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ABSTRACT:

We present a novel approach for a rigorous bundle adjustment for omnidirectional and multi-view cameras, which enables an efficient

maximum-likelihood estimation with image and scene points at infinity. Multi-camera systems are used to increase the resolution,

to combine cameras with different spectral sensitivities (Z/I DMC, Vexcel Ultracam) or – like omnidirectional cameras – to augment

the effective aperture angle (Blom Pictometry, Rollei Panoscan Mark III). Additionally multi-camera systems gain in importance for

the acquisition of complex 3D structures. For stabilizing camera orientations – especially rotations – one should generally use points

at the horizon over long periods of time within the bundle adjustment that classical bundle adjustment programs are not capable of.

We use a minimal representation of homogeneous coordinates for image and scene points. Instead of eliminating the scale factor of

the homogeneous vectors by Euclidean normalization, we normalize the homogeneous coordinates spherically. This way we can use

images of omnidirectional cameras with single-view point like fisheye cameras and scene points, which are far away or at infinity. We

demonstrate the feasibility and the potential of our approach on real data taken with a single camera, the stereo camera FinePix Real

3D W3 from Fujifilm and the multi-camera system Ladybug 3 from Point Grey.

1 INTRODUCTION

Motivation. The paper presents a novel approach for the bundle

adjustment for omnidirectional and multi-view cameras, which

enables the use of image and scene points at infinity, called

“BACS” (Bundle Adjustment for Camera Systems). Bundle ad-

justment is the work horse for orienting cameras and determining

3D points. It has a number of favourable properties: It is sta-

tistically optimal in case all statistical tools are exploited, highly

efficient in case sparse matrix operations are used, useful for test

field free self calibration and can be parallelized to a high degree.

Multi-camera systems are used to increase the resolution, to com-

bine cameras with different spectral sensitivities (Z/I DMC, Vex-

cel Ultracam) or – like omnidirectional cameras – to augment the

effective aperture angle (Blom Pictometry, Rollei Panoscan Mark

III). Additionally multi-camera systems gain importance for the

acquisition of complex 3D structures. Far or even ideal points,

i. e. points at infinity, e. g. points at the horizon are effective in

stabilizing the orientation of cameras, especially their rotation.

In order to exploit the power of bundle adjustment, it therefore

needs to be extended to handle multi-camera systems and image

and scene points at infinity, see Fig. 1.

The idea. The classical collinearity equations for image points

x ′

it([x
′

it; y
′

it]) of scene point Xi([Xi;Yi;Zi]) in camera t with

rotation matrix Rt([rkk′ ]) with k and k′ = 1, ..., 3 and projection

center Zt([X0t;Y0t;Z0t]) read as

x′

it =
r11(Xi −X0t) + r21(Yi − Y0t) + r31(Zi − Z0t)

r13(Xi −X0t) + r23(Yi − Y0t) + r33(Zi − Z0t)
(1)

y′

it =
r12(Xi −X0t) + r22(Yi − Y0t) + r32(Zi − Z0t)

r13(Xi −X0t) + r23(Yi − Y0t) + r33(Zi − Z0t)
(2)

Obviously, these equations are not useful for far points or ideal

points, as small angles between rays lead to numerical instabil-

ities or singularities. They are not useful for bundles of rays

of omnidirectional cameras, as rays perpendicular to the view-

ing direction, as they may occur with fisheye cameras, cannot be

transformed into image coordinates. This would require differ-

ent versions of the collinearity equation depending on the type

Figure 1: A two-camera system with Fisheye cameras c = 1, 2
with projection centers Ztc and known motion Mc and unknown

motion Mt, having a field of view larger than 180◦ shown at two

exposure times t = 1, 2 observing two points Xi, i = 1, 2, one

being close, the other at infinity. Already a block adjustment with

a single camera moving over time will be stabilized by points at

infinity.

of sensor as one would need to integrate the camera model into

the bundle adjustment. Finally, the equations are not easily ex-

tensible to systems of multiple cameras, as one would need to

integrate an additional motion, namely, the motion from the co-

ordinate system of the camera system to the individual camera

systems, which appears to make the equations explode.

Geometrically this could be solved by using homogeneous coor-

dinates x′

it and Xi for image and scene points, a calibration ma-

trix Kt and the motion matrix Mt in: x′

it = λit[Kt | 0]M
−1

t Xi =
λitPtXi. Obviously, (a) homogeneous image coordinates allow

for ideal image points, even directions opposite to the viewing

direction, (b) homogeneous scene coordinates allow for far and

ideal scene points, and including an additional motion is simply

an additional factor.

However, this leads to two problems. As the covariance matri-

ces Σx′
it

x′
it

of homogeneous vectors are singular, the optimiza-

tion function of the Maximum Likelihood Estimation
∑

it
|xit −
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λitPtXi|
2

Σ
−1

x
′

it
x
′

it

is not valid. A minor, but practical problem is the

increase of the number of unknown parameters, namely the La-

grangian multipliers, which are necessary when fixing the length

of the vectors Xi. In large bundle adjustments with more than

a million scene points this prohibitively increases the number of

unknowns by a factor 5/3.

Task and challenges. The task is to model the projection pro-

cess of a camera system as the basis for a bundle adjustment for

a multi-view camera system, which consists of mutually fixed

single view cameras, which allows the single cameras to be om-

nidirectional, requiring to explicitly model the camera rays and

which allows for far or ideal scene points for stabilizing the con-

figuration. The model formally reads as

xitc = Ptc(M
−1

t (Xi)) (3)

with the I scene points Xi, i= 1, ..., I , the T motions Mt, t=
1, ..., T of the camera systems from origin, the projection Ptc into

the cameras c=1, ..., C possibly varying over time, and the ob-

served image points xitc of scene point i in camera c at time/pose t.

For realizing this we need to be able to represent bundles of rays

together with their uncertainty, using uncertain direction vectors,

to represent scene points at infinity using homogeneous coordi-

nates, and minimize the number of parameters to be estimated.

The main challenge lies in the inclusion of the statistics into an

adequate minimal representation.

Related Work. Multi-camera systems are proposed by many

authors. E. g. Mostafa and Schwarz (2001) present an approach

to integrate a multi-camera system with GPS and INS. Nister et

al. (2004) discuss the advantage to use a stereo video rig in or-

der to avoid the difficulty with the scale transfer. Savopol et al.

(2000) report on a multi-camera system for an aerial platform for

increasing the resolution. In all cases the multi view geometry

is only used locally. Orientation of a stereo rig is discussed in

Hartley and Zisserman (2000, p. 493). Mouragnon et al. (2009)

proposed a bundle solution for stereo rigs working in terms of di-

rection vectors, but they minimize the angular error without con-

sidering the covariance matrix of the observed rays. Frahm et al.

(2004) present an approach for orienting a multi-camera system,

however not applying a statistically rigorous approach. Muhle et

al. (2011) discuss the ability to calibrate a multi-camera system

in case the views of the individual cameras are not overlapping.

Zomet et al. (2001) discuss the problem of re-calibrating a rig of

cameras due to changes of the internal parameters. Bundle adjust-

ment of camera systems have been extensively discussed in the

thesis of Kim (2010). Uncertain geometric reasoning using pro-

jective entities has extensively been presented in Kanatani (1996),

but only using Euclideanly normalized geometric entities and re-

stricting estimation to single geometric entities. Heuel (2004)

eliminating these deficiencies, proposed an estimation procedure

which does not eliminate the redundancy of the representation

and also cannot easily include elementary constraints between

observations, see Meidow et al. (2009). The following develop-

ments are based on the minimal representation schemes proposed

in Förstner (2012) which reviews previous work and generalizes

e. g. Bartoli (2002).

2 CONCEPT

2.1 Model for sets of single cameras

2.1.1 Image coordinates as observations. Using homoge-

neous coordinates

x
′

it = λitPtXi = λitKtR
T

t [I3 | −Zt]Xi (4)

with a projection matrix

Pt = [Kt | 03×1]M
−1

t , Mt =

[
Rt Zt

0
T 1

]
(5)

makes the motion of the camera explicit. It contains for each pose

t: the projection center Zt in scene coordinate system, i. e. trans-

lation of scene system to camera system, the rotation matrix Rt

of scene system to camera system, and the calibration matrix Kt,

containing parameters for the principal point, the principal dis-

tance, the affinity, and possibly lens distortion, see McGlone et

al. (2004, eq. (3.149) ff.) and eq. (12). In case of an ideal camera

with principal distance c thus Kt = Diag([c, c, 1]) and Euclidean

normalization of the homogeneous image coordinates with the

k-th row A
T

t,k of the projection matrix Pt

x
′e
it =

PtXi

AT

t,3Xi

=




A
T

t,1Xi/A
T

t,3Xi

A
T

t,2Xi/A
T

t,3Xi

1


 (6)

we obtain eq. (1), e. g. x′

it = A
T

t,1Xi/A
T

t,3Xi.

Observe the transposition of the rotation matrix in eq. (4), which

differs from Hartley and Zisserman (2000, eq. (6.7)), but makes

the motion of the camera from the origin into the actual camera

system explicit, see Kraus (1997).

2.1.2 Ray directions as observations. Using the directions

from the cameras to the scene points we obtain the collinearity

equations

k
x
′

it = λit
k
PtXi = λitR

T

t (Xi−Zt) = λit[I3 | 0]M−1

t Xi . (7)

Instead of Euclidean normalization, we now perform spherical

normalization x
s = N(x) = x/|x| yielding the collinearity

equations for camera bundles

k
x
′s

it = N(kPtXi) . (8)

We thus assume the camera bundles to be given as T sets

{kxit, i ∈ It} of normalized directions for each time t of expo-

sure. The unknown parameters are the six parameters of the mo-

tion in k
Pt and the three parameters of each scene point. Care has

to be taken with the sign: We assume the negative Z-coordinate

of the camera system to be the viewing direction. The scene

points then need to have non-negative homogeneous coordinate

Xi,4, which in case they are derived from Euclidean coordinates

via Xi = [Xi; 1] always is fulfilled. In case of ideal points, we

therefore need to distinguish the scene point [Xi; 0] and the scene

point [−Xi; 0] which are points at infinity in opposite directions.

As a first result we observe: The difference between the classical

collinearity equations and the collinearity equations for camera

bundles is twofold. (1) The unknown scale factor is eliminated

differently: Euclidean normalization leads to the classical form

in eq. (6), spherical normalization leads to the bundle form in

eq. (8). (2) The calibration is handled differently: In the classi-

cal form it is made explicit, here we assume the image data to be

transformed into camera rays taking the calibration into account.

This will make a difference in modelling the camera during self-

calibration, a topic we will not discuss in this paper.

2.1.3 Handling far and ideal scene points. Handling far and

ideal scene points can easily be realized by also using spherically
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normalized coordinates for the scene points leading to

k
x
′s

it = N(kPtX
s
i ) . (9)

Again care has to be taken with points at infinity.

2.2 Model for sets of camera systems

With an additional motion Mc(Rc,Zc) for each camera of the

camera system we obtain the general model for camera bundles

k
x
′s

itc = N
(
[I3 | 03×1] M

−1

c M
−1

t X
s
i

)
, (10)

making all elements explicit: the calibration of the camera system

(Mc, c = 1, . . . , C), assumed to be rigid over time, and the pose

Mt of the system at time t. Substituting k
Pc = R

T

c [I3 | −Zc] =
[I3 | 03×1] M

−1

c yields the model

k
x
′s

itc = N
(
k
PcM

−1

t X
s
i

)
(11)

with observed directions x ′

itc(
k
x
′

itc) represented by normalized

3-vectors, having two degrees of freedom, unknown or known

scene point coordinates Xi(X
s
i ), represented by spherically nor-

malized homogeneous 4-vectors, having 3 degrees of freedom

and unknown pose Mt of camera system, thus 6 parameters per

time. The projection matrices k
Pc only containing the relative

pose of the cameras Mc are assumed to be given in the following.

2.3 Generating camera directions from observed image co-

ordinates

In most cases the observations are made using digital cameras

which physically are – approximately – planar. The transition to

directions of camera rays need to be performed before starting

the bundle adjustment. As mentioned before, this requires the

internal camera geometry to be known. Moreover, in order to

arrive at a statistically optimal solution, one needs to transfer the

uncertainty of the observed image coordinates to the uncertainty

of the camera rays. As an example we discuss two cases.

Perspective cameras. In case we have perspective cameras

with small image distortions, we can use the camera-specific and

maybe temporal varying calibration matrix

K(x′, q) =




c cs x′

H +∆x(x′, q)
0 c(1 +m) y′

H +∆y(x′, q)
0 0 1


 (12)

for the forward transformation

g
x
′ = K (x′, q) k

x
′s

(13)

from the observed image coordinates g
x
′, the g indicating the

generality of the mapping system and the ray directions k
x
′s

.

The calibration matrix besides the basic parameters, namely the

principal distance c with image plane kZ = c, shear s, scale dif-

ference m, and principal point x′

H , contains additive corrections

for modelling lens distortion or other deviations, which depend

on additional parameters q and are spatially different via x. In

case of small deviations eq. (13) can easily be inverted. However,

one must take into account, the different sign of the coordinate

vector and the direction from the camera to the scene point, see

Fig. 2,
k
x
′s
≈ s N

(
K

−1(gx′, q) g
x
′
)

(14)

with s ∈ {−1,+1} such that kx
′s

3 < 0. This relation is inde-

pendent of the sign of the third element of the calibration matrix.

x’

Y
k

kX

k
Zy’

y’k

kX

Y
k

x’
Z

k

k

X

Z

X

c < 0

Z

c > 0

’x

x’

’x

x’

Figure 2: The direction of the homogeneous image coordinate

vector and the direction of the ray is different depending on the

sign of the principal distance c.

Given the covariance matrix Σ
g

x′x′ of the image coordinates, the

covariance matrix of k
x
′

can be determined by variance propa-

gation, omitting the dependency of the calibration matrix on the

point coordinates x′. Note that a point g
x
′ at infinity corresponds

to the direction k
x
′

perpendicular to the viewing direction.

Omnidirectional single view point cameras. As an example

for an omnidirectional single view camera we take a camera with

a fisheye-lens. In the most simple case the normalized radial dis-

tance r′ =
√

x′2 + y′2/c of an image point with coordinates

[x′, y′] being the reduced image coordinates referring to the prin-

cipal point, goes with the angle φ between the viewing direction

and the camera ray. A classical model is the stereographic model

r′ = c tan
φ

2
,




kx
′s

1

kx
′s

2

kx
′s

3


 =

1

1 + r′2/c2




2x′/c
2y′/c

1− r′2/c2


 .

Again, the uncertainty of the image coordinates can be trans-

formed to the uncertainty of the direction k
x
′s

of the camera ray

via variance propagation. In all cases the covariance matrix of the

camera rays is singular, as the normalized 3-vector only depends

on two observed image coordinates.

2.4 The estimation procedure

The collinearity equations in (11) contain three equations per

observed camera ray and four parameters for the scene points,

though, both being unit vectors. Therefore the corresponding co-

variance matrices are singular and more than the necessary pa-

rameters are contained in the equations. We therefore want to

reduce the number of parameters to the necessary minimum. We

do this after linearization.

Linearization and update for pose parameters. Linearization

of the non-linear model leads to a linear substitute model which

yields correction parameters which allow to derive corrected ap-

proximate values. We start with approximate values R
a for the

rotation matrix, Za for the projection center, Xsa for the spher-

ically normalized scene points, and x
a = N(P (Ma)−1

X
a)

for the normalized directions. The Euclidean coordinates will be

simply corrected by Z = Za + ∆Z, the three parameters ∆Z

are to be estimated. The rotation matrix will be corrected by pre-

multiplication of a small rotation, thus by R = R(∆R)R
a ≈

(I3 + S(∆R))Ra, where the small rotation R(∆R) depends on

a small rotation vector ∆R that is to be estimated.

Reduced coordinates and update of coordinates. The correc-

tion of the unit vectors is performed using reduced coordinates.

These are coordinates, say the two-vector xr of the direction x
s,

in the two-dimensional tangent space null
(
x
saT

)
= [r, s] of the

unit sphere S2 evaluated at the approximate values xsa

xr = null
T

(
x
saT

)
x
s =

[
rT

x
s

sT
x
s

]
. (15)
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The corrections ∆xr of these reduced coordinates are estimated.

This leads to the following update rule

x
s = N

(
x
sa + null

(
x
saT

)
∆xr

)
. (16)

Obviously, the approximate vector xsa is corrected by

∆x = null
(
x
saT

)
∆xr (17)

and then spherically normalized to achieve the updated values

x
s. Using (15) we now are able to reduce the number of equa-

tions per direction from three to two, making the degrees of free-

dom of the observed direction, being two, explicit. This results

in pre-multiplication of all observation equations on (11) with

nullT
(
k
x
saT

itc

)
. When linearizing the scene coordinates we, fol-

lowing (17), use the substitution ∆X
s
i = null

(
X

saT
i

)
∆Xr,i.

Then we obtain the linearized model

k
xr,itc + v̂xr,itc

(18)

= −k
J
T

s

(
k
x
a

itc

)
R

aT
tc S(Xa

i0) ∆̂Rt

+k
J
T

s

(
k
x
a

itc

)
R

aT
tc Xa

ih∆̂Zt (19)

+k
J
T

s

(
k
x
a

itc

)
k
Pc (Ma

t )
−1

null
(
X

aT
i

)
∆̂Xri

with

k
Js(

k
x
a

itc) =
1

|x|

(
I3 −

xx
T

xTx

)
null(xT)

∣∣∣∣
x = k

x
a

itc

(20)

partitioning of the homogeneous vector Xs = [X0;Xh] and the

compound rotation matrix R
a
tc = R

a
t Rc depending on ∆̂R, ∆̂Z,

and ∆̂Xr .

We now arrive at a well defined optimization problem: find

∆̂Xr,i, ∆̂Rt, ∆̂Zt minimizing

Ω
(
∆̂Xr,i, ∆̂Rt, ∆̂Zt

)
=

∑

itc

v̂
T

r,itcΣ
−1

xr,itcxr,itc
v̂r,itc (21)

with the regular 2× 2-covariance matrices

Σxr,itcxr,itc
= k

J
T

s (
k
x
a

itc)

[
Σxitcxitc

0

0
T 0

]
k
Js(

k
x
a

itc) . (22)

3 EXPERIMENTS

3.1 Implementation details

We have implemented the bundle adjustment as a Gauss-Markov

model in Matlab. Line preserving cameras with known inner cal-

ibration Kc as well as their orientation within the multi-camera

system Mc(Rc,Zc) are assumed to be known. To overcome the

rank deficiency we define the gauge by introducing seven cen-

troid constraints on the approximate values of the object points.

This results in a free bundle adjustment, where the trace of the co-

variance matrix of the estimated scene points is minimal. Using

multi-camera systems the scale is in fact defined by Zc. However

the spatial extent of the whole block can be very large compared

to this translation. We consider this by applying a weaker influ-

ence on the scale. We can robustify the cost function by down

weighting measurements whose residual errors are too large by

minimizing the robust Huber cost function, see Huber (1981).

To solve for the unknown parameters, we can use the iterative

Levenberg-Marquardt algorithm described in Lourakis and Ar-

gyros (2009).

Determination of approximate values. For initialization suf-

ficiently accurate approximate values for object point coordinates

and for translation and rotation of the multi-camera system at the

different instances of time are needed. We use the results of the

sift-feature based bundle adjustment Aurelo provided by Läbe and

Förstner (2006) as approximate values for the pose of the multi-

camera system. Object points are triangulated by using all corre-

sponding image points that are consistent with the estimated rel-

ative orientations. Image points with residuals larger than 10 pel

and object points behind image planes are discarded.

3.2 Test on correctness and feasibility

We first perform two tests to check the correctness of the imple-

mented model and then show the feasibility on real data.

Parking lot simulation. We simulated a multi-camera system

moving across a parking lot with loop closure, observing 50 scene

points on the parking lot and 10 scene points far away at the hori-

zon, i. e. at infinity (see Fig. 3). The multi-camera system con-

tains three single-view cameras. Every scene point is observed

by a camera ray on all 20 instances of time. The simulated set-up

provides a high redundancy of observations. With a commonly

Figure 3: Simulation of a moving multi-camera system (poses

shown as tripods) – e. g. on a parking lot – with loop closing.

Scene points on the parking lot (crossed dots) and at the horizon

(empty dots) being numerically at infinity are observed.

assumed standard deviation in the image plane of 0.3 pel and a

camera constant with 500 pel, we add normally distributed noise

with σl = 0.3/500 radiant on the spherically normalized camera

rays to simulate the observation process. As initial values for the

bundle adjustment we randomly disturb both the generated spher-

ical normalized homogeneous scene points Xs
i by 10 % and the

generated motion parameters Rt and Zt of Mt by 3◦ and 2 meters

respectively.

The iterative estimation procedure stops after six iterations, when

the maximum normalized observation update is less than 10−6.

The residuals of the observed image rays in the tangent space of

the adjusted camera rays, which are approximately the radiant of

small angles, do not show any deviation from the normal distribu-

tion. The estimated a posteriori variance factor ŝ0 = 1.0021 ap-

proves the a priori stochastic model with variance factor σ0 = 1.

In order to test if the estimated orientation parameters and scene

point coordinates represent the maximum-likelihood estimation

for normally distributed noise on the observations, we have gener-

ated the same simulation 2000 times with different random noise.

The mean of the estimated variance factors is not significantly dif-

ferent from one, indicating an unbiased estimator with minimum

variance. These results confirm the correctness of the implemen-

tation.
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Stereo camera data set. In order to test feasibility on real data

we apply the bundle adjustment on 100 stereo images of a build-

ing with a highly textured facade taken with the consumer stereo

camera FinePix Real 3D W3 from Fujifilm (see Fig. 4). We

use Aurelo without considering the known relative orientation

between the stereo images to obtain an initial solution for the

camera poses and the scene points. The dataset contains 284 813

image points and 12 439 observed scene points.

(a) left image (b) right image

Figure 4: Sample images of the stereo camera data set.

Starting from an a priori standard deviation for the image coordi-

nates of σl = 1 pel, the a posteriori variance factor is estimated

with ŝ0 = 0.37 indicating the automatically extracted Lowe

points to have an average precision of approximately 0.4 pel. The

resulting scene points and the poses of the right stereo camera im-

ages are shown in Fig. 5.

Figure 5: Illustration of the estimated scene points and poses of

the right stereo camera images.

3.3 Decrease of rotational precision excluding far points

Bundle adjustment programs, such as Aurelo, cannot handle

scene points with glancing intersections – e. g. with maximal in-

tersection angles lower than γ = 1 gon – which therefore are ex-

cluded in the estimation process to avoid numerical difficulties.

Far scene points, however, can be observed over long periods of

time and therefore should improve the quality of rotation estima-

tion significantly. We investigate the decrease of precision of the

estimated rotation parameters of R̂t when excluding scene points

with glancing intersection angles. In detail, we will determine the

average empirical standard deviation σαt = ŝ0
√

trΣ
R̂tR̂t

/3 for

all estimated rotation parameters and report the average decrease

of precision by excluding far points determined by the geomet-

ric mean, namely exp
[∑T

t
log(σαt/σ

′

αt
)/T

]
, where σ′

αt
rep-

resents the resulting average empirical standard deviation when

scene points whose maximal intersection angle is lower than a

threshold γ are excluded.

Parking lot simulation. We determine the decrease of preci-

sion for the estimated rotation parameters by excluding a vary-

ing number of scene points at infinity on the basis of the in Sec-

tion 3.2 introduced simulation of a moving multi-camera system

on a parking lot. Again we generate 50 scene points close to the

multi-camera positions and vary the number of scene points at in-

finity to be 5, 10, 20, 50 and 100. The resulting average decrease

in precision is 0.40 %, 2.31 %, 4.71 %, 7.03 % and 10.54 % re-

spectively.

Multi-camera data set. We apply the bundle adjustment to an

image sequence consisting of 360 images taken by four of the six

cameras of the multi-camera system Ladybug 3 (see Fig. 6). The

Ladybug 3 is mounted on a hand-guided platform and is triggered

once per meter using an odometer. Approximate values are ob-

tained with Aurelo by combining the individual cameras into a

single virtual camera by adding distance dependent corrections

on the camera rays, see Schmeing et al. (2011).

(a) c=1 (b) c=2 (c) c=3 (d) c=4

Figure 6: Sample images of the ladybug 3 data set.

The data set contains 10 891 of 26 890 scene points observed with

a maximal intersection angles per point significantly lower than

γ = 1 gon, see the histogram in Fig. 7(a). The average stan-

dard deviation of each estimated rotation parameter is shown in

Fig. 7(b) showing the individual gain in precision that is mainly

obtained due to a higher number of observed scene points at the

individual poses, as can be seen in the scatter plot in Fig. 7(c).

Some of the cameras show very large differences in the precision,

demonstrating the relevance of the far scene points in the Lady-

bug 3 data set. Using far points results in an almost constant pre-

cision of the rotation parameters over all camera stations, in con-

trast to the results of the bundle adjustment excluding far points.

The estimated a posteriori variance factor amounts ŝ0 = 1.05 us-

ing an a priori stochastic model with σl = 1 pel for the image

points, indicating a quite poor precision of the point detection

which mainly results from the limited image quality.

Urban drive data set. We make the same investigation on an

image sequence consisting of 283 images taken by a single-view

camera mounted on a car. The data set contains 33 274 of 62 401

scene points observed with a maximal intersection angle per point

smaller than γ = 1 gon, see Fig. 8(a). Excluding those scene

points decreases the average precision of the estimated rotation

parameters by about 17.41 %. The average standard deviation of

each estimated rotation parameter is shown in Fig. 8(b) show-

ing the individual gain in precision that again is mainly obtained

due to a higher number of observed scene points at the individual

poses, shown in scatter plot of Fig. 8(c). The estimated posteri-

ori variance factor amounts ŝ0 = 0.54 using a priori stochastic

model with σl = 1 pel for the image points, indicating the preci-

sion to be in a normal range.

4 CONCLUSIONS AND FUTURE WORK

We proposed a rigorous bundle adjustment for omnidirectional

and multi-view cameras which enables an efficient maximum-

likelihood estimation with image and scene points at infinity.

Our experiments on simulated and real data sets show that scene

points at the horizon stabilize the orientation of the camera rota-

tions significantly. Future work will focus on solving the issue

of estimating scene points like a church spire which is near to

some cameras and for some others lying numerically at infinity.

Furthermore we are developing a fast C-implementation and a

concept for determining approximate values for the bundle ad-

justment of multi-view cameras.

Software. Matlab code of the proposed bundle adjustment

BACS is avaible at: www.ipb.uni-bonn.de/bacs.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

79



(a) Number of scene points with small intersection angles.

(b) Average empirical standard deviation of estimated rotations.

(c) Scatter plot of σαt against the number of observed scene points at t.

Figure 7: The histogram in (a) shows the number of scene points

in the multi-camera dataset with small intersection angles. The

average precision σαt determined by excluding and including

scene points with γ < 1 gon for all poses t = 1, ..., T is com-

pared to each other in (b) and against the number of observed

scene points in (c).
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