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Abstract: We report a new nonlinear optical process that occurs in a

cloud of cold atoms at low-light-levels when the incident optical fields

simultaneously polarize, cool, and spatially-organize the atoms. We ob-

serve an extremely large effective fifth-order nonlinear susceptibility of

χ (5) = 7.6 × 10−15 (m/V)4, which results in efficient Bragg scattering

via six-wave mixing, slow group velocities (∼ c/105), and enhanced

atomic coherence times (> 100 µs). In addition, this process is particularly

sensitive to the atomic temperatures, and provides a new tool for in-situ

monitoring of the atomic momentum distribution in an optical lattice. For

sufficiently large light-matter couplings, we observe an optical instability

for intensities as low as ∼ 1 mW/cm2 in which new, intense beams of light

are generated and result in the formation of controllable transverse optical

patterns.
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1. Introduction

One area of sustained activity in the field of nonlinear optics is the development of schemes

that enable single photons to induce nonlinear optical (NLO) interactions. Single-photon non-

linearities will enhance the efficiency of NLO devices, and are crucial components in quantum

information systems. One technique for improving NLO interaction strengths is to increase the

electric field strength per photon, such as by placing the NLO material in an optical waveg-

uide [1] or cavity [2]. Alternatively, one can enhance a material’s NLO susceptibility by taking

advantage of material resonances or carefully designing and preparing the NLO medium [3].

One example of a material that is amenable to both approaches is a gas of atoms, which has the

additional advantages that it is generally well-understood (i.e., can be modeled via first princi-

ples), can be well-controlled at the quantum level, and has been used to demonstrate extremely

large NLO susceptibilities at low light intensities.

Gases of atoms are particularly interesting because both their internal and external degrees-

of-freedom can be precisely controlled and act as sources of nonlinearities. Here we report a

new dissipation-induced NLO process that leads to the generation of new optical fields when

weak, frequency-degenerate optical fields are incident on a cloud of cold atoms. These fields

polarize the atoms as well as act on their center-of-mass motion to establish long-range spatial

order. The characteristic intensity scale for the NLO process is set by the so-called décrochage

intensity Id discovered in the context of Sisyphus cooling in a photonic lattice. For intensi-

ties below Id , a gas transforms into a non-equilibrium system with two distinct temperature

components: a localized cold fraction ( fc, mneumonic c) and a hot fraction ( fh, mneumonic

h) undergoing anomalous diffusion [4]. In this regime, the simultaneous spatial localization,
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polarization and cooling of the atoms leads to a very efficient NLO response that is dominated

by an effective fifth-order (χ (5)) susceptibility. Surprisingly, this fifth-order NLO response is

as large as the nonlinearities reported in previous studies that typically involve third-order χ (3)

processes [5]. On an absolute scale, this effective χ (5) = 7.6× 10−15 (m/V)4 is the largest

ever reported, exceeding that obtained via electromagnetically-induced transparency (EIT) in a

Bose-Einstein condensate by∼ 105 [6], three-photon absorption in a zinc blend semiconductor

by ∼ 1022 [7], and local-field-induced microscopic cascading in C60 by ∼ 1025 [8].

Materials with an extremely large, controllable fifth-order response have many important

applications. They can be used in quantum information networks as new sources of correlated

pulse pairs and quantum memories [9] and for performing 3-bit quantum processing [10,11], for

example. By controlling the relative contributions of the χ (3) and χ (5) NLO response, one can

create novel states of light such as liquid light condensates [6] as well as use the interference of

the resulting four- and six-wave mixing signals for high-precision measurements and nonlinear

spectroscopy [12]. In addition, quintic media can give rise to multidimensional solitons and

transverse optical patterns [13], which might be used for low-light-level all-optical switching

[14, 15].

At large light-by-light scattering efficiencies, we observe a transition to a collective scattering

regime where the back-action of the scattered optical fields significantly affects the center-of-

mass motion of the atoms and leads to longer atomic coherence times. Beyond a critical NLO

interaction strength, we observe an instability that gives rise to new beams of light. Saffman

et al. have described theoretically such instabilities in a thermal gas of cold atoms [16, 17] and

have shown that the necessary nonlinear interaction strength is smaller than in other media.

To the best of our knowledge, this paper represents the first experimental report of mirrorless

parametric optical instabilities and pattern formation in cold atoms. Depending on the geometry

of the incident beams, the generated light consists of either a sequence of randomly-oriented

Gaussian spots or stable multi-petal patterns in the plane transverse to the incident beams’ wave

vectors.

The organization of this paper is as follows. Section 2 develops the theoretical description of

the NLO process, Sec. 3 describes the experimental setup that we use, Secs. 4 and 5 describe

the steady-state and transient behavior of the nonlinearity below the instability threshold, re-

spectively, and Sec. 6 discusses the multi-mode fields generated by the optical instability. We

summarize our conclusions in Sec. 7.

2. Theory

We consider the geometry shown in Fig. 1a, where optical fields interact with a pencil-shaped

cloud of cold atoms with length L and diameter W . We assume that the cloud is highly

anisotropic (L/W ∼ 100), has its long axis aligned along the ẑ direction, and has a large on-

resonance optical thickness. In order to develop a minimal model that contains the relevant

physics, we consider a Jg = 1/2→ Je = 3/2 transition, as shown in Fig. 1b. A pair of bal-

anced counterpropagating pump fields (intensity Ip, wave vectors ±~kp) with orthogonal linear

polarizations (lin⊥lin configuration) are incident on the cloud at an angle θ = 10◦ relative to

the z-axis. Weak signal and idler fields (intensities Is,i, wave vectors ± ~ks,i) counterpropagate

along ẑ and are orthogonally-polarized with respect to the nearly-copropagating pump beams.

We refer to the signal and idler fields collectively as probe fields. All fields have frequency

ω, which is detuned by ∆ = ω−ωa from the atomic transition frequency ωa. We note that,

while the non-zero value of θ has important implications for phase-matching considerations in

the wave-mixing process, it is small enough for us to justify the approximation that the field

polarizations all lie in the x-y plane.
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Fig. 1. a) Schematic of the experimental setup. b) Atomic level scheme used in the theoret-

ical model along with the square of the Clebsh-Gordan coefficients (defined as a fraction of

the reduced dipole moment µ) for the J = 1/2→ J = 3/2 transition. c) Optical lattices that

form due to the interference of the pump beams (dotted line, k̂p) and a probe and nearly-

counterpropagating pump beam (solid line, Ĝ). d) Timing scheme used in the experiment.

We write the total electric field

~E (~r, t) = ~E(~r, t)e−iωt + c.c., (1)

where ~E = ∑n
~Enexp(i~kn ·~r) for n = {p1, p2,s, i}, which corresponds to the two counterpropa-

gating pump, signal, and idler fields, respectively. For our beam geometry,~kp1 = −~kp2 =~kp

and ~ks = −~ki for |~kn| = k = 2π/λ , where λ = 2πc/ω and c is the speed of light in vac-

uum. Motivated by our experimental observations of the polarization configuration that leads to

the largest NLO interaction strengths, we choose ~En = ε̂nEn for {ε̂p1, ε̂p2, ε̂s, ε̂i} = {x̂, ŷ, ŷ, x̂}.
We take the pump fields Ep1 = Ep2 = Ep to be real and constant, the signal and idler fields

Es,i = Es,i(z, t) to have slowly-varying, complex amplitudes, and |Es,i| ≪ |Ep|. We define the

beam intensities as In = 2ε0c|En|
2 and assume Is,i,p≪ I∆

sat , where ε0 is the permittivity of free

space, I∆
sat = Isat(1 + 4∆2/Γ2) is the off-resonance saturation intensity, Isat is the resonant sat-

uration intensity, and Γ is the full width at half maximum natural linewidth of the electronic

transition.

These fields produce an atomic polarization

~P(~r, t) =←→χ ~E (~r, t) = ~P(~r, t)e−iωt + c.c., (2)

where
←→χ is the tensor susceptibility. Substituting this polarization into Maxwell’s equation

yields
(

∂~Es,i

∂ t
± c

∂~Es,i

∂ z

)

=
iω
2ε0

〈

~Pe∓i~ks·~r
〉

,
(3)

where we have made the slowly-varying amplitude approximation and ignored terms propor-

tional to exp(±2iωt). The angular brackets denote a spatial average over a grating period and

act to select only the contributions to the polarization that are phase-matched to efficiently drive

Es,i.

We can consider the full multilevel atomic structure to be equivalent to two V-type transitions

where the dynamics of the g±1/2 states (mneumonic ±) are identical (up to a spatial offset of

λ /4 discussed later) because the applied fields do not drive π transitions and therefore cannot
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establish coherences between the g±1/2 states. Thus, we write ~P = ~P+ +~P− and consider the

single-atom polarizations ~p± such that ~P± = η±(~r)~p±, where η±(~r) is the atomic density at

position~r. By adiabatically eliminating the excited state and solving to first-order in the field

strengths for ∆≫ Γ, we find that

~p± = ∑
n

~p±n (~r)ei~kn·~r, (4)

where

~p±n (~r) =

←→µ ±e f f

h̄∆
·~En(~r) (5)

are slowly-varying polarization amplitudes such that 〈~p±exp(i~kn ·~r)〉 ∼ ~p±n δnm. Here

←→µ ±e f f = ∑
j=e∓1/2,e±3/2

~µ j,g±1/2
~µg±1/2, j, (6)

where ~µl, j = 〈 j|e~r|l〉 is the dipole matrix element. Thus, phase-matching requires a spatial

modulation of η±(~r) with wave vectors~ks,i−~kn.

We use a perturbative approach to determine the spatially-varying atomic density distribution

in the x-z-plane. We first note that the one-dimensional (1D) photonic lattice along k̂p formed

by the pump beams dominates the atomic motion for Is,i≪ Ip. For red detunings (∆ < 0), the

atoms load into the anti-nodes of the lattice. This leads to an enhanced atomic polarization be-

cause the atoms see a higher average field strength than a homogeneously-distributed sample.

In addition, the atoms are optically pumped into the stretched states such that the density modu-

lation due to the pump beam lattice η +
p (~r) = η +

p (~r +qλ /2k̂p) = η−p (~r +qλ /4k̂p) for integer q,

which gives rise to long-range anti-ferromagnetic order. As the atoms move in this bright lattice,

Sisyphus (or polarization gradient) cooling changes the atomic momentum distribution from a

Maxwell-Boltzmann distribution to one that is well-described by a double-Gaussian [4]. The

narrow (broad) Gaussian distribution component corresponds to a cold (hot), bound (unbound)

fraction of atoms, which leads to an interpretation of the cooling mechanism as a transfer of

population from the hot to the cold fraction. This further allows us to interpret the décrochage

intensity as the lattice beam intensity at which nearly all of the atoms have been transferred

to the cold fraction, which is equivalent to its original definition as the intensity at which the

atomic temperature attains a minimum value (assuming a Maxwell-Boltzmann momentum dis-

tribution).

We numerically solve for the momentum distribution ρ(p) along k̂p in steady-state by using

a Bloch-state approach [18] (see Fig. 2a). By fitting the full distribution by a double-Gaussian

function, we calculate fc = 1− fh for different values of Ip by considering the fractional area

under the narrow Gaussian curve (see Fig. 2b). For the smallest Ip, the momentum distribution

is non-normalizable, and fc is very small and increases slowly with Ip. For larger Ip, fc ∝ Ip

before saturating to 1 around Ip = Id , where Id is independent of ∆ [19].

This leads to an anisotropic momentum distribution ρ(~p)

ρ(~p) = g(py,Ty)g(p⊥,T⊥)[ fcg(p||,T
′

c )+ fhg(p||,T
′

h)], (7)

where g(p,T ) = (2πmkBT )−1/2exp(−p2/2mkBT ), m is the atomic mass, kB is Boltzmann’s

constant, and Ty (py), T ′c,h (p||), and T⊥ (p⊥) correspond to the temperature (momentum) along

ŷ, k̂p, and orthogonal to k̂p, respectively. Typical temperatures in our experiment are Ty ∼ T⊥ ∼
Teq = 30 µK, T ′c ∼ 3 µK, and T ′h > 20 µK.

Despite the fact that the atoms can become well-localized along k̂p, this density grating is not

phase-matched for scattering pump light into the probe modes and therefore does not directly
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Fig. 2. a) Momentum distribution obtained via numerical simulation (blue, solid line) and

a double-Gaussian fit (dashed, red line). pr = h̄k is the recoil momentum. b) Fraction of

atoms in the hot and cold component as a function of pump intensity.

contribute to the amplification of the signal and idler beams. In contrast, the interference of a

probe and nearly-counterpropagating pump field gives rise to a weak additional dipole potential

U± that perturbs the spatial atomic distribution and produces a density grating along ~G = ~kp +~ks

that is phase-matched (see Fig. 1c). Ignoring a constant offset,

U±(~r) = U±0 cos(~G ·~r) =
(

~p±p1 ·
~E∗i +(~p±p2)

∗ ·~Es

)

ei~G·~r + c.c.. (8)

For a single-component gas with temperature T along Ĝ, the modulation of the steady-state

atomic density distribution produced by U± is η±U (~r) = e−U±/kBT /〈e−U±/kBT 〉. We expand η±U
in terms of its spatial Fourier modes and find

η±U (~r) = 1−
2I1(ψ±)

I0(ψ±)
cos(~G ·~r)+ ..., (9)

where ψ± = U±0 /kBT and I j(ψ) is the modified Bessel function of the first kind. In the regime

where ψ±≪ 1, we Taylor expand Eq. (9) about ψ± = 0 and find

η±U (~r)∼ 1+b±(T )ei~G·~r +
(

b±(T )
)∗

e−i~G·~r (10)

to first order in Es,i, where

b±(T ) =
(←→µ ±e f f ·

~Ep1) ·~E∗i +(←→µ ±e f f ·
~E∗p2) ·

~Es

kBT h̄∆
(11)

corresponds to the degree of atomic bunching in the density grating along Ĝ. Extending this

result to the case of our two-component gas, we find that

b±(T )→ b±(Tc,Th) = fcb±(Tc)+ fhb±(Th), (12)

where Tc,h = T ′c,hcos(θ/2)+T ′h,csin(θ/2)∼ T ′c,h for θ/2≪ 1. Thus, the fully-modulated atomic

density is

η±(~r) = ηη ±p η±U /g, (13)

where η is the average atomic density and g is the degeneracy of the ground states.
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Substituting Eqs. (4) and (13) into Eq. (3) and keeping only phase-matched terms to first

order in the probe fields yields

(

∂~Es

∂ t
+ c

∂~Es

∂ z

)

=
iωη
2ε0

∑
j=±

←→µ ±e f f

h̄∆
·
[

~Es +b±(Tc,Th)~Ep

]

, (14)

(

∂~Ei

∂ t
− c

∂~Ei

∂ z

)

=
iωη
2ε0

∑
j=±

←→µ ±e f f

h̄∆
·
[

~Ei +
(

b±(Tc,Th)
)∗ ~Ep

]

. (15)

Because the time scale associated with the atomic motion is typically much slower than that

of the optical fields, we assume that the optical fields follow adiabatically the evolution of the

atomic density grating. We therefore take Eq. (14) in steady-state and find

dEs

dz
= iκ Es + iβE∗i , (16)

dE∗i
dz

= iκ E∗i + iβEs (17)

where

β = βc +βh =
2ωηµ4Ip

9(ε0ch̄∆)2

(

fc

kBTc
+

fh

kBTh

)

(18)

κ =
2ωηµ2

3ε0ch̄∆
+β , (19)

and µ is the reduced dipole matrix element for the transition.

For an input signal field at z=0 and no input idler field, we find that the normalized output

signal and idler intensities are

Is(L)

Is(0)
= sec2(βL), (20)

Ii(0)

Is(0)
= tan2(βL), (21)

respectively. The quantity βL therefore corresponds to the nonlinear phase shift imposed upon

the probe beams via the NLO interaction. For typical experimental parameters η = 1010 cm−3,

µ = 2.53× 10−29 C·m, λ = 780 nm, g = 5, ∆ = −5Γ, and L = 3 cm for the D2 transition in
87Rb, we find that βL = Ip[100 fc(Ip)+ 13 fh(Ip)] for Ip in mW/cm2. Thus, we predict a NLO

phase shift of ∼ 70 rad for Ip = 1 mW/cm2. We note that the nonlinear dependence of Is,i on η
is one type of collective behavior of this NLO system.

The dependence of fc on Ip (shown in Fig. 2b) gives rise to different NLO regimes. For the

smallest pump intensities, fc ∼ 0 and β ∼ βh≪ 1. For larger Ip, where fc ∝ Ip,

βc ∝ I2
p/TcId (22)

and

βh ∝ Ip(1− Ip/Id)/Th. (23)

Because Tc depends only weakly on Ip and Th > 5Tc for all Ip, we find that β ∼ βc ∝ I2
p/Tc. We

can therefore identify an effective χ (5) NLO response due to β’s locally quadratic dependence

on Ip, despite the fact that a true NLO susceptibility does not exist because the Taylor series
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expansion about Ip = 0 is not valid in this region. This effective χ (5) response can be understood

as six-wave mixing (SWM) involving four optical and two matter wave fields (i.e., the density

grating along Ĝ), wherein the pump fields Bragg scatter off the density grating formed via

optically-induced atomic cooling and localization. When Ip > Id , the χ (5) response saturates

because fc ∼ 1 and we realize an effective χ (3) response where β ∼ βc ∝ Ip/Tc.

While we carried out the previous analysis in steady-state, it is straightforward to extend

our results to the transient regime when βL≪ 1 (i.e., when the back-action of the generated

probe fields on the atoms is negligible). If we turn the signal beam off after the system has

reached a steady state, the atom’s momentum spread gives rise to motion that washes out the

density grating and therefore leads to a decay of the pump power scattered into the probe field

modes. A 1D Gaussian momentum distribution with a spread p̄ = mu = (2kBT m)1/2 leads to a

Gaussian decay β(t) ∝ exp(−t2/τ 2) with τ = Λ/πu, where Λ is the grating period along the

direction of the atomic motion [20]. Extending this result to our multi-component momentum

distribution, we expect a multi-Gaussian decay, where the decay times correspond to the effec-

tive atomic temperatures. The transient response, therefore, allows us to separately identify the

contributions of βc,h to the total NLO response.

3. Experimental setup

To create our NLO medium, we use a magneto-optical trap (MOT) tuned to the D2 transition

to confine 87Rb atoms in the F = 2, m f = 2 state within a cylindrical region with L = 3 cm and

W = 300 µm [21]. The MOT beams consist of two pairs of counterpropagating laser beams:

one pair (the radial beams) cools and traps atoms in the x-y-plane, and the other (the longitudi-

nal beams) cool the atoms along the ẑ-direction. The radial beams have counter-rotating circular

polarizations and an elliptical profile with a semimajor and semiminor axis of 1.5 and 1 cm,

respectively. The longitudinal beams have a diameter of 1 cm and arbitrary polarizations (al-

though we typically use a lin⊥lin configuration). All MOT beams have a detuning ∆ =−3Γ (for

Γ/2π = 6 MHz) and intensity IMOT =7 mW/cm2. Using this setup, we achieve atomic densities

of up to ∼ 1011 atoms/cm3 for atoms isotropically cooled to Teq = 30 µK.

The pump beams used for wave mixing are detuned from the F = 2→ F ′ = 3 transition

by |∆| = 3− 25Γ and have diameters of 3 mm. The incident signal beam is detuned from the

pump beams by δ = ωs−ω, has a diameter of 200 µm, and an intensity of 1− 100 µW/cm2

(although Is ∼ 3 mW/cm2 unless otherwise specified). The frequency of the generated idler

beam is ωi = ω−δ.

Figure 1c shows the timing sequence for our experiment. First, we cool and trap the atoms for

99 ms with only the MOT beams on. We then turn off the MOT beams and conduct the wave-

mixing experiment during the remaining 1 ms, which consists of turning on the pump beams

at time tp for a duration ∆tp. If we want to measure the NLO response below the instability

threshold, then we also turn on the incident signal beam at time ts for duration ∆ts. This cycle is

then repeated. We note that, while we leave the MOT magnetic fields on at all times, they do not

influence the wave mixing experiment because the atoms are trapped in the region in which the

magnetic field is essentially zero. Unlike in a spherical MOT (where magnetic field variations

of > 10 G occur for large traps), the longitudinal (∼0 G/cm) and radial (10 G/cm) magnetic

field gradients of our anisotropic MOT produce a total magnetic field variation of only 0.3 G

across the entire trap. In addition, we have confirmed the negligible role of the MOT magnetic

fields by applying additional external fields without adversely affecting the NLO response.

We use independent acousto-optic modulators (AOMs) with response times of < 100 ns to

turn the beams on and off as well as scan δ. For experiments where we require δ = 0, we split

off a small fraction of the pump beam for use as the signal beam and double-pass it through

a separate AOM such that it incurs no net frequency shift. In this way, we can independently
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modulate the signal beam amplitude without deleterious effects due to the frequency noise in

the AOMs (which is on the order of the spectral linewidth of the NLO resonance).

We record the transmitted signal and generated idler beam intensities via fast photomultiplier

tubes (PMTs; Hamamatsu H6780-20) as well as with a fast CCD camera (Dalsa) that images

the beams in the far field. We also use separate CCD cameras that directly image the trap fluo-

rescence from the top and side when the MOT beams are present. By calibrating the recorded

brightness, we continuously monitor the effective atomic density. In addition, we measure the

atomic temperature components along different directions in-situ via recoil-induced resonance

(RIR) velocimetry using separate, far-detuned beams [22].

To measure the slow light delay td of the atomic sample, we modulate the amplitude of the

incident signal beam by 10% at a frequency of 15 kHz and record the intensity of the transmitted

beam. We determine the time delay due solely to nonlinear dispersion by comparing the phase

of the transmitted signal when Ip > 0 to that observed when Ip = 0.

4. Steady state response

Figure 3 shows the normalized spectrum of the signal and idler beams in the presence of the

pump beams. The features centered around δ = ±100 kHz correspond to Raman transitions

between vibrational levels of atoms localized in the pump beam lattice. The resonance centered

on δ = 0, which is the focus of this paper, arises from Bragg scattering of the pump beams off

the density grating along Ĝ and has a spectral width of ∆ω∼ 30 kHz. For the remainder of the

paper, we consider only the case where δ = 0.
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Fig. 3. Normalized intensity spectrum of the a) transmitted signal and b) generated idler

beams.

In order to verify the predictions of Eq. (18), we measure the steady-state dependence of

β = β(Ip,∆,η , Is). By choosing tp,s = 0 and ∆tp,s=1 ms, we monitor Is,i and observe that the

system reaches steady-state after ∼ 200 µs. We find that the measured steady-state Is,i agree

well with Eqs. 20 and 21, which allows us to directly determine βL. Figure 4a shows the

measured and predicted (via Eq. (18)) dependence of βL on Ip, where each curve corresponds

to a different ∆. In obtaining the fit, we treat the décrochage intensity as a free parameter and

find that Id ∼ 1.5 mW/cm2, which is in qualitative agreement with that found in Ref. [19] and

is comparable to the resonant electronic-transition saturation intensity Isat = 1.6 mW/cm2.

We first consider the dependence of β on Ip for fixed ∆. For the shallowest lattices, where

fc ∼ 0, the signal is too small to measure. For slightly larger Ip, where fc ∝ Ip, we observe a

nearly quadratic dependence of β on pump intensity. Beyond Id , fc ∼ 1 and the SWM process

saturates but β continues to increase linearly with Ip. A collective instability occurs for βL > 1,

which gives rise to new beams of light in the absence of incident probe beams (this is discussed

further in Sec. 6).

To quantify the strength of the NLO susceptibility, we focus on the case where ∆ = −3Γ.

According to Eqs. 22 and 23, we fit βL with a function of the form AIp + BI2
p and find that A
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Fig. 4. Dependence of NLO phase shift on experimental parameters. a) Experimental data

(points) and theoretical predictions from Eq. (18) (solid curves) for ∆/Γ = -3, -5, -7.3, -

12.7 (from left to right, respectively). b) For Ip < Id , the experimental data (points, ∆ =
−3Γ) are well-fit by a quadratic function (solid curve). c) Measured (points) dependence

on atomic density and linear fit (solid line) and d) scaling with the incident signal intensity

for ∆ =−5Γ and Ip = 1.5 mW/cm2.

is negligible and B = 1.17 (mW/cm2)−2. This leads to a NLO phase shift of 1.17 rad for Ip = 1

mW/cm2, which is only ∼ 60 times smaller than the value predicted via Eq. (18). We attribute

this discrepancy to the simplified atomic level structure and perturbative approach used to solve

for the atomic motion in the model (i.e., approximating the 2D lattice in terms of two, 1D

lattices). B is related to the nonlinear fourth-order index of refraction n4 = Bc/2ωL and corre-

sponds to an effective fifth-order susceptibility χ (5) ≡ χ (5)
xxxxyy = (cε0)

2B/45|kp|L = 7.6×10−15

(m/V)4, which is the largest value ever reported. In addition, we observe nonlinear focusing

for ∆ < 0, which indicates that the sign of the nonlinearity is such that it increases the gas’s

nonlinear response (as opposed to other χ (5) processes that decrease the overall nonlinearity,

such as the saturation nonlinearity in two-level atoms).

We next look at the dependence of β on ∆ for fixed Ip. In agreement with the predictions

of Eq. (18), we find that β ∝ ∆ −2. Because Id , the effective saturation intensity for the SWM

process, is independent of ∆, we can work several Γ away from atomic resonance (where the

transmission is high) while simultaneously realizing large NLO interaction strengths. While

some degree of absorption is necessary to cool the atoms, the process occurs efficiently (i.e.,
requires the scattering of few photons) and the deleterious effects due to absorption are minimal.

For the data shown in Fig. 4a, we measure a detuning-dependent signal beam transmission of

> 90% in the absence of the pump beams; with the pump beams present, we observe a net

amplification of the signal and idler fields.

One metric for quantitatively comparing the NLO response due to this χ (5) process to

previously-measured χ (3) processes is obtained by considering the achievable nonlinear phase

shift for a fixed Ip. For Ip = 1 mW/cm2, we find a phase shift of βL = 1.17 for ∆ =−3Γ, which

is only 100 times smaller than that reported in Ref. [5] using EIT in a BEC at larger η than
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used in our work. Another commonly-used metric in cross-phase-modulation (XPM) experi-

ments is the so-called XPM figure of merit ζ , which is defined as the ratio of the nonlinear

phase shift to the power loss [23]. For ∆ =−3Γ and Ip = 1 mW/cm2, we measure a power loss

of ln(0.9) = 0.1, which leads to ζ ∼ 12 and exceeds that typically obtained via EIT [23].

We further verify Eq. (18) by measuring how β depends on η and Is for a fixed Ip and ∆.

Figure 4c shows that β scales linearly with the average atomic density, which indicates that the

pump light Bragg scatters coherently off the atomic density grating. In addition, Fig. 4d shows

that β is independent of Is(0) below ∼ 15 µW/cm2. Beyond this the intensity, the nonlinearity

begins to saturate and β decreases (see Fig. 4). Thus, Eq. (18) accurately predicts the observed

scaling of β over a broad range of all measured parameters.

In addition to a large NLO phase shift, we also observe substantial dispersion at δ = 0. Figure

5 shows the slow-light delay td and group velocity vg = td/L as a function of βL for ∆ =−5Γ.

For βL ∼ 1, we observe vg/c ∼ 10−5 which acts like a high-finesse cavity and increases the

photon lifetime in the gas to several µs, which is comparable to the time scale associated with

atomic motion over a distance d. This gives rise to additional effective long-range atom-atom

interactions beyond those considered in Sec. 2.

We note that this NLO mechanism is not specific to the particular choice of beam polariza-

tions described up to this point. We observe a similar quadratic scaling of β with Ip for other

polarizations that allow for both atomic cooling and bunching (such as linθlin and σ+-σ+),

although a larger Ip is required to achieve the same NLO phase shifts. For dark lattices, where

∆ > 0, we still observe an amplification of the signal beam, but β ∼ 100× smaller than in the

case of the bright lattice for a given Ip. We attribute this red-blue asymmetry to the fact that,

while the atoms still become spatially organized for ∆ > 0, they load into the intensity nodes

(thereby minimizing their polarization) and undergo heating at low beam intensities. Thus,

these results further validate our physical interpretation of the NLO process as being dependent

on both atomic bunching and cooling in the photonic lattice.
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Fig. 5. Dependence of the slow-light delay and group velocity on the NLO coupling

strength for ∆ =−5Γ.

5. Transient response

In this section, we investigate the NLO process in the transient domain. Figure 6 shows the

growth of β in time, where we turn the signal beam on at t = 0. We turn the pump beams on at

t = 0 for the lower (red) curve and find that the process of cooling and loading of atoms into the

grating along Ĝ occurs over ∼ 200 µs. We observe that the grating formation time is reduced

to ∼ 25 µs (upper blue curve) when we separately turn the pump beams on at t = −400 µs

and then turn the signal beam on at t = 0. The density grating along Ĝ forms more quickly in

this case because the atoms have already been cooled and localized along k̂p by the pump beam

lattice during the 400 µs prior to t = 0. This ∼ 25 µs time scale is consistent with the time it
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takes atoms confined in the pump beam lattice with T⊥ = Teq to load into the grating along Ĝ
by moving a distance d′ = λ /2sin(θ/2) in the direction orthogonal to k̂p (see Fig. 1c) under

the influence of U±.
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Fig. 6. (Color online) Growth of βL as a function of time when the signal beam turns on

at t = 0. The lower red (upper blue) curve corresponds to the case where we turn the pump

beams on at t = 0 (t =−400 µs) for ∆ =−5Γ.

We can measure βc,h directly by studying the SWM signal decay after we turn off the inci-

dent signal beam (while the pump beams remain on). As discussed in Sec. 2, a finite atomic

momentum spread leads to motion that washes out the density grating. Thus, we can separate

out the contributions to βc,h according to the observed decay time because each has a distinct

temperature associated with it. In addition, when td and Is,i are small enough for us to ignore

the back-action of the fields on the atomic motion (i.e., βL≪ 1 ), we can directly extract the

effective temperatures.

Figure 7 shows β(t) after the incident signal field is extinguished at t = 0. For small Ip,

where almost all of the atoms are in the hot, unbound component, βc ∼ 0 and βh decays after

a time τh = 1.8 µs (see Fig. 7a), which corresponds to Th = 25 µK for Λ = d. Increasing

Ip increases fc and gives rise to a second Gaussian decay component due to the cold atomic

fraction. We independently measure Tc ∼ 3 µK, which implies that the atoms are bound in the

pump beam lattice and grating decay along Ĝ is highly suppressed. Therefore, atomic motion

in the direction perpendicular to k̂p determines the decay time for βc. By fitting the decay in

Fig. 7b with a double-Gaussian, we find that τc ∼ 20 µs, which corresponds to T⊥ = Teq for

Λ = d′ = 11.5d.

0 2 4 6
0

0.05

0.1

t (µs)

β 
L 

(r
ad

)

0 20 40
0

0.2

0.4

t (µs)
0 100 200

0

0.2

0.4

0.6

0.8

t (µs)

c)b)a)

Fig. 7. Decay of the nonlinear coupling coefficient as a function of time after the signal

beam is turned off at t = 0 for ∆ = −5Γ and Ip = a) 0.45, b) 0.7 and c) 1.25 mW/cm2.

The solid and dashed lines correspond to experimental data and a double-Gaussian fit,

respectively (note the change in scale of the horizontal axis).

For larger Ip where βL > 0.5, the back-action of the amplified probe fields strongly influ-

ences the coupled light-matter dynamics. In this regime, additional cooling along the direction

perpendicular to Ĝ begins to occur via the lattice formed by the pump and nearly-copropagating
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probe beams and reduces T⊥. Atoms cooled in both the x- and z-directions give rise to a third

decay time, as shown in Fig. 7c. In addition, the large values of td invalidate our assumption

that the field evolution is slaved to the atomic motion and prevents us from directly extracting a

temperature from the observed decay time. Nevertheless, the strong coupling between the evo-

lution of the atomic and optical fields represents a secondary form of collective behavior and

leads to the observation of long coherences times of > 100 µs.

We use a multi-Gaussian function to fit β(t) for various Ip and relate the amplitudes associ-

ated with the slow and fast decay components with βc,h, respectively. Figure 8 shows the depen-

dence of βc,h on Ip for ∆ =−5Γ. We find that the predictions of Eqs. 22 and 23 agree reasonably

well with the experimental results, where we use fc,h(Ip) shown in Fig. 2 and Tc/Th = 10. The

main source of discrepancy between the measured and predicted values stems from the oversim-

plified model used to determine fc,h [24]. Instead, we can consider this approach to represent

a new technique for independently determining fc,h, as our method is particularly sensitive to

the small cold fraction and works in the region Ip≪ Id . Thus, this technique may be useful for

building a phenomenological model of Sisyphus cooling well below décrochage.
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Fig. 8. Dependence of βc,h on Ip. Points correspond to experimental data extracted from

multi-Gaussian fits to the transient decay measurements, and the solid curves are obtained

by a fit using Eqs. 22 and 23.

6. Transverse optical instabilities

We observe an optical instability that generates new beams of light for βL > 1, which occurs

for pump intensities as low as 1 mW/cm2 and can be understood as either parametric self-

oscillation [25] or collective scattering [26]. We consider first the geometry shown in Fig. 1a,

where we shine only the pump beams on the atoms. We find that light is emitted in the signal and

idler modes (i.e., the direction of maximum gain), which implies that initial density fluctuations

are amplified via the NLO process and lead to a spontaneous, long-range spatial organization

along Ĝ. The profile of the generated light in the x-y plane is roughly Gaussian and aligned with

the center of the trap, but we find that multiple modes (within a few mrad angular width) can

fire sequentially within a single shot (i.e., MOT realization). This result is similar to the predic-

tions of Moore et al. [27], where multi-mode emission occurs via an atomic-bunching-induced

instability in an anisotropic BEC. In addition, we note that the instability only occurs for ∆ < 0,

in agreement with the physical mechanism described above but contrary to previously-observed

wave mixing instabilities based on electronic nonlinearities (which typically require ∆ > 0).

Figure 9 shows the measured time-dependent intensity of the generated light in the signal

and idler modes (where we turn the pump beams on at t = 0). While the details of Is,i(t) vary

from shot-to-shot, we observe several universal characteristics. Immediately after turning the

pump beams on, there is a period of time (typically lasting 20-50 µs and dependent on Ip)
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during which the atoms are cooled and the density grating forms. After this time, we observe

an exponential growth of the intensity before it reaches a maximum value of ∼ 0.1Ip. The

generated light persists and displays complicated temporal dyanmics for several hundred µs,

after which time free expansion of the MOT in the y-direction reduces η and Is,i decreases. We

note that the signal and idler modes show strong temporal correlations of r > 0.9 (where r=(-)1

for perfectly (anti-)correlated signals) due to their mutual coupling.
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Fig. 9. Time-dependent intensity of the instability-generated light in the +ẑ (signal, red)

and −ẑ (idler, blue) directions for Ip = 5 mW/cm2 and ∆ = −5Γ, where the instability

threshold is Ip = 2.3 mW/cm2. The temporal correlation of the signal and idler modes is

r = 0.99.

If we alter the beam geometry such that the pump beams propagate along ẑ and are focused

down to a diameter on the order of W (see Fig. 10a), we observe multi-petal transverse optical

patterns generated in both the ±ẑ directions. Because the focused pump beams weakly confine

the atoms in the x-y plane, the patterns can persist for ∼ 2 ms (where we modify our experi-

mental timing scheme to allow for a 2-ms-long wave-mixing period). Depending on the relative

powers and exact alignment of the pump beams, we find many different types of patterns. Fig-

ure 10b shows several examples of patterns, including two-, four-, and six-spot patterns as well

as a nearly-continuous ring. In addition, we can choose a configuration where the orientation

of the patterns rotate randomly (when there is a high degree of symmetry) or are fixed in a

particular orientation (when we impose an asymmetry externally).
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Fig. 10. a) Beam geometry for pattern-forming instability, where θ ′∼ 5 mrad. b) Transverse

optical patterns, including i) a nearly full ring and ii) a six- iii) four- and iv) two-spot

pattern, for Ip = 15 mW/cm2, ∆ = −8Γ and an instability threshold of Ip = 6 mW/cm2.

The central spot in the images corresponds to residual pump light.

For the highly-symmetric case, we find that we can inject a weak control beam along the

cone of the generated light and pin the pattern orientation. In the case where a particular pattern

orientation is set by a broken symmetry in the system, we find that we can use the control beam
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to rotate the pattern to a specified orientation. Thus, we anticipate that this system may be useful

for low-light-level all-optical switching applications [14, 15].

7. Conclusions

In this paper, we present the theory for and experimental demonstration of a new, dissipation-

induced NLO process that arises when a cloud of cold atoms are simultaneously polarized,

spatially-organized, and cooled by incident optical fields. By using a weak beam to probe the

atomic NLO response, we observe that a regime exists for which the NLO coupling strength

scales quadratically with Ip and SWM occurs. This corresponds to an extremely large fifth-order

nonlinearity, and leads to substantial NLO phase shifts with high transparency.

For sufficiently large NLO coupling strengths, we enter a regime in which the back-action

of the amplified probe fields strongly influences the system dynamics. This leads to additional

atomic cooling, enhanced atomic coherence times, slow optical group velocities, and, eventu-

ally, optical instabilities and pattern formation.
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