
modeling them into a sum of parametric functions (see
Fig. 1). Bump modeling is however not the only possible
sparsification approach. The ridges [15,16] of wavelet
maps can be extracted; but while they are sparse, their bio-
logical interpretation is not trivial. Multiway analysis [17]
allows the simultaneous extraction of multi-dimensional
modes, and can be applied to time-frequency representa-
tions of electrophysiological signals (e.g. [18]); however it
does not allow the independent analysis of transient oscil-
lations. Wavelet packets [16,19] allow the computation of
very sparse time-frequency representation (which can be
efficient for signal compression, sometimes also for fea-
ture extraction); however, because they provide inaccurate
time-frequency locations of oscillatory contents, the use
of discrete wavelets is not appropriate for signal analysis –
especially for electrophysiological data. Finally, the clos-
est method to bump modeling would be matching pursuit
[20], which associates a library of functions to a signal –
the signal is thereby decomposed into a set of atomic
functions, each with specific time-frequency properties
(one function could be used to represent a transient oscil-
lation). Other more straightforward attempts were also
made at extracting specific atoms of EEG oscillations, like
for instance the extraction of narrow band alpha peak
epochs [9], or the analysis of a specific time-frequency
area (e.g. [21]), but with limitations due to an a priori
defined time-frequency area or frequency range [22]. As a
comparison, sparse bump modeling allows an automatic
broadband modeling of time-frequency atoms, each of
them interpreted as transient local activities of neural
assemblies (TOS or TOD).

Sparse time-frequency bump modeling was first applied
to model invasive EEG (local field potentials), recorded
from rats olfactory bulb during a go-no go olfactory mem-
ory task [22,23]. Afterwards, it was used to investigate sev-
eral aspects of brain oscillatory dynamics: scalp EEG data
from patients with early stage of Alzheimer's disease (AD)
was also successfully analyzed and classified using bump
modeling [22,24,25] with a high accuracy (80–93% leave-
one-out validation rate). The model was also applied to
represent simultaneously time-frequency and space infor-
mation using a sonification approach [26]. Time-fre-
quency space information was then exploited using a
synchrony model: oscillatory burst extracted with bump
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Sparse time-frequency bump modeling of a toy EEG signalFigure 1
Sparse time-frequency bump modeling of a toy EEG signal. (a) The toy EEG signal (Biosemi system, 2048 Hz sampling 
rate, 2 sec), recorded in rest condition with eyes closed, is first (b) transformed using complex Morlet wavelets, then (c) the 
map is z-scored (offset = 1). Sparse time-frequency bump modeling decomposes the z-scored map into a sum (d) of half ellip-
soid (c) parametric functions (windows of 4 cycles, pruned to the 8 first bumps).
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modeling were used to determine large-scale synchrony –
the stochastic event synchrony (SES, [27,28]). Applied to
EEG recorded from early AD patients, SES extracted signif-
icant differences with age-matched control subjects. These
differences were complementary when compared against
30 other synchrony measures [29,30] (uncorrelated with
all other 30 measures). Finally, oscillations of steady state
visual event potential epochs were extracted (hundred sin-
gle trial EEG signals) using sparse bump modeling, and an
increase of large-scale synchrony measured using SES
[31]. This confirms that sparse bump modeling has a wide
range of possible applications, from feature extraction to
signal modeling and analysis.

However, due to its complexity, it was until now difficult
for researchers to reproduce our results: only one external
group [32] tried to reproduce results obtained with bump
modeling on Alzheimer's disease modeling (they
obtained an 80% classification rate). Therefore we present
now a toolbox [see Additional file 1] for sparse bump
modeling. The software extracts transient oscillatory
events (TOS or TOD). We will first describe the method
procedure, then demonstrate the toolbox functions with a
toy signal. In appendix, we present some details of the
improved adaptation and matching methods imple-
mented in the toolbox.

Implementation
Method Procedure

ButIf toolbox follows four steps (rationales for this proce-
dure, proofs and technical details are explained in [22],
see also Fig. 1): (in Matlab) the signal is first wavelet trans-
formed into time-frequency, then the time-frequency map
is z-score normalized; (in the stand-alone software) the
map is described by a set of time-frequency window, then
parametric functions are adapted within these windows,
in decreasing ordered of energy.

The first steps are executed with Matlab, while the last are
executed with a stand-alone software. Note however that
the stand-alone software can be directly called by Matlab:
the whole package can be run from Matlab.

Wavelets

Wavelets (see [16,19] for details), especially complex
Morlet wavelets [33], have already been widely used for
time-frequency analysis of EEG signals [13,34-39]. Com-
plex Morlet wavelets ϑ of Gaussian shape in time (devia-
tion σ) are defined as:

where σ and f are interdependent parameters, the con-
straint 2πft > 5. The wavelet family defined by 2πft = 7, as
described in [34], is adapted to the investigation of EEG
signals. This wavelet has positive and negative values
resembling those of an EEG, but also a symmetric Gaus-
sian shape both in the time and frequency domains – i.e.
this wavelet locates accurately time-frequency oscillations
both in the time and frequency domain.

We scale complex Morlet wavelet ϑ to compute time-fre-
quency wavelet representations of the signal X of length T:

where s, the scaling factor, controls the central frequency f
of the mother wavelet. The modulus of this time-scale rep-
resentation can therefore be used as a positive time-fre-
quency spectrogram, which we will note Cx, a time-
frequency matrix of dimension T × F, where F scales are
used to compute appropriate frequency steps (usually lin-
ear or logarithmic, in the case of bump modeling we use
linear steps).

Z-score

The time-frequency spectrogram is normalized depending
on a reference signal. The reference signal is used to deter-
mine the usual distribution of the time-frequency map:
bump modeling will extract activities with transient
amplitudes above or below this usual distribution (i.e.
high or low z-score). The reference signal R of dimension
U is wavelet transformed into a spectrogram Cr of dimen-
sion U × F. The average Mf(Cr) = [μ1(Cr), μ2(Cr),..., μF(Cr)]
and standard deviations Sf(Cr) = [σ1(Cr), σ2(Cr),..σF(Cr)]
are computed from Cr for each of the F frequencies of the
matrix Cr. For instance, at frequency i:

and

The z-scored map Zx is obtained through normalization of
the wavelet map Cx using these values:

In event related studies, the reference signal is usually a
signal recorded during a rest period, just before the stim-
ulus period (the so-called pre-stimulus period). In rest
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condition, the reference signal can be either the signal
itself (self-reference signal); or a statistic derived from a
group of signals (as used e.g. in [26]). The minimal
number of samples of the reference signal should be
determined with regards to the lowest frequency range
(because low frequencies have longer cycles than high fre-
quencies), so that a sufficient number of cycles is present
– otherwise, the reference statistic would not be signifi-
cant.

Windowing

The z-scored map is analyzed in a time-frequency area of
interest defined by the user, with lowest frequency fm and
highest frequency fx. The z-scored map Zx is described by
a set of windows ω(f, t) with f ∈ [fm, fm + 1,...fx], t ∈ [bt, bt

+ 1...T - bt] the position on the general time-frequency
map respectively in frequency and time. Each ω has its
own dimensions H × W (height and width), determined
depending on the time-frequency resolution at the win-
dow's central frequency. The dimension W is determined
to have a duration of a fixed (usually 4) number of cycles
(for instance, W = 1 sec. for activities with central fre-
quency at 4 Hz, W = 100 msec. for activities at 40 Hz). The
dimension H is determined as the ratio of W to the time-
frequency resolution (see [22]). The limit bt is determined
so that bt = W/2 for the windows at the frequency fm (low
frequency windows are larger than high frequency win-
dows). In other words, the left and right limits of the mod-
eled area are vertical, and constrained by the lower
frequency so as to allow the modelisation of bumps cen-
tered at these limits [22] (similarly, the z-score map is
modelled with extract upper and lower borders in fre-
quencies).

Parametric functions

We use half ellipsoid functions (see Fig. 1) to model the
normalized time-frequency map. The half ellipsoid
boundaries are defined as:

where y and x are respectively the time and frequency posi-
tion of the adaptation window on the time-frequency
map (fixed parameters), f and t are respectively the time
and frequency position of the bump on the time-fre-
quency map, h and w are respectively the height and width
of the bump, and A is its amplitude. All points lying inside
these boundaries are non zero; outward points have null
values. This is expressed by:

where λ is a small positive value (λ is non zero for com-

putational reasons:  could not be computed for infin-

itesimal values of Ψ in C++).

Hence the adaptation error to be minimized will be:

Adaptation is performed using a combination of first and
second order gradient descent (using the BFGS algorithm
[40]). More details on the adaptation procedure can be
found in [41] and in the appendix.

C++ implementation

The stand-alone software was implemented in C++ for
better speed, and higher stability when manipulating
large data sets (Bump modeling usually computes hun-
dreds of Frobenius norms in the time-frequency plane, it
can be time-consuming – our previous implementation
using Matlab was about 100 times slower).

Exchange files between Matlab and the C++ software (the
'.wvf' and '.bdc' files) store data as integers. Float or dou-
ble precision real numbers are recoded into integers (this
can be seen in the script used to save and load these files),
because Matlab and C++ Builder appear to use differing
symbolic representations. The wavelet maps are imple-
mented as objects, with time-frequency contents parti-
tioned into windows using a chain list object. Each
window is sorted using an energy function, based on the
matching procedure described in the appendix. The mod-
eling procedure selects iteratively the best window, per-
forms the parameter adaptation, re-computes the energy
of neighboring windows, and finally calls a method per-
forming a fast sorting of the windows. In the end, this pro-
cedure avoids redundant computations: the set of window
energy is computed once and for all at the beginning of
the modeling. The adaptation itself is applied to bump
functions, implemented as virtual methods. The algo-
rithm uses the step gradient described in the appendix, the
BFGS algorithm part was re-coded from a Numerical Reci-
pes original code [40]).

ButIf Toolbox

The toolbox is separated in two parts: One is a stand-alone
software (Fig. 2) developed using Borland C++ Builder
2006. This standalone software is used to model bumps
from wavelet maps. It needs a Windows XP environment
to run. The second one is a set of Matlab m-files that per-
form the wavelet transform and call the software. The
resulting bump model can be displayed using a Matlab
function ('display_bumps.m'). The toolbox uses several
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parameters, they are detailed both in the Matlab files
(Matlab_'.m' files, such as 'demo_basic.m') as comments,
and on the website [42]. Most parameters are related to
the wavelet transform itself (minimal frequency, maximal
frequency, etc..., documentation can be found in [42]).
Let us explain here those related with bump modeling: z-
score offset, window dimension, and convergence/prun-
ing criterion.

z-score offset

The first step of bump modeling is wavelet time-frequency

representation. Afterwards, the z-score normalization is

applied to the map. We will refer to the positive z-score

values as transient oscillatory synchronization (TOS)

components: if the signal is recorded during a stimula-

tion, these oscillatory peaks are likely to be constituent of

ERS (assuming the additive theory is valid), and probably

carry specific information related to the stimulus (as they

are representative of local neural assembly synchroniza-

tions). If the signal is recorded in pre-stimulus period or

in rest condition, these oscillations are representative of

organized oscillatory bursts. Z-score returns values in �,

but bump modeling only accepts values in �+ as inputs. In

order to model TOS, we reject the negative components of

the map with a threshold, the z-score offset ϕ. The thresh-

olded map  is obtained with:

Usual values of ϕ are in the [0–3] range, it corresponds to
the proportion of ongoing activity which will be rejected
(a z-score of 2 corresponds to 95%, a z-score of 3 to 99%).
For very clean signals, a low z-score is possible, for noisy
signals, the threshold should be higher. The parameter
'offset_val' represents ϕ.

We will refer to the negative z-score values as transient

oscillatory desynchronization (TOD) components: if the

signal is recorded during a stimulation, these oscillatory

peaks are likely to be constituent of ERD (assuming the

additive theory is valid), and probably carry specific infor-

mation related to the stimulus(as they are representative

of local neural assembly desynchronizations). If the signal

is recorded in pre-stimulus period or in rest condition,

these oscillations are representative of unusually disor-

ganized oscillatory bursts. These negative z-score values in

�- can be extracted into a threshold map :
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ButIf toolbox main windowFigure 2
ButIf toolbox main window. Screen capture of the stand-alone software main window. The software opens wavelet files 
(.wvf) generated with Matlab, and extracts a sparse half ellipsoid bump model.
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In order to model , the parameter 'offset_val' must be

given the value -1 in the model header.

Window Dimension

Wavelets have a specific time-frequency resolution
depending on their central frequency [16,19]. This resolu-
tion corresponds to their precision in time and frequency.
Consequently, the representation of a high frequency
transient activity will be narrow in time and spread in fre-
quency – conversely for low frequency transient activities.
This is taken into account when establishing the adapta-
tion windows. The dimension H × W (height and width)

of the windows ω depends on the time-frequency resolu-
tion at the window's central frequency: the dimension W
is determined to have a duration of a fixed number of time
periods, and the dimension H is determined as the ratio
of W to the time-frequency resolution (see above, and
[22]). This dimension should always be determined to fit
the average size of transient synchrony events, but is adap-
tive with frequency (it does not usually need to be
changed for analyzing low or high frequency signals –
because it is expressed in cycles). The parameter
'header.cote' in the toolbox represents this fixed number,
i.e. the number of oscillation one wishes to model. It was
observed that TOS last around three to four cycles (oscil-

Z x
−

Effect of the z-score offsetFigure 3

Effect of the z-score offset. Wavelet thresholded z-score map  (a1, a2, a3), and bump model for offsets ϕ ∈ [-1..5] (b1, 

b2, b3, c1, c2, c3). Left: wavelet negative z-score maps  (a1, a2) were first modeled until eight bumps were obtained (b1, 
b2), then continued until completion (c1, c2). If the z-score offset is too high (a2), the map is not well fitted (c1 vs. c2). Right: 

wavelet negative z-score map  (a3), and its bump model (b3, c3). The modeling was performed first until 30 bumps were 
obtained (b3), then continued until completion (c3). Negative z-score events are shorter than positive ones (a1, a2 vs. a3), 
which leads to the modeling of more events (b1, b2 vs. b3).
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late three to four times then disappear) [22,36]. Negative
events (TOD) are shorter in duration, lasting approxi-
mately two time periods. The parameter 'header.cote'
should usually be four to model TOS events; and two to
model TOD events (as an illustration, see Fig. 3). How-
ever, one can change these parameters if he wishes to
study its relevance. In this case, take into consideration
that windows encompassing too many cycles would
attempt to model several events with one bump; whereas
a too short window would split the map in many unnces-
sary atoms.

Convergence and Pruning

We first design a model with the largest number of bumps
– within a reasonable computation time. To that effect,
the fraction of the total intensity of the map modeled by
a given bump is computed:

This value is compared with a threshold Ft: when three
consecutive bumps have F <Ft, modeling stops. The
parameter 'header.limit' (usually = 0.2) represents this
threshold.

A tradeoff must be performed between accuracy and rele-
vance (also termed 'bias-variance dilemma'): if the
number of bumps in the model is too low, the latter will
not be accurate; if it is too large, irrelevant non-organized
information from the background EEG will be modeled.
When modeling is finished using the above termination
criterion, we use a pruning strategy. The Matlab program
'prune_model.m' can be used to perform this pruning.
Pruning can be performed with four options: pruning to
remove only abnormal bumps (bumps with abnormally
small amplitude, width or height, i.e. below 5.10-2); prun-
ing to remove bumps with a threshold Ft2 ≥ Ft; pruning to
remove all bumps after the N first modeled (modeling
order); or pruning to remove all bumps after the N first in
time order. Users can combine these options, in order to
obtain a clean and accurate representation.

Results
Here we will demonstrate how this toolbox works using a
toy signal, and illustrate the use of the three main param-
eters (z-score offset, window dimension, and conver-
gence/pruning). All files (signal, Matlab demonstration
'.m' files, application) can be downloaded on the bump
toolbox project website. The toy signal
('sig_example.mat', see Fig. 1) is an EEG signal taken from
one channel recorded in rest eyes closed condition
(Biosemi system, 2048 Hz sampling rate, 2 sec). This dem-
onstration can be reproduced by launching demo_zscore

under Matlab 7.0 (with the wavelet toolbox). Note that
due to border effects of the wavelet transform, 500 msec
are automatically rejected on both sides of the wavelet
map by the toolbox prior to bump modeling – hence only
one second was analyzed in the following examples.

z-score offset

We vary the parameter 'offset_val' in the [0–5] range to
show its effect on modeling (offset_val > 3 is usually not
worth try, it is only shown for demonstrative purpose).
The resulting models (Fig. 3, left, a1-2, b1-2, c1-2) are in
the folder 'result demo_zscore). Obviously, a too permis-
sive z-score offset (here offset_val > 2) will introduce
strong bias in the model.

Using the parameter offset_val = -1, the negative compo-

nents  can be modeled (Fig. 3, right, a3, b3, c3). As

illustrated on the figure, the negative events are even more

transient, and needs usually more bumps to be properly

represented.

Window Dimension

We introduced above the usual limits for the window

dimension. We will illustrate here the effect of this param-

eter. We again modeled the negative components ; but

this time instead of using the adequate window dimen-

sion parameter (header.cote = 2) we used too large win-

dows (header.cote = 4). In this condition, the minimized

error E will be lower when two or more events are mod-

eled by one bump only (which is not desirable, see Fig. 4).

Convergence and Pruning

The results of demo_zscore are shown with (Fig. 3, b1-3)
or without pruning (Fig. 3, c1-3). The first model is per-
formed with a limit Ft = 0.2 without pruning, the second
model is pruned with a fixed number of bumps (options
1 and 3 in 'prune_model.m').

Conclusion
The ButIf toolbox allows the extraction of time-frequency
oscillatory events. Whatever theory (additivity, phase
resetting or baseline shift) would best explain ERP,
extracting transient oscillations in single trials is always
relevant: if ERP are due to a change of amplitude, more
transient oscillations should be observed. If instead a
phase shift of the signal is observed, then the transient
oscillations position will change both for transient oscil-
lations an background EEG; combined with changes in
the number of these oscillations in case we admit the the-
ory of baseline shifts. Contrary to averaging studies, using
sparse time-frequency bump modeling, analyzing the
amplitude, number, or alignment of TOS and TOD
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becomes feasible in single trials. In other words, whatever
the generation hypothesis, bump modeling allows a bet-
ter understanding of the mechanism behind the presence
of an ERP, because it facilitates the independent analysis
of transient oscillations in single trial, which provides
complementary information. The idea is not to neglect
the information of ongoing activity, but instead to allow
a separate study of transient oscillations on one hand, and
ongoing activity on the other hand. In the end, even the
presence or absence of ERP is not relevant, as the analysis
of transient synchronizations and desynchronizations can
be relevant even in rest conditions (e.g.[29], [24]). We
stress again that bump modeling is a method well suited
in order to study the characteristics of transient oscilla-
tions, and should not be confused with ERP averaging.

This approach has already provided new insights in EEG
and LFP signals ([22,28]), and will hopefully allow signif-
icant progress in the investigation of brain dynamics. Nev-
ertheless, although this toolbox is user-friendly and

reasonably efficient, it is very dependent upon parameter
settings. More specifically, one parameter is critical when
the toolbox is used for applications such as SES [27,28],
classification [22], or statistical analysis [31]: the pruning
threshold. A visual inspection (using the script
'display_bumps.m') will allow users to refine this param-
eter. Automatic approaches to determine the best param-
eter are also possible. Such an optimization is usually
performed with an ad-hoc algorithm depending on the
application: for instance, if the application is a classifica-
tion, this parameter has to be estimated during the valida-
tion procedure. As another example, in [22], we described
an algorithm which can be used to optimize this thresh-
old when event-related paradigms are used.

The software transforms a set of EEG signals first into a set
of wavelet transforms (sored in Matlab '.mat' files), then
into a bump model (more details are provided in the
manual 'BUTIF Toolbox FAQ.pdf'). The outcome is a set
of parameters (corresponding to the parametric bump

Effect of windows dimensionsFigure 4

Effect of windows dimensions. Example of effect of the windows dimension parameter. The negative z-score  (a) of the 
toy signal is modeled. Here, the correct windows dimension (b), with header.cote = 2 cycles, is compared with a too large win-
dows dimension parameter (c), with header.cote = 4 cycles. Using inappropriate constraints leads to unprecise modeling.
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functions) stored in structured variable inside a Matlab
'.mat' file. This variable can be visualized (displaying a
bump spectrogram, using the script 'display_bumps.m')
or used for statistics. This provides a better understanding
of the structure of EEG oscillations (TOS and TOD).
Despite this toolbox provides many tools, some mainte-
nance work will remain necessary in the future to improve
and upgrade it. For instance, the choice of atom functions
affects the modeling. We originally chose half ellipsoid for
their sparsity (only five parameters); but despite a dissym-
metric 2D curve would have more parameters, it might
better represent the dissymetry of wavelet representations
(larger for lower frequencies). Until now we obtained
good results with half ellipsoids, but this does not mean
that we might not find a better solution. Using other
curves is on the list of our future experimentations and
developments for the toolbox. Additionally, the pruning
criterion, as explained above, is critical. It would certainly
benefit from further investigations. New developments,
however, will not be possible without interactions with
users (we invite questions, suggestions and comments;
please see the website and its discussion forum for more
details). Hence, the current version only lays the founda-
tion stone of a long-term project.

Availability and requirements
Project name: ButIf toolbox

Project home page: http://www.bsp.brain.riken.jp/
bumptoolbox/toolbox_home.html[42]

Operating system(s): Windows XP

Programming language: Matlab/C++ Builder 2006

Other requirements: Matlab 6.0 or 7.0 with wavelet tool-
box is necessary to run this package (the wavelet toolbox
could also be replaced by a freeware wavelet toolbox, such
as the Uvi_Wave toolbox of Universidad de Vigo in Spain,
which contains the complex Morlet wavelet).

License: Creative Commons License (CC-by-nc-nd) –
Anyone can use this software for academic applications
providing they properly reference our work when publish-
ing research results obtained with this toolbox (citing the
present paper, and [22]).

Any restrictions to use by non-academics: the software is
restricted to non commercial applications.
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Appendix
Appendix A: Improved Adaptation

In the previous implementation of bump modeling [22],

we optimized all the bump function parameters (A, h, w,

f, and t) simultaneously (first using iterations of first order

gradient descent, followed by iterations of the BFGS [40]

algorithm). An improved adaptation can be obtained by

optimizing the parameters stepwise, with a priority

depending on the order of their derivatives. When com-

paring of the parameters derivatives (dE/dA, dE/dh, dE/dw,

dE/df and dE/dt), we observe that the term -2  is com-

mon to all these derivatives, multiplyed by a term in �+:

they will all have the same sign [41]. The slope of the

adaptation will then be dependant on the multiplicands

m applied to -2E : m = 1 for dE/dA; m is a positive

value in [0 - A] in numerator divided by a variable of order

3 for dE/dh and dE/dw; m is a positive value in [0 - A] in

numerator divided by a variable of order 2 for dE/df and

dE/dt.

This would probably be working correctly with properly
normalized parameters, however we are here adapting
parameters of different ranges: A ∈ [0 - 1], while h and f ∈
[1 - H/2] and w and t ∈ [1 - W/2] with H and W usually
>> 1. Therefore, the multiplicands corresponding to the
three above case will be of the order m ∈ O(1) in case (1),
and m ∈ O(x-3) in case (2) and m ∈ O(x-2) in case (3).
Practically speaking, it means that the parameters adapta-
tion should be performed stepwise (first h and w, then f
and t, and finally A). We improved the quality and speed
of convergence by performing the following stepwise esti-
mation of these parameters:

1. Update h and w until both their derivatives are
below a threshold tΨ.

2. Update f and t until both their derivative are below
a threshold tpos. If at anytime dE/dh or dE/dw becomes
above tΨ, go back to 1.

3. Update only A, until its derivative is below a thresh-
old tA. If at anytime dE/dh or dE/dw becomes above tΨ,

EΨ

Ψ

http://www.bsp.brain.riken.jp/bumptoolbox/toolbox_home.html
http://www.bsp.brain.riken.jp/bumptoolbox/toolbox_home.html
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go back to 1. If at anytime dE/df or dE/dt becomes
above tpos, go back to 2.

The adaptation is still performed using the BFGS [40]
algorithm.

Appendix B: Improved window matching

In the previous version of bump modeling [22], the best
candidate window Ω was selected as:

Because these windows are used to determine the initial
condition of the function adaptation, finding the best
suitable window is primordial. The new optimized
method is more related to matching pursuit [20], in that
we will match the window content w(f, t) with a prototype
bump function ξw(f, t) = ξ(Aw, hw, lw, fw, tw, y, x) with fw = hw

= H/2, xw, and Aw the highest peak in the window:

For each window w(f, t), we compute the corresponding
matrix Ξw(f, t) of values of this prototype function. The
best window is thus matched as:

Where: denotes the Frobenius inner product, and ||·||F

indicates the Frobenius norm. This generalize the match-
ing criterion of matching pursuit methods to 2D data,
with the difference that for bump modeling, high z-score
has priority on best fit. Therefore, contrary to matching
pursuit, the product is not normalized by the norm of w.

Additional material
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