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1. DERIVATION OF THE MODE-COUPLING MATRIX

The equations of motion for a single particle are

rrall [Vrf sin ¢ + induced voltagé] (14)
do An nhwa AE
— = - = Mg ot (15)
dt Tlhu)o P 82 E

where AE and ¢ are energy and phase (RF radians) deviations from the syn-
chronous values, Vrf is the peak RF voltage per turn, and n = l/Yi - 1/12.
The additional voltage due to the coupling impedance Z(w) has a stationary
part Vg(¢) induced by the stationary line demsity Ay(t) and an oscillating
part Vm(¢,t) due to the perturbation Am(¢,c). In the following, we set

h =1 and Vrf sin ¢ + Vg(¢) = VT ¢ to simplify the derivation. Then (14)
and (15) become

V (¢,t) V (¢,t)
" 2 gl 2. - 2.®m__
O wy v (16)
rf T

where W is the synchrotron frequency (rad/sec) corresponding to the
voltage Vrf and W is the single-particle or incoherent frequency corres-

ponding to the total voltage VT

For the stationary distribution, the particle orbits are circles in

the normalized phase plane (Fig. 8), and the stationary distribution yy(r)

$lug

FIG. 8
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depends only on the amplitude r and not on the synchrotron phase 0. For

small oscillations about the stationary distribution

. e
V= vo(r) + y (r,0)e’" (17)
where wm satisfies the usual linearized Vlasov equation
_ N Vm(¢) dyg
Junbm EC-y-a U VT = sin @ = 0. (18)
Normalize v,
S ydedé = S Y rdrdo = 1, (19)
and introduce the line density
A(9) = vdé . (20)

For N particles/bunch, eNA(¢) = charge/radian, eNwgA(¢) = charge/sec, and

V(8) = - eNug Lz(m)X_(p)elP® (21)
) P
where
A(6) = SX(predP?. (22)
P

In the limit of zero intensity, Vm = 0, and the solutions of (18) are
jmé

wﬁ = Rm(r)e

(23)

where Rm(r) is any function of r. For the general solution, write



jmO
D Wt (24)
m
and substitute into (18) to find the equations
erow dwg
lwmm By () 6y =~ Z " 5 30X @z (25)
where Gmk is the kronecker delta. The relation
_1 2m jpr coso-jmé_. . _:m . m
o g e sin® de 3 o Jm(pr) (26)
has been used where Jm is a Bessel function., Since
¥ -1 2 =jp¢
A (P) = 5o 5 e A (6)do
= R d (27
= (-3) / K (POIR, (r)w rdr, )

equation (25) can be written as

mw dw
j(m-mws)R.m(r)tSmk = -viero i I 3 2: (- J)k Z(p)J (pr) f J (pr )Rk(r )w r'dr'

Pyk

(28)
For low intensities, only the diagonal m=k term need be retained, and
(28) reduces to an integral equation for the radial mode pattern Rm(r)

and eigenfrequency w.

It is shown in the next section that the adjoint function R;(r)
defined by ‘



1 d¥o

+
20 = T Ew (29

is orthogonal to Rm(r). Multiply (28) by R;(r) and integrate over msrdr

to find the equations

mw
. ® 4+ - s Z( ) N * A,
J(w-mms) .g Rm Rm wsrdr Gmk —-—VT eNmopzk _Lp )‘m (p)}\k(p) . (30)
9

The LHS of (30) can be expressed in terms of the line density rather than

R(r). Consider the sum

pg: P’i'l’é(P)’xk(p) = 2___:0 p .g? Jk(pr)Rk(r)wsrdr Jk(pr')R.k(r')msr'dr'

=w2
S

o8

Rﬁ(r)rdr (31)

since

:4::0 PRI (pr') = T, ()3, (e dx

=< §(r'-r). (32)
For the parabolic distribution
‘ 2 2_2y
Yo (r) m(cbo r<), (33)
dwo
1. 2 (38)

r dr Tw o4
s 0



and (31) becomes

o + 1 4 < " N
6 Rk(r)Rk(r)wsrdr = = 7" 2;% plt(p)lk(P)

5 1 L - - N n
=g, P > A{:(p)kk(p), (35)
p=—@
where P is the central line in the mode spectrum xk(p). For the sinu-
soidal modes of figures 2 and 3,
- k+1
L

so p = (k+1)/2By. Thus (30) reduces to (3),

= 0
Iw-m.os-MmkI (37)
where the matrix Mo is given by (5). The relations ¢5 = "By and

I, = eNwp/2m have been used.

The main approximation in the derivation of (37) is the relation (36)
for the central frequency P f; of the mode spectrum. Somewhat smaller
values have been measured experimentally" and are likely to occur for
Gaussian bunches also. In any event, the correct value of P can be

used in (37) if desired.

2. ADJOINT MODES

The diagonal m = k term of equation (28) has the form

1 Yo o N oyt
(w-mws)Rm(r) ey g Gm(r,r )Rm(r dr'dr (38)



where
mwi 2(p)
G (ryr') = =j — erOED 2P, (pr)J (pr') = G (r)r) (39)
m VT P P m m m
is a symmetric kernal. In general, the integral equation (38) has an

infinite number of solutions for eachazimuthal mode number m. These can be
labelled by the index q which specifies the number of nodes in the

radial mode pattern qu(r) (see Fig. 9).

' qu(r)

FIG. 9 : The radial mode pattern for q = 2.

For each mode, there is an adjoint mode, which satisfies the

orthogonality relation

Z R;q(r) le(r)rdr =0 unless q = 1. (40)

This can be shown as follows. By definition, the adjoint mode is the

solution of the adjoint equation

YR 7 o Rt (41)
] 1
Awq Rq(r) = g Gm(r,r ) I Rq(r )dr
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where the index m of R;q is dropped, and Mt =W’

W omw . Multiply (41) by
. + 1 s
. Rl(r), equation (40) by Rq(r), integrate and

q
subtract to find

(s +-A o _+
wq ml) g Rq(t) Rl(r)rdr =0,

(42)
By comparing (38) and (41), it is clear that
1 dvg_+
Rq(r) = ‘fﬁ;Rq(r) (43)
Aw = Am+
q q

and therefore (42) reduces to (40).

In part 1, only one radial mode (q=0) is kept for each azimuthal
mode number m, and the second index on qu(r) is dropped. The neglected
higher-order radial modes are assumed to describe the single-particle °

incoherent motion. A different approach that includes some of the higher-~

order radial modes is given in reference 7.

3. RE SONATOR

A parallel LCR circuit is assumed with impedance

. 1 1
Z(w) = -jRo = — - - (44)
J w, Enﬂwr-Jc w+wr-jo]
where
w = 1
r " AT (45)
o = —1_.
2RC °

The form factor in equation 7 is

2
Fox = 8 77 15, 5,1



where

1 m-k even
mk - (-D®  mk odd, :
. m " ™
s -2 -] et 2 e )
m y=(m+1) y+(m+l) ?

and y = wTL/n = ZfTL. The second index on ka has been dropped in Part 1

for the m=k diagonal term. This is plotted in Fig. 5.

For the impedance (44), the matrix elements (5) become

M = 0.27 eMBq ;;—p_o s,(P) S, (P m

(D" 6 ok odd
x " (48)
(0 w ) m-k even
P T

where the summation is over the frequencies (1) or (2). The eigenvalues
of the matrix [hw +M ] were found by computer for different values of the
intensity parameter € and resonator bandwidth Af = 2mo. The threshold

for instability is plotted in Fig. 7.

If only the three central diagonals are retained in the matrix, the

results change by less than 57, and the continued fraction

A A
’AI - All _ 12A 21A (49)
A 23 732

22-%3 -I‘C

can be used for evaluating the determinant.



For small bandwidths, coupled-bunch modes are unstable. The threshold

is given by
ldw_| = & B g (50)

where S is the synchrotron frequency spread between bunch center and bunch

edge and Awm is the coherent frequency shift
1 mms
|Awm| = 3¢ MBD — (51)

obtained from (7) and (8) with me = %~and D = a/sinh a where a = 2nAfT/M

and T is the revolution period. The spread S is approximately

1152(h30)2 (52)

u|~

where T' = sin ¢s. Thus (50) becomes

2 h
e MBq :.i+£ sin a(hBo)z (53)

which is shown in Fig. 7 for stationary buckets (r=0), with every third

bucket filled (h=3M), and a bunch length —= 10 of the bucket length (hBy = 0.1).

4. COASTING~BEAM STABILITY CRITERION

3
The usual Keil=Schnell criterion ) is

lzl = g2 EQJ_‘Z_L(_B) . (54)
FWHH

e 1 \P
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The bunch half-length ¢y in RF radians and half-height Apg are related by

w
Ap S
LY - ¢g - (55)
(p)o hwg ﬂl 0
For a parabolic distribution with

F(Ap) = Ap3 - ap? , (56)

(éP.) =2 (éﬂ) (57)
P /rym PJo

so
A eV |cos ¢ l 2
_% = __T__Z_.._i ¢ (58)
FWHH TYEQB h,ﬂl 0
and (54) becomes
\Y Icos ¢ i 2
Z .
4« 4 —= o, (59)

hT

where ¢g is related to the bunching factor By by ¢g = mhBy. The current

is

=)
[

= 1.5 I5/By peak current

hI, average current

and (59) reduces to (9) and (10).

/1lmg
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