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We study the pricing problem of a multiproduct 
rm facing consumers who may 

purchase more than one (and possibly all) of the 
rm’s products. Examples include 

cable television companies, professional sports teams, and online music stores. 

Such 
rms can choose from a wide variety of alternative pricing schemes. They can 

simply sell their products at a uniform price, or they can set different prices for each 

of their products. There are also bundling possibilities: the products could be offered 

only as a complete bundle, or subsets of products could be offered as bundles, and 

other products could be sold individually. The sheer number of available alternatives 

(for a 
rm with K products, there are  2 K  − 1 possible combinations of products that 

can be separately priced) makes this a highly complex problem for 
rms. Even for 

a 
rm selling only ten products, there are over 1,000 prices that could potentially 

be set.

In reality 
rms almost never implement complex pricing structures. Indeed, the 

reverse seems more common: 
rms often employ remarkably few prices. Why is 

this? In this study we show that simple pricing strategies are often nearly optimal. 

That is, in a broad class of models it takes surprisingly few prices to obtain nearly 

as much pro
t as would be earned by pricing every possible bundle combination. 

Of course, it matters which prices the 
rm chooses to set. We 
nd that bundle-size 

pricing—a simple strategy that has not yet been explored in the literature—tends to 

be more pro
table than offering the individual products priced separately, and tends 

to very closely approximate the pro
ts from mixed bundling.
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Bundle-size pricing (BSP) involves setting different prices for different sized bun-

dles. For a 
rm with three goods, BSP sets one price for the purchase of any single 

good, a second price for the purchase of any two goods, and a third price for pur-

chasing all three. The prior literature on bundling has ignored BSP, instead focusing 

on a few other alternatives: mixed bundling (MB), in which the 
rm chooses prices 

for every combination of goods; component pricing (CP), in which the 
rm sets dif-

ferent prices for each of its products; and pure bundling (PB), in which consumers’ 

only option is to purchase all of the 
rm’s products at a single price.1 Our analysis 

focuses primarily on BSP and CP as competing approximations to MB.

The prior research offers two results of relevance for a 
rm with K products. First, 

MB tends to be strictly more pro
table than CP.2 Second, it is possible that PB is 

more pro
table than CP.3 Hence, the implication for a 
rm with ten products, say, 

would be: the best thing to do is set 1,023 prices under MB; and if that is not feasible 

(likely) then offering all products only as a single package may be more pro
table 

than offering them individually (or perhaps not). Our 
ndings offer a new sugges-

tion: BSP requires only ten prices (the same number as under CP) and attains almost 

the same pro
t as MB under most circumstances—even when demand is highly 

asymmetric across products.4 This is a signi
cant step forward in providing practical 

advice for multiproduct 
rms.

We show that BSP and MB both tend to drive consumers to purchase larger-sized 

bundles than they would under CP. This has the effect of reducing consumers’ het-

erogeneity in valuations for the products, which was always the key insight of the 

bundling literature. Put differently, the demand for each of the 
rm’s K products 

under BSP (where a product is de
ned by bundle size) tends to be less heteroge-

neous than the demands for the K products under CP. With less heterogeneity, the 


rm can extract more surplus.5 It may seem that CP would be more pro
table when 

there is a high degree of demand asymmetry across products. Indeed, in the extreme 

case where each consumer demands only one of the 
rm’s products (and average 

willingness to pay varies across products), bundling-based strategies are obviously 

less pro
table than CP.6 However, even in this situation, BSP does not necessarily 

do much worse than CP because it can extract surplus from individuals with high 

demand for only one product by setting a high price for single-good bundles.

The heterogeneity-reduction effect of bundling also implies that different bundles 

of the same size do not need to be priced very differently if the bundles are large. 

Hence, prices for large-sized bundles under BSP tend to be very close to prices 

under MB. This is why BSP tends to be a good approximation to MB. One inter-

pretation of our 
ndings, then, is that many of the prices a 
rm would set under MB 

are redundant.

1 Component pricing is sometimes also referred to as “independent good pricing.”
2 See R. Preston McAfee, John McMillan, and Michael D. Whinston (1989).
3 See George J. Stigler (1963) and William J. Adams and Janet L. Yellen (1976).
4 Since BSP nests PB, it is also the case that BSP is always at least as pro
table as PB and is often signi
cantly 

more pro
table.
5 In the extreme, if marginal costs are zero, as K→∞, MB pushes all consumers toward purchasing the full 

bundle (i.e., MB simply implements PB in this limit) and extracts the entire consumer surplus. See Yannis Bakos 
and Erik Brynjolffson (1999).

6 For example, a 
rm selling many different qualities of the same good would not want to employ a bundling 
strategy like BSP.
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Our analysis has two components. First, we perform a large number of numerical 

experiments covering a broad range of demand and cost scenarios. In each experi-

ment we compute the optimal prices under CP, PB, BSP and MB, and the associated 

pro
ts. From a practical standpoint, numerical analysis is necessary for this problem 

because the pro
t maximization problem is analytically intractable under all but the 

simplest assumptions about the distribution of consumers’ tastes.7 Numerical analy-

sis also allows us to explore a wider range of distributional assumptions and, thus, 

characterize underlying characteristics of demand and costs that enhance the pro
t-

ability of BSP relative to CP in a way that is robust to functional-form assumptions.

The numerical analysis reveals that increasing the number of goods or decreasing 

marginal costs tends to make BSP more pro
table than CP. Negative correlation in 

tastes also favors BSP, but only when the variance in consumers’ tastes is roughly 

symmetric across goods and consumers’ tastes are well above marginal costs. 

Otherwise negative correlation favors CP. We also show that increasing demand 

asymmetry has a nonmonotone impact on the relative pro
ts of BSP and CP. These 


ndings are counter to the conventional view that positive correlation and demand 

asymmetry always reduce the pro
tability of bundling relative to CP, and we devote 

signi
cant analysis and discussion to explaining these exceptions.

A limitation of the numerical experiments is that we cannot be certain our results 

will transcend the particular parameter values we covered. For this reason, the sec-

ond component of our analysis utilizes an estimated model, allowing us to dem-

onstrate that our 
ndings apply in an empirically relevant setting. The empirical 

analysis is based on a theater company that produces a season of eight plays. It is an 

interesting setting in which to compare the pro
tability of different pricing schemes 

because the plays differ in overall popularity, suggesting that component pricing 

may be important for pro
ts, but many consumers attend multiple plays, suggesting 

that some form of bundling may also be pro
table. With eight goods, MB would 

require the 
rm to set 255 prices, which is clearly impractical. In considering sim-

pler alternatives, how important is it for the 
rm to set high prices for high-demand 

plays? What about offering discounts to consumers that attend multiple plays? Or 

some combination of these? And how do these alternatives compare with MB in 

terms of pro
ts and consumer surplus?

A key feature of the theater data is that we observe the set of plays chosen by each 

customer. This allows us to identify the covariance in the joint distribution of con-

sumers’ tastes, which is an important determinant of pro
tability under alternative 

bundling schemes. The estimated demand system reveals strong positive correla-

tions in tastes for most pairs of plays, which tends to reduce the relative pro
tability 

of bundling-type strategies compared to CP. Indeed, PB is 6 percent less pro
table 

than CP in this case. Nevertheless, we 
nd that BSP is 0.9 percent more pro
table 

than CP, and BSP attains 98.5 percent of the MB pro
ts.

While our focus is on bundling, approximating complex strategies using simpler 

alternatives is also an important issue in the closely related theory of contracts. 

William P. Rogerson (2003) argues that in a standard principal-agent model, most 

of the gains to the principal from offering the optimal continuous menu of contracts 

7 We are not the 
rst to rely on numerical methods to analyze bundling problems. See also Gregory S. Crawford 
and Joseph Cullen (2007), Richard Schmalensee (1984), and Hanming Fang and Peter Norman (2006).
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can be captured by simpler alternatives.8 McAfee (2002) and Robert Wilson (1993) 
establish similar 
ndings in the context of nonlinear pricing, as does Zvika Neeman 

(2003) in the context of auctions.

I. Prior Theoretical Literature

The bundling literature explores the idea that a multiproduct monopolist can 

increase pro
ts by selling goods in bundles, even when there are no demand-side 

complementarities or supply-side economies of scope. If a 
rm sells two products, 

and consumers vary in their willingness-to-pay for each product, then Stigler (1963) 
shows by example that selling these two products as a bundle (PB) may yield higher 

pro
t than if sold separately (CP). Adams and Yellen (1976) introduce MB as an 

alternative to CP and PB, showing by example that MB can strictly dominate both 

CP and PB. They also explain why higher values of marginal cost tend to favor CP 

over PB: with bundling, individuals may consume products for which their willing-

ness-to-pay is less than the marginal cost to the 
rm.9

Two subsequent papers show that bundling (PB or MB) dominates CP in a wide 

variety of circumstances. First, Schmalensee (1984) expands the analysis to demand 

systems where consumers’ product valuations are drawn from a bivariate normal.10 

Due to the limited computer power at the time, Schmalensee does not compute 

optimal MB prices, instead focusing on CP and PB. His main 
nding is that PB 

can be more pro
table than CP, even when the correlation of consumers’ valua-

tions is nonnegative.11 Second, McAfee, McMillan, and Whinston (1989) extend 

the prior results by showing that MB strictly dominates CP under rather general 

circumstances.12

All the above papers analyze two-product monopoly problems. A few prior papers 

study bundling with more than two goods. Bakos and Brynjolfsson (1999) focus 

on the pro
tability of PB as the number of goods (K) goes to in
nity. They show 

that if goods have zero marginal cost, and if tastes are i.i.d. across products, then 

as K goes to in
nity PB approximates perfect price discrimination.13 This 
nding is 

particularly interesting in our context, since it provides an example of an incomplex 

alternative to MB that closely approximates the pro
tability of MB in a particular 

circumstance (i.e., large K).

8 In the speci
c case of uniform types and quadratic effort costs, he shows that exactly 75 percent of the gains 
from offering the optimal menu can be obtained using a simple two-item menu, consisting of a 
xed-price contract 
and a cost-reimbursement contract.

9 In the language of Adams and Yellen (1976), these are violations of the exclusion condition.
10 A concern with this approach is that the bivariate normal implies negative valuations for some consumers 

which would impact the analysis in nontrivial ways, as noted by Salinger (1995). In all of the analysis in our study 
we allow for free disposal, which has important consequences for bundling schemes, as we discuss in detail below.

11 The numerical examples in Stigler (1963) and Adams and Yellen (1976) somehow suggest the importance of 
negative correlation, as noted by Schmalensee (1984).

12 McAfee, McMillan, and Whinston (1989) also distinguish between 
rms that can monitor purchases or not. 
With monitoring, the 
rm can charge a price for the bundle of two that is higher than the sum of component prices. 
We limit our analysis to the no-monitoring case. See also Alejandro M. Manelli and Daniel R. Vincent (2006), 
who point out circumstances under which even MB can be dominated by pricing mechanisms involving random 
assignments.

13 Bakos and Brynjolfsson (1999) also show that, under certain conditions, increasing the number of goods 
under PB monotonically increases pro
t. Xianjun Geng, Maxwell B. Stinchcombe, and Andrew B. Whinston 
(2005) extend the analysis of Bakos and Brynjolfsson to incorporate diminishing marginal utility.
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Mark Armstrong (1999) provides a more general but similar result to that of Bakos 

and Brynjolfsson (1999). He shows that a two-part tariff, in which consumers are 

charged a 
xed fee and can then purchase any products at marginal cost, achieves 

approximately the same pro
t as perfect price discrimination if the number of prod-

ucts approaches in
nity. In the special case of zero marginal cost the two-part tariff 

is equivalent to PB. The focus on settings with large numbers of products may be 

quite relevant for some 
rms, such as booksellers or supermarkets. But clearly these 

results are of questionable relevance to 
rms with 
ve products, for instance.

Fang and Norman (2006) also examine the pro
tability of PB with more than 

two goods. In contrast to Armstrong (1999) and Bakos and Brynjolfsson (1999), 
they focus on 
nite K, and they seek to determine under what circumstances PB is 

an attractive pricing strategy. They con
rm that increasing marginal cost tends to 

favor CP over PB, as Adams and Yellen (1976) had argued. They also show (by way 

of numerical experiments) that increasing the number of goods may favor PB over 

uniform pricing (UP).14

For a 
rm selling a 
nite number of goods, the prior literature can be easily sum-

marized: MB is always more pro
table than CP, and in some cases PB may also be 

more pro
table than CP. We contend these results are of limited practical value—

MB rapidly becomes impractical as the number of goods increases above a mere 

few, and even in the cases when PB is more pro
table than CP, it is conceivable there 

are other straightforward pricing schemes that will do even better.

Hence, we focus on the question: do pricing schemes exist that involve few enough 

prices to be feasible, and that tend to yield pro
ts close to the MB level?

II. The Multiproduct Pricing Problem

In principle, multiproduct 
rms can choose from a wide variety of pricing 

schemes. For a 
rm with K products, the optimal MB strategy requires setting  2 K  −1 

prices.15 PB and UP require only one price to be set: the price for the bundle of all K 

products (in the PB case), or the per-product price (in the UP case). In between these 

extremes are CP, by which we mean setting K different prices for the K different 

products, and BSP, by which we mean setting K prices that depend on the number of 

products purchased. Note that MB nests all the simpler pricing strategies as special 

cases, so it will always be weakly more pro
table than any of these alternatives. 

Similarly, CP nests UP as a special case, and BSP nests both UP and PB as special 

cases. CP and BSP are nonnested alternatives.

It is natural to ask: what is the most pro
table pricing plan for a given number 

of prices? In other words, it would be interesting to compute the upper bound on 

pro
t from any pricing strategy involving N prices, for each value of N from 1 to  

2 K  − 1, given a particular model of demand and costs.16 Such an upper bound is 

14 UP is de
ned as each product sold separately at the same unit price.
15 We subtract 1 because the 
rm does not set the price for the outside good.
16 David A. Malueg and Christopher M. Snyder (2006) show a related result: if a monopolist sells to N indepen-

dent markets with different demands, and the cost function is superadditive (plus some other assumptions), then 
the ratio of CP pro
t to UP pro
t is at most N. Also, Armstrong (1999) quanti
es the degree to which increasing 
the number of the goods (K) allows the optimal two-part tariff scheme to capture a larger fraction of the maximum 
possible pro
t.
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 obviously increasing in N, but it would be useful to know how rapidly the upper 

bound approaches the MB level of pro
ts. This would provide an indication of 

the value to the 
rm from additional complexity (as measured by the number of 

prices).
There are a couple of challenges to computing such an upper bound when goods 

are discrete and tastes for products can be arbitrarily distributed. First, there is a con-

ceptual issue: what does it mean to say a 
rm can choose any N prices? One needs 

to be precise about how to determine the implied prices of bundles with unspeci
ed 

prices.17 Second, in any example with more than a few goods, a large number of 

possible pricing structures must be evaluated, which is a nontrivial computational 

challenge. For these reasons, a complete answer to this question is beyond the scope 

of this study.

Some suggestive implications come from Wilson (1993), who discusses nonlin-

ear pricing for products with multiple continuous characteristics. Wilson establishes 

necessary conditions and a numerical method for computing the optimal monopoly 

solution and 
nds that pricing based on some measure of the aggregate “size” of the 

purchase is a common feature.18 In the special case when there is a single product 

characteristic, the loss in pro
ts from using an N-part tariff (relative to the fully 

optimal nonlinear tariff) is on the order of 1/ N  2 . For what we are interested in—i.e., 

discrete products—the analog to having a single product characteristic is for tastes 

for different products to be perfectly correlated. Wilson’s proof relies on differentia-

bility and thus cannot be applied to a discrete combinatoric problem. But we might 

conjecture that here, too, a few prices are all that is necessary to closely approxi-

mate mixed bundling pro
ts when tastes for different bundled goods are strongly 

correlated.19

It should be noted that in our numerical experiments BSP usually attains around 

99 percent of the pro
t from MB. Hence, it is already clear from our analysis that 

the upper bound on pro
ts does indeed rapidly increase in the number of prices, N. 

There may exist other pricing schemes involving K prices that are more pro
table 

than BSP in any particular example, but typically such schemes can yield at most a 

1 percent improvement.

In practice, multiproduct 
rms tend to use a broad range of different pricing/
bundling strategies. Consider baseball teams, for example, which have 81 home 

games (products).20 For the 2006 season, the Los Angeles Dodgers offered several 

bundles of speci
c games, a discount for choosing any 27 games, and equal prices 

for all individual games. In contrast, for 2006 the San Francisco Giants did not offer 

any bundles or quantity discounts, but did vary prices by day of week and by oppo-

nent. Variation in pricing strategies is also evident in settings with fewer products. 

Consider the Steppenwolf Theater in Chicago that produces a 
ve-play season. In 

2006–2007 they offered a discount for the 
ve-play bundle at a variety of prices that 

varied by time of week, and equal prices for individual shows (also varying by time 

17 For example, CP involves K prices for each individual good and a rule for constructing the price of any bundle 
with two or more goods. Namely, the price of the bundle is the sum of the included components’ prices.

18 See Chapter 13 for the multidimensional case and Chapter 6 for the one-dimensional case.
19 When tastes are perfectly correlated, BSP can in fact be thought of as being equivalent to a K-part tariff. It is 

also easy to prove that in this case CP can replicate the optimal K-part tariff and thus does at least as well.
20 Under MB, with 81 products a 
rm would set 2.4 × 1 0 24  prices.
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of week). In 2006–2007 the San Francisco Opera had a ten-opera season and offered 

37 bundles (combinations of speci
c operas and time of week), and equal prices 

for individual shows (also varying by time of week). These examples highlight the 

dramatic differences in pricing strategies implemented by different 
rms in similar 

settings. We have been unable to 
nd an example of MB being used in practice for 

three or more products.

A. An Example with Two Goods

In order to clarify the differences between BSP, CP, and MB, in this section we 

present a straightforward example with analytic solutions. Here, and throughout the 

remainder of the paper, we assume the 
rm is a monopolist and adhere to the stan-

dard assumptions of the bundling literature: 

 (i)  Consumers purchase one or zero units of each product; 

 (ii)  Consumers’ valuations for a bundle equal the sum of their valuations for 

the bundle’s component products (i.e., products are neither complements nor 

substitutes); and 

 (iii)  There is no resale.

There are two goods, both with zero marginal cost. Consumers’ valuations for 

good 1 are uniformly distributed between 0 and θ:  v 1  ∼ U[0,θ]. And consumers’ 

valuations for good 2 are uniformly distributed between zero and 1:  v 2  ∼ U[0, 1]. 
Also assume that  v 1  and  v 2  are uncorrelated. The virtue of this model is that we can 

derive analytic solutions for the optimal prices under CP, BSP, and MB, as well as 

the associated pro
ts (see Appendix B for details).21 If θ = 1.7 then the optimal CP 

prices are 0.85 and 0.5 for goods 1 and 2, respectively. Under BSP, the optimal price 

for a single-good bundle is 0.9, and the price for the bundle of both goods is 1.1. In 

this example BSP is 5.6 percent more pro
table than CP (even though the optimal 

CP prices vary by 70 percent across the two goods).
The comparison between BSP and MB in this example is also instructive. Under 

MB, the price for good 1 is 1.13, the price for good 2 is 0.67, and the price for 

the bundle is 1.18. Unsurprisingly, the price for a single-good bundle under BSP 

(0.9) lies between the two single-good prices under MB. The price for the two-good 

bundle is quite close under BSP and MB (1.1 and 1.18 respectively), in comparison 

to the differences in single-good prices. However, only 15 percent of the total pro
t 

under MB comes from consumers who buy one good, with the remaining 85 percent 

coming from sales of the bundle. This pattern of BSP prices closely approximating 

the MB prices for bundles but not for individual goods, and of bundles contribut-

ing more to pro
ts, also applies to the numerical experiments we analyze below. 

Put simply, BSP prices closely approximate MB prices where it matters most—for 

large-sized bundles.

21 A limitation of this model is that BSP is weakly more pro
table than CP for all values of θ. Nevertheless, the 
model is helpful for demonstrating the differences between CP and BSP for a given value of θ.
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In Figure 1 we show how CP and BSP lead to different partitions of consum-

ers (for θ = 1.7). CP is the most straightforward: consumers to the right of 0.85 

purchase good 1, and consumers above 0.5 purchase good 2 (with consumers in 

region A purchasing both). Under BSP, consumers in the two regions labeled C 

purchase one product (good 1 for the lower right C, and good 2 for the upper left 

C). And under BSP consumers in regions A, D, and E choose the bundle of both 

goods.

One interesting way to read Figure 1 is to ask which pricing scheme extracts 

more surplus from which consumers. Consumers located in region A purchase both 

goods under CP and BSP. Under CP, these consumers each pay 1.35 and under BSP 

they pay 1.1. Hence, the 
rm extracts more surplus from consumers in region A by 

using CP rather than BSP. CP also extracts more surplus from consumers in region 

B, since these consumers buy either good under CP and buy nothing under BSP. 

BSP, on the other hand, extracts greater surplus from consumers in regions C, D, 

and E. Region E is particularly interesting because these consumers purchase noth-

ing under CP, and under BSP they purchase the bundle of both goods. Consumers in 

region D also increase the number of goods purchased (from a single good to two). 
In region C the number of goods consumed remains at one, but BSP extracts more 

surplus because the price for a single good (0.9) is greater than both single prices 

under CP. To summarize these differences, in Figure 1 we shade the regions in which 

BSP extracts more surplus from consumers than CP.

There are four main points to take from Figure 1. First, BSP is more focused than 

CP on getting consumers to purchase multiple goods. Relative to CP, BSP raises the 
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Figure 1. Separation of Consumers under CP and BSP 
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price for single-good buyers and lowers the price for multigood buyers. It is pro
t-

able to do so in this example, but there is a downside: 

 (i)  By increasing the price for a single-good bundle, some consumers are 

excluded from purchasing anything who otherwise would have purchased 

something (region B); and 

 (ii)  Consumers who would have purchased both goods under CP are given a dis-

count under BSP with no change in their purchase choice (region A).

Second, from the 
gure it is apparent why negative correlation in consumers’ val-

uations may increase the relative pro
tability of BSP. Note the downward trend of 

the shaded regions in which BSP extracts greater surplus than CP—negative correla-

tion tends to increase the fraction of consumers in these regions.22 It is also appar-

ent from the 
gure that BSP is capable of extracting more surplus from individuals 

in the tails with high valuations for one product and low valuations for the other 

(region C). Hence, it is wrong to presume that BSP is poor at extracting surplus from 

consumers with a high valuation for only one product.

The third point concerns the consequences of diminishing marginal utility. The 

model that underlies Figure 1 assumes the utility of the bundle equals the sum of 

the utilities of the two goods. For some products, however, it may be important to 

incorporate diminishing marginal utility into the analysis—e.g., by lowering the 

utility of a bundle by some factor that increases with the size of the bundle. In the 

extreme, if diminishing marginal utility is so strong that individuals never consume 

more than one good, then CP is weakly more pro
table than BSP (for any distribu-

tion of valuations).
Such reasoning suggests that any degree of diminishing marginal utility should 

reduce the pro
tability of BSP relative to CP, since the value of bundles is lowered. 

But this is wrong. Diminishing marginal utility also reduces the pro
tability of CP, 

possibly by even more than it does for BSP. This is because CP also bene
ts from 

extracting surplus from individuals who purchase both goods (region A), and CP 

actually extracts more surplus from this set of consumers than BSP does. In other 

words, diminishing marginal utility reduces willingness-to-pay for the bundle of 

both goods, which also reduces the amount of surplus that CP can extract. In the 

counterfactuals based on our empirical analysis in Section IV, we indeed verify that 

incorporating diminishing marginal utility can reduce the pro
tability of CP by even 

more than it does BSP. This is another appealing aspect of BSP from a 
rm’s point 

of view.

Fourth, this example gives an indication of the complexity of the BSP pricing 

problem. In this simple case with two goods and independent, uniformly distributed 

taste distributions, the regions of integration for determining demand for different-

sized bundles are nonrectangular and noncontiguous (i.e., region C). Adding more 

22 Introducing correlation to the example will change the optimal BSP prices, changing the details of the 
gure. 
Note, however, the optimal CP prices do not depend on the correlation of consumer’s valuations—each good is 
optimally priced independently of the other good, so correlation plays no role in the CP optimization problem. 
Hence, the 
gure would change in some ways, but it would be qualitatively similar, and this point would still hold.
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goods or incorporating nonzero correlation will increase the complexity, and allow-

ing for more realistic distributions of valuations (such as normal) precludes analytic 

solutions. This is why numerical methods are essential for solving the BSP optimi-

zation problem in more general settings.

B. Numerical Analysis with Continuous Types and More Than Two Goods

In this section we examine a broad range of computational experiments in which 

we solve for the optimal prices and pro
ts for 
ve different pricing strategies, which 

are detailed in Table 1. In all experiments we assume a demand model in which 

consumer i’s utility from purchasing bundle j is equal to  V  i  ′   D j  −  p j , where  V i  is a 

K × 1 vector of valuations for the 
rm’s K products,  D j  is a K × 1 vector of binary 

indicators for which of the K products are included in bundle j, and  p j  is the price of 

bundle j.23 Each consumer’s problem is to choose the offered bundle that maximizes 

her utility. Consumers’ product valuations are heterogeneous:  V  i  is drawn from a 

(multivariate) distribution F. We vary the number of goods in the experiments from 

two to 
ve. Importantly, we allow for free disposal—if a consumer purchases a 

bundle that includes a product for which she has a negative valuation, we assume 

zero utility from consuming that product.24

We also incorporate cost variation into the experiments. This is important because, 

as noted by Adams and Yellen (1976), higher values of marginal cost should favor 

CP over PB. Hence, it is conceivable that higher values of marginal cost should also 

favor CP over BSP. Each experiment is therefore performed under four different 

assumptions regarding costs: 

 (i)  All products have zero marginal cost; 

 (ii)  All products have positive and equal marginal cost (we set the marginal cost 

equal to 0.2); 
 (iii)  All products have positive but differing marginal cost (we set marginal costs 

equal to half of the product’s mean valuation); and 

 (iv)  Marginal costs are zero but there is a binding capacity constraint.25

23 As in the above example, by assuming additive preferences we are ruling out consumption complementarities 
as a motivation for bundling.

24 Schmalensee (1984) does not allow free disposal. Either assumption may be correct depending on the par-
ticular products. As we will explain, the free-disposal assumption has some striking consequences for the analysis.

25 For the experiments with capacity constraints we 
rst 
nd the optimal uniform price in the absence of any 
capacity constraint, and then set the capacity constraint equal to 0.9 times the demand for the most popular product 

Table 1—Alternative Pricing Strategies

Initials Name Num. prices Description

UP Uniform pricing 1 Each product sold separately at a uniform price

PB Pure bundling 1 Only option for consumers is the full bundle

CP Component pricing K Each product sold separately at a different price

BSP Bundle-size pricing K Prices depend only on number of purchased products

MB Mixed bundling   2 K  − 1 Separate prices for every possible combination of products
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Table 2 describes the alternative assumptions on the distribution of consumers’ val-

uations (F  ) that we consider in our experiments. We consider 
ve parametric families: 

exponential, logit, lognormal, and normal, which are all commonly used in empirical 

studies of demand; and the uniform distribution, which is often convenient in theoreti-

cal studies of demand and is also occasionally used in empirical work. For the normal 

distribution, we consider two cases: one in which we hold the variances 
xed and vary 

the means, and another in which we hold the means 
xed and vary the variances. For 

each family, we consider many sets of parameter values (as explained below), and 

for each set of parameter values, we consider three covariance structures: negatively 

correlated tastes, independent tastes, and positively correlated tastes. This is important 

since correlation in tastes is a key determinant of the pro
tability of bundling. For 

distributions where covariance is not readily parameterized (e.g., exponential, logit, 

and uniform), we use Gaussian copulas to make the consumers’ valuations correlated 

across products while leaving the marginal distributions of valuations unchanged. The 

details are described in the Web Appendix (available online). Also, for the normal 

family only, we consider two forms of mixed correlation, in which tastes are nega-

tively correlated for some pairs of products, and positively correlated for others.

For each parametric distribution we perform experiments for a broad range of 

parameter values. To help others reproduce our 
ndings, rather than randomly draw 

parameter values, we de
ne a grid of uniformly spaced parameter combinations. The 

grid boundaries for each parametric family are shown in Table 2. The boundaries were 

chosen so that the range of optimal prices is roughly similar across cases, to help with 

comparability, with optimal CP prices varying by up to a factor of 10.26 Thus, our 

experiments include cases with a relatively high degree of demand asymmetry, which 

can favor CP (though, as we explain below, the effect is nonmonotone, and BSP and 

CP are equivalent in proportional terms when demand asymmetry is suf
ciently high).

under the optimal uniform price. This ensures that the capacity constraint will be binding for at least one product 
under UP, regardless of the particular parameters of the taste distribution.

26 Speci
cally, the range of parameters for each distributional family is such that the optimal component prices 
(assuming zero marginal cost) vary from about 0.2 to 2.0.

Table 2—Alternative Taste Distributions

Name Description

Exponential Marginal distributions of the  v ik  s are exponential, with means between 0.2 and 2.0

Logit Marginal distributions of the  v ik  s are extreme value, with means between 0 and 2.5 and scale 
 parameter = 0.25

Lognormal   v k  is a multivariate lognormal random variable; log( v ik ) s have variance 0.25 and means between
  −1.5 and 1

Normal   v i  is a multivariate normal random vector;  v ik  s have variance 0.25 and means between −1 and 2.5

Normal(v)   v i  is a multivariate normal random vector;  v ik  s have mean zero and variances between 
 0.25 and 1.75

Uniform Marginal distributions of the  v ik  s are uniform on [0, a k ], with  a k  between 0.4 and 4

Notes: For each group of distributions we consider several combinations of parameter values, and for each set of 
parameter values we consider three covariance structures: negative correlation, independence, and positive correla-
tion. For the normal distribution, we consider two additional covariance structures with a mix of positive and nega-
tive correlation. The details are described in online Appendix C.
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It is conceivable a 
rm may consider bundling together products for which the 

optimal component prices vary by much more than a factor of 10. We have cho-

sen instead to focus on settings where the component products are more similar. 

Baseball games are perhaps an ideal example, because it is conceivable that the most 

popular regular-season game would have an optimal component price that is several 

times greater (though probably not more than ten times greater) than the least popu-

lar game. See also our empirical example in the next section. Nevertheless, some of 

our results may not generalize to settings where demand differs more dramatically 

across products.

For different numbers of products, we adjust the granularity of the grid of parame-

ter values such that we end up analyzing approximately 220 parameter combinations 

for each class of distribution regardless of the number of products. The combination 

of six parametric families, three covariance structures for each (
ve for the Normal), 
four marginal cost assumptions, variation in the number of products from two to 


ve, and about 220 parameter combinations in each case, leads us to compute 
ve 

sets of prices and pro
ts in 71,360 different examples. Numerical methods are used 

to 
nd the optimal prices in each case.27

It is important to acknowledge the limitations inherent to this kind of computa-

tional analysis. Although we attempt to cover a large space of parameter values, the 

results clearly depend on the speci
c parameters we choose (i.e., the choice of grid). 
Further, there is no way for us to know whether we are under- or oversampling the 

relevant (i.e., empirically plausible) combinations of parameters. Nevertheless, by 

comparing across experiments, we can draw conclusions about the primitives of 

demand and costs that favor each pricing scheme.

In the next several subsections we describe and analyze the results from these 

numerical experiments. A thorough description of the results would be too lengthy 

for inclusion in this article. Instead, we summarize the most important features of 

the results here and provide a more thorough description—including a detailed 

series of tables—in the Web Appendix (available online). Just as importantly, 

we also seek to explain what primitives of demand and costs favor each pricing 

scheme.

Number of Goods.—Figure 2 summarizes all the numerical experiments and 

demonstrates the impact of changing the number of goods (K). The 
gure shows 

box plots depicting various percentiles of the distribution of pro
ts under each pric-

ing strategy, relative to BSP. To construct a given box plot we pool experiments 

across distributions of consumers’ valuations and for different cost structures. Note 

that we pool across parameter combinations for a given parametric family as well 

as pooling across parametric families (in addition to pooling across cost scenarios). 
Hence, while each box plot reveals the range of outcomes, it hides differences across 

27 Speci
cally, we use SNOPT, a sequential quadratic programming algorithm developed by Philip E. Gill, 
Walter Murray, and Michael A. Saunders (2002) for solving nonlinear constrained optimization problems. Under 
BSP, the per-product prices are constrained to be nonincreasing in the size of the bundle. For BSP and MB, we also 
check to make sure the computed optimal prices are robust to alternative start values. We calculate the demands 
for each bundle using a kernel-smoothed frequency simulator, as discussed in Vassilis Hajivassiliou, Daniel L. 
McFadden, and Paul Ruud (1996), using 10,000 simulated consumers and a logistic kernel with smoothing param-
eter 0.02.
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distributions and for varying costs (which we disentangle, below). In Figure 2 each 

box plot indicates the 1st, 25th, 50th, 75th, and 99th percentiles of the distribution 

of pro
t for a given pricing strategy relative to BSP.28

28 We depict the 1st and 99th percentiles instead of the min and max of the distribution because occasionally 
optimization error leads to misleading values for these extremes.
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Figure 2. Distributions of Profits for Each Pricing Strategy, Relative to BSP, for Different Values of K 

Note: Each box plot depicts the 1st, 25th, 50th, 75th, and 99th percentile of the distribution of pro
t relative to the 
pro
t from BSP.
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As expected, Figure 2 shows that MB is always more pro
table than BSP (because 

MB nests BSP), and BSP is always more pro
table than UP (because BSP nests 

UP). However, there are two more substantive 
ndings that are immediately appar-

ent in Figure 2:

 (i)  BSP tends to be more pro
table than CP. Based on the 71,360 experiments 

we performed (across different cost assumptions and across different taste 

distributions), we 
nd that BSP is more pro
table than CP 90 percent of the 

time. Furthermore, BSP obtains 14 percent higher pro
t than CP, on average.

 (ii)  BSP tends to obtain pro
ts that are within 1 percent of the pro
ts from MB. 

Speci
cally, the pro
t from BSP is within 1 percent of MB in 55 percent of 

the 71,360 experiments we performed. And on average, we 
nd that BSP 

yields 98 percent of the MB pro
ts.

To understand these 
ndings, recall the bundling literature’s basic insight that 

PB is sometimes more pro
table than CP. Here we 
nd that PB attains higher pro
t 

than CP in 62 percent of our numerical experiments. We also 
nd that increasing the 

number of goods tends to favor PB over CP: for K = 2,3,4,5, PB is more pro
table 

in 54, 62, 65, and 67 percent of the experiments, respectively. Fang and Norman 

(2006) also 
nd this pattern in their numerical experiments. Since BSP nests PB, 

we expect BSP also becomes more pro
table as K increases, relative to CP. Indeed, 

for K = 2,3,4,5, BSP is more pro
table than CP in 81, 90, 93, and 95 percent of the 

experiments, respectively.

The reason why increasing K favors bundling-type schemes is the heterogeneity-

reduction effect: as the number of goods in a bundle increases, the variance in con-

sumers’ valuations for the bundle tends to decrease. Hence, under MB the optimal 

prices for different bundles of a given size K are not very different from each other, 

provided K is large. Moreover, the average price under MB of size-K bundles is 

close to the uniform price for such bundles under BSP. This is why BSP prices tend 

to be an especially good approximation of MB prices for large-sized bundles.

This point is illustrated in Table 3, which compares CP and BSP as competing 

approximations to MB. The table shows how close the CP prices and BSP prices 

are to the MB prices, as well as how close the market shares are. For each possible 

bundle of a given size we compute price differences (as a percentage of the MB 

price), and average these differences across experiments. For example, based on 

all of our experiments with K = 3, including all cost scenarios, CP prices for indi-

vidual component sales (bundle size equals one) tend to differ from the MB prices 

by 34.6 percent. In contrast, BSP prices in the same experiments tend to differ from 

MB prices by 52.7 percent. Hence, Table 3 reveals that CP prices for small-sized 

bundles (for any given K) tend to be closer than BSP prices are to the fully optimal 

MB prices. However, the table also shows that for large-sized bundles, and espe-

cially for the bundle of all K products, the BSP prices are typically very close to the 

MB prices, unlike CP.

Consider also the market shares shown in Table 3. Under BSP and MB the ten-

dency is for the majority of consumers to purchase the bundle of all K products, 

while under CP there are relatively few sales of the full bundle. For example, with 
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K = 3, CP sells a single good to 37 percent of consumers, while BSP and MB sell a 

single good to only 9 percent and 12 percent, respectively. Meanwhile, BSP and MB 

sell the full bundle to 35 percent and 33 percent of consumers, respectively, and CP 

sells the full bundle to only 11 percent of consumers. Hence, pricing under CP tends 

to be a better approximation to MB for small-sized bundles than BSP, while BSP 

tends to be a better approximation to MB than CP for the large-sized bundles, but 

the large-size bundles matter more: MB tends to sell many more large-sized bundles 

than CP, and BSP does about as well as MB in this respect.

A potential concern is that BSP closely approximates MB merely because prices 

simply do not matter very much in our experiments. To examine this possibility, 

we computed MB pro
ts in cases where the 
rm is mistaken about the distribution 

of consumers’ valuations. Suppose the true distribution of consumers’ valuations 

is joint normal with positive correlations, but the 
rm sets MB prices incorrectly 

assuming negative correlations of the same magnitude. In unreported experiments 

we found this tends to yield around 15 percent lower pro
t than if the 
rm had 

correctly assumed positive correlations.29 This provides a degree of assurance that 

pro
ts are indeed sensitive to prices in our experiments.

Correlation.—Figure 3 summarizes the results from the experiments separately 

for the three covariance structures we consider. Typically (i.e., at the medians), BSP 

performs best when tastes are negatively correlated. Interestingly, however, the 
g-

ure also reveals that negative correlation increases the dispersion of outcomes for 

29 These experiments were performed for K = 2,...,5 and with both zero and positive marginal costs. We also 
considered a variety of other examples of mistaken beliefs. The results were qualitatively the same in all cases.

Table 3—Price Differences and Market Shares, by Bundle Size

Average price differences Market shares

Bundle size  |  p CP  −  p MB  | / p MB   |  p BSP  −  p MB  | / p MB  CP BSP MB

Panel A. K = 3
1 0.346 0.527 0.366 0.094 0.118
2 0.172 0.151 0.258 0.163 0.192
3 0.176 0.038 0.110 0.345 0.333

Panel B. K = 4
1 0.410 0.674 0.294 0.060 0.088
2 0.242 0.242 0.261 0.110 0.133
3 0.167 0.095 0.172 0.154 0.171
4 0.180 0.036 0.072 0.311 0.294

Panel C. K = 5
1 0.457 0.802 0.237 0.043 0.067
2 0.300 0.328 0.239 0.080 0.098
3 0.212 0.154 0.193 0.104 0.120
4 0.171 0.079 0.120 0.143 0.160
5 0.190 0.038 0.051 0.284 0.265

Notes: Price differences are calculated as a percent of the MB price and then averaged across 
prices within bundle size and across experiments. Market shares are averages across experi-
ments for bundles of a given size. For example, on average across experiments with K = 3, 
MB pricing leads 11.5 percent of consumers to purchase a single product.
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relative pro
ts. With negatively correlated tastes, CP can be up to 12 percent more 

pro
table than BSP, and up to 47 percent less pro
table. For independent or posi-

tively correlated tastes, the range of possibilities is much smaller, at both extremes. 

Surprisingly, in some cases negative correlation reduces the pro
tability of BSP 

relative to CP. Why is this?
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Positively correlated tastes

Figure 3. Distributions of Profits for Each Pricing Strategy, Relative to BSP,  
under Different Covariance Structures

Note: Each box plot depicts the 1st, 25th, 50th, 75th, and 99th percentile of the distribution of pro
t relative to the 
pro
t from BSP.
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The usual intuition is that negative correlation favors bundling because it accentu-

ates the heterogeneity-reduction effect of bundling. This intuition is generally cor-

rect when the variance in consumers’ tastes is roughly symmetric across goods and 

if consumers’ tastes are well above marginal costs. However, to allow for situations 

in which BSP does poorly, we chose our parameters such that these two conditions 

often do not hold in our experiments. In such instances, we see that larger nega-

tive correlation may actually reduce the relative pro
tability of BSP. Speci
cally, if 

the taste distribution puts signi
cant density on valuations below marginal cost, the 

relationship between BSP pro
ts and correlation can reverse. A similar reversal also 

occurs if the variances for different goods are highly asymmetric.

This principle is illustrated in Figure 4, which plots the ratio of BSP pro
t to CP 

pro
t as a function of correlation for two levels of equal marginal costs for two prod-

ucts, holding 
xed the marginal distributions of consumers’ valuations.30 Product 

valuations are normally distributed, with mean valuations equal to 10 and standard 

deviations equal to 3 and 1, respectively. When marginal costs are zero, the relative 

30 Note that it would be equivalent to plot BSP pro
ts alone (instead of their ratio to CP pro
ts). CP pro
ts 
depend only on the marginal distributions of tastes and are thus unaffected by changes in the correlation.
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Figure 4. BSP Profits Relative to CP Profits, as a Function of Correlation in  
Consumers’ Tastes across Products

Notes: This 
gure plots the ratio of BSP pro
ts to CP pro
ts as a function of correlation. In each of the two cases 
shown, the taste distribution is bivariate normal with (  μ 1 ,  μ 2 ,  σ 1 ,  σ 2  ) equal to (10,10,3,1). The difference between 
the two cases is that marginal costs are equal to zero for both products in one case and equal to 10 for both prod-
ucts in the other case.
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pro
tability of BSP declines monotonically as a function of correlation in tastes: the 

more negatively correlated are consumers’ tastes, the more pro
table is BSP relative 

to CP. When marginal costs are 10, so that many consumers’ product valuations are 

below marginal cost, the sign of the relationship completely reverses: as correlation 

becomes more negative the relative pro
tability of BSP to CP decreases.31

To understand why this reversal occurs, recall that negative correlation reduces 

the heterogeneity in consumers’ willingness to pay for bundles, because high valu-

ations for some products in the bundles are “offset” by low valuations for other 

products in the bundle. However, asymmetry in variances diminishes the heteroge-

neity-reducing effect, because asymmetry implies that goods with low realizations 

and goods with high realizations (for a particular consumer) will not suf
ciently 

offset each other. Similarly, negative correlation favors bundling only when the low 

valuations are still high enough to exceed marginal cost, since what is relevant to the 

pro
tability of bundling strategies is heterogeneity reduction in the surplus associ-

ated with a bundle, as opposed to the gross valuation.32 If marginal costs are high 

relative to product valuations, then negative correlation makes it less likely that a 

consumer values more than one of the 
rm’s products above cost. Thus, inducing 

a consumer to purchase an additional product may actually lower the consumer’s 

valuation of the bundle relative to its cost.

Costs and Capacity Constraints.—Figure 5 provides a summary of the numerical 

experiments for three different assumptions about costs.33 It is apparent that increas-

ing marginal cost reduces the pro
tability of BSP relative to both CP and MB. This 

is unsurprising given that prior research has shown that increasing marginal costs 

tends to reduce the pro
t of PB relative to CP. However, there are several aspects 

of these results that are less obvious. First, as we explained in the above analysis of 

correlation, there is an interaction effect between marginal cost and correlation—

increases in marginal costs are most harmful to BSP pro
tability when tastes are 

negatively correlated.

Second, we think it is remarkable how well BSP does in the cases we consider. 

Under the assumption of zero marginal costs, BSP is more pro
table than CP in 

98 percent of the experiments, and BSP is within 1 percent of the MB pro
ts in 69 

percent of the experiments. Even when marginal costs are higher—equal to half of 

the products’ mean valuations—BSP is more pro
table than CP in 83 percent of the 

experiments, and within 1 percent of the MB pro
ts in 31 percent of the experiments.

Since the superiority of BSP to CP (in the pro
t sense) clearly depends on the 

level of marginal costs, one might argue that if we had focused our numerical exper-

iments on cases with much higher costs, BSP might not have performed so well. 

This is surely true. In fact, in a smaller set of experiments in which we set costs 

equal to 80 percent of the products’ mean valuations, BSP was more pro
table than 

31 Though not shown in the 
gure, this reversal also occurs for PB. Crawford and Cullen (2007) show a related 
result: if marginal cost is high then adding a product to an existing bundle may reduce pro
t even when consumers’ 
tastes are negatively correlated across products.

32 If marginal costs are all zero and there is free disposal, the same reverse effect from correlation may also 
occur if there is a signi
cant mass of negative valuations for any product. The reasoning is the same as with positive 
marginal costs.

33 We exclude the experiments for positive and equal marginal costs from the 
gure because they add no further 
insight—they look very similar to the zero marginal cost case.



281CHU ET AL.: BUNDLE-SIZE PRICING AS AN APPROXIMATION TO MIXED BUNDLINGVOL. 101 NO. 1

CP in just over half of the experiments. Presumably, if we set marginal costs high 

enough we would 
nd that CP is routinely more pro
table than BSP. However, 

our chosen cost regimes are reasonable approximations of the markets where bun-

dling strategies are a priori the most relevant (e.g., media and entertainment). For 
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Figure 5. Distributions of Profits for Each Pricing Strategy, Relative to BSP,  
under Different Assumptions on Marginal Costs

Note: Each box plot depicts the 1st, 25th, 50th, 75th, and 99th percentile of the distribution of pro
t relative to the 
pro
t from BSP.
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example, based on recently reported empirical estimates, the assumption re¯ected in 

the middle panel of Figure 5 (that marginal cost is equal to half the products’ mean 

valuations) appears to be approximately correct for cable television distributors—an 

industry in which bundling has recently been an important concern.34

A third point to note from Figure 5 is that BSP is actually less sensitive than 

PB to increases in marginal costs. As Adams and Yellen (1976) 
rst argued, high 

marginal costs tend to reduce the pro
tability of bundling because individuals may 

purchase bundles that include a good they value less than marginal cost—violations 

of the so-called exclusion condition. BSP is less sensitive to this concern than PB, 

because BSP allows consumers to purchase bundles smaller than the full bundle. 

Consequently, Figure 5 clearly shows that PB is more sensitive to cost increases than 

BSP. Such reasoning also helps to explain why BSP tends to perform quite well even 

in the high cost experiments.

Figure 5 also provides a glimpse into the sensitivity of the different pricing 

schemes to capacity constraints.35 In these experiments we 
nd that BSP is more 

pro
table than CP in 85 percent of the experiments, and BSP is within 1 percent 

of the MB pro
ts in 52 percent of the experiments. An interesting feature of the 

experiments with capacity constraints is that BSP appears to stimulate sales of the 

low demand goods, above what CP tends to achieve. Speci
cally, in the experiments 

with capacity constraints, realized demand for the least popular good is typically 9 

percent higher under BSP than under CP. Intuitively, low demand goods tend to be 

purchased as part of large-size bundles, where the discount for the bundle implies 

per-good prices that are less than the CP price.

Demand Asymmetry.—Intuition suggests that increasing demand asymmetry 

across products may favor CP over BSP, because the ability to set different prices 

for different goods becomes increasingly important. One simple measure of demand 

asymmetry is the ratio of the highest price to the lowest price under CP. The greater 

this ratio, the more restrictive is BSP since it requires all single-good purchases to be 

equally priced. Somewhat surprisingly, however, in our numerical experiments this 

price ratio is essentially uncorrelated with the relative pro
t of CP versus BSP. Even 

if we look at the top 10 percent of experiments in terms of demand asymmetry (as 

measured by the price ratio), we 
nd that BSP is still more pro
table than CP in 90 

percent of these experiments. In other words, a high degree of asymmetry does not 

imply that CP will be more pro
table than BSP.

To further understand the effects of demand asymmetry, consider an example in 

which there are two goods (1 and 2), each with zero marginal cost, and two consum-

ers (A and B), with valuations as follows:

 v 1    v 2 
A  2 0
B  0 1 .

34 See the estimates reported in Chu (2008) and Crawford and Ali Yurukoglu (2009).
35 We are unaware of prior papers examining the impact of capacity constraints on the relative pro
ts of PB, CP, 

and MB (or BSP, which is new to the literature). A thorough analysis of this issue would include variation in the 
level of capacity constraints, which we leave to further research.
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Good 1 has signi
cantly greater demand than good 2, and CP earns 50 percent more 

pro
t than BSP. Demand asymmetry aside, one basic reason why BSP performs 

poorly in this example is that no consumer wants more than one good—bundling is 

irrelevant in these circumstances.

However, this example is useful for explaining the role of demand asymmetry. If 

the “2” in the above example were a “1,” so that each product had the same demand 

curve, then BSP would do just as well as CP. Now suppose the “2” in the example 

above were a “20,” giving rise to a much higher degree of demand asymmetry. In 

that case, CP would be only 5 percent more pro
table than BSP: almost all of the 

pro
ts come from selling good 1, and BSP can extract those pro
ts by charging a 

high price for the bundle of size 1. As demand becomes more and more asymmetric, 

CP remains more pro
table than BSP, but the absolute advantage (1 unit of pro
t) 
does not change, and in percentage terms BSP pro
ts actually get closer and closer 

to CP pro
ts.

This intuition carries over to settings where consumers may value (and purchase) 
more than one product, and also where values are continuously distributed. Suppose 

consumers’ tastes for the 
rm’s two products have the bivariate normal distribu-

tion with zero means and zero correlation, but with different variances.36 When the 

standard deviation of the 
rst product is three times larger than that of the second 

product, CP is nearly 9 percent more pro
table than BSP. If the standard deviation is 

ten times larger, CP is only 3 percent more pro
table. Thus, compared to a baseline 

of symmetric demand across products, some degree of demand asymmetry causes 

CP to be more pro
table than BSP. But CP’s relative advantage actually diminishes 

for higher levels of asymmetry.

The above example—in which each consumer has a strictly positive valuation 

for only one of the two goods—suggests another dimension of heterogeneity that 

could be relevant: consumers may vary in their taste for the number of underlying 

products. For example, a 
rm may be selling ten products, and some consumers 

may be willing to purchase only one product, others may be willing to purchase 

only two, and so on. It would be interesting to examine how the effectiveness of 

different bundling schemes depends on the average number of products consumers 

value positively, or on the variance across consumers in the number of products they 

value positively. In fact our experiments include this kind of demand heterogeneity 

due to the assumption of free disposal: negative values for a product are assigned 

zero value (so that there is no disutility from purchasing a bundle that contains a 

negatively valued good). Thus, if different consumers place positive value on dif-

ferent products (negative correlation), asymmetry across products tends to diminish 

the pro
tability of BSP.

Also note that diminishing marginal utility is similar to this form of heteroge-

neity, because it explicitly relates an individual’s demand to the total number of 

products purchased. We discuss diminishing marginal utility in sections IIIA and 

IVD. A complete analysis of how the pro
tability of different bundling schemes 

is affected by heterogeneity in the number of products consumers value is left for 

future research.

36 This is the same as the “normal-var” set-up in our numerical experiments and is also the basic set-up we use 
in our empirical model below.
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Parametric Families.—Figure 6 shows that the choice of parametric family may 

not be innocuous in terms of the pro
tability of different pricing strategies, again 

highlighting the importance of considering a wide range of distributional assump-

tions. For instance, for the logit distribution (which is one of the most commonly 

used in empirical research) BSP is almost always more pro
table than CP regardless 

Figure 6. Distributions of Profits for Each Pricing Strategy, Relative to BSP,  
for Different Distribution Families

Note: Each box plot depicts the 1st, 25th, 50th, 75th, and 99th percentile of the distribution of pro
t relative to the 
pro
t from BSP.

CP

MB

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Exponential

CP

MB

Logit

CP

MB

Lognormal

CP

MB

Normal

CP

MB

Normal(v)

CP

MB

Uniform



285CHU ET AL.: BUNDLE-SIZE PRICING AS AN APPROXIMATION TO MIXED BUNDLINGVOL. 101 NO. 1

of the level of marginal costs. The same is true for lognormal distributions. Though 

it is not evident in the 
gure, we also found that the role of a given parametric fam-

ily can depend on which assumption about costs is applied. For example, when 

marginal costs are all zero, BSP is always more pro
table than CP if valuations are 

independent draws from the exponential distribution. However, unequal marginal 

costs or capacity constraints can change this.

Importantly, the normal distribution (including cases with independence, posi-

tive correlations, negative correlations, and unequal variances) seems to be the least 

restrictive, in the sense that either CP or BSP may be the most pro
table under any 

assumption on costs. In the empirical example we study in Section IV, we assume 

normally distributed tastes.

It is natural to wonder about the underlying sources of the differences shown in 

Figure 6. Our analysis above highlights the characteristics of taste distributions that 

appear to have 
rst-order importance for the relative pro
tability of BSP (e.g., cor-

relation in tastes, demand asymmetry). However, Figure 6 suggests that the shapes 

of the taste distributions may also play a role. For example, standard measures like 

skewness and kurtosis may be useful in determining which pricing scheme is most 

pro
table. Another relevant measure may be the fraction of potential surplus that is 

appropriable by a monopolist, as suggested by Michael A. Spence (1980). These are 

interesting issues, but we defer a thorough exploration of them to future research.

Summary of Combined Effects.—The prior literature proposed several factors that 

enhance the pro
tability of PB relative to CP: 

 (i)  Lower marginal costs; 

 (ii)  Increasing number of goods; and 

 (iii)  More negative correlation in consumers’ valuations. Symmetric demand is an 

obvious addition to that list (although we are unaware of any speci
c papers 

that discuss this issue). To a degree, these factors have similar effects on the  

relative pro
tability of BSP and CP, but we also 
nd a couple of important 

complications:

(a) Negative correlation in tastes enhances the pro
tability of BSP when the 

variance in consumers’ tastes is roughly symmetric across goods, and 

consumers’ tastes are well above marginal costs. Otherwise the reverse 

applies.

(b) Increasing demand asymmetry initially decreases then increases the prof-

its of BSP relative to CP.

It is natural to wonder how much of the variation in the relative pro
ts of BSP 

and CP can be explained by a combination of all these factors. One simple way of 

addressing this question is to run regressions using our experimental outcomes. This 

approach is obviously imperfect, since we may not have the right functional form 

or the right measure of demand asymmetry. Hence, we expect any such regression 
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to explain far less than 100 percent of the variation in relative pro
ts. Nevertheless, 

we report some regression results in Table 4 as a convenient way of summarizing 

the patterns we observe in the numerical experiments. The dependent variable is the 

ratio of BSP pro
t to CP pro
t, and the explanatory variables are characteristics of 

the taste distribution and costs. We estimate the regressions separately for each para-

metric family (as we expect the coef
cients to vary across parametric families), as 

well as for the pooled set of all experiments. Demand asymmetry is measured as the 

Table 4—Regression Analysis of (BSP Profit / CP Profit)

Exponential Logit Lognormal Normal Normal(v) Uniform
All 

combined

Number of products dummies:

 K = 3 0.069 0.031 0.068 0.042 0.036 0.034 0.038

(0.003) (0.002) (0.002) (0.004) (0.001) (0.003) (0.002)
 K = 4 0.122 0.053 0.120 0.078 0.070 0.064 0.071

(0.003) (0.002) (0.002) (0.004) (0.001) (0.003) (0.002)
 K = 5 0.160 0.071 0.159 0.106 0.096 0.092 0.098

(0.003) (0.002) (0.002) (0.004) (0.001) (0.003) (0.002)
MC scenario dummies:
 Positive, equal −0.064 −0.009 −0.023 −0.012 −0.022 −0.039 −0.028

(0.005) (0.003) (0.004) (0.007) (0.002) (0.005) (0.003)
 Positive, unequal −0.159 −0.002 −0.096 −0.010 −0.033 −0.119 −0.070

(0.005) (0.003) (0.004) (0.007) (0.002) (0.005) (0.003)
 Capacity constraints −0.179 −0.027 −0.029 −0.016 −0.045 −0.110 −0.068

(0.005) (0.003) (0.004) (0.007) (0.002) (0.005) (0.003)
Covariance structure dummies:
 Negative 0.504 0.237 0.550 0.370 0.063 0.499 0.325

(0.006) (0.003) (0.004) (0.008) (0.002) (0.006) (0.003)
 Positive −0.148 −0.073 −0.140 −0.075 −0.053 −0.093 −0.097

(0.005) (0.003) (0.004) (0.007) (0.002) (0.005) (0.003)

Cov.  ×  MC interactions:
 Neg.  ×  (pos/eq.) −0.131 −0.007 0.006 −0.013 −0.046 −0.042 −0.039

(0.006) (0.004) (0.005) (0.010) (0.002) (0.006) (0.004)
 Neg.  ×  (pos/uneq.) −0.377 0.058 −0.059 0.034 −0.044 −0.142 −0.088

(0.006) (0.004) (0.005) (0.010) (0.002) (0.006) (0.004)
 Neg.  ×  (cap. constr.) −0.374 −0.099 −0.224 −0.157 −0.065 −0.286 −0.201

(0.006) (0.004) (0.005) (0.010) (0.002) (0.006) (0.004)
 Pos.  ×  (pos/eq.) 0.047 0.007 0.007 0.008 0.017 0.028 0.019

(0.006) (0.004) (0.005) (0.010) (0.002) (0.006) (0.004)
 Pos.  ×  (pos/uneq.) 0.104 −0.000 0.053 0.007 0.018 0.072 0.042

(0.006) (0.004) (0.005) (0.010) (0.002) (0.006) (0.004)
 Pos.  ×  (cap. constr.) 0.165 0.023 0.032 0.022 0.030 0.086 0.060

(0.006) (0.004) (0.005) (0.010) (0.002) (0.006) (0.004)
Asymmetry in product valuations:
 Asymmetry −0.063 0.007 −0.082 −0.006 −0.082 −0.107 −0.033

(0.011) (0.005) (0.006) (0.008) (0.004) (0.005) (0.003)
 Asymmetry2 −0.025 −0.022 0.006 −0.015 −0.017 0.032 −0.003

(0.009) (0.003) (0.004) (0.003) (0.004) (0.002) (0.002)
 Asymmetry  ×  neg. corr. −0.239 −0.068 −0.311 −0.133 0.013 −0.184 −0.094

(0.007) (0.003) (0.004) (0.005) (0.003) (0.003) (0.002)
Constant 1.171 1.077 1.189 1.074 1.053 1.139 1.115

(0.004) (0.003) (0.003) (0.006) (0.001) (0.004) (0.002)
N 10,704 10,704 10,704 10,704 10,704 10,704 64,224
R2 0.790 0.790 0.875 0.492 0.701 0.744 0.477

Notes: The dependent variable in each regression is the ratio of BSP pro
t to CP pro
t. An observation is a numer-
ical experiment (i.e., a taste distribution with a speci
c set of parameters). Standard errors are in parentheses. 
Asymmetry is measured as the difference between the maximum and the mean of the products’ mean valuations.
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difference between the maximum and the mean of the products’ mean valuations.37 

An observation is a single numerical experiment.

As expected, we 
nd that the pro
tability of BSP relative to CP increases with 

K and decreases with marginal costs. Asymmetry favors CP, and the relationship is 

sometimes nonmonotonic: the coef
cients on the asymmetry measure and its square 

have opposite signs in some cases. Also consistent with our explanation above, the 

interaction of the negative correlation dummy with the cost dummies indicates that 

negative correlation favors BSP, but signi
cantly less so when marginal costs are 

high. Asymmetry combined with negative correlation is also unfavorable for BSP 

on average. Notably, the  R 2  from these regressions is high in some cases, indicating 

that for some parametric families we can explain a large fraction of the variability 

in BSP’s relative pro
tability using a simple, intuitive set of covariates. Moreover, 

these covariates are important. For example, in the uniform case, if the only covari-

ates are the number of products and cost dummies, we obtain an  R 2  = 0.15. Adding 

variables for correlation and demand asymmetry increases explanatory power to  

R 2  = 0.57. And adding the interaction terms (i.e., the full set of covariates shown in 

Table 4) yields an  R 2  = 0.74.

Welfare Analysis.—As a 
nal point on the numerical experiments, Table 5 

describes the differences in social surplus resulting from the different pricing strate-

gies. BSP and MB tend to yield signi
cantly higher total output and higher pro
ts 

(as we have seen in the previous tables). The table also shows that BSP and MB tend 

to reduce the deadweight loss by signi
cant amounts, relative to CP. Interestingly, 

the table indicates that BSP and MB tend to also result in lower consumer surplus 

than CP. In our experiments, apparently BSP and MB are more like perfect price 

discrimination. This comes from the heterogeneity-reduction effect: there is less 

heterogeneity in consumers’ valuations for bundles of multiple goods than there is 

for individual goods.

III. Estimation of Joint Distribution of Consumers’ Valuations

An obvious limitation of the numerical experiments in Section III is that we can-

not be certain our results will transcend the particular parameter values we covered. 

For this reason, the second component of our analysis utilizes an estimated model, 

based on data from a theater company that offers an eight-play season. We use our 

estimates to compute the pro
tability of each pricing strategy, allowing us to dem-

onstrate that our 
ndings apply to an empirically relevant model.

Several features make our particular empirical example an appealing context in 

which to study multiproduct pricing. First, the plays differ in their overall popular-

ity, making it plausible that CP would be a sensible pricing strategy. Second, many 

consumers attend more than one play, making it plausible that bundling strategies may 

also be pro
table. Third, individuals do not consume multiple units of the same play. 

Fourth, the assumption of no demand or cost interdependencies is reasonable. Fifth, we 

37 That is, if  μ k  is the mean valuation for product k, we calculate ma x k { μ k } − 1/K ∑  μ k . Among several mea-
sures we tried, this gave the best 
t. Other measures (e.g., the range or standard deviation of  μ k  s) gave qualitatively 
similar results.
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are con
dent there is no signi
cant resale activity—these are plays produced by a small 

theater company, not rock concerts or professional sporting events.38 For all of these 

reasons, our empirical example is a remarkably clean setting, in which we can abstract 

from the same complicating factors that theoretical analyses of bundling typically do.

There is an emerging empirical literature about bundling. Two studies in the mar-

keting literature use survey response data to estimate demand and compare pro
ts 

from UP, PB, and MB: R. Venkatesh and Vijay Mahajan (1993) and Kamel Jedidi, 

Sharan Jagpal, and Puneet Manchanda (2003). Crawford (2008) is the 
rst to study 

bundling with market-generated data. Crawford tests the hypothesis that demand 

for a bundle of cable channels becomes less heterogeneous as more channels are 

added to the bundle, which he 
nds to be the case.39 A number of recent papers also 

estimate the welfare effects of bundling in various settings, as we do here: Dmitri 

Byzalov (2008) and Gregory S. Crawford and Yurukoglu (2009) study bundling 

in cable television; Justin Ho, Katherine Ho, and Julie Holland Mortimer (2008) 
study full-line forcing in video rental markets; and Ben Shiller and Joel Waldfogel 

(2009) examine bundling in music sales. Several of the studies assess BSP (citing 

this study), all 
nding it to be more pro
table than CP.

A. Data Summary

The data for our empirical analysis come from TheatreWorks, a theater com-

pany based in Palo Alto, California. We observe all ticket sales for TheatreWorks’ 

2003–2004 season, which consisted of 229 performances of eight different plays or 

38 See Leslie and Sorensen (2009) for an empirical analysis of ticket resale.
39 Based on a calibrated demand model, Crawford (2008) also argues that adding a top-15 cable channel to a 

bundle and re-optimizing prices leads to 5.5 percent lower consumer surplus and 6.0 percent higher pro
t.

Table 5—Average Welfare Effects

CP PB BSP MB

K = 3
 Total output 1.213 1.650 1.456 1.501
 Consumer surplus 0.726 0.616 0.617 0.602
 Producer surplus 1.276 1.416 1.471 1.499
 Total surplus 2.002 2.032 2.087 2.101
 Deadweight loss 0.499 0.468 0.413 0.400

K = 4
 Total output 1.625 2.285 1.987 2.044
 Consumer surplus 0.980 0.805 0.807 0.770
 Producer surplus 1.726 1.948 2.027 2.065
 Total surplus 2.707 2.753 2.834 2.835
 Deadweight loss 0.661 0.615 0.534 0.533

K = 5
 Total output 2.033 2.927 2.510 2.590
 Consumer surplus 1.231 0.984 0.987 0.920
 Producer surplus 2.174 2.486 2.591 2.641
 Total surplus 3.405 3.470 3.578 3.561
 Deadweight loss 0.826 0.761 0.653 0.670

Notes: Total output is calculated as the number of units sold of all K products combined. The 
cells report averages taken across experiments.
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musicals. Table 6 provides summary information for each of the eight plays. A total 

of 69,207 tickets were sold for the eight plays.

Consumers could purchase tickets to individual plays at a uniform price, but most 

of the tickets (80 percent) were purchased as part of a subscription. TheatreWorks 

offered three subscription packages: 

 (i)  The full eight-play season; 

 (ii)  Any combination of 
ve plays; or 

 (iii)  A prespeci
ed bundle of three plays.40 

These subscriptions were offered at discounted prices, in the sense that the per-

play price was signi
cantly lower for subscriptions than for ordinary box of
ce 

sales for individual plays.

Table 7 summarizes the purchase options and their average prices.41 There were 

5,139 subscribers to the eight-play bundle, 2,794 subscribers to a 
ve-play bundle, 

and 205 subscribers to the three-play bundle. The popularity of the ¯exible 
ve-play 

subscription is a particularly important feature of the data. Observing which 
ve 

plays these subscribers selected allows us to identify the covariance of tastes across 

plays—e.g., if we observe that two plays tend to be included together disproportion-

ately often in the 
ve-play combination, we know that tastes for those two plays are 

more positively correlated. Conversely, if another pair of plays is rarely included in 

the same bundle, we can infer that tastes for those two plays are less positively cor-

related. This type of information is crucial to our analysis. If we had data only on 

40 The prespeci
ed bundle consisted of the only three plays that were performed at TheatreWorks’ secondary 
venue, a smaller theater in Palo Alto, CA.

41 In fact prices also vary by time of week (but not by play). We therefore report simple (unweighted) averages 
of these prices. Note also, prices do not vary by seat quality. This is because the venues are small enough that the 
variation in seat quality is fairly minor.

Table 6—Summary of Ticket Sales

Play Type
Number of 

performances
Average 

attendance
Ticket sales 

(subscription)
Ticket sales 

(nonsubscription)

A Little Night Music Musical 30 294.87 7,018 1,828
All My Sons   Drama 33 233.85 6,826 891
Bat Boy    Musical 30 263.93 6,782 1,136
Memphis    Musical 30 352.40 6,999 3,573
My Antonia   Drama 26 312.38 7,002 1,120
Nickel and Dimed Drama 26 343.62 6,800 2,134
Proof    Drama 25 319.88 6,885 1,112
The Fourth Wall  Comedy 29 313.83 7,385 1,716

Total      229 302.21 55,697 13,510

Notes: Three plays (Bat Boy, All My Sons, and The Fourth Wall) were performed at the Lucie Stern Theater in Palo 
Alto (capacity = 428). The remaining 
ve were performed at the Mountain View Center for the Performing Arts 
(capacity = 589).
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aggregate sales for each play we would be unable to identify the covariance struc-

ture of demand.42

In fact, the empirical correlations in our data make intuitive sense. For example, 

the 
ve-play subscriptions disproportionately include Bat Boy, described in the bro-

chure as a “wacky new musical,” together with Memphis, described as a “rafter-

rattling musical comedy.” Conversely, tastes for Bat Boy appear to be negatively 

correlated with All My Sons, a classic Arthur Miller drama billed as an “intense, 

compelling tale of love, greed, and personal responsibility,” because this pairing of 

plays is relatively uncommon in the 
ve-play subscriptions.

B. Empirical Model

We now explain how we estimate the joint distribution of consumers’ valuations. 

It is important that such an approach allow for nonzero covariances in tastes, because 

covariance is a major determinant of the relative pro
ts from different bundling-

type schemes, and that we allow for consumers to purchase multiple products.43 Our 

empirical speci
cation is based on an underlying model of individual consumer util-

ity maximization and follows the approach in the theoretical literature on bundling. 

The 
rm offers j = 1, … , J − 1 bundles containing combinations of the k = 1, … , K 

products. There is also a J  th option for consumers, which is the outside alternative. 

We assume the net utility to consumer i from option j is given by

   u ij  = {   V  i  ′  D j  − αpj    
0
    ∶   

:
   j = {1, … , J − 1}       
j = J

     ,

42 Steve Berry, James Levinsohn, and Ariel Pakes (2004) utilize a similar identi
cation strategy in their study of 
demand for cars, in which they exploit second-choice data to help identify cross-price elasticities.

43 Crawford and Yurukoglu (2009) also estimate the correlation structure in preferences for bundle components. 
Prior papers that also incorporate multiple purchases by individuals include Jean-Pierre Dubé (2004) and Igal 
Hendel (1999).

 Table 7—Sales by Purchase Option

Purchase option Price per play ($) Number of consumers

Nonsubscription:
 1 play 40.80 8,131
 2 plays 40.80 1,409
 3 plays 40.80 555
 4 plays 40.80 224

Subscription:
 3-play bundle 36.20 205
 5-play pick 37.00 2,794
 8-play bundle 34.55 5,139

Notes: For nonsubscription purchases, the numbers of consumers in each purchase option 
are computed by extrapolating the purchase patterns of the consumers whose identities we 
could observe to the full sample of nonsubscription purchases. See text for an explanation. 
The 3-play subscription bundle was for the speci
c 3 plays performed at the (smaller) Lucie 
Stern Theater in Palo Alto, which is why the per-play price is lower than the 5-play bundle. 
Consumers purchasing the 5-play subscription could combine any 5 plays of their choice.
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where  V i  is a K × 1 vector of valuations for the individual plays,  D j  is a K × 1 vec-

tor of indicators for whether each play is included in bundle j, pj is the price of 

the bundle, and α > 0 measures the sensitivity to price. As always in the bundling 

literature, we assume there are no demand-side complementarities from purchasing 

particular plays together.

We allow for two classes of consumers: theater lovers and regular consumers. 

In fact the data support this description.44 Formally, we assume that consumers’ 

product valuations are distributed according to a K-dimensional bimodal normal 

distribution, with censoring at zero to incorporate free disposal:

   V i  = max{ θ i  +  ϵ i , 0}, where

   θ i  = {   
_
 θ     

0
    ∶ probability λ         
∶ probability (1 − λ); and

 

   ϵ i  ∼ N  (μ, Σ) .

In this notation, μ is a K × 1 vector of means, Σ is a K × K variance-covariance 

matrix, and  
_
 θ   is a scalar additive component (equal for all plays). A fraction λ of 

consumers are theater lovers, for whom the marginal distribution of play valuations 

is shifted upward by some amount  
_
 θ   that is constant across plays. A fraction (1 − λ) 

are regular consumers with no particular preference for seeing plays in general.

The conditional means of V are not well identi
ed separately from the variances. 

Intuitively, increasing the variance in valuations for a particular play and increasing 

the mean of the valuations for that play both lead to higher demand for the play. 

To address this, in our base speci
cation we impose the restriction that all mean 

terms equal zero (μ(k) = 0, ∀k)45 but leave the variance-covariance matrix uncon-

strained.46 We also estimated the model based on the restriction that all variances 

equal 1, with the mean terms unconstrained, but we found that version to be too 

restrictive in the following sense: BSP is always more pro
table than CP, even in 

counterfactuals where we dramatically increase the asymmetry across products by 

making the mean valuations for each play very different across plays. In contrast, 

in the speci
cation with free variances it is possible that either CP or BSP may be 

more pro
table, depending on the particular values of the variance terms. Given the 

objective of the empirical analysis, we viewed this as a desirable attribute for the 

model. Note that our approach has the implication that a high-quality play will have 

a higher variance in consumers’ valuations—i.e., our model captures quality via the 

variance terms rather than the means, which is unconventional in the literature.

The season of eight plays implies 255 possible product combinations. This 

includes each individual play, the preset bundle of three, the full bundle of all eight,

44 As we explain in an the Web Appendix.
45 We also estimated a slightly less restrictive speci
cation that allows the mean terms to differ from zero but 

constrains the means to be equal across plays (μ(k) = μ, ∀k). However, the point estimate of μ in that model is 
0.0255 and is not statistically different from zero. In what follows we simply focus on the model that restricts μ to 
be zero.

46 We also normalize the variance of valuations for play (1) to equal 1: Σ(1,1) = 1. This is necessary for the 
scaling of ϵ to be separately identi
ed from the price sensitivity (α).
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56 possible combinations of 
ve plays (for pick-5 subscribers), and any other com-

bination by consumers adding individual plays. In fact we observe zero sales of 

bundles of six or seven plays. We therefore exclude these combinations from the 

consumer’s choice set to reduce the computational burden. Hence, we model the 

demand for 219 different bundles, plus an outside alternative, giving a total of 220 

possible choices (i.e., J = 220). Note that capacity constraints are infrequently 

binding in the data—only 27 of the 229 performances were sold out—leading us to 

abstract from their impact in the estimation. In the subsequent counterfactual analy-

ses we check whether capacity constraints are binding.

For nonsubscription purchases we cannot always determine whether the individ-

ual purchased multiple plays, because roughly half of these purchases were made 

anonymously at the box of
ce. This means that we do not observe market shares 

for combinations involving fewer than 
ve plays purchased by the same individual. 

For this reason, we estimate the model’s parameters by the method of simulated 

moments (see McFadden 1989, and Pakes and David Pollard 1989). Using a method 

of moments approach allows us to treat this data problem conservatively, with-

out throwing away information that we do have from nonsubscription purchases. 

Speci
cally, we use only moment conditions that are based on market shares we 

directly observe:

• Share of consumers who chose all eight plays (one moment condition);
• Shares of consumers choosing speci
c combinations of 
ve plays (56 moment 

conditions);
• Share of consumers choosing the preset bundle of three plays (one moment 

condition);
• Overall market shares of each play: i.e., what fraction of consumers purchased 

a given play as part of any bundle (eight moment conditions).

The last set of moment conditions utilizes information from nonsubscribers without 

imposing any assumptions about their pattern of multiplay purchases.47

To ensure that the estimated demand model yields predicted prices that are close to 

the observed prices, we impose a supply-side pricing constraint in the estimation.48 

For any given set of parameters of the above demand system, we can compute the 

pro
t-maximizing prices under the actual TheatreWorks pricing structure: a price 

for any individual play, a price for the preset bundle of three, a price for choosing 

any 
ve, and a price for all eight plays.49 Solving for these prices for each iteration 

of conjectured parameters is computationally burdensome, however, so we simplify 

the constraint in the following way. Rather than jointly optimize all four prices in the 

TheatreWorks pricing scheme, we jointly optimize the price of any individual play 

and the price of all eight plays. We then “
ll in” the three-play and 
ve-play prices 

47 In a previous version of this paper, we imputed multiplay purchases among “anonymous” nonsubscribers 
using the patterns we observe for the identi
able nonsubscribers (i.e., the same approach utilized in Table 7, dis-
cussed above) and estimated the model via simulated maximum likelihood. The results are very similar to those 
we report below.

48 In an earlier version of this paper we estimated the demand model without any price-setting conditions. This 
led to predicted prices that tended to be signi
cantly lower than the observed prices.

49 Since capacity constraints are rarely binding in the data, we assume zero marginal costs when solving the 
pro
t-maximization problem.
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by assuming their ratios to the single-play price are equal to the ratios actually set 

by TheatreWorks. This reduces the number of prices we must optimize from four 

to two, which we found to be essential for computational feasibility. Hence, the spe-

ci
c constraint we impose is that the predicted single-play price, and the predicted 

price for the subscription to all eight plays, are equal to the observed prices.50

To compute the market shares, we must know the market size, M. Usually research-

ers choose the market size based on some information about the number of potential 

consumers. In our case, an additional bene
t to utilizing a supply-side pricing con-

straint is that we can estimate the market size instead of assuming some value for 

it.51 Including α, Σ,  
_
 θ  , λ, and M, we estimate a total of 39 parameters. Let Θ denote 

the set of parameters to be estimated. For a given set of parameters, Θ, we draw  n s  
simulated consumers based on the above distribution of product valuations, com-

pute the optimal bundle choice for each simulated consumer, and compute optimal 

prices. The estimator chooses the parameters Θ to match the market shares among 

the simulated consumers to the market shares we observe in the data, conditional on 

predicted prices being equal to actual prices.

More formally, let    ̃  s   l  and  s l  denote the simulated and observed market shares, 

respectively, for purchase option l. Let    ̃  p  1 (Θ) denote the implied optimal single-

play price for given parameters Θ, and let  p 1  denote the actual single-play price. 

Similarly, let    ̃  p  8 (Θ) and  p 8  denote the implied and actual full season subscription 

prices. De
ne   ̃  p  and p as the stacked vectors of predicted and observed prices. We 

construct moment conditions of the form  m l (Θ) =    ̃  s   l (Θ) −  s l  and select Θ to mini-

mize  m′ Wm subject to the constraint   ̃  p  = p, where m is the stacked vector of moment 

conditions, and W is a weighting matrix.

Finally, it is important to discuss what variation in the data identi
es each param-

eter in the model. Due to space constraints we provide a detailed discussion of 

identi
cation in the Web Appendix (available online). Brie¯y, however, note that 

variances are identi
ed by relative shares of each play; covariances are identi
ed by 

bundle choices of pick-5 subscribers; and price sensitivity is identi
ed from varia-

tion in per-play prices.

C. Results

Parameter estimates for the structural demand model are presented in Table 8A.52 

The variance coef
cients from the distribution of ϵ vary from 1.00 to 3.27. The esti-

mates for the covariances of ϵ vary from 0.79 to 2.55. It is important to note that Σ is 

the covariance matrix of ϵ. That is to say, Σ captures the correlation structure condi-

tional on being a theater lover, or conditional on not being a theater lover. However, 

the correlation structure of the unconditional distribution of play valuations, V, also 

depends on the probability of being a theater lover and the increment in utility for 

these consumers. Intuitively, taste correlations should be even more positive for the 

50 In practice, these conditions hold with equality within machine precision.
51 As mentioned below, in the Web Appendix we explain the identi
cation of our model, including how the price 

constraint identi
es the market size.
52 Standard errors for the variance-covariance matrix are reported in Table 8B.
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unconditional distribution, because theater lovers have a positive shift in the valua-

tions of all plays.

When we compute pairwise correlation coef
cients for the unconditional distribu-

tion of play valuations, we 
nd that all correlations lie between 0.60 and 0.98 (the 

mean correlation coef
cient is 0.81). This is important because positive correlation 

in the demand system tends to reduce the pro
tability of bundling-type strategies 

relative to component pricing. We return to this issue in the next subsection on coun-

terfactual pricing experiments.

The estimated probability of an individual’s being a theater lover is 0.081, and 

the estimated market size is 36,055. We estimate that theater lovers’ utility for any 

single play is higher than for regular consumers by an amount equal to 2.06 times 

the standard deviation of the conditional valuation of play 1 (A Little Night Music), 
which is normalized to 1. The large magnitude of the increment to utility for theater 

lovers suggests that large-sized bundles are disproportionately purchased by theater 

lovers. Indeed, this is true. Our estimated demand model predicts that 63 percent 

of non–theater lovers choose the outside option, while the predicted proportions 

choosing 1, 2, 3, or 4 individual goods are 10 percent, 5.5 percent, 2.2 percent, and 

0.28 percent. Among this same group of consumers, the predicted market shares 

for the preset three-play bundle, the pick-5 bundle, and the all-eight bundle are 

0.34 percent, 8.9 percent, and 9.9 percent. For theater lovers, on the other hand, 

Table 8A—Estimated Coefficients

Covariances (Σ)
(1) (2) (3) (4) (5) (6) (7) (8)

(1) 1.0000

(2) 0.9357 1.2200

(3) 1.2125 1.4150 1.7208

(4) 0.9793 1.3381 1.4859 3.2685

(5) 0.8743 1.1055 1.2207 1.7920 1.4308

(6) 1.1602 1.3451 1.6211 1.9090 1.3801 1.9610

(7) 0.7886 1.0600 1.2199 1.7924 1.2127 1.4517 1.5086

(8) 1.1133 1.2873 1.5878 2.5509 1.5597 1.9529 2.0171 3.0732

Estimate SE

Price sensitivity (α)
Probability of theater lover (λ)
Increment for theater lovers ( 

_
 θ  )

Market size

4.5937 (0.0851)
0.0805 (0.0060)
2.0561 (0.1665)
36,055 (972)

Notes: Standard errors for Σ are in Table 8B. All parameter estimates are signi
cant at the 1 
percent level.

 Table 8B—Standard Errors for Estimated Covariances (Σ) in Table 8A

(1) (2) (3) (4) (5) (6) (7) (8)

(2) 0.0568 0.0237

(3) 0.0257 0.0575 0.0232

(4) 0.0752 0.0675 0.1515 0.0774

(5) 0.0325 0.0526 0.0459 0.0735 0.0310

(6) 0.0293 0.0506 0.0449 0.0629 0.0719 0.0338

(7) 0.0344 0.0448 0.0432 0.0633 0.0490 0.0824 0.0274

(8) 0.0538 0.0507 0.0624 0.1004 0.0530 0.0618 0.0948 0.0581
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only 9.0 percent choose the outside good, while 14 percent choose a bundle of 
ve 

( accounting for 12 percent of pick-5 purchases), and 66 percent subscribe to all 

eight plays (accounting for 37 percent of all-eight purchases).
The nonmonotonicity of predicted market shares with respect to bundle size, even 

among the set of non–theater lovers, is consistent with the high degree of correlation 

in the estimated distribution of tastes for individual plays (both unconditionally as 

well as conditionally on theater-lover status): consumers tend to like either most of 

the plays, or none at all. However, the model requires the presence of theater lovers 

to explain why the observed market shares decline relatively gradually with respect 

to size in the lower range of bundle size while rising abruptly for the largest bundles.

Overall, the model 
ts the data fairly well. Even though the individual plays’ mar-

ket shares vary from 20 percent to 30 percent, the predicted market shares from our 

model are all within 1.1 percentage points of the actual shares. We also 
nd a rea-

sonably close 
t between the actual and predicted market shares for different bundle 

sizes, although we slightly overpredict the fraction of subscription purchases. The 

actual fraction that choose to be pick-5 subscribers is 5.5 percent, and we predict 9.3 

percent. The actual fraction of all-eight subscribers is 10.0 percent, and we predict 

14.5 percent.

D. Analysis of Alternative Pricing Strategies

In this subsection we compare the pro
tability of the various pricing schemes in 

the context of our estimated demand model. We also compute the impact of con-

sumer surplus from each pricing strategy. This is interesting because bundling, like 

price discrimination more generally, has ambiguous effects on consumer welfare 

relative to uniform pricing.53 There are some interesting perturbations to the model 

that we also explore, such as diminishing marginal utility.

Counterfactual Pricing Analysis.—Using the estimated demand model, we 

compute pro
ts and consumer surplus under each of UP, PB, CP, BSP, and MB. 

We also compute the pro
t associated with the pricing scheme actually imple-

mented by TheatreWorks, referred to as TW. Under TW, the 
rm sets a uniform 

price for each play, a discount for one particular three-play bundle, a discount for 

choosing any 
ve plays (pick-5), and a discount for the bundle of all eight plays. 

In our baseline model we assume zero marginal costs and no capacity constraints, 

which seems reasonable given how few performances sold out. Below, we exam-

ine how capacity constraints would affect the relative pro
ts of the different pric-

ing strategies.

Recall that in the estimation we impose a supply-side pricing constraint based on 

two of the four prices under the TW scheme: i.e., the single-play price and the price 

for all eight plays. In estimation, these two predicted optimal prices exactly match 

the observed prices (by construction). However, in the TW counterfactual we jointly 

optimize all four prices. Hence, we expect the TW counterfactual prices to be close 

to the actual prices, but not necessarily equal.

53 See Leslie (2004) for a similar empirical analysis of the welfare effects of price discrimination, which also 
happens to be in the context of theater ticket pricing.
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Table 9 summarizes the results. The interpretation of the prices ( p 1 ,..., p 8 ) varies 

across regimes, as explained in the note to the table. The revenue and consumer 

surplus (CS) results are normalized by the market size (i.e., 
gures are per con-

sumer). Pro
ts from the different pricing schemes vary from 63.67 under PB to 

69.50 under MB (a difference of 9.2 percent). In this case the variability in pro
ts 

across price structures is somewhat low compared to many of the simulations in 

Section III. Nevertheless, it is clear that the choice of price structure can be an 

important decision.

It is interesting that PB is the least pro
table of the pricing strategies we exam-

ine. Bakos and Brynjolfsson (1999) and Fang and Norman (2006) show that PB 

becomes more pro
table (relative to CP) as the number of goods increases (with 

zero marginal cost). But in this example with eight goods, PB performs quite badly. 

Even UP is more pro
table than PB in this setting (by 5 percent). This reinforces the 

point that PB is not necessarily a good option for 
rms.

Focusing on BSP in Table 9, we 
nd that: 

 (i)  BSP attains 0.9 percent higher pro
t than CP; and 

 (ii)  BSP attains 98.5 percent of the pro
t from MB. 

These results are striking for a couple of reasons. MB requires the 
rm to set 

255 distinct prices in this example, while BSP involves only eight prices. It is also 

important to note that our empirical example happened to yield an estimated demand 

system that is somewhat unfavorable to bundling-like strategies. We 
nd a very high 

degree of positive correlation in valuations—all correlations lie between 0.60 and 

0.97. The fact that BSP is more pro
table than CP in this setting is interesting, even 

if the differences are not economically large.

Table 9—Counterfactual Pricing

UP PB TW CP BSP MB

p1 35.60 44.55 27.79 56.41 48.25
p2 30.07 46.92 43.08
p3 38.01 34.67 41.12 40.57
p4 44.08 37.72 38.68
p5 36.68 31.46 36.80 38.11
p6 38.89 35.04 36.54
p7 33.23 34.01 35.23
p8 30.81 33.30 37.90 32.89 34.29

Revenue 66.85 63.67 67.57 67.81 68.42 69.50
CS 55.03 54.37 54.02 55.88 54.75 52.62

Notes: For UP, p1 is the optimal uniform price for a single play. For PB, p8 is the optimal per-
play price for the bundle of all eight plays. TW is the pricing scheme currently employed by 
the theater company: p1 is the single-play price, p3 is the per-play price for a speci
c bundle 
of three plays, p5 is the per-play price for any combination of 
ve plays, and p8 is the per-
play price if you buy all eight. For CP, p1–p8 are the prices for the eight individual plays, and 
for BSP, p1–p8 are the per-play prices for any bundle containing the corresponding number of 
plays. For MB, p1–p8 are mean per-play prices for bundles of a given size (e.g., p1 is the mean 
single-play price, p2 is the mean price for all two-play bundles, and so forth). The revenue and 
consumer surplus numbers are normalized by the market size—i.e., we report revenue per 
consumer.
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Under BSP the price per play varies from $56.41 (for one play) to $32.89 (for 

all eight plays)—a discount of 42 percent on the single play price for full season 

subscribers. Note also that under BSP the price for seeing a single play ($56.41) is 

greater than the maximum price for any play under CP ($44.08). As explained in 

the previous section, BSP encourages consumers to purchase multiple plays by a 

combination of raising the price for one play and lowering prices for multiple plays. 

Under CP 9.9 percent of consumers attend exactly one play, while under BSP only 

2.6 percent of consumers attend just one play. Under CP 9.0 percent of consumers 

attend all eight plays, while under BSP 12.6 percent do so.

It is interesting to compare the performance of CP and BSP in relation to the high-

est-demand play. One tends to expect that CP will generate more pro
t from these 

kinds of products than would BSP, although we have argued and demonstrated that 

BSP is also effective at extracting surplus in the presence of asymmetric demand. 

The play with the highest demand is play 4—under UP play 4 has the highest level 

of sales, and under CP play 4 has the highest optimal price. For CP we compute that 

25.2 percent of consumers attend play 4, and every ticket is sold at the pro
t-max-

imizing price of $44.08. Under BSP we 
nd that 27.1 percent of consumers attend 

play 4. The average (per play) price paid by consumers that attend play 4 under BSP 

is $36.70. It follows that BSP obtains 21 percent less revenue from play 4 than does 

CP.54 Since BSP attains higher overall revenue, it must be that BSP extracts more 

surplus than CP for the lower demand plays. For example, we 
nd that BSP yields 7 

percent more revenue for play 1 (the lowest-demand good) than CP.

As expected, we predict optimal prices under TW that are very close to the actual 

prices set by TheatreWorks.55 The predicted single-play price under the TW scheme is 

slightly higher than the observed price set by TheatreWorks, and the predicted full-sea-

son subscription price is slightly lower than the actual price. Thus, our estimated model 

indicates more aggressive discounting than TheatreWorks’ actual price schedule, but 

not by much. The TW price structure appears to perform quite well in the counterfactu-

als. As shown in the table, the pro
t under TW is marginally less than for CP, despite 

the fact that TW involves half the number of prices as CP. This reinforces the value of 

bundling-like strategies, since TW incorporates a degree of bundling into its structure.

Model Perturbations.—Given our estimates of demand, it is clear that BSP is the 

superior pricing strategy among the simple alternatives we consider. To evaluate the 

robustness of this conclusion, we ask how we would have to change the demand 

system to reverse the conclusion.

We have emphasized throughout this study that BSP is able to perform well even 

in the presence of highly asymmetric demand. As a measure of asymmetry, in the 

baseline model above, the highest price for a play under CP ($44) is almost 60 per-

cent greater than the lowest price ($28). But what if we ampli
ed this difference? 

How much would we have to exacerbate the differences in plays’ qualities to make 

CP more pro
table than BSP? To examine this question, we took min-preserving 

54 Revenue is synonymous with variable pro
t in this context, because the marginal cost of each ticket is zero. 
Since we have no information on 
xed costs we do not refer to these numbers as pro
ts.

55 To understand why optimal prices are not exactly equal to actual prices, recall that in the estimation, we 
impose the optimality of only the individual-play and all-eight prices, rather than the full set of prices.
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spreads of the estimated variances (holding all other parameters 
xed) and recom-

puted the optimal prices and pro
ts under the various pricing strategies.56 We 
nd that 

BSP remains more pro
table than CP even when the highest price for a play under 

CP ($95) is 340 percent greater than the lowest-price play ($28). However, if the price 

difference increases to over 385 percent (price range of $28 to $108) then CP attains 

higher pro
t than BSP. Hence, increasing demand asymmetry favors CP, but it takes a 

remarkably high degree of asymmetry for CP to be more pro
table than BSP.

As explained above in the context of the numerical experiments, positive marginal 

costs should typically favor CP over BSP. If we recompute optimal prices based on 

the estimated demand model, assuming positive marginal costs, we can indeed get 

CP to be more pro
table than BSP. However, the required level of marginal cost is 

extremely high: only when we set marginal cost as high as $40 does CP become 

more pro
table than BSP. We suspect this is due to the high degree of positive corre-

lation in consumers’ tastes, for the following reason. Positive marginal costs tend to 

be bad for bundling strategies because consumers who purchase bundles may end up 

consuming products they value below cost, shrinking the extractable surplus from 

bundles. But when valuations are highly positively correlated, such violations of the 

“exclusion” condition will be relatively rare. It would be interesting to explore the 

combined effects of marginal costs and correlations in tastes in more detail, but for 

the present purposes we simply note that BSP’s superiority over CP is remarkably 

robust to increases in marginal cost.

While it is true that we can make CP more pro
table than BSP by signi
cantly 

amplifying demand asymmetries or by imposing relatively tight capacity constraints, 

note that our estimated demand model exhibits a high degree of positive correlation 

in tastes. To highlight the degree to which positive correlation is disadvantageous 

to BSP, we recompute optimal prices with all the estimated covariances set to zero, 

holding 
xed all other estimated parameters. In this case, BSP is a dramatic 20.5 

percent more pro
table than CP.

Finally, we argued in Section III that the inclusion of diminishing marginal util-

ity may reduce the pro
t from CP by even more than it does for BSP. To verify this 

claim we generalize the utility function in the demand model in the following way:

  uij = {   V  i  ′   D j   n  j  
γ  − α pj      

0
    ∶ j = {1,… , J}      

: j = J
   ,

where  n j  equals the number of goods in bundle j and γ is a parameter. We set 

γ = − 0.2 to capture diminishing marginal utility and compute optimal prices hold-

ing all other parameters 
xed at the estimated values under the baseline model.57 

Unsurprisingly the pro
ts under all pricing schemes are lowered relative to the 

baseline. But now BSP attains 8.8 percent higher pro
t than CP, compared to 0.9  

percent in the baseline model. Hence, the inclusion of diminishing marginal utility 

can increase the pro
ts of BSP relative to CP.

56 That is, we hold the variance of the lowest-variance play at the estimated value, min[  ̂  Σ (k,k)], and increase the 
remaining variance terms such that they differ from min[  ̂  Σ (k,k)] by Δ times the corresponding differences in the 
actual estimates. At the same time, we in¯ate the covariances such that the correlations remain the same as in the 
actual estimates.

57 Implicitly, γ = 0 in the baseline model.
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IV. Conclusion

We have examined the pro
tability of several incomplex pricing strategies for 

multiproduct monopolists, relative to the impractical ideal of mixed bundling. 

Rather than focus on a simpli
ed and unrealistic model of demand, we have relied 

on computational methods to explore these issues in a wide variety of demand and 

cost scenarios. The analysis yields two main 
ndings. First, BSP tends to attain 

nearly the same level of pro
ts as MB in a broad range of demand and cost sce-

narios. Hence, MB involves considerable redundancy—it includes many prices that 

are of negligible importance to pro
tability. Second, BSP tends to be more pro
t-

able than CP, even in circumstances with a high degree of demand asymmetry across 

products, and even when tastes are positively correlated across products.

To illustrate the empirical relevance of our 
ndings, we estimate the demand facing 

a theater company that produces a season of eight plays and compute the pro
tability 

of each pricing scheme. We 
nd that bundle-size pricing is 0.9 percent more pro
table 

than component pricing, and bundle-size pricing attains 98.5 percent of the mixed 

bundling pro
ts. Since the estimated demand model exhibits a very high degree of 

positive correlation, these results may understate the gains from BSP in other settings. 

Arguably, a limitation of our empirical analysis is that it concerns a fairly narrow set-

ting. However, we see the simplicity of our example as a virtue: “bigger” examples 

invariably involve additional complexities (such as active resale markets, a much 

larger number of products, etc.) that make a clean empirical analysis infeasible.

The central theme of our 
ndings is that bundling-based pricing schemes are often 

more pro
table than component pricing. This is interesting because economists are 

prone to criticize 
rms for the lack of component pricing (e.g., movie cinemas). In 

fact, the appeal of bundling over component pricing is re¯ected in the pricing of some 

notable multiproduct 
rms. Major league baseball teams, for example, tend to employ 

bundling strategies (such as discounts for purchasing any nine games) more often 

than they employ component pricing strategies (such as charging prices that vary by 

opponent or by day of the week).58 Also, online music sellers almost never charge dif-

ferent prices for different music tracks, even though demand is dramatically stronger 

for some songs than for others. But music is sold via subscription (a strategy akin to 

pure bundling) by at least two of the major online music stores. And while television 

service providers typically do not charge different prices for different channels, some 

offer discounts that depend on the number of channels selected.59

Our results represent a signi
cant push toward understanding the merits of fea-

sible pricing schemes for multiproduct 
rms. What insight does the prior  literature 

on bundling have for a 
rm with 
ve products, say? A narrow reading of the  

literature would imply the 
rm should implement mixed bundling with 31 prices, 

which is unlikely to be practical for most 
rms. A broader interpretation of the 

 literature would suggest the 
rm should consider some form of bundling—which is 

a powerful insight—but it is unclear exactly what form that should be. This paper 

58 We examined the pricing for all 30 major league teams during the 2006 season. Sixteen teams employed some 
form of bundling (not including season-ticket subscriptions), whereas only seven charged prices that varied by 
opponent or by day of the week.

59 See British Sky Broadcasting for a clear example: www.sky.com/portal/site/skycom/products/packages.
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suggests speci
c advice to such a 
rm; bundle-size pricing (
ve prices) tends to 

attain nearly the same pro
ts as mixed bundling and is almost certainly more pro
t-

able than either component pricing or pure bundling.

Appendix A

We noted in the text that BSP may be more pro
table than PB if: 

 (i) Willingness to pay for the bundle of all K products is heterogeneous across 

consumers; and 

 (ii) Consumers (or consumer types) who have the highest willingness to pay for 

a bundle of size m are not necessarily the same as those with the highest will-

ingness to pay for a bundle of size n > m.

We can establish a more formal condition by using an approach similar to McAfee 

et al. They note that MB nests CP as a special case, and derive a condition on the 

joint distribution of tastes such that a local deviation from the CP prices yields an 

increase in pro
ts. In our case, we know that BSP nests PB as a special case, and we 

can ask when a local deviation from the PB price will be pro
table.

Since BSP allows consumers to pick their own bundles, any purchased bundle 

of m products will consist of the m products for which the consumer’s valuations 

were highest. Let  r im  denote consumer i’s mth -highest valuation (i.e., the mth 

order statistic). Then consumer i’s willingness to pay for a bundle of size m is just

 y im  =  ∑ 
k=1

  
m
    r ik  ;  i.e., the sum of the 
rst m order statistics. Using this notation, we 

can write a suf
cient condition for BSP to yield higher expected pro
ts than PB in 

terms of the joint distribution of  y i,K−1  and  r iK :

PROPOSITION: Suppose a �rm sells K products for which marginal costs are iden-

tical and equal to c, and let g denote the joint distribution of  y i,K−1  (a consumer’s 

willingness to pay for a bundle of any K − 1 products) and  r iK  (the willingness to 

pay for the least preferred product). If  p ∗  is the optimal PB price, then BSP is more 

pro�table than PB if there exists a Δ such that

  (i) 0 < Δ < c, 

  (ii)  ∫ 
0
  

Δ

   ∫ 
p*−r

  

∞

   g  (y, r) dydr > 0.

To prove this, consider starting with BSP prices equal to the optimal PB price,  

p 1  =  p 2  =  …  =  p K  =  p * , and then reducing the price of bundles with K − 1 or 

fewer products to    ̃  p  K−1  =  p *  − Δ. The expected pro
ts under these prices are

    ̃  π (Δ) =  (  p *  − Kc ) ∫ 
Δ
  
∞

   ∫ 
p*−r

  

∞

   g  (y, r) dy dr

 +  (  p *  − Δ − (K − 1)c )  ∫ 
0
  

Δ

   ∫ 
p*−Δ

  
∞

   g  (y, r) dy dr.
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The difference from the PB pro
ts is then

    ̃  π (Δ) −   ̃  π (0) = (c − Δ) ∫ 
0
  

Δ

   ∫ 
p*−r

  

∞

   g  (y, r) dy dr

 +  (  p *  − Δ − (K − 1)c)  ∫ 
0
  

Δ

   ∫ 
p*−Δ

  
p*−r

  g  (y, r) dy dr.

The pro
t difference is the sum of two effects. The 
rst term re¯ects the incre-

mental cost savings from not selling to consumers who value the Kth good below 

its cost but who buy the full bundle under PB pricing. The second term is the incre-

mental pro
t from inducing some consumers who do not purchase under PB pricing 

to buy the K − 1 bundle. Conditions (i) and (ii) of the proposition simply guarantee 

that both of these effects are positive.

Note that when marginal cost is zero, condition (i) will not be met. However, this 

does not mean BSP cannot be more pro
table than PB when marginal cost is zero: 

the proposition establishes a suf
cient but not necessary condition for BSP pro
ts 

to be higher than PB pro
ts. So even if this kind of local change is not pro
table, 

there may still be other (nonlocal) changes that are. However, the proposition does 

suggest that positive marginal costs make it more likely that BSP beats PB.

Appendix B

In this Appendix we simply report the optimal prices and pro
ts for the two-good 

model described in Section IIIB. Consumers’ valuations for the two goods are inde-

pendent uniform random variables on [0,1] and [0,θ], respectively. (Assume θ ≥ 1.) 
Marginal cost is 0.

Scheme Optimal prices Optimal pro
ts

CP  p  1  *  =   θ _ 
2
  ,  p  2  *  =   1 _ 

2
   π *  =   

(1 + θ)
 _ 

4
  

PB

 p *  = {  √ 
_

   2θ _ 
3
    
    

  1 _ 
4
   +    θ _ 

2
  
    

if θ ≤ 3/2
    

if θ > 3/2
   π *  = { (  2

 
_ 3θ   ) 3/2

 
     

  1 _ 
8θ    (θ +   1 _ 

2
  ) 

2
 
    

if θ ≤ 3/2
    

if θ > 3/2
  

BSP If θ ≤ 1.756739614: If θ ≤ 1.756739614:

 p  2  *  =   (1 + θ)
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