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Abstract

A wide variety of machine learning problems can be described as minimizing a regularized risk

functional, with different algorithms using different notions of risk and different regularizers. Ex-

amples include linear Support Vector Machines (SVMs), Gaussian Processes, Logistic Regression,

Conditional Random Fields (CRFs), and Lasso amongst others. This paper describes the theory

and implementation of a scalable and modular convex solver which solves all these estimation

problems. It can be parallelized on a cluster of workstations, allows for data-locality, and can deal

with regularizers such as L1 and L2 penalties. In addition to the unified framework we present tight

convergence bounds, which show that our algorithm converges in O(1/ε) steps to ε precision for

general convex problems and in O(log(1/ε)) steps for continuously differentiable problems. We

demonstrate the performance of our general purpose solver on a variety of publicly available data

sets.
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1. Introduction

At the heart of many machine learning algorithms is the problem of minimizing a regularized risk

functional. That is, one would like to solve

min
w

J(w) := λΩ(w)+Remp(w), (1)

where Remp(w) :=
1

m

m

∑
i=1

l(xi,yi,w) (2)

is the empirical risk. Moreover, xi ∈ X ⊆ R
d are referred to as training instances and yi ∈ Y are

the corresponding labels. l is a (surrogate) convex loss function measuring the discrepancy be-

tween y and the predictions arising from using w. For instance, w might enter our model via

l(x,y,w) = (〈w,x〉 − y)2, where 〈·, ·〉 denotes the standard Euclidean dot product. Finally, Ω(w)
is a convex function serving the role of a regularizer with regularization constant λ > 0. Typically

Ω is differentiable and cheap to compute. In contrast, the empirical risk term Remp(w) is often

non-differentiable, and almost always computationally expensive to deal with.

For instance, if we consider the problem of predicting binary valued labels y∈ {±1}, we can set

Ω(w) = 1
2
‖w‖2

2 (i.e., L2 regularization), and the loss l(x,y,w) to be the binary hinge loss, max(0,1−
y〈w,x〉), thus recovering linear Support Vector Machines (SVMs) (Joachims, 2006). Using the

same regularizer but changing the loss function to l(x,y,w) = log(1+exp(−y〈w,x〉)), yields logistic

regression. Extensions of these loss functions allow us to handle structure in the output space

(Bakir et al., 2007) (also see Appendix A for a comprehensive exposition of many common loss

functions). On the other hand, changing the regularizer Ω(w) to the sparsity inducing ‖w‖1 (i.e.,

L1 regularization) leads to Lasso-type estimation algorithms (Mangasarian, 1965; Tibshirani, 1996;

Candes and Tao, 2005).

If the objective function J is differentiable, for instance in the case of logistic regression, we

can use smooth optimization techniques such as the standard quasi-Newtons methods like BFGS or

its limited memory variant LBFGS (Nocedal and Wright, 1999). These methods are effective and

efficient even when m and d are large (Sha and Pereira, 2003; Minka, 2007). However, it is not

straightforward to extend these algorithms to optimize a non-differentiable objective, for instance,

when dealing with the binary hinge loss (see, e.g., Yu et al., 2008).

When J is non-differentiable, one can use nonsmooth convex optimization techniques such as

the cutting plane method (Kelly, 1960) or its stabilized version the bundle method (Hiriart-Urruty

and Lemaréchal, 1993). The bundle methods not only stabilize the optimization procedure but

make the problem a well-posed one, that is, with unique solution. However, the amount of external

stabilization that needs to be added is a parameter that requires careful tuning.

In this paper, we bypass this stabilization parameter tuning problem by taking a different route.

The resultant algorithm – Bundle Method for Regularized Risk Minimization (BMRM) – has certain

desirable properties: a) it has no parameters to tune, and b) it is applicable to a wide variety of

regularized risk minimization problems. Furthermore, we show that BMRM has an O(1/ε) rate of

convergence for nonsmooth problems and O(log(1/ε)) for smooth problems. This is significantly

tighter than the O(1/ε2) rates provable for standard bundle methods (Lemaréchal et al., 1995). A

related optimizer, SVMstruct (Tsochantaridis et al., 2005), which is widely used in machine learning

applications was also shown to converge at O(1/ε2) rates. Our analysis also applies to SVMstruct,

which we show to be a special case of our solver, and hence tightens its convergence rate to O(1/ε).
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Very briefly, we highlight the two major advantages of our implementation. First, it is com-

pletely modular; new loss functions, regularizers, and solvers can be added with relative ease. Sec-

ond, our architecture allows the empirical risk computation (2) to be easily parallelized. This makes

our solver amenable to large data sets which cannot fit into the memory of a single computer. Our

open source C/C++ implementation is freely available for download.1

The outline of our paper is as follows. In Section 2 we describe BMRM and contrast it with stan-

dard bundle methods. We also prove rates of convergence. In Section 3 we discuss implementation

issues and present principled techniques to control memory usage, as well as to speed up computa-

tion via parallelization. Section 4 puts our work in perspective, and discusses related work. Section

5 is devoted to extensive experimental evaluation, which shows that our implementation is compa-

rable to or better than specialized state-of-the-art solvers on a number of publicly available data sets.

Finally, we conclude our work and discuss related issues in Section 6. In Appendix A we describe

various classes of loss functions organized according to their common traits in computation. Long

proofs are relegated to Appendix B. Before we proceed a brief note about our notation:

1.1 Notation

The indices of elements of a sequence or a set appear in subscript, for example, u1,u2. The i-th

component of a vector u is denoted by u(i). [k] is the shorthand for the set {1,2, . . . ,k}. The Lp norm

is defined as ‖u‖p = (∑d
i=1 |u(i)|p)1/p, for p≥ 1, and we use ‖·‖ to denote ‖·‖2 whenever the context

is clear. 1d and 0d denote the d-dimensional vectors of all ones and zeros respectively.

2. Bundle Methods

The precursor to the bundle methods is the cutting plane method (CPM) (Kelly, 1960). CPM uses

subgradients, which are a generalization of gradients appropriate for convex functions, including

those which are not necessarily smooth. Suppose w′ is a point where a convex function J is finite.

Then a subgradient is the normal vector of any tangential supporting hyperplane of J at w′ (see

Figure 1 for geometric intuition). Formally s′ is called a subgradient of J at w′ if, and only if,

J(w)≥ J(w′)+
〈
w−w′,s′

〉
∀w. (3)

The set of all subgradients at w′ is called the subdifferential, and is denoted by ∂wJ(w′). If this set is

not empty then J is said to be subdifferentiable at w′. On the other hand, if this set is a singleton then

the function is said to be differentiable at w′. Convex functions are subdifferentiable everywhere in

their domain (Hiriart-Urruty and Lemaréchal, 1993).

As implied by (3), J is bounded from below by its linearization (i.e., first order Taylor approx-

imation) at w′. Given subgradients s1,s2, . . . ,st evaluated at locations w0,w1, . . . ,wt−1, we can state

a tighter (piecewise linear) lower bound for J as follows

J(w)≥ JCP
t (w) := max

1≤i≤t
{J(wi−1)+ 〈w−wi−1,si〉}. (4)

This lower bound forms the basis of the CPM, where at iteration t the set {wi}t−1
i=0 is augmented by

wt := argmin
w

JCP
t (w).

1. Software available at http://users.rsise.anu.edu.au/˜chteo/BMRM.html.
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This iteratively refines the piecewise linear lower bound JCP and allows us to get close to the mini-

mum of J (see Figure 2 for an illustration).

If w∗ denotes the minimizer of J, then clearly each J(wi) ≥ J(w∗) and hence min0≤i≤t J(wi) ≥
J(w∗). On the other hand, since J ≥ JCP

t it follows that J(w∗) ≥ JCP
t (wt). In other words, J(w∗)

is sandwiched between min0≤i≤t J(wi) and JCP
t (wt) (see Figure 3 for an illustration). The CPM

monitors the monotonically decreasing quantity

εt := min
0≤i≤t

J(wi)− JCP
t (wt),

and terminates whenever εt falls below a predefined threshold ε. This ensures that the solution J(wt)
satisfies J(wt)≤ J(w∗)+ ε.

Figure 1: Geometric intuition of a subgradient. The nonsmooth convex function (solid blue) is only

subdifferentiable at the “kink” points. We illustrate two of its subgradients (dashed green

and red lines) at a “kink” point which are tangential to the function. The normal vectors

to these lines are subgradients.

2.1 Standard Bundle Methods

Although CPM was shown to be convergent (Kelly, 1960), it is well known (see, e.g., Lemaréchal

et al., 1995; Belloni, 2005) that CPM can be very slow when new iterates move too far away from

the previous ones (i.e., causing unstable “zig-zag” behavior in the iterates).

Bundle methods stabilize CPM by augmenting the piecewise linear lower bound (e.g., JCP
t (w)

as in (4)) with a prox-function (i.e., proximity control function) which prevents overly large steps in

the iterates (Kiwiel, 1990). Roughly speaking, there are 3 popular types of bundle methods, namely,

proximal (Kiwiel, 1990), trust region (Schramm and Zowe, 1992), and level set (Lemaréchal et al.,

1995).2 All three versions use 1
2
‖·‖2

as their prox-function, but differ in the way they compute the

2. For brevity we will only describe “first-order” bundle methods, and omit discussion about “second-order” variants

such as the bundle-Newton method of Lukšan and Vlček (1998).
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Figure 2: A convex function (blue solid curve) is bounded from below by its linearizations (dashed

lines). The gray area indicates the piecewise linear lower bound obtained by using the

linearizations. We depict a few iterations of the cutting plane method. At each iteration

the piecewise linear lower bound is minimized and a new linearization is added at the

minimizer (red rectangle). As can be seen, adding more linearizations improves the lower

bound.

Figure 3: A convex function (blue solid curve) with three linearizations (dashed lines) evaluated

at three different locations (red squares). The approximation gap ε3 at the end of third

iteration is indicated by the height of the magenta horizontal band, that is, difference

between lowest value of J(w) evaluated so far (lowest black circle) and the minimum of

JCP
3 (w) (red diamond).
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new iterate:

proximal: wt := argmin
w

{ ζt

2
‖w− ŵt−1‖2 + JCP

t (w)}, (5)

trust region: wt := argmin
w

{JCP
t (w) | 1

2
‖w− ŵt−1‖2 ≤ κt}, (6)

level set: wt := argmin
w

{ 1
2
‖w− ŵt−1‖2 | JCP

t (w)≤ τt},

where ŵt−1 is the current prox-center, and ζt ,κt , and τt are positive trade-off parameters of the

stabilization. Although (5) can be shown to be equivalent to (6) for appropriately chosen ζt and

κt , tuning ζt is rather difficult while a trust region approach can be used for automatically tuning

κt . Consequently the trust region algorithm BT of Schramm and Zowe (1992) is widely used in

practice.

Since our methods (see Section 2.2) are closely related to the proximal bundle method, we

will now describe them in detail. Similar to the CPM the proximal bundle method also builds

a piecewise linear lower bound JCP
t (see (4)). In contrast to the CPM, the piecewise linear lower

bound augmented with a stabilization term
ζt

2
‖w− ŵt−1‖2

, is minimized to produce the intermediate

iterate w̄t . The approximation gap in this case includes the prox-function:

εt := J(ŵt−1)−
[

JCP
t (w̄t)+

ζt

2
‖w̄t − ŵt−1‖2

]

.

If εt is less than the pre-defined threshold ε the algorithm exits. Otherwise, a line search is performed

along the line joining ŵt−1 and w̄t to produce the new iterate wt . If wt results in a sufficient decrease

of the objective function then it is accepted as the new prox-center ŵt ; this is called a serious step.

Otherwise, the prox-center remains the same; this is called a null step. Detailed pseudocode can be

found in Algorithm 1.

If the approximation gap εt is smaller than ε, then this ensures that the solution J(ŵt−1) satisfies

J(ŵt−1)≤ J(w)+ ζt

2
‖w− ŵt−1‖2 +ε for all w. In particular, if J(w∗) denotes the optimum as before,

then J(ŵt−1)≤ J(w∗)+ ζt

2
‖w∗− ŵt−1‖2 + ε. Contrast this with the approximation guarantee of the

CPM, which does not involve the
ζt

2
‖w∗− ŵt−1‖2

term.

Although the positive coefficient ζt is assumed fixed throughout the algorithm, in practice it

must be updated after every iteration to achieve faster convergence, and to guarantee a good quality

solution (Kiwiel, 1990). Same is the case for κt and τt in trust region and level set bundle methods,

respectively. Although the update is not difficult, the procedure relies on other parameters which

require careful tuning (Kiwiel, 1990; Schramm and Zowe, 1992; Lemaréchal et al., 1995).

In the next section, we will describe our method (BMRM) which avoids this problem. There

are two key differences between BMRM and the proximal bundle method: Firstly, BMRM main-

tains a piecewise linear lower bound of Remp(w) instead of J(w). Secondly, the the stabilizer (i.e.,

‖w− ŵt‖2
) in proximal bundle method is replaced by the regularizer Ω(w) hence there is no stabi-

lization parameter to tune. As we will see, not only is the implementation straightforward, but the

rates of convergence also improve from O(1/ε3) or O(1/ε2) to O(1/ε).
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Algorithm 1 Proximal Bundle Method

1: input & initialization: ε≥ 0, ρ ∈ (0,1), w0, t← 0, ŵ0← w0

2: loop

3: t← t +1

4: Compute J(wt−1) and st ∈ ∂wJ(wt−1)
5: Update model JCP

t (w) := max1≤i≤t{J(wi−1)+ 〈w−wi−1,si〉}
6: w̄t ← argminw JCP

t (w)+ ζt

2
‖w− ŵt−1‖2

7: εt ← J(ŵt−1)−
[

JCP
t (w̄t)+ ζt

2
‖w̄t − ŵt−1‖2

]

8: if εt < ε then return w̄t

9: Linesearch: ηt ← argminη∈R
J(ŵt−1 +η(w̄t− ŵt−1)) (if expensive, set ηt = 1)

10: wt ← ŵt−1 +ηt(w̄t− ŵt−1)
11: if J(ŵt−1)− J(wt)≥ ρεt then

12: SERIOUS STEP: ŵt ← wt

13: else

14: NULL STEP: ŵt ← ŵt−1

15: end if

16: end loop

2.2 Bundle Methods for Regularized Risk Minimization (BMRM)

Define:

(subgradient of Remp) at ∈ ∂wRemp(wt−1),

(offset) bt := Remp(wt−1)−〈wt−1,at〉 ,
(piecewise linear lower bound of Remp) RCP

t (w) := max
1≤i≤t
{〈w,ai〉+bi},

(piecewise convex lower bound of J) Jt(w) := λΩ(w)+RCP
t (w),

(iterate) wt := min
w

Jt(w),

(approximation gap) εt := min
0≤i≤t

J(wi)− Jt(wt).

We now describe BMRM (Algorithm 2), and contrast it with the proximal bundle method. At it-

eration t the algorithm builds the lower bound RCP
t to the empirical risk Remp. The new iterate wt

is then produced by minimizing Jt which is RCP
t augmented with the regularizer Ω; this is the key

difference from the proximal bundle method which uses the
ζt

2
‖w− ŵt−1‖2

prox-function for stabi-

lization. The algorithm repeats until the approximation gap εt is less than the pre-defined threshold

ε. Unlike standard bundle methods there is no notion of a serious or null step in our algorithm.

In fact, our algorithm does not even maintain a prox-center. It can be viewed as a special case of

standard bundle methods where the prox-center is always the origin and never updated (hence every

step is a null step). Furthermore, unlike the proximal bundle method, the approximation guarantees

of our algorithm do not involve the
ζt

2
‖w∗−wt‖2

term.

Algorithm 2 is simple and easy to implement as it does not involve a line search. In fact,

whenever efficient (exact) line search is available, it can be used to achieve faster convergence as
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Algorithm 2 BMRM
1: input & initialization: ε≥ 0, w0, t← 0

2: repeat

3: t← t +1

4: Compute at ∈ ∂wRemp(wt−1) and bt ← Remp(wt−1)−〈wt−1,at〉
5: Update model: RCP

t (w) := max1≤i≤t{〈w,ai〉+bi}
6: wt ← argminw Jt(w) := λΩ(w)+RCP

t (w)
7: εt ←min0≤i≤t J(wi)− Jt(wt)
8: until εt ≤ ε
9: return wt

observed by Franc and Sonnenburg (2008) in the case of linear SVMs with binary hinge loss.3 We

now turn to a variant of BMRM which uses a line search (Algorithm 3); this is a generalization of the

optimized cutting plane algorithm for support vector machines (OCAS) of Franc and Sonnenburg

(2008). This variant first builds RCP
t and minimizes Jt to obtain an intermediate iterate wt . Then, it

performs a line search along the line joining wb
t−1 and wt to produce wb

t which acts like the new prox-

center. Note that wt −wb
t−1 is not necessarily a direction of descent; therefore the line search might

return a zero step. Instead of using wb
t as the new iterate the algorithm uses the pre-set parameter

θ to generate wc
t on the line segment joining wb

t and wt . Franc and Sonnenburg (2008) report that

setting θ = 0.9 works well in practice. It is easy to see that Algorithm 3 reduces to Algorithm 2

if we set ηt = 1 for all t, and use the same termination criterion. It is worthwhile noting that this

variant is not applicable for structured learning problems such as Max-Margin Markov Networks

(Taskar et al., 2004), because no efficient line search is known for such problems.

A specialized variant of BMRM which handles quadratic regularizers, that is, Ω(w) = 1
2
‖w‖2

was first introduced to the machine learning community by Tsochantaridis et al. (2005) as SVMstruct.

In particular, SVMstruct handles quadratic regularizers Ω(w) = 1
2
‖w‖2 and non-differentiable large

margin loss functions such as (24). Its 1-slack formulation (Joachims et al., 2009) can be shown to

be equivalent to BMRM for this specific type of regularizer and loss function. Somewhat confusingly,

these algorithms are called the cutting plane method even though they are closer in spirit to bundle

methods.

2.3 Dual Problems

In this section, we describe how the sub-problem

wt = argmin
w

Jt(w) := λΩ(w)+ max
1≤i≤t

〈w,ai〉+bi (7)

in Algorithms 2 and 3 is solved via a dual formulation. In fact, we will show that we need not know

Ω(w) at all, instead it is sufficient to work with its Fenchel dual (Hiriart-Urruty and Lemaréchal,

1993):

Definition 1 (Fenchel Dual) Denote by Ω : W → R a convex function on a convex set W . Then

the dual Ω∗ of Ω is defined as

Ω∗(µ) := sup
w∈W
〈w,µ〉−Ω(w). (8)

3. A different optimization method but with identical efficient line search procedure is described in Yu et al. (2008).
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Algorithm 3 BMRM with Line Search

1: input & initialization: ε≥ 0, θ∈ (0,1], wb
0, wc

0← wb
0, t← 0

2: repeat

3: t← t +1

4: Compute at ∈ ∂wRemp(w
c
t−1), and bt ← Remp(w

c
t−1)−

〈
wc

t−1,at

〉

5: Update model: RCP
t (w) := max1≤i≤t{〈w,ai〉+bi}

6: wt ← argminw Jt(w) := λΩ(w)+RCP
t (w)

7: Linesearch: ηt ← argminη∈R
J(wb

t−1 +η(wt−wb
t−1))

8: wb
t ← wb

t−1 +ηt(wt −wb
t−1)

9: wc
t ← (1−θ)wb

t +θwt

10: εt ← J(wb
t )− Jt(wt)

11: until εt ≤ ε
12: return wb

t

Several choices of regularizers are common. For W = R
d the squared norm regularizer yields

Ω(w) =
1

2
‖w‖2

2 and Ω∗(µ) =
1

2
‖µ‖2

2 .

More generally, for Lp norms one obtains (Boyd and Vandenberghe, 2004; Shalev-Shwartz and

Singer, 2006):

Ω(w) =
1

2
‖w‖2

p and Ω∗(µ) =
1

2
‖µ‖2

q where
1

p
+

1

q
= 1.

For any positive definite matrix B, we can construct a quadratic form regularizer which allows non-

uniform penalization of the weight vector as:

Ω(w) =
1

2
w⊤Bw and Ω∗(µ) =

1

2
µ⊤B−1µ.

For the unnormalized negative entropy, where W = R
d
+, we have

Ω(w) = ∑
i

w(i) logw(i) and Ω∗(µ) = ∑
i

expµ(i).

For the normalized negative entropy, where W = {w | w≥ 0 and ‖w‖1 = 1} is the probability sim-

plex, we have

Ω(w) = ∑
i

w(i) logw(i) and Ω∗(µ) = log∑
i

expµ(i).

If Ω is differentiable the w at which the supremum of (8) is attained can be written as w = ∂µΩ∗(µ)
(Boyd and Vandenberghe, 2004). In the sequel we will always assume that Ω∗ is twice differentiable.

Note that all the regularizers we discussed above are twice differentiable. The following theorem

states the dual problem of (7).
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Theorem 2 Denote by A = [a1, . . . ,at ] the matrix whose columns are the (sub)gradients, and let

b = [b1, . . . ,bt ]. The dual problem of

wt = argmin
w∈Rd

{Jt(w) := max
1≤i≤t

〈w,ai〉+bi +λΩ(w)} is (9)

αt = argmax
α∈Rt

{J∗t (α) :=−λΩ∗(−λ−1Aα)+α⊤b | α ≥ 0, ‖α‖1 = 1}. (10)

Furthermore, wt and αt are related by the dual connection wt = ∂Ω∗(−λ−1Aαt).

Proof We rewrite (9) as a constrained optimization problem: minw,ξ λΩ(w) + ξ subject to ξ ≥
〈w,ai〉+ bi for i = 1, . . . , t. By introducing non-negative Lagrange multipliers α and recalling that

1t denotes the t dimensional vector of all ones, the corresponding Lagrangian can be written as

L(w,ξ,α) = λΩ(w)+ ξ−α⊤
(

ξ1t−A⊤w−b
)

with α ≥ 0, (11)

where α ≥ 0 denotes that each component of α is non-negative. Taking derivatives with respect to ξ
yields 1 − α⊤1t = 0. Moreover, minimization of L with respect to w implies solving

maxw

〈
w,−λ−1Aα

〉
−Ω(w) = Ω∗(−λ−1Aα). Plugging both terms back into (11) we eliminate the

primal variables ξ and w.

Since Ω∗ is assumed to be twice differentiable and the constraints of (10) are simple, one can easily

solve (10) with standard smooth optimization methods such as the penalty/barrier methods (No-

cedal and Wright, 1999). Recall that for the square norm regularizer Ω(w) = 1
2
‖w‖2

2, commonly

used in SVMs and Gaussian Processes, the Fenchel dual is given by Ω∗(µ) = 1
2
‖µ‖2

2. The following

corollary is immediate:

Corollary 3 For quadratic regularization, that is, Ω(w) = 1
2
‖w‖2

2, (10) becomes

αt = argmax
α∈Rt

{− 1
2λ α⊤A⊤Aα +α⊤b | α ≥ 0, ‖α‖1 = 1}.

This means that for quadratic regularization the dual optimization problem is a quadratic program

(QP) where the number of constraints equals the number of (sub)gradients computed previously.

Since t is typically in the order of 10s to 100s, the resulting QP is very cheap to solve. In fact, we

do not even need to know the (sub)gradients explicitly. All that is required to define the QP are the

inner products between (sub)gradients
〈
ai,a j

〉
.

2.4 Convergence Analysis

While the variants of bundle methods we proposed are intuitively plausible, it remains to be shown

that they have good rates of convergence. In fact, past results, such as those by Tsochantaridis

et al. (2005) suggest a slow O(1/ε2) rate of convergence. In this section we tighten their results and

show an O(1/ε) rate of convergence for nonsmooth loss functions and O(log(1/ε)) rates for smooth

loss functions under mild assumptions. More concretely we prove the following two convergence

results:

(a) Assume that maxu∈∂wRemp(w) ‖u‖ ≤ G. For regularizers Ω(w) for which
∥
∥∂2

µΩ∗(µ)
∥
∥ ≤ H∗ we

prove O(1/ε) rate of convergence, that is, we show that our algorithm converges to within ε
of the optimal solution in O(1/ε) iterations.
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(b) Under the above conditions, if furthermore
∥
∥∂2

wJ(w)
∥
∥≤H, that is, the Hessian of J is bounded,

we can show O(log(1/ε)) rate of convergence.

For our convergence proofs we use a duality argument similar to those put forward in Shalev-

Shwartz and Singer (2006) and Tsochantaridis et al. (2005), both of which share key techniques

with Zhang (2003). Recall that εt denotes our approximation gap, which in turn upper bounds how

far away we are from the optimal solution. In other words, εt ≥ min0≤i≤t J(wi)− J∗, where J∗

denotes the optimum value of the objective function J. The quantity εt−εt+1 can thus be viewed as

the “progress” made towards J∗ in iteration t. The crux of our proof argument lies in showing that

for nonsmooth loss functions the recurrence εt − εt+1 ≥ c · ε2
t holds for some appropriately chosen

constant c. The rates follow by invoking a lemma from Abe et al. (2001). In the case of the smooth

losses we show that εt − εt+1 ≥ c′ · εt thus implying an O(log(1/ε)) rate of convergence.

In order to show the required recurrence, we first observe that by strong duality the values of

the primal and dual problems (9) and (10) are equal at optimality. Hence, any progress in Jt+1 can

be computed in the dual. Next, we observe that the solution of the dual problem (10) at iteration

t, denoted by αt , forms a feasible set of parameters for the dual problem (10) at iteration t + 1 by

means of the parameterization (αt ,0), that is, by padding αt with a 0. The value of the objective

function in this case equals Jt(wt).

To obtain a lower bound on the improvement due to Jt+1(wt+1) we perform a 1-d optimization

along ((1−η)αt ,η) in (10). The constraint η ∈ (0,1) ensures dual feasibility. We will then bound

this improvement in terms of εt . Note that, in general, solving the dual problem (10) results in a

increase which is larger than that obtained via the line search. The 1-d minimization is used only

for analytic tractability. We now state our key theorem and prove it in Appendix B.

Theorem 4 Assume that maxu∈∂wRemp(w) ‖u‖ ≤ G for all w ∈ dom J. Also assume that Ω∗ has

bounded curvature, that is,
∥
∥∂2

µΩ∗(µ)
∥
∥ ≤ H∗ for all µ ∈ {−λ−1 ∑t+1

i=1 αiai where αi ≥ 0, ∀i and

∑t+1
i=1 αi = 1}. In this case we have

εt − εt+1 ≥ εt

2
min(1,λεt/4G2H∗). (12)

Furthermore, if
∥
∥∂2

wJ(w)
∥
∥≤ H, then we have

εt − εt+1 ≥







εt/2 if εt > 4G2H∗/λ
λ/8H∗ if 4G2H∗/λ ≥ εt ≥ H/2

λεt/4HH∗ otherwise.

Note that the error keeps on halving initially and settles for a somewhat slower rate of convergence

after that, whenever the Hessian of the overall risk is bounded from above. The reason for the

difference in the convergence bound for differentiable and non-differentiable losses is that in the

former case the gradient of the risk converges to 0 as we approach optimality, whereas in the former

case, no such guarantees hold (e.g., when minimizing |x| the (sub)gradient does not vanish at the

optimum). The dual of many regularizers, for example, norm, squared Lp norm, and the entropic

regularizer have bounded second derivative. See, for example, Shalev-Shwartz and Singer (2006)

for a discussion and details. Thus our condition
∥
∥∂2

µΩ∗(µ)
∥
∥≤ H∗ is not unreasonable. We are now

in a position to state our convergence results. The proof is in Appendix B.
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Theorem 5 Assume that J(w)≥ 0 for all w. Under the assumptions of Theorem 4 we can give the

following convergence guarantee for Algorithm 2. For any ε < 4G2H∗/λ the algorithm converges

to the desired precision after

n≤ log2

λJ(0)

G2H∗
+

8G2H∗

λε
−1

steps. Furthermore if the Hessian of J(w) is bounded, convergence to any ε ≤ H/2 takes at most

the following number of steps:

n≤ log2

λJ(0)

4G2H∗
+

4H∗

λ
max

[
0,H−8G2H∗/λ

]
+

4HH∗

λ
log(H/2ε).

Several observations are in order: First, note that the number of iterations only depends logarithmi-

cally on how far the initial value J(0) is away from the optimal solution. Compare this to the result

of Tsochantaridis et al. (2005), where the number of iterations is linear in J(0).
Second, we have an O(1/ε) dependence in the number of iterations in the non-differentiable

case, as opposed to the O(1/ε2) rates of Tsochantaridis et al. (2005). In addition to that, the conver-

gence is O(log(1/ε)) for continuously differentiable problems.

Note that whenever Remp is the average over many piecewise linear functions, Remp behaves

essentially like a function with bounded Hessian as long as we are taking large enough steps not to

“notice” the fact that the term is actually nonsmooth.

Remark 6 For Ω(w) = 1
2
‖w‖2

the dual Hessian is exactly H∗ = 1. Moreover we know that H ≥ λ
since

∥
∥∂2

wJ(w)
∥
∥= λ +

∥
∥∂2

wRemp(w)
∥
∥.

Effectively the rate of convergence of the algorithm is governed by upper bounds on the primal and

dual curvature of the objective function. This acts like a condition number of the problem—for

Ω(w) = 1
2
w⊤Qw the dual is Ω∗(z) = 1

2
z⊤Q−1z, hence the largest eigenvalues of Q and Q−1 would

have a significant influence on the convergence.

In terms of λ the number of iterations needed for convergence is O(λ−1). In practice the iteration

count does increase with λ, albeit not as badly as predicted. This is likely due to the fact that the

empirical risk Remp is typically rather smooth and has a certain inherent curvature which acts as a

natural regularizer in addition to the regularization afforded by λΩ(w).
For completeness we also state the convergence guarantees for Algorithm 3 and provide a proof

in Appendix B.3.

Theorem 7 Under the assumptions of Theorem 4 Algorithm 3 converges to the desired precision ε
after

n≤ 8G2H∗

λε

steps for any ε < 4G2H∗/λ.

3. Implementation Issues

In this section, we discuss the memory and computational issues of the implementation of BMRM.

In addition, we provide two variants of BMRM: one is memory efficient and the other one is paral-

lelized.
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3.1 Solving the BMRM Subproblem (7) with Limited Memory Space

In Section 2.3 we mentioned the dual of subproblem (7) (i.e., (10)) which is usually easier to solve

when the dimensionality d of the problem is larger than the number of iterations t required by

BMRM to reach desired precision ε. Although t is usually in the order of 102, a problem with d

in the order of 106 or higher may use up all memory of a typical machine to store the bundle, that

is, linearizations {(ai,bi)}, before the convergence is achieved.4 Here we describe a principled

technique which controls the memory usage while maintaining convergence guarantees.

Note that at iteration t, before the computation for new iterate wt , Algorithm 2 maintains a

bundle of t (sub)gradients {ai}t
i=1 of Remp computed at the locations {wi}t−1

i=0 . Furthermore, the

Lagrange multipliers αt−1 obtained in iteration t − 1 satisfy αt−1 ≥ 0 and ∑t−1
i=1 α(i)

t−1 = 1 by the

constraints of (10). We define the aggregated (sub)gradient âI , offset b̂I and Lagrange multiplier

α̂(I)
t−1 as

âI :=
1

α̂(I)
t−1

∑
i∈I

α(i)
t−1ai, b̂I :=

1

α̂(I)
t−1

∑
i∈I

α(i)
t−1bi, and α̂(I)

t−1 := ∑
i∈I

α(i)
t−1,

respectively, where I ⊆ [t− 1] is an index set (Kiwiel, 1983). Clearly, the optimality of (10) at the

end of iteration t− 1 is maintained when a subset
{

(ai,bi,α
(i)
t−1)

}

i∈I
is replaced by the aggregate

(âI, b̂I, α̂
(I)
t−1)) for any I ⊆ [t−1].

To obtain a new iterate wt via (10) with memory space for at most k linearizations, we can,

for example, replace {(ai,bi)}i∈I with (âI, b̂I) where I = [t− k + 1] and 2 ≤ k ≤ t. Then, we solve

a k-dimensional variant of (10) with A := [âI,at−k+2, . . . ,at ], b := [b̂I,bt−k+2, . . . ,bt ], and α ∈ R
k.

The optimum of this variant will be lower than or equal to that of (10) as the latter has higher

degree of freedom than the former. Nevertheless, solving this variant with 2 ≤ k ≤ t will still

guarantee convergence (recall that our convergence proof only uses k = 2). In the sequel we name

the aforementioned number k as the “bundle size” since it indicates the number of linearizations the

algorithm keeps.

For concreteness, we provide here a memory efficient BMRM variant for the cases where Ω(w) =
1
2
‖w‖2

2 and k = 2. We first see that the dual of subproblem (7) now reads:

η = argmax
0≤η≤1

− 1
2λ

∥
∥â[t−1] +η(at− â[t−1])

∥
∥2

2
+ b̂[t−1] +η(bt− b̂[t−1])

≡ argmax
0≤η≤1

−η
λ â⊤[t−1](at − â[t−1])− η2

2λ

∥
∥
∥at − â⊤[t−1]

∥
∥
∥

2

+η(bt− b̂[t−1]). (13)

Since (13) is quadratic in η, we can obtain the optimal η by setting the derivative of the objective in

(13) to zero and clipping η in the range [0,1]:

η = min

(

max

(

0,
bt − b̂[t−1] +w⊤t−1at +λ ‖wt−1‖2

1
λ ‖at +λwt−1‖2

)

,1

)

(14)

4. In practice, we can remove those linearizations {(ai,bi)} whose Lagrange multipliers αi are 0 after solving (10).

Although this heuristic works well and does not affect the convergence guarantee, there is no bound on the minimum

number of linearizations with non-zero Lagrange multipliers needed to achieve convergence.
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where wt−1 = − 1
λ â[t−1] by the dual connection. With the optimal η, we obtain the new primal

iterate wt = (1−η)wt−1− (η/λ)at . Algorithm 4 lists the details. Note that this variant is simple to

implement and does not require a QP solver.

Algorithm 4 BMRM with Aggregation of Previous Linearizations

1: input & initialization: ε≥ 0, w0, t← 1

2: Compute a1 ∈ ∂wRemp(w0), and b1← Remp(w0)−〈w0,a1〉
3: w1←− 1

λ a1

4: b̂[1]← b1

5: repeat

6: t← t +1

7: Compute at ∈ ∂wRemp(wt−1) and bt ← Remp(wt−1)−〈wt−1,at〉
8: Compute η using Eq. (14)

9: wt ← (1−η)wt−1− (η/λ)at

10: b̂[t]← (1−η)b̂[t−1] +ηbt

11: εt ←min0≤i≤t
λ
2
‖wi‖2 +Remp(wi)− λ

2
‖wt‖2− b̂[t]

12: until εt ≤ ε

3.2 Parallelization

Algorithms 2, 3, and 4 the evaluation of Remp(w) (and ∂wRemp(w)) is cleanly separated from the

computation of new iterate and the choice of regularizer. If Remp is additively decomposable over

the examples (xi,yi), that is, can be expressed as a sum of some independent loss terms l(xi,yi,w),
then we can parallelize these algorithms easily by splitting the data sets and the computation Remp

over multiple machines. This parallelization scheme not only reduces the computation time but also

allows us to handle data set with size exceeding the memory available on a single machine.

Without loss of generality, we describe a parallelized version of Algorithm 2 here. Assume

there are p slave machines and 1 master machine available. At the beginning, we partition a given

data set D = {(xi,yi)}m
i=1 into p disjoint sub-datasets {Di}p

i=1 and assign one sub-dataset to each

slave machine. At iteration t, the master first broadcasts the current iterate wt−1 to all p slaves

(e.g., using MPI function MPI::Broadcast Gropp et al. 1999). The slaves then compute the losses

and (sub)gradients on their local sub-datasets in parallel. As soon as the losses and (sub)gradients

computation finished, the master combines the results (e.g., using MPI::AllReduce). With the

combined (sub)gradient and offset, the master computes the new iterate wt as in Algorithms 2 and

3. This process repeats until convergence is achieved. Detailed pseudocode can be found in Algo-

rithm 5.

4. Related Research

The kernel trick is widely used to transform many existing machine learning algorithms into ones

operating on a Reproducing Kernel Hilbert Space (RKHS). One lifts w into an RKHS and replaces

all inner product computations with a positive definite kernel function k(x,x′)← 〈x,x′〉. Examples

of algorithms which employ the kernel trick (but essentially still solve (1)) include Support Vector

regression (Vapnik et al., 1997), novelty detection (Schölkopf et al., 2001), Huber’s robust regres-

sion, quantile regression (Takeuchi et al., 2006), ordinal regression (Herbrich et al., 2000), rank-
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Algorithm 5 Parallel BMRM
1: input: ε≥ 0, w0, data set D, number of slave machines p

2: initialization: t← 0, assign sub-dataset Di to slave i, i = 1, . . . , p

3: repeat

4: t← t +1

5: Master: Broadcast wt−1 to all slaves

6: Slaves: Computes Ri
emp(wt−1) := ∑(x,y)∈Di

l(x,y,wt−1) and ai
t ∈ ∂wRi

emp(wt−1)

7: Master: Aggregate at := 1
|D| ∑

p
i=1 ai

t and bt := 1
|D| ∑

p
i=1 Ri

emp(wt−1)−〈wt−1,at〉
8: Master: Update model RCP

t (w) := max1≤ j≤t{
〈
w,a j

〉
+b j}

9: Master: wt ← argminw Jt(w) := λΩ(w)+RCP
t (w)

10: Master: εt ←min0≤i≤t J(wi)− Jt(wt)
11: until εt ≤ ε
12: return wt

ing (Crammer and Singer, 2005), maximization of multivariate performance measures (Joachims,

2005), structured estimation (Taskar et al., 2004; Tsochantaridis et al., 2005), Gaussian Process

regression (Williams, 1998), conditional random fields (Lafferty et al., 2001), graphical models

(Cowell et al., 1999), exponential families (Barndorff-Nielsen, 1978), and generalized linear mod-

els (Fahrmeir and Tutz, 1994).

Traditionally, specialized solvers have been developed for solving the kernel version of (1) in

the dual (see, e.g., Chang and Lin, 2001; Joachims, 1999). These algorithms construct the La-

grange dual, and solve for the Lagrange multipliers efficiently. Only recently, research focus has

shifted back to solving (1) in the primal (see, e.g., Chapelle, 2007; Joachims, 2006; Sindhwani and

Keerthi, 2006). This spurt in research interest is due to three main reasons: First, many interesting

problems in diverse areas such as text classification, word-sense disambiguation, and drug design

already employ rich high dimensional data which does not necessarily benefit from the kernel trick.

All these domains are characterized by large data sets (with m in the order of a million) and very

sparse features (e.g., the bag of words representation of a document). Second, efficient factorization

methods (e.g., Fine and Scheinberg, 2001) can be used for a low rank representation of the kernel

matrix thereby effectively rendering the problem linear. Third, approximation methods such as the

Random Feature Map proposed by Rahimi and Recht (2008) can efficiently approximate a infinite

dimensional nonlinear feature map associated to a kernel by a finite dimensional one. Therefore our

focus on the primal optimization problem is not only pertinent but also timely.

The widely used SVMstruct optimizer of Thorsten Joachims5 is closely related to BMRM. While

BMRM can handle many different regularizers and loss functions, SVMstruct is mainly geared towards

square norm regularizers and non-differentiable soft-margin type loss functions. On the other hand,

SVMstruct can handle kernels while BMRM mainly focuses on the primal problem.

Our convergence analysis is closely related to Shalev-Shwartz and Singer (2006) who prove

mistake bounds for online algorithms by lower bounding the progress in the dual. Although not

stated explicitly, essentially the same technique of lower bounding the dual improvement was used

by Tsochantaridis et al. (2005) to show polynomial time convergence of the SVMstruct algorithm.

The main difference however is that Tsochantaridis et al. (2005) only work with a quadratic ob-

5. Software available at http://svmlight.joachims.org/svm_struct.html.
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jective function while the framework proposed by Shalev-Shwartz and Singer (2006) can handle

arbitrary convex functions. In both cases, a weaker analysis led to O(1/ε2) rates of convergence for

nonsmooth loss functions. On the other hand, our results establish a O(1/ε) rate for nonsmooth loss

functions and O(log(1/ε)) rates for smooth loss functions under mild technical assumptions.

Another related work is SVMperf (Joachims, 2006) which solves the SVM with linear kernel in

linear time. SVMperf finds a solution with accuracy ε in O(md/(λε2)) time, where the m training pat-

terns xi ∈R
d . This bound was improved by Shalev-Shwartz et al. (2007) to Õ(1/λδε) for obtaining

an accuracy of ε with confidence 1−δ. Their algorithm, Pegasos, essentially performs stochastic

(sub)gradient descent but projects the solution back onto the L2 ball of radius 1/
√

λ. Note that Pe-
gasos also can be used in an online setting. This, however, only applies whenever the empirical risk

decomposes into individual loss terms (e.g., it is not applicable to multivariate performance scores

Joachims 2005).

The third related strand of research considers gradient descent in the primal with a line search

to choose the optimal step size (see, e.g., Boyd and Vandenberghe, 2004, Section 9.3.1). Under

assumptions of smoothness and strong convexity – that is, the objective function can be upper and

lower bounded by quadratic functions – it can be shown that gradient descent with line search will

converge to an accuracy of ε in O(log(1/ε)) steps. Our solver achieves the same rate guarantees for

smooth functions, under essentially similar technical assumptions.

We would also like to point out connections to subgradient methods (Nedich and Bertsekas,

2000). These algorithms are designed for nonsmooth functions, and essentially choose an arbitrary

element of the subgradient set to perform a gradient descent like update. Let maxu∈∂wJ(w) ‖u‖ ≤
G, and B(w∗,r) denote a ball of radius r centered around the minimizer of J(w). By applying

the analysis of Nedich and Bertsekas (2000) to the regularized risk minimization problem with

Ω(w) := λ
2
‖w‖2, Ratliff et al. (2007) show that subgradient descent with a fixed, but sufficiently

small, stepsize will converge linearly to B(w∗,G/λ).
Finally, several papers (Keerthi and DeCoste, 2005; Chapelle, 2007) advocate the use of Newton-

like methods to solve Support Vector Machines in the “primal”. However, they need to take precau-

tions when dealing with the fact that the soft-margin type of loss functions such as the hinge loss is

only piecewise differentiable. Instead, our method only requires subdifferentials, which always ex-

ist for convex functions, in order to make progress. The large number of and variety of implemented

problems shows the flexibility of our approach.

5. Experiments

In this section, we examine the convergence behavior of BMRM and show that it is versatile enough

to solve a variety of machine learning problems. All our experiments were carried out on a cluster of

24 machines each with a 2.4GHz AMD Dual Core processor and 4GB of RAM. Details of the loss

functions, data sets, competing solvers and experimental objectives are described in the following

subsections.

5.1 Convergence Behavior

We investigated the convergence rate of our method (Algorithm 2) empirically with respect to reg-

ularization constant λ, approximation gap ε, and bundle size k. In addition, we investigated the

speedup gained by parallelizing the empirical risk computation. Finally, we examined empirically

how generalization performance is related to approximation gap. For simplicity, we focused on the
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training of a linear SVM with binary hinge loss:6

min
w

J(w) :=
λ
2
‖w‖2 +

1

m

m

∑
i=1

max(0,1− yi 〈w,xi〉). (15)

The experiments were conducted on 6 data sets commonly used in binary classification studies,

namely, adult9, astro-ph, news20-b,7 rcv1, real-sim, and worm. adult9, news20-b, rcv1, and real-
sim are available on the LIBSVM tools website.8 astro-ph (Joachims, 2006) and worm (Franc and

Sonnenburg, 2008) are available upon request from Thorsten Joachims and Soeren Sonnenburg,

respectively. Table 1 summarizes the properties of the data sets.

Data Set #examples m dimension d density %

adult9 48,842 123 11.27

astro-ph 94,856 99,757 0.08

news20-b 19,954 1,355,191 0.03

rcv1 677,399 47,236 0.15

real-sim 72,201 20,958 0.25

worm 1,026,036 804 25.00

Table 1: Properties of the binary classification data sets used in our experiments.

5.1.1 REGULARIZATION CONSTANT λ AND APPROXIMATION GAP ε

As suggested by the convergence analysis, the linear SVM with the nonsmooth binary hinge loss

should converge in O( 1
λε ) iterations, where λ and ε are two parameters which one normally tunes

during the model selection phase. Therefore, we investigated the scaling behavior of our method

w.r.t. these two parameters. We performed the experiments with unlimited bundle size and with a

heuristic that removes subgradients which remained inactive (i.e., Lagrange multiplier = 0) for 10

or more consecutive iterations.9

Figure 4 shows the approximation gap εt as a function of number of iterations t. As predicted by

our convergence analysis, BMRM converges faster for larger values of λ. Furthermore, the empirical

convergence curves exhibit a O(log(1/ε)) rate instead of the (pessimistic) theoretical rate of O(1
ε ),

especially for large values of λ. Interestingly, BMRM converges faster on high-dimensional text data

sets (i.e., astro-ph, news20-b, rcv1, and real-sim) than on lower dimensional data sets (i.e., adult9
and worm).

5.1.2 BUNDLE SIZE

The dual of our method (10) is a concave problem which has dimensionality equal to the number of

iterations executed. In the case of linear SVM, (10) is a QP. Hence, as described in Section 3.1, we

can trade potentially greater bundle improvement for memory efficiency.

6. Similar behavior was observed with other loss functions.

7. The data set is originally named news20; we renamed it to avoid confusion with the multiclass version of the data

set.

8. Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html.

9. Note that this heuristic does not have any implication in the convergence analysis.
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(a) adult9 (b) astro-ph (c) news20-b

(d) real-sim (e) rcv1 (f) worm

Figure 4: Approximation gap εt as a function of number of iterations t; for different regularization

constants λ (and unlimited bundle size).

Figure 5 shows the approximation gap εt during the training of linear SVM as a function of the

number of iterations t, for different bundle sizes k ∈ {2,10,50,∞}. In the case of k = ∞, we em-

ployed the same heuristics which remove inactive linearizations as those mentioned in Section 5.1.1.

As expected, the larger k is, the faster the algorithm converges. Although the case k = 2 is the slow-

est, its convergence rate is still faster than the theoretical bound 1
λε .

5.1.3 PARALLELIZATION

When the empirical risk Remp is additively decomposable, the loss and subgradient computation can

be executed concurrently on multiple processors for different subsets of data points.10

We performed experiments for linear SVMs training with parallelized risk computation on the

worm data set. Figure 6(a) shows the wallclock time for the overall training phase (e.g., data loading,

risk computation, and solving the QP) and CPU time for just the risk computation as a function of

number of processors p. Note that the gap between the two curves essentially tells the runtime upper

bound of the sequential part of the algorithm. As expected, both overall and risk computation time

decrease as the number of processors p increases. However, in Figure 6(b), we see two different

speedups.11 The speedup for the risk computation is roughly linear as there is no sequential part in

10. This requires only slight modification to the data loading process and the addition of some parallelization related

code before and after the code segment for empirical risk computation.

11. Speedup Sp = T1

Tp
where p is the number of processors and Tq is the runtime of the parallelized algorithm on q

processors.
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(a) adult9 (b) astro-ph (c) news20-b

(d) real-sim (e) rcv1 (f) worm

Figure 5: Approximation gap εt as a function of number of iterations t; for different bundle sizes k

(and fixed regularization constant λ = 10−4).

it; the speedup of overall computation is approaching a limit12 as well-explained by Amdahl’s law

(Amdahl, 1967).

5.1.4 GENERALIZATION VERSUS APPROXIMATION GAP

Since the problems we are considering are convex, all properly convergent optimizers will converge

to the same solution. Therefore, comparing generalization performance of the final solution is mean-

ingless. But, in real life one is often interested in the speed with which the algorithm achieves good

generalization performance. In this section we study this question. We focus on the generalization

(in terms of accuracy) as a function of approximation gap during training. For this experiment, we

randomly split each of the data sets into training (60%), validation (20%) and testing (20%) sets.

We first obtained the best λ ∈ {2−20, . . . ,20} for each of the data sets using their corresponding

validation sets. With these best λ’s, we (re)trained linear SVMs and recorded the testing accuracy

as well as the approximation gap at every iteration, with termination criterion ε = 10−4. Figure 7

shows the difference between the testing accuracy evaluated at every iteration and that after training,

as a function of approximation gap at each iteration.

From the figure, we see that the testing accuracies for adult9 and worm data sets are less stable

in general and the approximation gap must be reduced to at least 10−3 to reach the 0.5% regime

12. The limit of speedup is the inverse of the sequential fraction of the algorithm such as the QP.
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(a) Risk computation in CPU time (red solid line) and over-

all computation (i.e., data loading + risk computation +

solving the QP) in wallclock time (green dashed line) as

a function of number of processors.

(b) Speedup in risk computation (in CPU time) and overall

computation (in wallclock time) as a function of number of

processors.

Figure 6: CPU and wallclock time for training linear SVM using parallel BMRM on worm data set

with varying number of processors p ∈ {1,2,4,8,16}. In these experiments, regulariza-

tion constant λ = 10−6, and termination criterion ε = 10−4.

of the final testing accuracies; the testing accuracies for the rest of the data sets arrived at the same

regime with approximation gap of 10−2 or lower.

In general, the generalization improved as the approximation gap decreased. The improvement

in generalization became rather insignificant (say, the maximum of changes in testing accuracies is

less than 0.1%) when the approximation gap was further reduced to below some effective threshold

εeff; that said, it is not necessary to continue the optimization when εt ≤ εeff.
13 Since εeff (or its

scale) is not known a priori and the asymptotic analysis in Shalev-Schwartz and Srebro (2008)

does not reveal the actual scale of εeff directly applicable in our case, we carried out another set of

experiments to investigate if εeff could be estimated with as little effort as possible: For each data

set, we randomly subsampled 10%, . . . ,50% of the training set as sub-datasets and performed the

same experiment on all sub-datasets. We then determined the largest εeff such that the maximum

changes in testing accuracies is less than 0.1%.

Table 5.1.4 shows the (base 10 logarithm of) εeff for all sub-datasets as well as the full data sets.

It seems that the εeff estimated on a smaller sub-dataset is at most 1 order of magnitude larger than

the actual εeff required on full data set. In addition, we show in the table that the necessary threshold

ε10% required by the sub-datasets and the full data sets to attain the final testing accuracies attained

by the 10% sub-datasets. The observations obey the analysis in Shalev-Schwartz and Srebro (2008)

that for a fixed testing accuracy, approximation gap (i.e., optimization error) can be relaxed when

more data is given.

13. Heuristically, we could terminate the training phase following the early stopping strategy by monitoring the changes

in accuracies on validation set evaluated in some most recent iterations.
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Figure 7: Difference between testing accuracies of intermediate and final models.

5.2 Comparison with Existing Bundle Methods

In this section we compare BMRM with a BT implementation obtained from Schramm and Zowe

(1992).14 We also compare the performance of BMRM (Algorithm 2) and LSBMRM (Algorithm 3).

The multiclass line search used in LSBMRM can be found in Yu et al. (2008).

For binary classification, we solve the linear SVM (15) on the data sets: adult9, astro-ph,

news20-b, rcv1, real-sim, and worm as mentioned in Section 5.1. For multiclass classification,

we solve (Crammer and Singer, 2003):

min
w

J(w) :=
λ
2
‖w‖2 +

1

m

m

∑
i=1

max
y′i∈[c]

〈

w,ey′i
⊗ xi− eyi

⊗ xi

〉

+ I(yi 6= y′i), (16)

where c is the number of classes in the problem, ei is the i-th standard basis for R
c, ⊗ denotes

Kronecker product; and I(·) is an indicator function that has value 1 if its argument is evaluated true,

and 0 otherwise. The data sets used in multiclass classification experiments were inex, letter, mnist,
news20-m,15 protein, and usps. inex is available for download on the website of Antoine Bordes16

and the rest can be found on the LIBSVM tools website.17 Table 3 summarizes the properties of

these data sets.

In each of the experiments, we first obtain the optimal weight vector w̄ by running BMRM until

the termination criteria J(wt)− Jt(wt) ≤ 0.01J(wt) is satisfied. Then we run BT, LSBMRM, and

14. The original FORTRAN implementation was automatically converted into C for use in our library.

15. The data set is originally named news20; we renamed it to avoid confusion with the binary version of the data set.

16. Software available at http://webia.lip6.fr/˜bordes/datasets/multiclass/inex.tar.gz.

17. Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multiclass.html.
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10% 20% 30% 40% 50% 100%

adult9
Acc. (%) 84.3 84.7 84.9 85.1 85.1 85.2

log10 εeff -3.90 -3.72 -3.77 -3.88 -3.64 -4.00

log10 ε10% -4.01 -1.18 -1.07 -1.16 -1.27 -1.04

astro-ph
Acc. (%) 96.1 96.6 96.4 96.6 96.8 97.4

log10 εeff -1.48 -1.70 -1.57 -1.49 -1.68 -1.84

log10 ε10% -4.00 -1.15 -1.06 -0.98 -1.02 -0.87

news20-b
Acc. (%) 89.9 92.9 94.3 94.5 95.4 96.6

log10 εeff -2.00 -2.48 -3.87 -1.65 -3.71 -2.84

log10 ε10% -4.02 -0.92 -0.70 -0.80 -0.80 -0.67

rcv1
Acc. (%) 96.9 97.2 97.4 97.2 97.5 97.6

log10 εeff -2.02 -2.40 -1.99 -2.16 -2.34 -2.28

log10 ε10% -4.07 -1.19 -1.30 -1.29 -1.13 -1.11

real-sim
Acc. (%) 95.0 95.9 96.3 96.6 96.6 97.2

log10 εeff -1.74 -1.84 -1.71 -1.99 -1.74 -1.75

log10 ε10% -4.02 -1.04 -0.88 -0.87 -0.85 -0.82

worm
Acc. (%) 98.2 98.2 98.2 98.3 98.3 98.4

log10 εeff -2.43 -2.47 -2.48 -3.62 -2.81 -3.55

log10 ε10% -4.00 -1.38 -1.28 -1.37 -1.28 -1.31

Table 2: The first sub-row in each data set row indicates the testing accuracies of models trained on

the corresponding proportions of the training set. The second sub-row indicates the (base

10 logarithm of) effective threshold such that the maximum difference in testing accuracies

of models with approximation gap smaller than that is less than 0.1%. The third sub-row

indicates the (base 10 logarithm of) threshold necessary for models to attain the testing

accuracy attained by the model trained on the 10% sub-dataset with default ε = 10−4.

Data Set #examples m #classes c dimension d density %

inex 12,107 18 167,295 0.48

letter 20,000 26 16 100.00

mnist 70,000 10 780 19.24

news20-m 19,928 20 62,061 0.13

protein 21,516 3 357 28.31

usps 9,298 10 256 96.70

Table 3: Properties of the multiclass classification data sets used in the experiments.

BMRM until the following termination criteria is satisfied:

J(wt)− J(w̄)≤ 0.01J(w̄). (17)

Figure 8 shows the number of iterations t required by the three methods on each data set to

satisfy (17) as a function of regularization constant λ ∈
{

10−3,10−4,10−5,10−6
}

. As expected,

LSBMRM, which uses an exact line search, outperformed both BMRM and BT on all data sets. BMRM
performed better than BT on all high dimensional data sets except news20-m but worse on the rest.
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Although BT tunes the stabilization trade-off parameter κt automatically, it still does not guarantee

superiority over BMRM which is considerably simpler. Nevertheless, external stabilization (in BT)

clearly helps speed up the convergence in certain cases.

5.3 Versatility

In the following subsections, we will illustrate some of the applications of BMRM to various machine

learning problems with smooth and non-differentiable loss functions, and with different regularizers.

Our aim is to show that BMRM is versatile enough to be used in a variety of seemingly different

problems. Readers not interested in this aspect of BMRM can safely skip this subsection.

5.3.1 BINARY CLASSIFICATION

In this section, we evaluate the performance of our method BMRM in the training of binary classifier

using linear SVMs (15) and logistic loss:

min
w

J(w) :=
λ
2
‖w‖2 +

1

m

m

∑
i=1

log(1+ exp(−yi 〈w,xi〉)),

on the binary classification data sets mentioned in Section 5.1 with split similar to that in Sec-

tion 5.1.4. Since we will compare BMRM with other solvers which use different termination crite-

ria, we consider the CPU time used in reducing the relative difference between the current smallest

objective function value and the optimum:

mini≤t J(wi)− J(w∗)
J(w∗)

,

where wi is the weight vector at time/iteration i, and w∗ is the minimizer obtained by running BMRM
until the approximation gap εt < 10−4. The best λ ∈

{
2−20, . . . ,20

}
for each of the data sets was

determined by evaluating the performance on the corresponding validation set.18

In the case of linear SVMs, we compared BMRM to three publicly available state of the art batch

learning solvers:

1. OCAS (Franc and Sonnenburg, 2008). Since this method is equivalent to LSBMRM with

binary hinge loss, we refer to this software by LSBMRM for naming consistency.

2. LIBLINEAR (Fan et al., 2008) version 1.33 with option “-s 3”.

3. SVMperf (Joachims, 2006) version 2.5 with option “-w 3” and with double precision floating

point numbers.

LIBLINEAR solves the dual problem of linear SVM using a coordinate descent method (Hsieh et al.,

2008). SVMperf was chosen for comparison as it is algorithmically identical to BMRM in this case.

Both LIBLINEAR and SVMperf provide a “shrinking” technique to speed up the algorithms by ignor-

ing some data points which are not likely to affect the objective. Since BMRM does not provide such

shrinking technique, we excluded this option in both LIBLINEAR and SVMperf for a fair comparison.

Figure 9 shows the relative difference in objective value as a function of training time (CPU

seconds) for three methods on various data sets. BMRM is faster than SVMperf on all data sets

18. The corresponding penalty parameter C for LIBLINEAR and OCAS is 1/(mλ), and for SVMperf is 1/(100λ).
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(a) adult9 (b) astro-ph (c) news20-b

(d) real-sim (e) rcv1 (f) worm

(g) inex (h) letter (i) mnist

(j) news20-m (k) protein (l) usps

Figure 8: Smallest number of iterations required to satisfy the termination criterion (17) for each

data set and various regularization constants. (BT did not satisfy (17) in the inex and usps
experiments for λ = 10−6 after 6000 iterations.)
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(a) adult9 (b) astro-ph (c) news20-b

(d) real-sim (e) rcv1 (f) worm

Figure 9: Linear SVMs. Relative primal objective value difference during training.

except news20-b. The performance difference observed here is largely due to the differences in the

implementations (e.g., feature vector representation, QP solver, etc.). Nevertheless, both BMRM and

SVMperf are significantly outperformed by LSBMRM and LIBLINEAR on all data sets, and LIBLINEAR
is almost always faster than LSBMRM. It is clear from the figure that LSBMRM and LIBLINEAR
enjoy progression with “strictly” decreasing objective values; whereas the progress of both BMRM
and SVMperf are hindered by the “stalling” steps (i.e., the flat line segments in the plots). The fact

that LSBMRM is different from BMRM and SVMperf by one additional line search step implies that

the “stalling” steps is the time that BMRM and SVMperf improve the approximation at the regions

which do not help reducing the primal objective function value.

In the case of logistic regression, we compare BMRM to the state of the art trust region Newton

method for logistic regression (Lin et al., 2008) which is also available in the LIBLINEAR package

(option “-s 0”). From Figure 10, we see that LIBLINEAR outperforms BMRM on all data sets and

that BMRM suffers from the same “stalling” phenomenon as observed in the linear SVMs case.

5.3.2 LEARNING THE COST MATRIX FOR GRAPH MATCHING

In computer vision, there are problems which require matching the objects of interest in a pair

of images. These problems are often modeled as attributed graph matching problems where the

(extracted) landmark points xi in the first image x must be matched to the corresponding points x′i′
in the second image x′. Note that we represent the point xi or x′i′ as d-dimensional feature vectors.

The attributed graph matching problem is then cast as a Linear Assignment Problem (LAP) which
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(a) adult9 (b) astro-ph (c) news20-b

(d) real-sim (e) rcv1 (f) worm

Figure 10: Logistic regression. Relative primal objective value difference during training.

can be solved in worst case O(n3) time where n is the number of landmark points (Kuhn, 1955).19

Formally, the LAP reads

max
y∈Y

n

∑
i=1

n

∑
i′=1

yii′Cii′ ,

where Y is the set of all n×n permutation matrices, and Cii′ is the cost of matching point xi to point

x′i′ . In the standard setting of graph matching, one way to determine the cost matrix C is as

Cii′ :=−
d

∑
k=1

∣
∣
∣x

(k)
i − x

′(k)
i′

∣
∣
∣

2

.

Instead of finding more features to describe the points xi and x′i′ that might improve the matching

results, Caetano et al. (2007) propose to learn a weighting to a given set of features that actually

improved the matching results in many cases (Caetano et al., 2008).

In Caetano et al. (2007, 2008) the problem of learning the cost matrix for graph matching is

formulated as a L2 regularized risk minimization with loss function

l(x,x′,y,w) = max
ȳ∈Y

〈
w,φ(x,x′, ȳ)−φ(x,x′,y)

〉
+∆(ȳ,y), (18)

where the feature map φ is defined as

φ(x,x′,y) =−
n

∑
i=1

n

∑
i′=1

yii′(|x(1)
i − x

′(1)
i′ |2, . . . , |x

(d)
i − x

′(d)
i′ |2), (19)

19. To achieve better matching results, one could further enforce edge-to-edge matching where edge refers to pair of

landmark points. This additional matching requirement renders the problem as a Quadratic Assignment Problem.
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and the label loss ∆ is defined as the normalized Hamming loss

∆(ȳ,y) = 1− 1

n

n

∑
i=1

n

∑
i′=1

ȳii′yii′ . (20)

By (19) and (20), the argument of (18) becomes

〈
w,φ(x,x′, ȳ)−φ(x,x′,y)

〉
+∆(ȳ,y) =

n

∑
i=1

n

∑
i′=1

ȳii′C̃ii′ + constant,

where C̃ii′ = −∑d
k=1 wk|x(k)

i − x
′(k)
i′ |2− yii′/n. Therefore, (18) is exactly a LAP. We refer interested

readers to Caetano et al. (2007, 2008) for more detailed exposition especially on the use of edge

matching (in addition to point matching) which leads to much better performance.

We reproduced the experiment in Caetano et al. (2008) that used BMRM with L2 regularization

on the CMU house data set.20 For this data set, there are 30 hand-labeled landmark points in each

image and the features for those points are the 60-dimensional Shape Context features (Belongie

et al., 2001; Caetano et al., 2008). The experiments evaluated the performance of the method for

training/validation/testing pairs fixed at baselines (separation of frames) 0,10, . . . ,90. Additionally,

we ran the same set of experiments with L1 regularization, that is, Ω(w) = ‖w‖1.21 The matching

performance of the cost matrices augmented with learned weight vectors w’s are compared with the

original non-learning cost matrix, that is, with uniform weight vector w = (1, . . . ,1).
Figure 11 shows the results of the experiments. On the left, we see that the matching perfor-

mance with learned cost matrices are getting more superior to that of non-learning as the baseline

increases. The performance of L1 and L2 regularized learning are quite similar on average. On the

right are the best learned weights for the features using L1 regularization (top) and L2 regulariza-

tion (bottom) for baseline 50. The weights due to L1 regularization is considerably sparser (i.e., 42

non-zeros) than that due to L2 regularization (i.e., 52 non-zeros).

5.3.3 HUMAN ACTION SEGMENTATION AND RECOGNITION

In this section, we consider the problem of joint segmentation and recognition of human action

from a video sequence using the discriminative Semi-Markov Models (SMM) proposed by Shi

et al. (2008). Denote by x = {xi}n
i=1 ∈ X a sequence of n video frames, and by y = {(si,ci)}n̄

i=1 ∈ Y
the corresponding segment labeling where si is the starting location of the i-th segment which ends

at si+1− 1, ci is the frame label for all frames in the segment, and n̄ ≤ n the number of segments.

For ease of presentation, we append a dummy video frame xn+1 to x and a dummy segment label

(sn̄+1,cn̄+1) to y to mark xn+1 as the last segment.

In SMM, there exists a segment variable for each possible segment (i.e., multiple frames) of

x that model the frame label and the boundaries (or length) of a segment jointly; these segment

variables form a Markov Chain. On the contrary, the Hidden Markov Model (HMM) for the same

video x has one frame label variable yi for each video frame xi. The fact that SMM models multiple

frames as one variable allows one to exploit the structure and information in the problem more

efficiently than in HMM. The structure exploitation is due to the fact that one human action usually

20. This data set consist of a sequence of 111 images of a toy house. Available at http://vasc.ri.cmu.edu/idb/

html/motion/house/index.html.

21. Further description on L1 regularized BMRM can be found in Appendix C.
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Figure 11: Left: Performance on the house data set as the baseline varies. For each baseline, the

minimizer of validation loss is evaluated on all testing examples. The corresponding

mean normalized Hamming losses (as points) and its standard errors (as error bars) are

reported. Right: Feature weights for best models trained with L1 regularization (top)

and L2 regularization (bottom) for baseline 50. Dashed lines indicate the feature weight

value 1.

spans several consecutive frames, and the information exploitation is due to the possibility to extract

features which only become apparent within a segment of several frames.

The discriminative SMM in Shi et al. (2008) is formulated as a regularized risk minimization

problem where the loss function is

l(x,y,w) = max
ȳ∈Y
〈w,φ(x, ȳ)−φ(x,y)〉+∆(ȳ,y). (21)

The feature map φ is defined as

φ(x,y) =

(
n̄

∑
i=1

φ1(x,si,ci),
n̄

∑
i=1

φ2(x,si,si+1,ci),
n̄

∑
i=1

φ3(x,si,si+1,ci,ci+1)

)

,

where φ1,φ2, and φ3 are some feature functions for the segment boundaries, segments, and adjacent

segments, respectively. Let yi be the frame label for xi according to segment labeling y, the label

loss function ∆ is defined as

∆(ȳ,y) =
n

∑
i=1

I(ȳi 6= yi), (22)

where I(·) is an indicator function as defined in (16). We refer interested readers to Shi et al. (2008)

for more details on the features and the dynamic programming to compute (21) and its subgradient.

We followed the experimental setup of Shi et al. (2008) by running BMRM for this problem with

L2 (i.e., Ω(w) = 1
2
‖w‖2

) and L1 (i.e., Ω(w) = ‖w‖1) regularization, on the Walk-Bend-Draw (WBD)

data sets (Shi et al., 2008) which consists of 18 video sequences with 3 human action classes (i.e.,
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walking, bending, drawing). For this data set, the dimensionality of the image of the feature map φ
is d = 9917.

Table 4 shows the 6 fold cross validation results for our methods (L1 and L2 SMM),22 SVMs

and SVM-HMM (Tsochantaridis et al., 2005). The latter two are adopted from Shi et al. (2008).

SMM outperforms SVM-HMM and SVM as reported in Shi et al. (2008). Amongst L1 and L2

SMMs, the latter performs the best and converged to optimal. Although L1 SMM failed to satisfy

the termination criterion, the performance is comparable to that of L2 SMM even with a 40 times

sparser weight vector (see Figure 12 for the feature weights distributions of L1 and L2 SMMs).

Methods CV mean (std. err.) #iter. CPU seconds nnz(w)

L2 SMM 0.954 (0.006) 231 1129 3690

L1 SMM 0.930 (0.010) 500 2659 84

SVM-HMM 0.870 (0.020) – – –

SVM 0.840 (0.030) – – –

Table 4: Experimental results on WBD data set. The second column indicates the mean and stan-

dard error of the test accuracy (22). The third and fourth columns indicate the number of

iterations and CPU seconds for the training of the final model with the best parameter, and

the last column indicates the number of nonzero in the final weight vector w.
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Figure 12: Feature weights for best models trained with L1 regularization (top) and L2 regulariza-

tion (bottom). Dashed lines indicate the feature weight range [±10].

22. We set termination criterion ε = 10−4 and limited the maximum number of iteration to 500.
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6. Discussion and Conclusion

The experiments presented in the paper indicate that BMRM is suitable for a wide variety of machine

learning problems. In fact, the modularity of BMRM not only brings the benefits of parallel and

distributed computation but also makes BMRM a natural test bed for trying out new models/ideas

on any particular problem with less effort, that is, the user is only required to implement the loss

functions and/or regularizers corresponding to different models/ideas.

Nevertheless, we saw in the experiments that BMRM does not guarantee strict improvement

in the primal when the dual is solved instead. This phenomenon could significantly hinder the

performance of BMRM as seen in some of the experiments. Since efficient line search procedure

may not exist for general structured prediction tasks, the trust region philosophy used in BT could

be a potential strategy to alleviate this problem; we leave this to the future work. We also note

that for computationally expensive nonsmooth loss functions, one way to make fuller use of each

loss function evaluation is by updating the model RCP
t with two or more linearizations at a non-

diffferentiable location (Frangioni, 1997).

In conclusion, we have presented a variant of standard bundle methods, that is, BMRM, which is

algorithmically simpler and, in some senses, more straightforward for regularized risk minimization

problems than the standard bundle methods. We also showed a O(1/ε) rate of convergence for

nonsmooth objective functions and O(log(1/ε)) rates for smooth objective functions.
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Appendix A. Loss Functions

A multitude of loss functions are commonly used to derive seemingly different algorithms. This

often blurs the similarities as well as subtle differences between them, often for historic reasons:

Each new loss is typically accompanied by at least one publication dedicated to it. In many cases,

the loss is not spelled out explicitly either but instead, it is only given by means of a constrained

optimization problem. A case in point are the papers introducing (binary) hinge loss (Bennett and

Mangasarian, 1992; Cortes and Vapnik, 1995) and structured loss (Taskar et al., 2004; Tsochan-

taridis et al., 2005). Likewise, a geometric description obscures the underlying loss function, as in

novelty detection (Schölkopf et al., 2001).

In this section we give an expository yet unifying presentation of many of those loss functions.

Many of them are well known, while others, such as multivariate ranking, hazard regression, or

Poisson regression are not commonly used in machine learning. Tables 5 and 6 contain a choice

subset of simple scalar and vectorial losses. Our aim is to put the multitude of loss functions in
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an unified framework, and to show how these losses and their (sub)gradients can be computed

efficiently for use in our solver framework.

Note that not all losses, while convex, are continuously differentiable. In this situation we give

a subgradient. While this may not be optimal, the convergence rates of our algorithm do not depend

on which element of the subdifferential we provide: in all cases the first order Taylor approximation

is a lower bound which is tight at the point of expansion.

In this setion, with little abuse of notation, vi is understood as the i-th component of vector v

when v is clearly not an element of a sequence or a set.

A.1 Scalar Loss Functions

It is well known (Wahba, 1997) that the convex optimization problem

min
ξ

ξ subject to y〈w,x〉 ≥ 1− ξ and ξ ≥ 0

takes on the value max(0,1− y〈w,x〉). The latter is a convex function in w and x. Likewise, we

may rewrite the ε-insensitive loss, Huber’s robust loss, the quantile regression loss, and the novelty

detection loss in terms of loss functions rather than a constrained optimization problem. In all cases,

〈w,x〉 will play a key role insofar as the loss is convex in terms of the scalar quantity 〈w,x〉. A large

number of loss functions fall into this category, as described in Table 5. Note that not all functions

of this type are continuously differentiable. In this case we adopt the convention that

∂x max( f (x),g(x)) =

{

∂x f (x) if f (x)≥ g(x)

∂xg(x) otherwise .

Since we are only interested in obtaining an arbitrary element of the subdifferential this convention

is consistent with our requirements.

Let us discuss the issue of efficient computation. For all scalar losses we may write l(x,y,w) =
l̄(〈w,x〉 ,y), as described in Table 5. In this case a simple application of the chain rule yields that

∂wl(x,y,w) = l̄′(〈w,x〉 ,y) · x. For instance, for squared loss we have

l̄(〈w,x〉 ,y) = 1
2
(〈w,x〉− y)2 and l̄′(〈w,x〉 ,y) = 〈w,x〉− y.

Consequently, the derivative of the empirical risk term is given by

∂wRemp(w) =
1

m

m

∑
i=1

l̄′(〈w,xi〉 ,yi) · xi.

This means that if we want to compute l and ∂wl on a large number of observations xi, represented

as matrix X , we can make use of fast linear algebra routines to pre-compute the vectors

f = Xw and g⊤X where gi = l̄′( fi,yi).

This is possible for any of the loss functions listed in Table 5, and many other similar losses. The

advantage of this unified representation is that implementation of each individual loss can be done in

very little time. The computational infrastructure for computing Xw and g⊤X is shared. Evaluating

l̄( fi,yi) and l̄′( fi,yi) for all i can be done in O(m) time and it is not time-critical in comparison to

the remaining operations. Algorithm 6 describes the details.
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Algorithm 6 ScalarLoss(w,X ,y)

1: input: Weight vector w, feature matrix X , and labels y

2: Compute f = Xw

3: Compute r = ∑i l̄( fi,yi) and g = l̄′( f ,y)
4: g← g⊤X

5: return Risk r and gradient g

An important but often neglected issue is worth mentioning. Computing f requires us to right

multiply the matrix X with the vector w while computing g requires the left multiplication of X with

the vector g⊤. If X is stored in a row major format then Xw can be computed rather efficiently while

g⊤X is expensive. This is particularly true if X cannot fit in main memory. Converse is the case

when X is stored in column major format. Similar problems are encountered when X is a sparse

matrix and stored in either compressed row format or in compressed column format.

A.2 Structured Loss

In recent years structured estimation has gained substantial popularity in machine learning (Tsochan-

taridis et al., 2005; Taskar et al., 2004; Bakir et al., 2007). At its core it relies on two types of convex

loss functions: logistic loss:

l(x,y,w) = log ∑
y′∈Y

exp
(〈

w,φ(x,y′)
〉)
−〈w,φ(x,y)〉 , (23)

and soft-margin loss:

l(x,y,w) = max
y′∈Y

Γ(y,y′)
〈
w,φ(x,y′)−φ(x,y)

〉
+∆(y,y′). (24)

Here φ(x,y) is a joint feature map, ∆(y,y′) ≥ 0 describes the cost of misclassifying y by y′, and

Γ(y,y′)≥ 0 is a scaling term which indicates by how much the large margin property should be en-

forced. For instance, Taskar et al. (2004) choose Γ(y,y′) = 1. On the other hand, Tsochantaridis et al.

(2005) suggest Γ(y,y′) = ∆(y,y′), which reportedly yields better performance. Finally, McAllester

(2007) recently suggested generic functions Γ(y,y′).
The logistic loss can also be interpreted as the negative log-likelihood of a conditional exponen-

tial family model:

p(y|x;w) := exp(〈w,φ(x,y)〉−g(w|x)), (25)

where the normalizing constant g(w|x), often called the log-partition function, reads

g(w|x) := log ∑
y′∈Y

exp
(〈

w,φ(x,y′)
〉)

.

As a consequence of the Hammersley-Clifford theorem (Jordan, 2002) every exponential family

distribution corresponds to a undirected graphical model. In our case this implies that the labels

y factorize according to an undirected graphical model. A large number of problems have been

addressed by this setting, amongst them named entity tagging (Lafferty et al., 2001), sequence

alignment (Tsochantaridis et al., 2005), segmentation (Rätsch et al., 2007) and path planning (Ratliff
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et al., 2006). It is clearly impossible to give examples of all settings in this section, nor would a

brief summary do this field any justice. We therefore refer the reader to the edited volume by Bakir

et al. (2007) and the references therein.

If the underlying graphical model is tractable then efficient inference algorithms based on dy-

namic programming can be used to compute (23) and (24). We discuss intractable graphical models

in Section A.2.1, and now turn our attention to the derivatives of the above structured losses.

When it comes to computing derivatives of the logistic loss, (23), we have

∂wl(x,y,w) =
∑y′ φ(x,y′)exp〈w,φ(x,y′)〉

∑y′ exp〈w,φ(x,y′)〉 −φ(x,y)

= Ey′∼p(y′|x)
[
φ(x,y′)

]
−φ(x,y).

where p(y|x) is the exponential family model (25). In the case of (24) we denote by ȳ(x) the argmax

of the RHS, that is

ȳ(x) := argmax
y′

Γ(y,y′)
〈
w,φ(x,y′)−φ(x,y)

〉
+∆(y,y′).

This allows us to compute the derivative of l(x,y,w) as

∂wl(x,y,w) = Γ(y, ȳ(x)) [φ(x, ȳ(x))−φ(x,y)] .

In the case where the loss is maximized for more than one distinct value ȳ(x) we may average over

the individual values, since any convex combination of such terms lies in the subdifferential.

Note that (24) majorizes ∆(y,y∗), where y∗ := argmaxy′ 〈w,φ(x,y′)〉 (Tsochantaridis et al., 2005).

This can be seen via the following series of inequalities:

∆(y,y∗)≤ Γ(y,y∗)〈w,φ(x,y∗)−φ(x,y)〉+∆(y,y∗)≤ l(x,y,w).

The first inequality follows because Γ(y,y∗) ≥ 0 and y∗ maximizes 〈w,φ(x,y′)〉 thus implying that

Γ(y,y∗)〈w,φ(x,y∗)−φ(x,y)〉 ≥ 0. The second inequality follows by definition of the loss.

We conclude this section with a simple lemma which is at the heart of several derivations of

Joachims (2005). While the proof in the original paper is far from trivial, it is straightforward in our

setting:

Lemma 8 Denote by δ(y,y′) a loss and let φ(xi,yi) be a feature map for observations (xi,yi) with

1≤ i≤ m. Moreover, denote by X ,Y the set of all m patterns and labels respectively. Finally let

Φ(X ,Y ) :=
m

∑
i=1

φ(xi,yi) and ∆(Y,Y ′) :=
m

∑
i=1

δ(yi,y
′
i).

Then the following two losses are equivalent:

m

∑
i=1

max
y′

〈
w,φ(xi,y

′)−φ(xi,yi)
〉
+δ(yi,y

′) and max
Y ′

〈
w,Φ(X ,Y ′)−Φ(X ,Y )

〉
+∆(Y,Y ′).

This is immediately obvious, since both feature map and loss decompose, which allows us to per-

form maximization over Y ′ by maximizing each of its m components. In doing so, we showed that

aggregating all data and labels into a single feature map and loss yields results identical to minimiz-

ing the sum over all individual losses. This holds, in particular, for the sample error loss of Joachims

(2005). Also note that this equivalence does not hold whenever Γ(y,y′) is not constant.
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A.2.1 INTRACTABLE MODELS

We now discuss cases where computing l(x,y,w) itself is too expensive. For instance, for intractable

graphical models, the computation of ∑y exp〈w,φ(x,y)〉 cannot be computed efficiently. Wainwright

and Jordan (2003) propose the use of a convex majorization of the log-partition function in those

cases. In our setting this means that instead of dealing with

l(x,y,w) = g(w|x)−〈w,φ(x,y)〉 where g(w|x) := log∑
y

exp〈w,φ(x,y)〉

one uses a more easily computable convex upper bound on g via

sup
µ∈MARG(x)

〈w,µ〉+HGauss(µ|x). (26)

Here MARG(x) is an outer bound on the conditional marginal polytope associated with the map

φ(x,y). Moreover, HGauss(µ|x) is an upper bound on the entropy by using a Gaussian with identical

variance. More refined tree decompositions exist, too. The key benefit of our approach is that the

solution µ of the optimization problem (26) can immediately be used as a gradient of the upper

bound. This is computationally rather efficient.

Likewise, note that Taskar et al. (2004) use relaxations when solving structured estimation prob-

lems of the form

l(x,y,w) = max
y′

Γ(y,y′)
〈
w,φ(x,y′)−φ(x,y)

〉
+∆(y,y′),

by enlarging the domain of maximization with respect to y′. For instance, instead of an integer

programming problem we might relax the setting to a linear program which is much cheaper to

solve. This, again, provides an upper bound on the original loss function.

In summary, we have demonstrated that convex relaxation strategies are well applicable for

bundle methods. In fact, the results of the corresponding optimization procedures can be used

directly for further optimization steps.

A.3 Scalar Multivariate Performance Scores

We now discuss a series of structured loss functions and how they can be implemented efficiently.

For the sake of completeness, we give a concise representation of previous work on multivariate

performance scores and ranking methods. All these loss functions rely on having access to 〈w,x〉,
which can be computed efficiently by using the same operations as in Section A.1.

A.3.1 ROC SCORE

Denote by f = Xw the vector of function values on the training set. It is well known that the area

under the ROC curve is given by

AUC(x,y,w) =
1

m+m−
∑

yi<y j

I(〈w,xi〉<
〈
w,x j

〉
),

where m+ and m− are the numbers of positive and negative observations respectively, and I(·) is

indicator function. Directly optimizing the cost 1−AUC(x,y,w) is difficult as it is not continuous
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Algorithm 7 ROCScore(X ,y,w)

1: input: Feature matrix X , labels y, and weight vector w

2: initialization: s− = m− and s+ = 0 and l = 0m and c = Xw− 1
2
y

3: π←{1, . . . ,m} sorted in ascending order of c

4: for i = 1 to m do

5: if yπi
=−1 then

6: lπi
← s+ and s−← s−−1

7: else

8: lπi
←−s− and s+← s+ +1

9: end if

10: end for

11: Rescale l← l/(m+m−) and compute r = 〈l,c〉 and g = l⊤X .

12: return Risk r and subgradient g

in w. By using max(0,1 +
〈
w,xi− x j

〉
) as the surrogate loss function for all pairs (i, j) for which

yi < y j we have the following convex multivariate empirical risk

Remp(w) =
1

m+m−
∑

yi<y j

max(0,1+
〈
w,xi− x j

〉
) =

1

m+m−
∑

yi<y j

max(0,1+ fi− f j). (27)

Obviously, we could compute Remp(w) and its derivative by an O(m2) operation. However Joachims

(2005) shows that both can be computed in O(m logm) time using a sorting operation, which we

now describe.

Denote by c = f − 1
2
y an auxiliary variable and let i and j be indices such that yi =−1 and y j = 1.

It follows that ci− c j = 1 + fi− f j. The efficient algorithm is due to the observation that there are

at most m distinct terms ck, k = 1, . . . ,m, each with different frequency lk and sign, appear in (27).

These frequencies lk can be determined by first sorting c in ascending order then scanning through

the labels according to the sorted order of c and keeping running statistics such as the number s− of

negative labels yet to encounter, and the number s+ of positive labels encountered. When visiting

yk, we know ck should appears s+ (or s−) times with positive (or negative) sign in (27) if yk = −1

(or yk = 1). Algorithm 7 spells out explicitly how to compute Remp(w) and its subgradient.

A.3.2 ORDINAL REGRESSION

Essentially the same preference relationships need to hold for ordinal regression. The only differ-

ence is that yi need not take on binary values any more. Instead, we may have an arbitrary number of

different values yi (e.g., 1 corresponding to ’strong reject’ up to 10 corresponding to ’strong accept’,

when it comes to ranking papers for a conference). That is, we now have yi ∈ {1, . . . ,n} rather than

yi ∈ {±1}. Our goal is to find some w such that
〈
w,xi− x j

〉
< 0 whenever yi < y j. Whenever this

relationship is not satisfied, we incur a cost C(yi,y j) for preferring xi to x j. For examples, C(yi,y j)
could be constant, that is, C(yi,y j) = 1 (Joachims, 2006) or linear, that is, C(yi,y j) = y j− yi.

Denote by mi the number of x j for which y j = i. In this case, there are M̄ = m2−∑n
i=1 m2

i

pairs (yi,y j) for which yi 6= y j; this implies that there are M = M̄/2 pairs (yi,y j) such that yi < y j.
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Normalizing by the total number of comparisons we may write the overall cost of the estimator as

1

M
∑

yi<y j

C(yi,y j)I(〈w,xi〉>
〈
w,x j

〉
) where M =

1

2

[

m2−
n

∑
i

m2
i

]

.

Using the same convex majorization as above when we were maximizing the ROC score, we obtain

an empirical risk of the form

Remp(w) =
1

M
∑

yi<y j

C(yi,y j)max(0,1+
〈
w,xi− x j

〉
).

Now the goal is to find an efficient algorithm for obtaining the number of times when the individual

losses are nonzero such as to compute both the value and the gradient of Remp(w). The complication

arises from the fact that observations xi with label yi may appear in either side of the inequality

depending on whether y j < yi or y j > yi. This problem can be solved as follows: sort f = Xw in

ascending order and traverse it while keeping track of how many items with a lower value y j are

no more than 1 apart in terms of their value of fi. This way we may compute the count statistics

efficiently. Algorithm 8 describes the details, generalizing the results of Joachims (2006). Again,

its runtime is O(m logm), thus allowing for efficient computation.

A.3.3 PREFERENCE RELATIONS

In general, our loss may be described by means of a set of preference relations j � i for arbitrary

pairs (i, j) ∈ {1, . . .m}2
associated with a cost C(i, j) which is incurred whenever i is ranked above

j. This set of preferences may or may not form a partial or a total order on the domain of all

observations. In these cases efficient computations along the lines of Algorithm 8 exist. In general,

this is not the case and we need to rely on the fact that the set P containing all preferences is

sufficiently small that it can be enumerated efficiently. The risk is then given by

1

|P| ∑
(i, j)∈P

C(i, j)I(〈w,xi〉>
〈
w,x j

〉
).

Again, the same majorization argument as before allows us to write a convex upper bound

Remp(w) =
1

|P| ∑
(i, j)∈P

C(i, j)max
(
0,1+ 〈w,xi〉−

〈
w,x j

〉)

where ∂wRemp(w) =
1

|P| ∑
(i, j)∈P

C(i, j)

{

0 if
〈
w,x j− xi

〉
≥ 1

xi− x j otherwise.

The implementation is straightforward, as given in Algorithm 9.

A.3.4 RANKING

In webpage and document ranking we are often in a situation similar to that described in Sec-

tion A.3.2, however with the difference that we do not only care about objects xi being ranked

according to scores yi but moreover that different degrees of importance are placed on different

documents.
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Algorithm 8 OrdinalRegression(X ,y,w,C)

1: input: Feature matrix X , labels y, weight vector w, and score matrix C

2: initialization: l = 0n and ui = mi ∀i ∈ [n] and r = 0 and g = 0m

3: Compute f = Xw and set c = [ f − 1
2
, f + 1

2
] ∈ R

2m (concatenate the vectors)

4: Compute M = (m2−∑n
i=1 m2

i )/2

5: Rescale C←C/M

6: π←{1, . . . ,2m} sorted in ascending order of c

7: for i = 1 to 2m do

8: j = πi mod m

9: if πi ≤ m then

10: for k = 1 to y j−1 do

11: r← r−C(k,y j)ukc j

12: g j← g j−C(k,y j)uk

13: end for

14: ly j
← ly j

+1

15: else

16: for k = y j +1 to n do

17: r← r +C(y j,k)lkc j+m

18: g j← g j +C(y j,k)lk
19: end for

20: uy j
← uy j

−1

21: end if

22: end for

23: g← g⊤X

24: return: Risk r and subgradient g

Algorithm 9 Preference(X ,w,C,P)

1: input: Feature matrix X , weight vector w, score matrix C, and preference set P

2: initialization: r = 0 and g = 0m

3: Compute f = Xw

4: while (i, j) ∈ P do

5: if f j− fi < 1 then

6: r← r +C(i, j)(1+ fi− f j)
7: gi← gi +C(i, j) and g j← g j−C(i, j)
8: end if

9: end while

10: g← g⊤X

11: return Risk r and subgradient g

The information retrieval literature is full with a large number of different scoring functions.

Examples are criteria such as Normalized Discounted Cumulative Gain (NDCG), Mean Recipro-

cal Rank (MRR), Precision@n, or Expected Rank Utility (ERU). They are used to address the is-

sue of evaluating rankers, search engines or recommender sytems (Voorhees, 2001; Jarvelin and

Kekalainen, 2002; Breese et al., 1998; Basilico and Hofmann, 2004). For instance, in webpage
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Algorithm 10 Ranking(X ,y,w)

1: input: Feature matrix X , relevances y, and weight vector w

2: Compute vectors a and b(y) according to some ranking measure

3: Compute f = Xw

4: Compute elements of matrix Ci j = ci f j−bia j

5: π= LinearAssignment(C)
6: r = c⊤( f (π)− f )+(a−a(π))⊤b

7: g = c(π−1)− c and g← g⊤X

8: return Risk r and subgradient g

ranking only the first k retrieved documents that matter, since users are unlikely to look beyond the

first k, say 10, retrieved webpages in an internet search. Le and Smola (2007) show that these scores

can be optimized directly by minimizing the following loss:

l(X ,y,w) = max
π ∑

i

ci

〈
w,xπ(i)− xi

〉
+ 〈a−a(π),b(y)〉 . (28)

Here ci is a monotonically decreasing sequence, the documents are assumed to be arranged in or-

der of decreasing relevance, π is a permutation, the vectors a and b(y) depend on the choice of a

particular ranking measure, and a(π) denotes the permutation of a according to π. Pre-computing

f = Xw we may rewrite (28) as

l( f ,y) = max
π

[

c⊤ f (π)−a(π)⊤b(y)
]

− c⊤ f +a⊤b(y)

and consequently the derivative of l(X ,y,w) with respect to w is given by

∂wl(X ,y,w) = (c(π̄−1)− c)⊤X where π̄= argmax
π

c⊤ f (π)−a(π)⊤b(y).

Here π−1 denotes the inverse permutation, such that π◦π−1 = 1. Finding the permutation maximiz-

ing c⊤ f (π)−a(π)⊤b(y) is a linear assignment problem which can be easily solved by the Hungarian

Marriage algorithm, that is, the Kuhn-Munkres algorithm.

The original papers by Kuhn (1955) and Munkres (1957) implied an algorithm with O(m3) cost

in the number of terms. Later, Karp (1980) suggests an algorithm with expected quadratic time in

the size of the assignment problem (ignoring log-factors). Finally, Orlin and Lee (1993) propose a

linear time algorithm for large problems. Since in our case the number of pages is fairly small (in

the order of 50 to 200 per query) the scaling behavior per query is not too important. We used an

existing implementation due to Jonker and Volgenant (1987).

Note also that training sets consist of a collection of ranking problems, that is, we have several

ranking problems of size 50 to 200. By means of parallelization we are able to distribute the work

onto a cluster of workstations, which is able to overcome the issue of the rather costly computation

per collection of queries. Algorithm 10 spells out the steps in detail.

A.3.5 CONTINGENCY TABLE SCORES

Joachims (2005) observed that Fβ scores and related quantities dependent on a contingency table can

also be computed efficiently by means of structured estimation. Such scores depend in general on
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the number of true and false positives and negatives alike. Algorithm 11 shows how a corresponding

empirical risk and subgradient can be computed efficiently. As with the previous losses, here again

we use convex majorization to obtain a tractable optimization problem.

Given a set of labels y and an estimate y′, the numbers of true positives (T+), true negatives

(T−), false positives (F+), and false negatives (F−) are determined according to a contingency table

as follows:

y > 0 y < 0

y′ > 0 T+ F+

y′ < 0 F− T−

In the sequel, we denote by m+ = T+ +F− and m− = T−+F+ the numbers of positives and negative

labels in y, respectively. We note that Fβ score can be computed based on the contingency table

(Joachims, 2005) as

Fβ(T+,T−) =
(1+β2)T+

T+ +m−−T−+β2m+
.

If we want to use 〈w,xi〉 to estimate the label of observation xi, we may use the following

structured loss to “directly” optimize w.r.t. Fβ score (Joachims, 2005):

l(X ,y,w) = max
y′

[

(y′− y)⊤ f +∆(T+,T−)
]

,

where f = Xw, ∆(T+,T−) := 1−Fβ(T+,T−), and (T+,T−) is determined by using y and y′. Since ∆
does not depend on the specific choice of (y,y′) but rather just on which sets they disagree, l can be

maximized as follows: Enumerating all possible m+m− contingency tables in a way such that given

a configuration (T+,T−), T+ (T−) positive (negative) observations xi with largest (lowest) value of

〈w,xi〉 are labeled as positive (negative). This is effectively implemented as a nested loop hence run

in O(m2) time. Algorithm 11 describes the procedure in details.

A.4 Vector Loss Functions

Next we discuss “vector” loss functions, that is, functions where w is best described as a matrix

(denoted by W ) and the loss depends on Wx. Here, we have feature vector x ∈R
d , label y ∈R

k, and

weight matrix W ∈ R
d×k. We also denote feature matrix X ∈ R

m×d as a matrix of m feature vectors

xi, and stack up the columns Wi of W as a vector w.

Some of the most relevant cases are multiclass classification using both the exponential families

model and structured estimation, hierarchical models, that is, ontologies, and multivariate regres-

sion. Many of those cases are summarized in Table 6.

A.4.1 UNSTRUCTURED SETTING

The simplest loss is multivariate regression, where l(x,y,W ) = 1
2
(y− x⊤W )⊤M(y− x⊤W ). In this

case it is clear that by pre-computing XW subsequent calculations of the loss and its gradient are

significantly accelerated.

A second class of important losses is given by plain multiclass classification problems, for

example, recognizing digits of a postal code or categorizing high-level document categories. In this

case, φ(x,y) is best represented by ey⊗ x (using a linear model). Clearly we may view 〈w,φ(x,y)〉

350



BUNDLE METHODS FOR REGULARIZED RISK MINIMIZATION

Algorithm 11 Fβ(X ,y,w)

1: input: Feature matrix X , labels y, and weight vector w

2: Compute f = Xw

3: π+←{i : yi = 1} sorted in descending order of f

4: π−←{i : yi =−1} sorted in ascending order of f

5: Let p0 = 0 and pi = 2∑m+

k=i fπ+
k
, i = 1, . . . ,m+

6: Let n0 = 0 and ni = 2∑m−
k=i fπ−k

, i = 1, . . . ,m−
7: y′←−y and r←−∞
8: for i = 0 to m+ do

9: for j = 0 to m− do

10: rtmp = ∆(i, j)− pi +n j

11: if rtmp > r then

12: r← rtmp

13: T+← i and T−← j

14: end if

15: end for

16: end for

17: y′π+
i

← 1, i = 1, . . . ,T+

18: y′π−i
←−1, i = 1, . . . ,T−

19: g← (y′− y)⊤X

20: return Risk r and subgradient g

as an operation which chooses a column indexed by y from xW , since all labels y correspond to a

different weight vector Wy. Formally we set 〈w,φ(x,y)〉= [xW ]y. In this case, structured estimation

losses can be rewritten as

l(x,y,W ) = max
y′

Γ(y,y′)
〈
Wy′−Wy,x

〉
+∆(y,y′) (29)

and ∂W l(x,y,W ) = Γ(y,y∗)(ey∗− ey)⊗ x.

Here Γ and ∆ are defined as in Section A.2 and y∗ denotes the value of y′ for which the RHS of

(29) is maximized. This means that for unstructured multiclass settings we may simply compute

xW . Since this needs to be performed for all observations xi we may take advantage of fast linear

algebra routines and compute f = XW for efficiency. Likewise note that computing the gradient

over m observations is now a matrix-matrix multiplication, too: denote by G the matrix of rows

of gradients Γ(yi,y
∗
i )(ey∗i − eyi

). Then ∂W Remp(X ,y,W ) = G⊤X . Note that G is very sparse with at

most two nonzero entries per row, which makes the computation of G⊤X essentially as expensive

as two matrix vector multiplications. Whenever we have many classes, this may yield significant

computational gains.

Log-likelihood scores of exponential families share similar expansions. We have

l(x,y,W ) = log∑
y′

exp
〈
w,φ(x,y′)

〉
−〈w,φ(x,y)〉= log∑

y′
exp
〈
Wy′ ,x

〉
−〈Wy,x〉

∂W l(x,y,W ) =
∑y′(ey′⊗ x)exp

〈
Wy′ ,x

〉

∑y′ exp
〈
Wy′ ,x

〉 − ey⊗ x.
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The main difference to the soft-margin setting is that the gradients are not sparse in the number of

classes. This means that the computation of gradients is slightly more costly.

A.4.2 ONTOLOGIES

Figure 13: Two ontologies. Left: a binary hierarchy with internal nodes {1, . . . ,7} and labels

{8, . . .15}. Right: a generic directed acyclic graph with internal nodes {1, . . . ,6,12}
and labels {7, . . . ,11,13, . . . ,15}. Note that node 5 has two parents, namely nodes 2 and

3. Moreover, the labels need not be found at the same level of the tree: nodes 14 and 15

are one level lower than the rest of the nodes.

Assume that the labels we want to estimate can be found to belong to a directed acyclic graph

(DAG). For instance, this may be a gene-ontology graph (Ashburner et al., 2000) a patent hierarchy

(Cai and Hofmann, 2004), or a genealogy. In these cases we have a hierarchy of categories to which

an element x may belong. Figure 13 gives two examples of such directed acyclic graphs. The first

example is a binary tree, while the second contains nodes with different numbers of children (e.g.,

node 4 and 12), nodes at different levels having children (e.g., nodes 5 and 12), and nodes which

have more than one parent (e.g., node 5). It is a well known fundamental property of trees that they

have at most as many internal nodes as they have leaf nodes.

It is now our goal to build a classifier which is able to categorize observations according to

which leaf node they belong to (each leaf node is assigned a label y). Denote by k + 1 the number

of nodes in the DAG including the root node. In this case we may design a feature map φ(y) ∈ R
k

(Cai and Hofmann, 2004) by associating with every label y the vector describing the path from the

root node to y, ignoring the root node itself. For instance, for the first DAG in Figure 13 we have

φ(8) = (1,0,1,0,0,0,1,0,0,0,0,0,0,0) and φ(13) = (0,1,0,0,1,0,0,0,0,0,0,1,0,0)

Whenever several paths are admissible, as in the right DAG of Figure 13 we average over all possible

paths. For example, we have

φ(10) = (0.5,0.5,0,1,0,0,0,0,1,0,0,0,0,0) and φ(15) = (0,1,0,0,1,0,0,0,0,0,0,1,0,0,1).

Also note that the lengths of the paths need not be the same (e.g., to reach 15 it takes a longer path

than to reach 13). Likewise, it is natural to assume that ∆(y,y′), that is, the cost for mislabeling y
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Algorithm 12 Ontology(X ,y,W )

1: input: Feature matrix X ∈ R
m×d , labels y, and weight matrix W ∈ R

d×k

2: initialization: G = 0 ∈ R
m×k and r = 0

3: Compute f = XW and let fi = xiW

4: for i = 1 to m do

5: Let Di be the DAG with edges annotated with the values of fi

6: Traverse Di to find a path y∗ that maximizes the value zy∗ := ∑k
j=1[φ(y∗)] j fi j +∆(yi,y

∗)
7: Gi = φ(y∗)−φ(yi)
8: r← r + zy∗− zyi

9: end for

10: g = G⊤X

11: return Risk r and subgradient g

as y′ will depend on the similarity of the path. In other words, it is likely that the cost for placing x

into the wrong sub-sub-category is less than getting the main category of the object wrong.

To complete the setting, note that for φ(x,y) = φ(y)⊗ x the cost of computing all labels is k

inner products, since the value of 〈w,φ(x,y)〉 for a particular y can be obtained by the sum of the

contributions for the segments of the path. This means that the values for all terms can be computed

by a simple breadth first traversal through the graph. As before, we may make use of vectorization

in our approach, since we may compute xW ∈ R
k to obtain the contributions on all segments of the

DAG before performing the graph traversal. Since we have m patterns xi we may vectorize matters

by pre-computing XW .

Also note that φ(y)−φ(y′) is nonzero only for those edges where the paths for y and y′ differ.

Hence we only change weights on those parts of the graph where the categorization differs. Algo-

rithm 12 describes the subgradient and loss computation for the soft-margin type of loss function.

The same reasoning applies to estimation when using an exponential families model. The only

difference is that we need to compute a soft-max over paths rather than exclusively choosing the

best path over the ontology. Again, a breadth-first recursion suffices: each of the leaves y of the

DAG is associated with a probability p(y|x). To obtain Ey∼p(y|x) [φ(y)] all we need to do is perform

a bottom-up traversal of the DAG summing over all probability weights on the path. Wherever a

node has more than one parent, we distribute the probability weight equally over its parents.

Appendix B. Proofs

This section contains the proofs of Theorems 4, 5, and 7, along with the technical lemmas required

for these.

B.1 Proof of Theorem 4

To show Theorem 4 we need several technical intermediate steps. Let γt := J(wt)−Jt(wt) and recall

that εt := mint ′≤t J(wt ′)− Jt(wt). The following lemma establishes some useful properties of γt and

εt .
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Lemma 9 We have Jt ′(wt ′) ≤ Jt(wt) ≤ J(w∗) ≤ J(wt) = Jt+1(wt) for all t ′ ≤ t. Furthermore, εt

is monotonically decreasing with εt − εt+1 ≥ Jt+1(wt+1)− Jt(wt) ≥ 0. Also, εt upper bounds the

distance from optimality via γt ≥ εt ≥mint ′≤t J(wt ′)− J(w∗).

Proof Since Jt ′(w)≤ Jt(w)≤ J(w) for all t ′≤ t this property also applies to their respective minima.

Moreover, since w∗ minimizes J(w) we have J(w∗) ≤ J(wt). Since Taylor expansions are exact at

the point of expansion J(wt) = Jt+1(wt). The first inequality follows from the definition of εt , and

the fact that Jt is monotonically increasing. Finally, since Jt ′+1(wt ′) = J(wt ′) it is easy to see that

γt ≥ εt = mint ′≤t J(wt ′)− Jt(wt)≥mint ′≤t J(wt ′)− J(w∗).

Our second technical lemma allows us to bound the maximum value of a concave function provided

that we know its first derivative and a bound on the second derivative.

Lemma 10 Denote by f : [0,1]→ R a concave function with f (0) = 0, f ′(0) = l, and | f ′′(x)| ≤
K ∀x ∈ [0,1]. Then we have maxx∈[0,1] f (x)≥ l

2
min( l

K
,1).

Proof We first observe that g(x) := lx− K
2

x2 ≤ f (x) ∀x implies maxx∈[0,1] f (x)≥maxx∈[0,1] g(x). g

attains the unconstrained maximum l2

2K
at x = l

K
. Since g is monotonically increasing in [0, l

K
], if

l > K we pick x = 1 which yields constrained maximum l− K
2

> l
2
. Taking the minimum over both

maxima proves the claim.

To apply the above result, we need to compute the gradient and Hessian of J∗t+1(α) with respect

to the search direction ((1−η)αt ,η). The following lemma takes care of the gradient:

Lemma 11 Denote by αt the solution of (9) at time instance t. Moreover, denote by Ā = [A,at+1]
and b̄ = [b,bt+1] the extended matrices and vectors needed to define the dual problem for step t +1,

and let ᾱ ∈ R
t+1. Then the following holds:

∂ᾱJ∗t+1([αt ,0]) = Ā⊤wt + b̄ and

[−αt ,1]⊤
[

Ā⊤wt + b̄
]

= Jt+1(wt)− Jt(wt) = γt . (30)

Proof By the dual connection ∂Ω∗(−λ−1Aαt) = wt . Hence we have that ∂ᾱ − λΩ∗(−λ−1Āᾱ)+
ᾱ⊤b̄ = Ā⊤wt + b̄ for ᾱ = [αt ,0]⊤. This proves the first claim. To see the second part we eliminate ξ
from of the Lagrangian (11) and write the partial Lagrangian

L(w,α) = λΩ(w)+α⊤
(

A⊤w+b
)

with α ≥ 0.

The result follows by noting that at optimality L(wt ,αt)= Jt(wt) and Jt+1(wt)= λΩ(wt)+〈wt ,at+1〉+
bt+1. Consequently we have

Jt+1(wt)− Jt(wt) = λΩ(wt)+ 〈wt ,at+1〉+bt+1−λΩ(wt)−αt(A
⊤wt +bt).

Rearranging terms proves the claim.

To apply Lemma 10 we also need to bound the second derivative.
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Lemma 12 Under the assumptions of Lemma 11 we have

∂2
ᾱJ∗t+1(ᾱ) =−λ−1Ā⊤∂2Ω∗(−λ−1Āᾱ)Ā (31)

moreover Ā[−αt ,1] = st ∈ ∂wJ(wt). (32)

Proof The first equality is immediate from the chain rule. Next note that ∂wΩ(wt) =−λ−1Aαt by

dual connection. Since at+1 ∈ ∂wRemp(wt) the claim follows from J(w) = Remp(w)+λΩ(w).

This result allows us to express the second derivative of the dual objective function (10) in terms of

the gradient of the risk functional. The idea is that as we approach optimality, the second derivative

will vanish. We will use this fact to argue that for continuously differentiable losses Remp(w) we

enjoy linear convergence throughout.

Proof [Theorem 4] We overload the notation for J∗t+1 by defining the following one dimensional

concave function

J∗t+1(η) := J∗t+1([(1−η)αt ,η]) =−λΩ∗(−λ−1Ā[(1−η)α⊤t ,η])+ [(1−η)α⊤t ,η]b̄.

Clearly, J∗t+1(0) = Jt(wt). Furthermore, by (30), (31), and (32) it follows that

∂ηJ∗t+1(η)|η=0 = [−αt ,1]⊤∂ᾱJ∗t+1([αt ,0]) = γt and

∂2
ηJ∗t+1(η) =−λ−1[−αt ,1]⊤Ā⊤∂2Ω∗(−λ−1Ā[(1−η)αt ,η])Ā[−αt ,1]⊤

=−λ−1s⊤t ∂2Ω∗(−λ−1Ā[(1−η)αt ,η])st := r.

By our assumption on ‖∂2Ω∗‖ ≤ H∗ we have

|r| ≤ H∗‖st‖2/λ.

Next we need to bound the gradient of J. For this purpose note that ∂wλΩ(wt) = −A⊤αt and

moreover that ‖αt‖1 = 1. This implies that ∂wλΩ(wt) lies in the convex hull of the past gradients,

at ′ . By our assumption that maxu∈∂wRemp(w) ‖u‖ ≤ G it follows that ‖∂wλΩ(wt)‖ ≤ G. We conclude

that

‖st‖2 ≤ 4G2 and |r| ≤ 4G2H∗/λ.

Invoking Lemma 10 on J∗t+1(η)− Jt(wt) shows that

J∗t+1(η)− Jt(wt)≥ γt

2
min(1,λγt/4G2H∗).

We now upper bound the LHS of the above inequality as follows:

εt − εt+1 ≥ Jt+1(wt+1)− Jt(wt)≥ J∗t+1(η)− Jt(wt)≥ γt

2
min(1,λγt/4G2H∗). (33)

The first inequality follows from Lemma 9 while the second follows by observing that Jt+1(wt+1) =
J∗t+1(αt+1)≥ J∗t+1(η). The RHS of the third inequality on the other hand can be lower bounded by

observing that γt ≥ εt , which follows from Lemma 9. This in turn obtains (12).

For the second part note that (12) already yields the εt/2 decrease when εt ≥ 4G2H∗/λ. To show

the other parts we need to show that the gradient of the regularized risk vanishes as we converge
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to the optimal solution. Towards this end, we apply Lemma 10 in the primal.23 This allows us to

bound ‖∂wJ(wt)‖ in terms of γt . Plugging in the first and second derivative of J(wt) we obtain

γt ≥
1

2
‖∂wJ(wt)‖min(1,‖∂wJ(wt)‖/H).

If ‖∂wJ(wt)‖ > H, then γt ≥ 1
2
‖∂wJ(wt)‖ which in turn yields |r| ≤ 4γ2

t H∗/λ. Plugging this into

Lemma 10 yields a lower bound on the improvement of λ/8H∗.
Finally, for ‖∂wJ(wt)‖≤H we have γt ≥‖∂wJ(wt)‖2 /2H, which implies |r| ≤ 2HH∗γt/λ. Plug-

ging this into Lemma 10 yields an improvement of λγt/4HH∗ ≥ λεt/4HH∗.
Since both cases cover the remaining range of convergence, the minimum min(λ/8H∗,λεt/4HH∗)

provides a lower bound for the improvement. The crossover point between both terms occurs at

εt = H/2. Rearranging the conditions leads to the (pessimistic) improvement guarantees of the

second claim.

Note that a key step in the above analysis involved bounding r := ∂2
ηJ∗t+1(η). For a number of

regularizers tighter bounds can be obtained. The following bounds are essentially due to Shalev-

Shwartz and Singer (2006):

• For squared norm regularization, that is, Ω∗(µ) = 1
2
‖µ‖2

2 we have r = ‖∂wJ(wt)‖2
2.

• For Lp norm regularization, that is, Ω∗(µ) = 1
2
‖µ‖2

q we have r ≤ (q−1)‖∂wJ(wt)‖2
q.

• For quadratic form regularization with PD matrix B, that is, Ω∗(µ) = 1
2
µB−1µ, we have r =

∂wJ(wt)
⊤B−1∂wJ(wt).

• For unnormalized entropic regularization we have ∂2
µΩ∗(µ) = diag

(

eµ(1)
, . . . ,eµ(d)

)

. Hence

we may bound r ≤ ‖∂wJ(wt)‖2
2 exp(‖µ‖∞). Clearly this bound may be very loose whenever µ

has only very few large coefficients.

• For normalized entropy regularization, that is, Ω∗(µ)= log∑i expµ(i) we have r ≤ ‖∂wJ(wt)‖2
∞.

B.2 Proof of Theorem 5

We need the following technical lemma for the proof:

Lemma 13 Let 〈ρ1,ρ2, . . .〉 be a sequence of non-negative numbers satisfying the following recur-

rence, for t ≥ 1: ρt −ρt+1 ≥ c(ρt)
2, where c > 0 is a constant. Then for all integers t ≥ 1,

ρt ≤
1

c(t−1+ 1
ρ1c

)
.

Furthermore ρt ≤ ρ whenever

t ≥ 1

cρ
− 1

ρ1c
+1.

23. Define J̄(η) := J(wt)− J(wt + ηp) where p = − ∂wJ(wt )
‖∂wJ(wt )‖ is the unit-length gradient. We see that d

dη J̄(η)
∣
∣
∣
η=0

=

[−∂wJ(wt +ηp)⊤p]|η=0 = ‖∂wJ(wt)‖, and J̄(0) = 0. Hence Lemma 10 is applicable in this case.
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This is Sublemma 5.4 of Abe et al. (2001) which is easily proven by induction. Now we can prove

the main result.

Proof [Theorem 5] For any εt > 4G2H∗/λ it follows from (12) that εt+1 ≤ εt/2. Moreover, ε0 ≤
J(0), since we know that J is non-negative. Hence we need at most log2[λJ(0)/4G2H∗] to achieve

this level of precision. Subsequently we have

εt − εt+1 ≥
λ

8G2H∗
ε2

t .

Invoking Lemma 13 by setting c = λ
8G2H∗ and ρ1 = 4G2H∗/λ shows that εt ≤ ε after at most 8G2H∗

λε −
1 more steps. This proves the first claim.

To analyze convergence in the second case we need to study two additional phases: for εt ∈
[H/2,4G2H∗/λ] we see constant progress. Hence it takes us 4λ−2[8G2(H∗)2−HH∗λ] steps to cover

this interval. Finally in the third phase we have εt+1 ≤ εt [1−λ/4HH∗]. Starting from εt = H/2 we

need log2[2ε/H]/ log2[1−λ/4HH∗] steps to converge. Expanding the logarithm in the denominator

close to 1 proves the claim.

B.3 Proof of Theorem 7

We first note that the termination criterion of Algorithm 3 is slightly different from that of Algo-

rithm 2. In order to apply the convergence results for Algorithm 2 to Algorithm 3 we redefine the

following notations:

εt := J(wb
t )− Jt(wt) (34)

at+1 ∈ ∂wRemp(w
c
t ),

bt+1 := Remp(w
c
t )−〈wt ,at+1〉 ,

where

ηt := argmin
η

J(wb
t−1 +η(wt−wb

t−1)),

wb
t := ŵt−1 +ηt(w̄t− ŵt−1), and

wc
t := (1−θ)wb

t +θwt .

Then we state and prove the following lemma which is crucial to the application of Lemma 11 in

the proof.

Lemma 14 Jt+1(wt) = λΩ(wt)+ 〈wt ,at+1〉+bt+1

Proof wb
t is the optimal value of J on the line joining wt and wb

t−1 while wc
t is a convex combination

of wt and wb
t . Moreover by definition of at+1 and bt+1 we have J(wc

t ) = Jt+1(w
c
t ). Therefore,

J(wc
t ) = Jt+1(w

c
t ) = λΩ(wc

t )+ 〈at+1,w
c
t 〉+bt+1 ≥ J(wb

t ). (35)

But since Ω is convex

Ω((1−θ)wb
t +θwt

︸ ︷︷ ︸

wc
t

)≤ (1−θ)Ω(wb
t )+θΩ(wt),
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which can be rearranged to

θ(Ω(wb
t )−Ω(wt))≤Ω(wb

t )−Ω(wc
t ).

Multiplying by λ and adding and subtracting θRemp(w
b
t ) and θRt(wt) respectively to the above

equation

λθΩ(wb
t )+θRemp(w

b
t )

︸ ︷︷ ︸

θJ(wb
t )

−λθΩ(wt)−θRt(wt)
︸ ︷︷ ︸

θJt(wt)

≤λΩ(wb
t )+Remp(w

b
t )

︸ ︷︷ ︸

J(wb
t )

−λΩ(wc
t )

− (1−θ)Remp(w
b
t )−θRt(wt).

Plugging in (34) obtains

θεt ≤ J(wb
t )−λΩ(wc

t )− (1−θ)Remp(w
b
t )−θRt(wt). (36)

Putting (35) and (36) together

〈at+1,w
c
t 〉+bt+1 ≥ J(wb

t )−λΩ(wc
t )≥ (1−θ)Remp(w

b
t )+θRt(wt)+θεt .

Since wc
t = (1−θ)wb

t +θwt it follows that

(1−θ)
〈

at+1,w
b
t

〉

+θ〈at+1,wt〉+bt+1 ≥ (1−θ)Remp(w
b
t )+θRt(wt)+θεt .

Which can be rearranged to

(1−θ)
(〈

at+1,w
b
t

〉

−Remp(w
b
t )
)

+θ(〈at+1,wt〉−Rt(wt))+bt+1 ≥ θεt .

Since
〈
wb

t ,at+1

〉
+bt+1 is the Taylor approximation of the convex function Remp around wc

t evaluated

at wb
t it follows that Remp(w

b
t )≥

〈
wb

t ,at+1

〉
+bt+1. Plugging this into the above equation yields

(1−θ)(−bt+1)+θ(〈wt ,at+1〉−Rt(wt))+bt+1 ≥ θεt .

Dividing by θ > 0 and rearranging yields

〈wt ,at+1〉+bt+1 ≥ Rt(wt)+ εt .

The conclusion of the lemma follows from observing that Rt+1(wt)= max(〈wt ,at+1〉+bt+1,Rt(wt))=
〈wt ,at+1〉+bt+1 and Jt+1(wt) = λΩ(wt)+Rt+1(wt).

We also need the following two lemmas before we can proceed to the final proof.

Lemma 15 εt − εt+1 ≥ Jt+1(wt+1)− Jt(wt)

Proof

εt − εt+1 = J(wb
t )− Jt(wt)− J(wb

t+1)+ Jt+1(wt+1)

= (J(wb
t )− J(wb

t+1))
︸ ︷︷ ︸

≥0

+Jt+1(wt+1)− Jt(wt) (by the definition of wb
t )

≥ Jt+1(wt+1)− Jt(wt).
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Lemma 16 Let αt , Ā := [a1, . . . ,at+1], and b̄ := [b1, . . . ,bt+1] be as defined in Lemma 11. Then

under the assumption of Theorem 4 that maxu∈∂wRemp(w) ‖u‖ ≤ G, we have

[−αt ,1]⊤Ā⊤Ā[−αt ,1]≤ 4G2.

Proof By the dual connection, ∂wλΩ(wt) = −Aαt . Also, αt ≥ 0, and ‖αt‖1 = 1 as it is the

optimal solution of (10) at iteration t. It follows that ∂wλΩ(wt) lies in the convex hull of at ′ ∈
∂wRemp(w

c
t ′) ∀t ′ ≤ t. Therefore ‖∂wλΩ(wt)‖ ≤ G. Consequently,

[−αt ,1]⊤Ā⊤Ā[−αt ,1] = ‖∂wλΩ(wt)+at+1‖2

= ‖∂wλΩ(wt)‖2 +2∂wλΩ(wt)
⊤at+1 +‖at+1‖2 ≤ 4G2,

by Cauchy-Schwarz inequality.

Finally, we sketch the proof for Theorem 7.

Proof [Theorem 7] (Sketch) Theorem 4 holds for Algorithm 3 by applying Lemmas 14, 15, and 16

into the first part of the proof. Therefore, for ε < 4G2H∗/λ, (33) reduces to εt−εt+1 ≥ λεt/4G2H∗.
Applying Lemma 13 yields εt ≤ 1

c
(

t−1+ 1
ε1c

) , with c = λ/8G2H∗. Setting 1

c
(

t−1+ 1
ε1c

) = ε, assuming

that ε1 > 0, and solving for n yields n≤ 1
cε = 8G2H∗

λε .

Appendix C. L1 Regularized BMRM

Following our convention, the L1 norm regularized BMRM reads

min
ξ,w

ξ +λ ‖w‖1 subject to w⊤ai +bi ≤ ξ, i = 1, . . . , t. (37)

An equivalent formulation is

min
ξ,w

ξ subject to w⊤ai +bi ≤ ξ, i = 1, . . . , t and ‖w‖1 ≤ τ, (38)

where one can show a monotone correspondence between τ and the λ in (37) by comparison of the

KKT conditions for the two problems.

Note that our convergence proof does not apply in this case as the Fenchel dual of Ω(w) = ‖w‖1

fails to satisfy the strong convexity assumption. Nevertheless, we see that (38) can be easily solved

by CPM where the solution must lie in the L1 ball of radius τ. Finally, we note that the L1 regularized

BMRM can be written in a rather standard linear programming (LP) formulation:

min
ξ,u,v

ξ +λ1⊤d (u+ v)

s.t. a⊤i u−a⊤i v+bi ≤ ξ, i = 1, . . . , t

u,v≥ 0,

with the variable of interest w = u− v.
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