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Abstract

This dissertation consists of three chapters.

Chapter 1: "Nonlinear Pricing with Product Customization"

This paper proposes a method to incorporate product customization and unobserved

heterogeneity in structural analysis of nonlinear pricing data. My model is adapted from

Maskin and Riley (1984). In equilibrium, average price per unit decreases with an index

of quality/quantity, which aggregates observed attributes and unobserved heterogeneity of

the product. I study the identification of the aggregation parameters and tariff function

from data on payments and consumption quantities. My novel aggregation method leads

to a problem reminiscent of transformation models. I then exploit both the firm’s and

consumer’s first-order conditions to identify the model primitives, which are the consumer’s

utility function, taste distribution, distribution of product unobserved heterogeneity and

firm’s cost function. I also develop a semiparametric estimation method to recover these

primitives. The estimation method is applied to data from a major mobile service provider

in Asia. My empirical results support the model. Counterfactual experiments show that,

with the same level of complexity, incremental discounts seem to be more preferable as it

better approximates the second-best, leading to higher firm profit and consumer surplus

relative to all-units discounts and quantity forcing.

Chapter 2: "Multiproduct Nonlinear Pricing: Mobile Voice Service and SMS,"

with I. Perrigne and Q. Vuong

This paper studies multiproduct nonlinear pricing in the cellular phone industry with

voice and message services. The model derives from Armstrong (1996) in which the unknown

types of consumers are aggregated while the firm designs an optimal cost-based tariff. As

iii



usual in multidimensional screening problems, there is pooling at equilibrium. Moreover,

given that the consumers add a large number of unobserved extra features, we introduce

two terms of unobserved heterogeneity for voice and message add-ons. The model defines

two one-to-one mappings between the unknown aggregate type to the cost and the cost

to the payment. We then study the identification of the model primitives. Under some

identifying assumptions such as a parameterization of the cost function, we show that the

primitives of the model (the aggregate type density, the indirect utility and the joint density

of unobserved heterogeneity) are identified from observables. The empirical results support

the model and display an important heterogeneity in types and unobserved heterogeneity.

The cost of asymmetric information for the firm is assessed.

Chapter 3: "Bundling and Nonlinear Pricing in Telecommunications"

This paper studies bundling and price discrimination by a multiproduct firm selling

internet and phone services in an imperfect information setting. I derive the optimal selling

mechanism, and provide primitive conditions under which different bundling strategies arise,

such as component pricing, pure bundling, semi-mixed bundling and mixed bundling. I

show that the model structure is nonparametrically identified. I then propose a three-step

semiparametric estimation procedure involving a new regression spline estimator under

both monotonicity and bound restrictions. An illustration on China Telecom data shows

that mixed bundling is beneficial to both the firm and the consumer relative to component

pricing.
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Chapter 1

Nonlinear Pricing with Product

Customization

A commodity is a good or a service completely specified physically, temporally, and

spatially.

– Debreu (1959)

1.1 Introduction

In the early 1900s, Ford launched mass production with its revolutionary assembly line

for the Model T car. Today modern technology is starting an era of mass customization.

With flexible computer-aided systems, firms deliver precisely the good or service that a

customer wants, as and when he wants it. Ford now allows its customers to build a vehicle

from a palette of online options. Computers, watches and mobile phone services are other

examples. Products are adapted to meet a customer’s individual needs, so no two items

are the same. This leads to a large number of varieties of which many may exhibit sparse

or zero market share. Discrete choice models become intractable. How to analyze data

with a large number of varieties of products? Moreover, the researcher may not observe all

characteristics. How to incorporate product unobserved heterogeneity?

This paper proposes a method to incorporate product customization and unobserved

1



2

heterogeneity in structural analysis of nonlinear pricing data. My model is adapted from

Maskin and Riley (1984). In equilibrium, average price per unit decreases with an index

of quality/quantity, which aggregates observed attributes and unobserved heterogeneity of

the product. I study the identification of the aggregation parameters and tariff function

from data on payments and consumption quantities. My novel aggregation method leads

to a problem reminiscent of transformation models. I then exploit both the firm’s and

consumer’s first-order conditions to identify the model primitives, which are the consumer’s

utility function, taste distribution, distribution of product unobserved heterogeneity and

firm’s cost function. I also develop a semiparametric estimation method to recover these

primitives. The estimation method is applied to data from a major mobile service provider

in Asia.

Most of the empirical literature on nonlinear pricing uses discrete choice models while

considering prices exogenous. See, e.g. Leslie (2004), McManus (2007), Cohen (2008)

and Economides, Seim, and Viard (2008). Several papers employ convenient parametric

assumptions to endogenize the optimal tariff schedules and recover the demand and cost

structure. See, e.g. Ivaldi and Martimort (1994), Miravete (2002), Miravete and Röller

(2004) and Crawford and Shum (2007). While endogenizing the price, Perrigne and Vuong

(2011a) study nonparametric identification and estimation of a nonlinear pricing model with

a single attribute and known tariff schedule. My paper provides an alternative method when

the tariff schedule is not observed and there are multiple attributes.

As discussed above, a mobile service provider has the technological infrastructure that

allows consumers to customize their own services and use them in various quantities. The

firm I obtained data from provides a full range of different kinds of mobile services that can

be temporally and spatially categorized, such as local outgoing calls, local incoming calls,

long distance calls and so on. I observe only several quantities of phone calls. The monthly

bill, however, includes a large number of additional services such as roaming, phone rings,

etc. Thus I introduce a term of product unobserved heterogeneity to explain the data. The

model is written with the effective quantity aggregating observed quantities and product

unobserved heterogeneity. In equilibrium, tariff is an increasing and concave function of
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this index of quantity.

I first study the identification of the aggregation parameters and tariff function, which

is reminiscent of transformation models and single index models. Specifically, I have a

model of the form α′
q = log T−1(t)− log ǫ, where q is the natural logarithm of the vector of

quantities I observe, t is the payment and ǫ is the term of product unobserved heterogeneity.

I show that the aggregation parameters and the tariff function are identified up to scale and

location normalization under a rank condition.

Next, I study the identification of model primitives using the tariff function and payment

distribution. Following Perrigne and Vuong (2011a), I rely on the first-order conditions of

both the firm and the consumer. Under a parameterization of the cost function and a

multiplicative separability of the utility function in the willingness-to-pay, I show that the

primitives are identified. In particular, I rewrite the first-order conditions in order to express

the one-to-one mapping from payment to consumer taste in terms of the tariff function and

payment distribution. With this in hand, I translate the tariff function into the utility

function, and the payment distribution into the taste distribution.

The estimation procedure proposed in this paper follows the steps of the identification

arguments. Using data from a major mobile service provider in Asia, I estimate the con-

sumer’s utility function and the distributions of private information and product unobserved

heterogeneity as well as firm’s cost parameters. My empirical results support the model.

Due to asymmetric information, the average informational rent left to consumers is $10.37,

which is approximately 38% of the average payment. With the estimated model primitives,

I conduct various experiments to investigate the implications of alternative pricing policies:

incremental discounts, all-units discounts and quantity forcing. It appears that the firm

does not lose much relative to nonlinear pricing by using simpler price schemes, each of

which can be characterized by four parameters. The three alternative schemes reduces firm

profit by 3.17%, 6.53% and 16.12%, respectively. Also, I show that, with the same level of

complexity, incremental discounts seem to be more preferable as it better approximates the

second-best, leading to higher firm profit and consumer surplus relative to the other two.

The rest of the paper is organized as follows. Section 1.2 describes the data with a
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particular attention to aspects that are incorporated in the model. Section 1.3 presents

the model. Identification and estimation are discussed in Section 1.4. Section 1.5 presents

the estimation results and some counterfactuals. Section 1.6 concludes with future lines of

research.

1.2 Mobile Phone Service Data

I collected data from a major mobile service provider in a major metropolitan area in Asia.

For the billing period of May 2009, the data contain mobile voice services and the amount

paid by each subscriber. Among the three mobile service providers allowed to operate in this

area, the company from which I obtained the data has 72% of the mobile subscribers. This

company proposes three different tariffs to three different types of consumers: students,

rural residents and urban residents. My data concern urban residents only. The company’s

market share in this market segment is larger than 80%. Thus it is reasonable to assume

that this company acts as a monopolist in this market segment.

The company proposes a new tariff every year. Subscribers can switch to the new tariff

at no extra cost. I consider customers who are under the 2009 tariff in May 2009. I obtain

a random sample of 2000 observations. The company distinguishes outgoing and incoming

calls according to the features of the calls, such as the locations of the initiator and receiver,

the length of the call, the time of the day, the day of the week and so on. The tariff changes

with these features.

My data provide information on voice consumption measured in minutes and distin-

guishes three different types of phone calls: qL is the number of minutes when both parties

are in the same city, while qD is when they are in different cities. qR is the number of

minutes when the consumer is outside his home city. Table A.1 provides summary statistics

on the payment t measured in U.S. dollars and the consumptions of the three types of calls

measured in minutes. The average payment is 27 dollars. As subscribers mainly stay in the

home city, they consume more than seven times more local minutes than roaming minutes.

The firm implements nonlinear pricing, i.e., deeper discounts are offered to the customers

who consume more. According to my conversations with several employees in this firm, there
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are literally hundreds of different discounts offered to consumers. Thus, the firm offers a

large number of plans to approximate a continuous nonlinear price schedule, which leaves

almost no room for pooling. For this reason, I use a continuous framework. Specifically,

I consider that the tariff schedule offered by the monopolist is continuous and estimate it

from data on payments and consumption quantities.

Product Customization and Unobserved Heterogeneity

As discussed above, the tariff changes with the temporal and spacial features of the

calls. However, I do not observe all the temporal and spacial features of the calls except

the number of minutes for the three types of phone calls. To see this, I sample consumers

whose payments fall into chosen bins. Table A.2 provides the summary statistics of the total

phone minutes (i.e., qL + qD + qR) and payments when controlling for several categories of

the payment value. While the variation of payment is controlled to be small in each bin,

there is still large variations in the total minutes. Moreover, I regress payment on qL, qD,

qR and their squares. The adjusted R2 of this regression is 0.58 in comparison to the almost

perfect fit using data from yellow page industry (see, e.g., Perrigne and Vuong (2011a)

and Busse and Rysman (2005)). Therefore, it is important to take into account product

unobserved heterogeneity in my structural analysis.

1.3 The Model

My model builds on Maskin and Riley (1984). A consumer is characterized by a scalar

taste parameter θ distributed as F (·) with a continuous density f(·) > 0 on [θ, θ] ⊂ IR+.1

A subscriber consuming quantity of mobile services q has a payoff

U(q, ǫ; θ) − t(q, ǫ),

where t(q, ǫ) is the total payment for consuming q when the other unobserved (by the

econometrician) features of consumption is ǫ. The scalar term q aggregates the observed

1I do not consider uncertainty on types, which leads to a two-stage model. See, e.g., Miravete (2002),
Miravete (2005), Narayanan, Chintagunta, and Miravete (2007), Economides, Seim, and Viard (2008) and
Grubb and Osborne (2012).
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attributes of the product (i.e., quantities of phone calls measured in minutes), which I will

specify at the end of this section. The term θ is his taste for mobile services, which is

his private information. The term ǫ represents all the product unobserved heterogeneity

which is common knowledge to the firm and the consumer. In particular, it takes into

account location and time of phone calls as well as all the extra features associated with

mobile services.2 As each subscriber can buy mobile services matching his exact need, ǫ

is potentially different across consumers. It plays a similar role as the term of unobserved

product characteristics ξ in estimating discrete choice demand (see, e.g., Berry (1994), Berry,

Levinsohn, and Pakes (1995), and Berry and Pakes (2007)). Without ǫ it is impossible to

find parameter values that make the implications of the model consistent with the data.

The firm incurs a cost c(q, ǫ) in serving the consumer with q with additional features

ǫ. I make the standard assumption that the firm’s total cost function is additively sepa-

rable across consumers. As information goods, mobile services involve very small variable

production costs but substantial transaction costs per customer, such as usage recording,

billing and customer service. As ǫ is both observed (by the firm) and contractible, the firm

chooses the quantity schedule q(·; ǫ) and the tariff t(·; ǫ) to maximize its profit conditional

on ǫ. Given ǫ, the firm’s problem is

max
q(·;ǫ),t(·;ǫ)

∫ θ

θ

[
t
(
q(θ; ǫ); ǫ

)
− c
(
q(θ; ǫ); ǫ

)]
φ(θ|ǫ)dθ

where φ(·|ǫ) is the conditional density of θ given ǫ.

Further restriction on the primitives is necessary for identification. Considering a sep-

arable cost function, D’Haultfoeuille and Février (2007) show that at least one of their

three primitives, namely the surplus function, the taste distribution or the cost function,

needs to be known to achieve identification.3 While different identifying assumptions can

be entertained, the production of mobile services tends to involve high fixed costs and small

marginal costs. A linear cost function seems to be a good approximation. Thus, I make the

2For example, if a mobile phone is turned on, its geographical location can be easily determined by
calculating the differences in time for a signal to travel from the mobile phone to each of several cellular
towers nearby.

3In contrast, Perrigne and Vuong (2011a) assume a cost function for the total production in the context
of yellow pages. I note that their total cost function and my separable cost function are nonnested.
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following assumptions on the model structure.

Assumption 1. The utility, cost and density functions satisfy

(i) U(q; θ, ǫ) = θu0(qǫ), where u0(0) = 0, u′
0(·) > 0, u′′

0(·) < 0

(ii) c(q; ǫ) = K + γqǫ,

(iii) θ− 1−F (θ)
f(θ) is increasing in θ,

(iv) θ ⊥ ǫ.

Following the literature (see, e.g., Ekeland, Heckman, and Nesheim (2004) and Perrigne

and Vuong (2011a)), I assume multiplicative separability of the utility function in the type

θ as stated in Assumption 1-(i). Thus, I interpret u0(·) as the base utility function. It is

a standard assumption in the nonlinear pricing literature. Moreover, I interpret the term

ǫ as a quantity multiplier. It captures the subscriber’s usage of extra features and add-ons

such as roaming. Thus, it is a "vertical" characteristic in the sense that every consumer

would prefer more of it. Consumers with larger values of ǫ enjoy a larger utility from

their consumptions of mobile services than subscribers with lower values. For example,

consumers who travel more would consume more roaming minutes, which are of greater

convenience than the same amount of local minutes. Treating ǫ as a quantity multiplier

plays a similar role as setting the coefficient of unobserved product characteristic ξ to be one

for all consumers in discrete choice models (See, e.g., Berry and Pakes (2007)). Finally, the

outside option (not buying) provides a zero utility and the marginal utility is positive and

decreasing. It can be easily seen that the standard Spence-Mirrlees single-crossing condition

is satisfied. Namely, a consumer with a higher taste θ enjoys a larger marginal payoff across

every q.

Assumption 1-(ii) says that the cost function is linear. The term K captures the cost

that is triggered by any positive usage. For example, infrastructure costs stem from keeping

mobile phones connected and administration costs stem from delivering statements. The

variable cost γqǫ arises from monitoring, recording and reporting mobile service usages.

Product customization is costly. For example, roaming as captured by ǫ is costly to the
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firm because more cellular sites and mobile-services switching centers are involved and it

requires more financial settlements between the two providers involved. Assumption 1-

(iii) says that the hazard rate does not decline too rapidly as θ increases. It is a standard

assumption in the nonlinear pricing literature. Most commonly used unimodal distributions

satisfy the hazard rate assumption.

While the independence assumption 1-(iv) is strong, it greatly simplifies the optimal

selling mechanism. Namely, I can solve this problem in terms of "effective quantity" Q ≡ qǫ.

Proposition 1. Under Assumptions 1, the functions (q(·; ǫ), t(·; ǫ)) that solve the monopo-

list’s optimization problem satisfy: there exists a cutoff taste θ0 ∈ [θ, θ] such that consumers

with θ < θ0 are not served by the provider, and whenever q(·; ǫ) > 0,

(i) There exists a pair of functions (Q(·), T (·)) such that: ∀θ ∈ [θ0, θ]

T ′(Q(θ)) = θu′
0(Q(θ)), (1)

θu′
0(Q(θ)) = γ +

1−F (θ)

f(θ)
u′

0(Q(θ)), (2)

(ii) ∀θ ∈ [θ0, θ] and ∀ǫ ∈ [ǫ, ǫ], q(θ; ǫ) = Q(θ)/ǫ and t(q; ǫ) = T (qǫ).

The cutoff taste is defined by

θ0 = min
{
θ ∈ [θ, θ] : θu0

(
Q(θ)

)
−γQ(θ)−u0

(
Q(θ)

)1−F (θ)

f(θ)
≥ 0

}
, (3)

where Q(·) is defined by (2).

The proof of Proposition 1 follows Maskin and Riley (1984) and Sundararajan (2004).

The optimal schedule and tariff Q(·) and T (·) are defined by Equations (1) and (2), along

with a boundary condition

T (Q(θ0)) = θu0(Q(θ0)) (4)

because the informational rent left to the threshold consumer is zero. In particular, (1) says

that the marginal utility equals the marginal price at the designated consumption of each

subscriber. (2) says that the marginal utility equals the marginal cost plus a distortion term
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due to incomplete information. (3) balances the marginal again for expanding customer base

and the marginal loss for reducing the tariff to every consumer above the cutoff.

Note that Q(·) is strictly increasing in θ. Moreover, Maskin and Riley (1984) indicates

that T ′(·) > 0 and T ′′(·) < 0. Therefore, there is a unique strictly increasing mapping

between the unobserved taste θ and the observed bill t, which is the key of my second

identification result. Finally, it is easy to see that if K > 0, Q(θ0) > 0. Thus the optimal

tariff is a nonlinear two-part tariff. There is a minimum price T (Q(θ0)) for usage above 0

but lower than Q(θ0), and a variable price beyond that.

Aggregating Quantities of Phone Calls

My data provide the quantities qL, qD, qR of phone calls measured in minutes. I aggregate

these quantities into a phone usage index q = h(qL, qD, qR). In particular, I make the

following assumption on the aggregation function.

Assumption 2. h(·, ·, ·) is of the form

h(qL, qD, qR) = qαL

L qαD

D qαR

R ,

where αL, αD, αR ≥ 0.

Although I could allow a more general function form, a Cobb-Douglas specification

leads to an intuitive method to identify and estimate my model.4 Under Assumption 2, the

optimal tariff becomes

t = T (qαL

L qαD

D qαR

R × ǫ),

where T (·) is strictly increasing and concave. Considering the inverse and taking the loga-

rithm gives

αL log qL + αD log qD + αR log qR = log T−1(t) − log ǫ.

4Cobb-Douglas specifications have been widely used in many empirical studies to aggregate multiple
quantities. For example, Murphy (2007) uses a Cobb-Douglas specification to aggregate characteristics of
houses into an one-dimensional quality index. Moreover, first introduced by Solow (1957), the Cobb-Douglas
specification is also extensively used for aggregating production function. In Consumption-Based CAPM
models, the Cobb-Douglas specification is used to construct a consumption index for the representative
agent. See, e.g., Dunn and Singleton (1986).
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My model can be understood in the following way. The firm has a technology infras-

tructure that allows subscribers to customize their own products and use them in various

quantities. I define a subscriber’s exogenously determined variant of the product as a

bundle of characteristics v = (vL, vD, vR, vǫ), namely, the proportions of different kinds of

phone calls and additional features. His consumption possible set is give by the ray in

IR4
+, Q ≡ {X ∈ IR4

+ : (xvL, xvD, xvR, xvǫ), where x ∈ IR+}. I obtain his effective quantity

Q = xαL+αD+αR+1vαL

L vαD

D vαR

R vǫ. While I take a subscriber’s variant as given, my model

endogenizes the quantity level and his payment.

Under Assumption 2, I obtain t = T (qαL

L qαD

D qαR

R × ǫ), where T (·) and α are unknown.

This is reminiscent of single-index and transformation models. The novel element is that

the error term enters in the unknown function as a quantity multiplier for its argument.

While the error term is set at zero when calculating a hedonic price, the tariff function

here incorporates unobserved heterogeneity. An alternative is to use a linear specification,

namely Q = (αLqL +αDqD +αRqR)× ǫ. The optimal tariff becomes t = T
(
(αLqL +αDqD +

αRqR)ǫ
)
. Considering the inverse and taking the logarithm gives αLqL + αDqD + αRqR =

log T−1(t) − log ǫ. My analysis still applies.

Finally, the effective quantity of mobile services is the index Q = qαL

L qαD

D qαR

R × ǫ. All

consumers agree on this quantity ranking. The reason consumers differ in their choices of Q

is that they have different marginal utilities of income θ. In a random coefficient model such

as Berry, Levinsohn, and Pakes (1995), consumers differ in their tastes for different product

attributes. However, allowing heterogeneous tastes for different product attributes is out of

the scope of this paper. It leads to a difficult multidimensional screening problem in which

the firm’s optimal selling mechanism is hard to derive (See, e.g., Armstrong (1996), Rochet

and Chone (1998), Luo, Perrigne, and Vuong (2012) and Luo (2012)).

1.4 Identification and Estimation

In this section, I study identification of the model primitives. I then propose a multistep

estimation procedure in view of my identification results.

In view of Section 1.3, the model primitives are [u0(·), f(·), g(·), α,K, γ], namely the
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base utility function, the taste density function, the density function of unobserved hetero-

geneity, the weights used to aggregate quantities of phone calls, fixed cost and variable cost

parameters. Denote α ≡ (αL, αD, αR)′ and q ≡ (log qL, log qD, log qR)′. The tariff function

gives

α′
q = log T−1(t) − log ǫ, (5)

where Q(·) and T (·) are defined by Equations (1) and (2), along with two boundary condi-

tions (3) and (4).

In view of Section 1.2, the observables are the subscribers’ consumed quantities of various

phone calls and their bills, which include a large set of add-ons and additional features.

The observables are denoted by qL, qD, qR and t. The vector (qL, qD, qR, t) is distributed

as G(·, ·, ·, ·).

1.4.1 Identification

I proceed in several steps. First, I study the identification of the weights to aggregate

quantities of phone calls, the tariff function T (·) and the distribution of product unobserved

heterogeneity G(·) using Equation (5). Second, I exploit the one-to-one mapping between

observed payment and unobserved taste to identify the taste distribution and base utility

function using Equations (1) and (2).

Identification of α, T (·) and G(·)
(5) is a special case of the model of Ai and Chen (2003). Since the finite-dimensional pa-

rameter α and the infinite-dimensional parameter Λ(·) ≡ log T−1(·) are additively separable,

it is also reminiscent of transformation models and single index models.5

Equation (5) continues to hold if α, Λ, and − log ǫ are replaced by kα, kΛ, and −k log ǫ

for any k > 0. It also holds if Λ and − log ǫ are replaced by Λ + k and − log ǫ − k for

5The transformation model is Λ(Y ) = X ′β + e, where Y is a scalar dependent variable, Λ(·) is a strictly
increasing function, X is a vector of explanatory variables, β is the vector of corresponding coefficients,
and e is an unobserved error term independent of X. The semiparametric single index regression model is
Y = Λ(X ′β) + e, where Y is a scalar dependent variable, Λ(·) is an unknown link function, X is a vector
of explanatory variables, β is the vector of corresponding coefficients, and e is an unobserved error term
independent of X.
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any k ∈ IR. Therefore, location and scale normalizations are needed for identification. The

independence between ǫ and θ implies that t is independent with ǫ. Let α0 be the true

aggregation parameters. Given t, the variability in α′
0q is equal to the variation in ǫ. This

observation does not necessarily hold for α 6= α0. Utilizing this homoskedasticity property,

α are identified under a rank condition. Once α is identified, my model becomes reminiscent

of transformation model and is identified under a mean independence assumption.

Assumption 3. I assume

(i) αL + αD + αR = 1,

(ii) for some t1, t2, . . . , tJ ∈ [t, t], the following homogeneous quadratic system has an

unique solution:

α′[Var (q|t̃i) − Var (q|ti)
]
α = 0,

where ĩ, i = 1, 2, . . . , J .

(iii) E (log ǫ) = 0.

Assumption 3-(i) normalizes the scale of α. It says that the aggregation function has

constant return to scale. Var (q|ti) is the conditional variance covariance matrix of the ran-

dom vector q given ti. Assumption 3-(i) and (ii) lead to the identification of α. Assumption

3-(iii) says that log ǫ has mean zero, which leads to the identification of T (·). With this cen-

tering assumption on log ǫ, there is no location assumption on Λ(·) as in Horowitz (1996). I

interpret T (·) as the tariff function for the consumer using an average amount of additional

features, namely ǫ = 1.

Proposition 2. Under Assumption 3, α is identified. In addition, the tariff function T (·)
and the distribution of unobserved heterogeneity G(·) are identified on [t, t] and [ǫ, ǫ], re-

spectively.

The proof of Proposition 2 builds on the idea of Horowitz (1996). The basic idea is to

exploit the separability of Equation (5). Let G̃(·|t) be the CDF of Y ≡ α′
q conditional on
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t. From the independence between ǫ and t, one obtains Λ′(t) = −G̃t(y|t)/G̃y(y|t). Then by

imposing the normalization E (log ǫ) = 0, one obtains Λ(t) = E (y|t)−
∫ t

t G̃t(y|x)/G̃y(y|x)dx.

Once α and T (·) are identified, the unobserved heterogeneity of a consumer with payment

t and consumption q can be identified as ǫ = T−1(t)/ exp(α′
q). Thus, the distribution of

unobserved heterogeneity G(·) is also identified.

To conclude this subsection, I compare my aggregation method with the quality-adjusted

quantity method used in Perrigne and Vuong (2011a). They obtain the tariff function T (·)
from an OLS regression using the multicolor price schedule for display advertisements.

As they get an R2 = 0.999, they treat it as known in the estimation. Quality-adjusted

quantities can be constructed using Q = T−1(t) where t is observed.

In view of Section 1.2, I only observe the monthly paid price and quantities of phone

calls. The tariff function T (·) needs to be estimated from data on payments and quantities.

The monthly bill, however, includes a large number of add-ons and additional features

such as roaming, phone rings, etc. Regressing payment on quantities does not give a good

fit. Thus it is important to introduce a term of unobserved heterogeneity to explain the

data. I identify and estimate T−1(·) using (5). Effective quantities are constructed using

Q = T−1(t).

Identification of K and γ

I now show that K and γ are identified at the minimum and maximum amount pur-

chased, respectively.

Lemma 1. The parameters K and γ are identified. In particular,

γ = T ′(T−1(t)),

K = γ
[ t

T ′(T−1(t))
− T−1(t)

]
,

where t and t are the minimum and maximum payments, respectively.

Identification of γ comes from the "no distortion at the top" property, i.e., the marginal

willingness to pay equals the marginal cost for the highest taste consumer. Since there is

exclusion in my data, K is identified using (3) with equality. The second equation implies
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that the cost for the cutoff consumer is smaller than his payment. If it were in a complete

information scenario, the firm would expand his customer base because the marginal revenue

is higher than marginal cost. In an incomplete information case, the firm optimally allows

such a difference at the cutoff taste to ensure incentive compatibility constraints.

Identification of u0(·) and F (·)
I now turn to the identification of u0 and F (·). Perrigne and Vuong (2011a) exploits the

one-to-one mapping between the unobserved type and the observed consumption. Here, the

first-order conditions (1) and (2) define a unique strictly increasing mapping from θ to Q.

However, Q is not observed by the analyst. Instead I exploit the unique strictly increasing

mapping between θ and t since the latter is observed. Specifically, I rewrite Equations (1)

and (2) to express the marginal utility function u0(·) and the unobserved type θ as functions

of the tariff function T (·) and payment distribution H(·).

Lemma 2. ∀Q ∈ [T−1(t), T−1(t)], the first-order conditions (1) and (2) can be rewritten

as

θ(Q) = θ0
[
1−H

(
T (Q)

)] γ

T ′(Q)
−1

exp

{
γ

∫ Q

T −1(t)

T ′′(x)

T ′(x)2
log

[
1−H

(
T (x)

)]
dx

}
, (6)

u′
0(Q) = T ′(Q)/θ(Q). (7)

Notice that everything on the right-hand side of (6) and (7) are identified except θ0.

Lemma 1 suggests that a normalization of θ0 leads to the identification of the consumers’

marginal utility function and taste distribution. Moreover, the boundary condition t =

θ0u0(Q(θ0)) = θ0u0(T−1(t)) pins down the location of the base utility function. Thus the

base utility function is identified on [T−1(t), T−1(t)].6

Assumption 4. θ0 = 1.

Under Assumption 4, u0(·) can be interpreted as the utility function for the cutoff

consumer using an average amount of additional features. By Proposition 2, for any t ∈ [t, t],

6Perrigne and Vuong (2011a) identify the marginal utility function only. The reason is that the minimum
consumption in their model (standard listing) is offered for free in yellow pages. Therefore, they could not
relate the minimum consumption to a utility level.
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Q is identified, and the corresponding taste can be obtained using (6). Thus the truncated

type distribution F ∗(·) ≡ [F (·) − F (θ0)]/[1 − F (θ0)] can be uniquely recovered on [θ0, θ].

The following proposition summarizes these results.

Assumption 5. Under Assumptions 4, the utility function u0(·) and the truncated taste

distribution F ∗(·) are identified on [T−1(t), T−1(t)] and [θ0, θ], respectively.

Since I do not observe the proportion of consumers who do not purchase from the firm,

the distribution F (·) is identified up to a constant on [θ0, θ]. The data do not provide any

variation to identify the utility function and the distribution function below on [0, Q(θ0))

and [0, θ0), respectively.

1.4.2 Estimation

The data consist of {(qiL, qiD, qiR, ti)}N
i=1. My semiparametric identification results in Sec-

tion 1.4.1 lead naturally to a semiparametric procedure for estimation. I proceed in several

steps. In a first step, I estimate α and T (·) using Equation (5). This allows me to calculate

pseudo values of product unobserved heterogeneity {ǫ̂i}N
i=1. Since each subscriber can cus-

tomize mobile services matching his exact need, ǫ is potentially different across consumers.

I then estimate γ and K using Lemma 1. In a second step, I use (6) and (7) to estimate

the marginal utility function u′
0(·) and to construct a sample of pseudo tastes. Finally, I

estimate the taste density and the density of unobserved heterogeneity by using a kernel

estimator.

I provide below detailed information on every step.

Estimation of α, T (·), K and γ

As discussed above, (5) is a special case of the model of Ai and Chen (2003). They

propose the sieve minimum distance estimator using sieves to approximate the unknown

functions and estimating finite dimensional parameters and infinite dimensional unkown

functionals jointly. Exploiting the separable structure of my model, I estimate α and T−1(·)
in two steps.

To estimate α, I partition the range of payments into B bins and define dummy variables

Db(t) = 1 if t ∈ b and 0 otherwise. First, for any value b, multiplying both sides of (5) by
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Db(t) and taking the variance conditional on t gives Var [Db(t)α
′
q|t] = Db(t)Var [log ǫ|t].

Second, taking the variance conditional on t on both sides of (5) gives Var [α′
q|t] =

Var [log ǫ|t]. Combining these two gives Var [Db(t)α
′
q|t] = Db(t)Var [α′

q|t]. Taking ex-

pectation gives7

α′
{

E
[
Db(t)

(
q − E (q|t)

)(
q − E (q|t)

)′]− E [Db(t)]E
[
(q − E (q|t))(q − E (q|t))′]}α = 0,

(8)

which says that the expected variance of Db(t)α
′
q equals E (Db(t)) times the expected

variance of α′
q.

My estimator of α solves the following minimization problem:

min
α

B∑

b=1

{
α′

[∑
i:ti∈b(qi−Ê (qi|ti))(qi−Ê (qi|ti))′

Nb
−
∑N

i=1(qi−Ê (qi|ti))(qi−Ê (qi|ti))′

N

]
α

}2

,

where qi ≡ (log qiL, log qiI , log qiO)′, Nb is the number of observations in bin b and N is the

total number of observations. E (qi|ti) is estimated using a standard kernel estimator

Ê (qi|ti) =

∑N
k=1 qkK( ti−tl

ht
)

∑N
k=1K( ti−tk

ht
)
,

where K(·) is a symmetric kernel function with compact support and ht is some bandwidth.

To impose that T−1(·) is increasing and convex, I use a constrained sieve estimator

proposed by Dole (1999). The approximation splines are

ψ(·;β, δ) = β0 + β1 · +
n∑

k=1

δksk(·),

where n is the number of interior knots, β ≡ (β0, β1)′ and δ ≡ (δ1, . . . , δn)′. The range [t, t]

is partitioned into n + 1 bins of the form [τk−1, τk) for k = 1, 2, . . . , n + 1 with τ0 = t and

7See the Appendix for proof.
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τn+1 = t. The basis function sk(·) is a cubic function defined as

sk(t) =





0 if t ∈ [−∞, τk−1]

(t− τk−1)3/[6(τk − τk−1)] if t ∈ [τk−1, τk]

((t− τk+1)3/[6(τk − τk+1)]) + a1t+ a0 if t ∈ [τk, τk+1]

a1t+ a0 if t ∈ [τk+1,+∞]

where a1 = (τk+1 − τk−1)/2 and a0 =
(
(τk − τk−1)2 − (τk − τk+1)2 + 3τk(τk+1 − τk−1)

)
/6.

My estimator of (β, δ) solves the following problem:

min
(β,δ)

N∑

i=1

[
α̂′

qi − log
(
ψ(ti;β, δ)

)]2
,

where β1 ≥ 0, δ ≥ 0. I denote the estimate by (β̂, δ̂).

Thus, T̂ (·) = ψ−1(·; β̂, δ̂) and Q̂(·) = T̂−1(·) = ψ(·; β̂, δ̂). I estimate γ by γ̂= T̂ ′(T̂−1(tmax)),

andK by K̂= γ̂
[ tmin

T̂ ′(T̂−1(tmin))
−T̂−1(tmin)

]
, where tmin = mini=1,2,...,N ti and tmax = maxi=1,2,...,N ti.

Following the same lines as in Lavergne and Vuong (1996), I can show that the estimates

for residual variance matrices are
√
N -consistent and asymptotically normally distributed.

Thus, my estimate for α is also
√
N -consistent and asymptotically normally distributed.

The estimation of log T−1(·) and G(·) becomes reminiscent of Horowitz (1996). Following

the identification procedure, I can obtain "plug-in" estimators for log T−1(·) and G(·), which

are
√
N -consistent and asymptotically normally distributed.

For simplicity, I use a constrained sieve estimator to impose that T−1(·) is increasing

and convex. Ai and Chen (2003) show that the sieve minimum distance estimator of the

parametric component is
√
N -consistent and asymptotically normally distributed, and the

estimator of infinite dimensional functions is consistent with a rate faster than N−1/4 under

certain metric. Meyer (2008) shows that the shape-restricted regression has smaller squared

error loss than the unrestricted version, when the true regression function satisfies the shape

assumption. Thus the rate is not slower than the unrestricted version.

Estimation of u0(·), F (·) and G(·)
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I estimate H(·) as the empirical distribution of payment,

Ĥ(t) =
1

N

N∑

i=1

✶(ti ≤ t),

where ✶(·) is an indicator function and t ∈ [tmin, tmax].

For anyQ ∈ [T̂−1(tmin), T̂−1(tmax)], the estimate for u′
0(Q) is given by û′

0(Q) = T̂ ′(Q)/ξ̂(Q),

and the estimate for θ(Q) by θ̂(Q) = ξ̂(Q), where

ξ̂(Q) = [1 − Ĥ(T̂ (Q))]
γ̂

T̂ ′(q)
−1

exp

{
γ̂

∫ Q

T −1(t)

T̂ ′′(x)

T̂ ′(x)2
log[1 − Ĥ(T̂ (x))]dx

}
.

Thus, for any Q ∈ [T̂−1(tmin), T̂−1(tmax)], I can estimate the taste. A pseudo sample

of taste can be constructed as
{
θ̂i

}N

i=1
, where θ̂i = ξ̂(T̂−1(ti)). Moreover, I can estimate

ǫ by ǫ̂i = T̂−1(ti)/ exp(α̂′
qi). Hence, a pseudo sample of unobserved heterogeneity can

be constructed {ǫ̂i}N
i=1. Finally, using these two pseudo samples, I estimate the truncated

density of taste and the density of unobserved heterogeneity by

f̂∗(θ) =
1

Nhθ

N∑

i=1

K
(θ − θ̂i

hθ

)
,

ĝ(ǫ) =
1

Nhǫ

N∑

i=1

K
(ǫ− ǫ̂i
hǫ

)
,

for (θ, ǫ) ∈ [1, θ] × [ǫ, ǫ], where K(·) is a symmetric kernel function with compact support,

hθ and hǫ are some bandwidths.

1.5 Empirical Analysis

In this section, I present the estimated model primitives and examine several counterfactual

experiments.

Estimation Results

First, I estimate the aggregation parameters (αL, αD, αR) and the tariff function T (·).
The estimated aggregation parameters are αL = 0.4471, αD = 0.3053 and αR = 0.2476,
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which are quite close to the estimates in Luo, Perrigne, and Vuong (2012). Figure A.1

displays the concave tariff T̂ (·). It implies an estimate of the fixed cost K is $1.78. This is

approximately 6.54% of the average bill. The estimate of the marginal cost parameter γ is

$0.1784. It is approximately a half of the average price charged per minute $0.3389. These

cost parameters imply that the firm has a profit margin of 37.48%.

Second, I obtain estimates of the one-to-one mapping θ(·) and the base utility function

u0(·). The first is displayed in Figure A.2 while the latter in Figure A.3. The estimated

mapping is increasing, thereby satisfying the prediction of my model. The estimated base

utility function is increasing and concave, thereby satisfying Assumption 1-(i).

Finally, I estimate the truncated taste density function f∗(·) and the density function

of unobserved heterogeneity g(·). The first is displayed in Figure A.4 while the latter

in Figure A.5. Both densities are unimodal and displays an important skewness. The

skewness of the taste density function will have important implications on the analysis

of counterfactual experiments as discussed later. As displayed in Table A.1, unobserved

heterogeneity shows an important variability with a standard deviation of 1.32. On the other

hand, the correlation between the pseudo taste and unobserved heterogeneity is 0.0027. I

use a nonparametric test of bivariate independence due to Blum, Kiefer, and Rosenblatt

(1961) and obtain a p-value of 0.0009. Thus, the independence assumption seems to be

satisfied.

With the estimated model primitives, I calculate the informational rent left to the

consumer. As predicted by theory, this rent is increasing in taste θ and payment t. As

shown in Table A.1, the ratio of the informational rent by payment is on average 29.39%

while the ratio of the total informational rent by the total payment is 38.03%. These

measures the cost of asymmetric information for the firm.

Counterfactual Experiments

I now describe several counterfactual experiments based on the estimated model prim-

itives. In particular, I consider three alternative forms of pricing schemes: incremental

discounts (ID), all-units discounts (AUD), and quantity forcing (QF).

An incremental discounts (ID) scheme is a menu of two-part tariffs, which are of the
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form t = κj +pjq, where κj and pj are the fixed fee and the marginal price. Thus, marginal

prices of successive units decline in steps. An all-units discounts (AUD) scheme is a menu

of minimum purchase tariffs, which are of the form t = pjq if q ≥ mj , = ∞ otherwise,

where mj and pj are the minimum purchase and marginal price. Thus, the per-unit price

progressively drops when the order size exceeds certain threshold. Under QF, only several

quantities mj , each associated with a gross price tj , are offered for consumers to choose.

To make a fair comparison, I allow the same level of complexity, namely, each of them has

two options and can be characterized by four parameters. For completeness, I also simulate

linear pricing scheme of the form t = pq, where p is the price.

Table A.3 shows the predicted revenue, consumer surplus, firm profit and purchase for

different schemes. According to Wong (2012), ID has the largest "approximation power"

among these three schemes. This is confirmed in Figure A.6, where the tariff function for

ID is closer to the second-best than those for AUD and QF. As shown in Table A.3, the

optimal firm profit under ID is $10.09. Relative to nonlinear pricing, it drops by 3.17%

while consumer surplus drops by 9.07%. Apparently, consumers are losing more than the

firm. In addition to these effects there is heterogeneity in terms of who wins and who loses.

Figure A.7 shows the predicted consumer surplus for different types of consumers under

ID. Again, ID is closer to the second-best. An interesting result is that high-end consumers

benefit, albeit by a small amount. More low-end consumers are excluded from purchasing

because the new cutoff taste is 1.16. The reason is that ID requires a higher minimum

payment of $11.63, leading to a higher minimum purchase of 82.33 minutes.

Relative to ID, AUD seems to approximate the second-best better at the lower end. This

is shown in Figures A.6 and A.7. Since the tariff becomes much more expensive for high-end

consumers, their surplus drops a lot. On average, consumer surplus drops by 12.99% while

firm profit drops by 8.97% relative to NLP. As AUD tends to focus on the lower end of the

market, the expected purchase drops by 23.62%.

While ID and AUD leave some flexibility to the consumer, QF is most restrictive as it

allows only certain quantities of purchase. As a result, its effects are close to the linear

pricing case in terms of expected revenue, consumer surplus, firm profit and purchase.
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At the optimal quantities q1 = 51.77 and q2 = 66.65, consumers pay $20.31 and $25.17,

respectively. These are approximately two dollars higher than the corresponding prices

under NLP, namely $18.74 and $23.06. As a result, Figure A.7 shows that every consumer

is worse off relative to NLP or AUD.

From these simulations, it appears that the firm does not lose much relative to nonlinear

pricing by using simpler price schemes. In the "worse" case, quantity forcing only reduces

its profit by 16.12%. This is consistent with the results reported in Miravete (2007) using

data from the early U.S. cellular telephone industry. The reason is that the estimated taste

density is quite skewed. In this case, the firm can still reach most of the market even

with limited pricing flexibility. Moreover, with the same level of complexity, incremental

discounts seem to be more preferable as it does a better job approximating the second-best,

leading to higher firm profit and consumer surplus relatives to AUD and QF.

1.6 Conclusion

This paper proposes a method to incorporate product customization and unobserved het-

erogeneity in structural analysis of nonlinear pricing data. The first step involves identifying

and estimating the tariff from data on payments and consumption quantities. I aggregate

observed multiple quantities and unobserved heterogeneity of the product, rendering recov-

ering the tariff a problem reminiscent of transformation models and single index models. I

then identify the model primitives by exploiting the one-to-one mapping between the con-

sumer’s taste and his payment. I propose a computationally convenient semiparametric

estimation procedure. An application using data from a major mobile service provider in

Asia illustrates my method. I conduct various experiments to investigate the implications

of alternative simpler pricing policies.

While I consider a single product with multiple attributes (different kinds of phone

minutes), my method can extend to multiproduct problems. For example, it is interesting

to consider both voice and short message service (SMS) consumption. Relying on Armstrong

(1996), Luo, Perrigne, and Vuong (2012) generalize the method developed in this paper to

the multiproduct case and apply them to the empirical analysis of voice and SMS in the
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mobile phone industry. Luo (2012) studies bundling and nonlinear pricing by a multiproduct

firm selling internet and phone services. It also uses the method developed in this paper to

estimate tariffs as a first step.



Chapter 2

Multiproduct Nonlinear Pricing:

Mobile Voice Service and SMS

2.1 Introduction

This paper studies multiproduct nonlinear pricing in the cellular phone industry with voice

and message services. The model derives from Armstrong (1996) in which the unknown

types of consumers are aggregated while the firm designs an optimal cost-based tariff. As

usual in multidimensional screening problems, there is pooling at equilibrium. Moreover,

given that the consumers add a large number of unobserved extra features, we introduce

two terms of unobserved heterogeneity for voice and message add-ons. The model defines

two one-to-one mappings between the unknown aggregate type to the cost and the cost

to the payment. We then study the identification of the model primitives. Under some

identifying assumptions such as a parameterization of the cost function, we show that the

primitives of the model (the aggregate type density, the indirect utility and the joint density

of unobserved heterogeneity) are identified from observables. The empirical results support

the model and display an important heterogeneity in types and unobserved heterogeneity.

The cost of asymmetric information for the firm is assessed.

The paper is organized as follows. Section 2 presents the data. Section 3 introduces the

model, while Section 4 establishes its nonparametric identification and develops a nonpara-
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metric estimation procedure. Section 5 is devoted to our estimation results and counter-

factuals. Section 6 concludes with some future lines of research. An appendix collects the

proofs.

2.2 Cellular Phone Service Data

We collected data from a major telecommunication company in a metropolitan area in

Asia.1 For the period of May 2009, the data contain voice service and short message service

(SMS) consumptions as well as the amount paid by each subscriber. The company which

gave us the data has a national market share of 73%. This company proposes three different

tariffs to three different types of consumers: Students, rural residents and urban residents.

Our data concern urban residents only. The cellular provider’s market share in this market

segment is larger than 80%. The cellular phone provider proposes every year a new tariff.

Subscribers can switch to the new tariff at no extra cost. To avoid mixing of subscribers

under different tariffs, we consider subscribers who are under the 2009 tariff in May 2009.

This gives a sample of 4,844 observations. Eliminating coding errors and cleaning the data

reduces the sample to 4,601 observations.

The bill paid by a consumer combines several types of phone calls, roaming charges, extra

fees for peak hours usage, SMS and several add-ons such as voice mail service, music on hold,

ring tones, multimedia message service (MMS), news, etc. Unlike the tarification by U.S.

companies, which propose a few packages for voice and SMS with add-ons and minutes, a

consumer pays here for all the services he consumes with the exception of incoming calls and

SMS which are free of charge as long as the subscriber is located in the city. In particular,

the company distinguishes outgoing and incoming calls according to the location of the

subscriber when giving phone calls. Our data provide information on voice consumption

measured in minutes and distinguishes three different types of phone calls. Local calls

are when both parties are in the same city. Distance calls are when the two parties are in

different locations, while roaming calls are when the subscriber is outside his home city. The

1Following an agreement with the company, we cannot reveal the name of the city or the country. For
this reason, we cannot name the currency either and all values have been converted in U.S. dollars.



25

latter is introduced because of large fees associated with roaming. 2 We also observe the

number of SMS sent. The data do not contain information on add-ons and other features.

On the other hand, we observe the total bill paid by every subscriber which includes all

these extra features. These extra features constitute an important source of variation across

consumers.

Table 1 provides summary statistics on the bill measured in U.S. dollars, the consump-

tions of the three types of calls measured in minutes and the number of SMS. All consump-

tions are quite variable and very skewed, especially roaming calls. We aggregate the three

quantities of phone calls into a single index denoted qv. The aggregation method follows

Luo (2011) and is explained in Appendix B. Regarding SMS, we keep the number of SMS

and denote it qm. Table 1 also includes summary statistics on qv. Table 2 provides the

average consumptions of qv and qm, the average bill as well as the correlation between these

three variables for the full sample and when controlling for seven categories of the bill value.

When controlling for the bill value, the correlation between the bill and qv is quite small,

though larger than the one between the bill and qm. This confirms the importance of the

unobserved extra features. In other words, the voice and SMS consumptions explain only

part of the consumers’ bills variability. These two correlations tend to decrease with the bill

amount. The correlation between qv and qm is negative when controlling for the bill value

suggesting that consumers tend to subsitute voice for SMS. It varies, however, across bill

values indicating a complex pattern of substituability across consumption levels. On the

other hand, these correlations are quite different when considering the full sample. Specifi-

cally, the two correlations with bills become larger, while the correlation between voice an

message services becomes slightly positive. The latter arises because both consumptions

tend to increase with the bill. This illustrates the importance of controlling for the bill

value.

These data patterns are confirmed in Figures 1–3. Figures 1 and 2 display the scatter

plots of the voice consumptions qv and bills and message consumptions qm and bills, re-

spectively. These scatter plots show again an important variability, i.e. voice and message

2International calls are very rare and eliminated from the sample.



26

consumptions explain only a small proportion of the bill variability. Figure 3 also displays

the pairs (qv, qm) showing no pattern between these two. Lastly, we show evidence of the

tariff curvature. We regress the bill qv, qm and their squares. The R2 of such a regres-

sion is 0.47. Figure 4 displays the fitted tariff in a three dimensional space. We observe a

tariff increasing in both quantities and more importantly a concave tariff, i.e. subscribers

consuming larger quantities of voice and message services enjoy a discount, i.e. they pay a

smaller price per unit when they consume more.

In summary, because this company has a large market share, we can reasonably assume

that it is a monopoly. We also observe an important variability of bills paid by subscribers,

which is partly explained by the variability of their consumption of voice and message ser-

vices. This fact is due to the various add-ons and extra features bought by the consumers.

Subscribers pay for all the services they consume, which is in the spirit of product cus-

tomization. Moreover, the amount they pay appears to be concave in the quantities of

voice and message services.

2.3 The Model

We rely on Armstrong (1996) model of multiproduct nonlinear pricing. In particular, we

consider two products: Voice and message services. A subscriber is characterized by a

pair of types (θv, θm) ∈ Θ ≡ [θv, θv] × [θm, θm] ⊂ IR2
+. This pair of types or tastes is

consumer’s private information. Moreover, because of the multiple features of voice and

message services, which are not observed but are included in the subscribers’ bills, we follow

Luo (2011) model of product customization by introducing another pair of random variables

(ǫv, ǫm) ∈ E ≡ [ǫv, ǫv] × [ǫm, ǫm] ⊂ IR2
+ to capture the subscriber’s additional unobserved

heterogeneity. The latter pair takes into account location and time of the subscriber’s phone

calls as well as all the extra features associated with his phone and message services. The

pair (ǫv, ǫm) is common knowledge to the subscriber and the firm but unobserved by the

analyst. The vector (θv, θm, ǫv, ǫm) is distributed as F (·, ·, ·, ·) with a continuous density

f(·, ·, ·, ·) > 0 on Θ × E .
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A subscriber consuming quantities of voice and message (qv, qm) has a payoff

U(qv, qm; θv, θm, ǫv, ǫm) − T (qv, qm; ǫv, ǫm),

where T (qv, qm; ǫv, ǫm) is the total payment for consuming (qv, qm) when the other features

of consumption are (ǫv, ǫm). We make the following standard assumptions on U(·, ·; ·, ·, ·, ·).

Assumption A1: The function U(·, ·; ·, ·, ·, ·, ·) satisfies

(i) U(0, 0; θv, θm, ǫm, ǫm) = 0 ∀(θv, θm, ǫv, ǫm) ∈ Θ × E,

(ii) U(·, ·; ·, ·, ·, ·) is strictly increasing in all its arguments,

(iii) U(·, ·; ·, ·, ·, ·) is continuous, convex and homogenous of degree one in (θv, θm).

These assumptions follow Armstrong (1996). The homogeneity of degree one may seem

restrictive but this assumption is the simplest one that allows for nontrivial multidimensional

types.3

The firm incurs a cost C(qv, qm; ǫv, ǫm) in serving the consumer with the bundle (qv, qm)

with additional features (ǫv, ǫm). We assume that the cost function is continuously dif-

ferentiable. We consider the case when the firm’s total cost is additively separable across

subscribers. We allow, however, for scope economies in serving a subscriber with two prod-

ucts. We remark that the separability of the cost function across subscribers is a standard

assumption in the nonlinear pricing literature.4

Hereafter to simplify the notations, we drop the index v and m and let θ = (θv, θm),

ǫ = (ǫv, ǫm) and q = (qv, qm). Since the firm observes the additional features ǫ, it chooses

the quantity schedules qv(·; ·) and qm(·; ·) as well as the tariff T (·; ·) to maximize its profit

conditional on ǫ. This gives

max
q(·;ǫ),T (·;ǫ)

∫

Θ
[T (q(θ; ǫ); ǫ) − C(q(θ; ǫ); ǫ)] f(θ|ǫ)dθ, (1)

where f(θ|ǫ) is the conditional density of θ given ǫ. As usual in problems with adverse

3The function U(qv, qm; θv, θm, ǫv, ǫm) = θvUv(qv; ǫv, ǫm)+θmUm(qm; ǫv, ǫm) satisfies A1 but do not allow
cross-price effects in demand. See also Adams and Yellen (1976). Assumption A1 is more general.

4Perrigne and Vuong (2011a) consider instead the cost for the total production across subscribers. Luo
(2011) shows that the two models are nonnested except if one assumes a constant marginal cost.
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selection, we eliminate the tariff T (·; ·) by considering the consumer surplus S(θ; ǫ) =

maxq≥0 U(q; θ, ǫ) − T (q; ǫ). Following A1 and T (0; ǫ) ≤ 0 for all ǫ ∈ E because consumers

cannot be forced to consume, S(·; ǫ) is nonnegative, continuous, increasing and convex in θ.

See Armstrong (1996). We are looking at demand functions q(·; ǫ) that are implementable,

i.e. that satisfies the maximization problem of the consumer facing some tariff T (·; ǫ). In

the single product case where the single crossing property holds, a necessary and sufficient

condition for implementability is the monotonicity of q(·; ǫ). Because we consider multidi-

mensional screening, the single crossing property does not hold and we will ensure that the

demand q(·; ǫ) verifies implementability by constructing a corresponding tariff.

To solve the problem of multidimensional screening, we follow the reduction technique.

In particular, the problem is rewritten in terms of the cost incurred to serve the customer.5

Let V (c; θ, ǫ) be the cost-based indirect utility function

V (c; θ, ǫ) ≡ max
q:C(q;ǫ)≤c

U(q; θ, ǫ) (2)

associated with the utility U(q; θ, ǫ). To insure implementability, we make separability

assumptions on the indirect utility function and the joint density f(θ, ǫ).

Assumption A2:

(i) The indirect utility function is multiplicatively separable in θ as V (c; θ, ǫ) = h(θ)V0(c;

ǫ) with h(·) ≥ 0,

(ii) The joint density f(θ, ǫ) is multiplicatively separable as f(θ, ǫ) = fh(h(θ))f0(θ, ǫ),

where f0(·, ·) is homogenous of degree zero in θ.

We remark that h(·) is increasing and homogenous of degree one following A1-(ii,iii).6

Intuitively, h can be interpreted as an aggregation of the tastes (θv, θm) as (say) an average

taste.

5The reduction technique is often applied with particular parametric specifications of the primitives as
in Ivaldi and Martimort (1994). See also Rochet and Stole (2003). The idea of cost-based tariff developed
by Armstrong (1996) avoids these restrictive specifications. It requires, however, some assumptions on the
primitives as discussed in the text. See also Aryal and Perrigne (2011) in the context of insurance where
certainty equivalence is used to reduce the two dimensions of adverse selection (risk and risk aversion) into
a single one.

6We note that A2-(i) is more general than assuming U(q; θ, ǫ) = h(θ)U0(q; ǫ) as the latter implies A2-(i).
On the other hand, the reverse is not true.
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We denote by φ(·|ǫ) and Φ(·|ǫ) the density and distribution of the random variable

h = h(θ) conditional on ǫ induced by the underlying distribution F (θ, ǫ). The conditional

density φ(·|ǫ) satisfies

φ(h|ǫ) = kǫhfh(h), (3)

where kǫ = 1/
∫

Sh|ǫ
hfh(h)dh from equation (24) in Armstrong (1996), where Sh|ǫ is the

support of h given ǫ. Given that f(·, ·, ·, ·) > 0 everywhere on its support Θ × E and h(·) is

increasing, Sh|ǫ is independent of ǫ thereby implying that kǫ is independent of ǫ and hence

h ≡ h(θ) is independent of ǫ. Such an independence is resulting from A2-(ii).7 On the other

hand, we still allow for some dependence between (θv, θm) and (ǫv, ǫm).

We need to make an assumption involving the hazard rate of the density φ(·) of h.

Assumption A3: The density φ(·) is such that 1 − 1−Φ(h)
hφ(h) is nondecreasing in h ∈ H ≡

[h, h] = [h(θv, θm), [h(θv, θm)].

A sufficient condition to obtain both a nondecreasing demand and a concave tariff is given

by A3. We remark that A3 is stronger than the standard hazard rate condition, i.e. h −
[(1 − Φ(h))/φ(h)] is nondecreasing in h.

We are now in position to solve the firm’s problem leading to a cost-based tariff T (C(q; ǫ); ǫ)

for any given value of ǫ.

Proposition 1: Under Assumptions A1, A2 and A3, the optimal tariff is cost-based. In

particular, there exists a function T (·; ǫ) such that the payment of a (θ, ǫ) subscriber is

t = T (C(q; ǫ); ǫ). Moreover, the (θ, ǫ) subscriber chooses a quantity q solving

max
{q:c(q;ǫ)≤c}

U(q; θ, ǫ), (4)

where c is solution of

max
c≥0

{[
h− 1 − Φ(h)

φ(h)

]
V0(c; ǫ) − c

}
(5)

7Alternative assumptions such as f(θ, ǫ) = fh(h(θ, ǫ), ǫ)f0(θ, ǫ) could relax the independence of h and ǫ.
Identification would become even more difficult. See also footnote 10.
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with h = h(θ). Moreover, the resulting cost-based tariff T (c; ǫ) is increasing and concave in

c.

The proof of Proposition 1 follows Armstrong (1996) (Propositions 2 and 3). Given ǫ, (5)

implicitly defines a one-to-one increasing mapping between c and h as c = C(h; ǫ). The

firm would serve all subscribers if

[
h− 1 − Φ(h)

φ(h)

]
V0(C(h; ǫ); ǫ) − C(h; ǫ) ≥ 0.

In general, there is optimal exclusion of some consumers, i.e. there exists a value h0 ∈ (h, h)

defined as

[
h0 − 1 − Φ(h0)

φ(h0)

]
V0(C(h0; ǫ); ǫ) − C(h0; ǫ) = 0, (6)

below which consumers will not buy cellular phone service. The term [h0V0(C(h0; ǫ); ǫ)−
C(h0; ǫ)]φ(h0) is the marginal gain for expanding the customer base by lowering h0, while

[1 − Φ(h0)]V0(C(h0; ǫ); ǫ) is the corresponding marginal loss for reducing the tariff to every

customer above h0. Equation (6) balances these two effects. In addition, there is a boundary

condition given by

T (C(h0; ǫ); ǫ) = h0V0(C(h0; ǫ); ǫ) (7)

because the informational rent left to the threshold customer is zero. The optimal exclusion

is proved in the appendix.

The next corollary provides the solution of the firm’s optimization problem, i.e. the

one-to-one mapping between the unobserved subscriber’s aggregate taste h and the firm’s

cost c as well as the one-to-one mapping bewtween this cost and the tariff or payment paid

by the subscriber.

Corollary 1: Under Assumptions A1, A2 and A3, for any given value of ǫ, the tariff T (·; ǫ)
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satisfies

T ′(c; ǫ) = hV ′
0(c; ǫ) (8)

subject to the boundary condition (7), where c = C(h; ǫ) solves

hV ′
0(c; ǫ) = 1 +

1 − Φ(h)

φ(h)
V ′

0(c; ǫ). (9)

Equation (9) is the first-order condition for (5). We turn to (8). The subscriber’s optimiza-

tion problem is to maximize U(q; θ, ǫ) − T (q; ǫ) with respect to q. However, as soon as the

optimal tariff is cost-based, this problem is solved in two steps. In a first step, he maximizes

his payoff subject to C(q; ǫ) ≤ c. This is equivalent to (4). In a second step, he maximizes

V (c; θ, ǫ) − T (c; ǫ) with respect to c. Equation (8) is the first-order condition of this sec-

ond step problem. The firm designs a payment T (·; ǫ) such that the subscriber’s optimal

c will be given by (9). In particular, (8) together with the boundary condition (7), where

h0 satisfies (6), characterize the optimal tariff T (·; ǫ). Equation (8) says that the marginal

payment equals the marginal indirect utility, while (9) says that the marginal payoff equals

the marginal cost adjusted by a positive distortion due to incomplete information. The

optimal quantity q(·; ǫ) is then obtained from (4).

2.4 Identification and Estimation

In view of Section 3, the model primitives are [U(·, ·; ·, ·, ·, ·), f(·, ·, ·, ·), h(·, ·), C(·, ·; ·, ·)],
namely the subscribers’ utility function, the type density with f(·, ·, ·, ·) = fh(·)f0(·, ·, ·, ·),
the type aggregation function and the firm’s cost. In view of Section 2, the observables

are the subscribers’ consumed quantities of various phone calls and SMS as well as their

monthly bills, which include a large set of add-ons and other features. The observables are

denoted by qv, qm and t. The vector (qv, qm, t) is distributed as G(·, ·, ·).
We study first the identification of the model primitives. Once identification is estab-
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lished, we develop a nonparametric estimation method for the model primitives.

2.4.1 Nonparametric Identification

We proceed in several steps. Given the observables, it is obvious that the model is not

identified without further assumptions on the model primitives. First, we provide some

identifying restrictions and we derive the resulting equations that will be used in identifi-

cation. Second, we study the identification of the indirect utility and cost functions as well

as the density of the aggregate type. Third, we investigate the identification of the utility

function and the joint density of types.

Identifying Assumptions

The terms ǫv and ǫs capture the subscriber’s tastes for extra features and add-ons to

voice and SMS consumptions such as roaming charges and MMS. Consumers with larger

values of ǫv and ǫm enjoy a larger utility from their consumptions of voice and message

services than a subscriber with lower values. Following Luo (2011), we assume that these

terms of unobserved heterogeneity can be interpreted as quantity multipliers.

Assumption A4: The utility and cost functions satisfy

(i) U(qv, qm; θv, θm, ǫv, ǫm) = h(θv, θm)U0(qvǫv, qmǫm),

(ii) C(qv, qm; ǫv, ǫm) = κ(qvǫv)γ(qmǫm)1−γ with γ ∈ (0, 1).

The multiplicative separability of the utility function satisfies A2-(i). A more general speci-

fication for the multiproduct cost function is κ0 +κ(qvǫv)γv (qmǫm)γm . The term κ0 captures

a fixed cost associated to any subscriber such as billing costs and incoming calls. Moreover,

the cellular phone technology requires phones to be connected to a tower even if no phone

call is made. The variable cost κ(qvǫv)γv (qmǫm)γm arises from the delivery and recording

of voice and message services. For instance, roaming as captured by ǫv is costly to the

firm because other cellular sites and mobile-services switching centers are involved thereby

requiring financial settlements with other cellular phone providers. Similarly, delivering an

MMS requires more data flow than a simple SMS, which is costly to the firm and captured

by ǫm.
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Assumption A4-(ii) imposes κ0 = 0 and γv + γm = 1. These restrictions arise from

identification. Specifically, as in any firm’s optimization problem, the optimal solution

results from the profit at the margin, which involves the marginal variable cost only. Thus

this solution does not depend on the fixed cost κ0, which is therefore not identified. On the

other hand, because the firm is operating, the tariff covers the total cost thereby providing

an upper bound for the fixed cost. When there is a single product with a single parameter

of adverse selection and a known tariff T (·), Perrigne and Vuong (2011a) (Lemma 3) show

that only the marginal cost evaluated at the largest quantity is identified at most. More

generally, a one parameter specification of the variable cost function is identified in that

case. Here, we have two products with two parameters of adverse selection while T (·) is

unknown. On the other hand, optimal exclusion provides an additional equation. Thus

we may expect to identify more than one parameter of the cost function. We then make

the assumption γv + γm = 1 to identify κ. This corresponds to a situation where there

is neither scale economies nor scale diseconomies, which seems reasonable for the cellular

phone technology.

Under A4, a change of variables leads to the following indirect utility function given

(ǫv, ǫm)

V0(c; ǫv, ǫm) = max
(qvǫv)γ(qmǫm)1−γ≤c

U0(qvǫv, qmǫm) = max
κQγ

v Q1−γ
m ≤c

U0(Qv, Qm),

where Qv ≡ qvǫv and Qm ≡ qmǫm. Thus V0(·; ·, ·) no longer depends on (ǫv, ǫm). We then

drop these arguments as V0(c; ǫv, ǫm) = V0(c). Similarly, C(qv, qm; ǫv, ǫm) = C(Qv, Qm).

Thus A4 has greatly simplified the functions as the terms (ǫv, ǫm) have disappeared.8 In

particular, using A4, (5) becomes

max
c≥0

{[
h− 1 − Φ(h)

φ(h)

]
V0(c) − c

}
,

whose solution provides a one-to-one mapping between the optimal cost c and the aggregate

type h = h(θv, θm). We denote this mapping C(·) so that c = C(h). Moreover, making a

8If (ǫv, ǫm) were observed, then we could drop A2-(ii) and A4 and conduct our analysis conditional on
(ǫv, ǫm). See also footnote 9.
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change of variables as above and using A4, (4) becomes

max
κQγ

v Q1−γ
m ≤C(h)

U0(Qv, Qs). (10)

The solution of (10) is the pair (Qv(h), Qm(h)), wich provides a one-to-one mapping between

each effective quantity Qv and Qm with the aggregate type h. Thus, the voice and message

quantities consumed by a (θv, θm, ǫv, ǫm) consumer are

qv(θv, θm; ǫv, ǫs) =
Qv(h(θv, θm))

ǫv
, qm(θv, θm; ǫv, ǫs) =

Qm(h(θv, θm))

ǫm
.

Proposition 1 states that the optimal multiproduct tariff for any given value of (ǫv, ǫm)

is a cost-based tariff. Under A2 and A4, the functions V0(·), Qv(·), Qm(·) do not depend on

(ǫv, ǫm). Thus, the tariff does not depend on (ǫv, ǫm) either. In other words, there is a single

cost-based tariff T (·) such as a (θv, θm, ǫv, ǫm) subscriber pays t = T [C[Qv(h(θv, θm)), Qm(h(θv, θm))]]

with T (·) strictly increasing and concave. Moreover, from Corollary 1, the tariff T (·) and

the cost c satisfy

T ′(c) = hV ′
0(c), (11)

hV ′
0(c) = 1 +

1 − Φ(h)

φ(h)
V ′

0(c) (12)

with boundary condition T (C(h0)) = h0V0(C(h0)) from (7), where h ∈ [h0, h] ⊂ [h, h] and

c ∈ [c, c], where c = C(h0), c = C(h) and h0 is the threshold type above which the firm

serves consumers. From (6), the latter is defined as

[
h0 − 1 − Φ(h0)

φ(h0)

]
V0(C(h0)) − C(h0) = 0. (13)

To summarize, the model primitives are [U0(·, ·), fh(·), f0(·, ·, ·, ·), h(·, ·), κ, γ]. The ob-

servations are (t, qv, qm). The econometric model is

t = T [κQv(h)γQm(h)1−γ ]

qv =
Qv(h)

ǫv
, qm =

Qm(h)

ǫm
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where h = h(θv, θm) ∈ [h0, h] is distributed as Φ(·) with density φ(·) given by (3), h0 satisfies

(13), Qv(·) and Qm(·) solve (10) with C(·) solving (12), and T (·) satisfies (11).

Figure 12 illustrates the cost-based tariff. The surface displays the cost-based tariff as a

function of Qv and Qm. Some contours are drawn in the (Qv, Qm) plane. Because the tariff

is cost-based, these contours can be interpreted as isocost curves. The dashed curve going

through Q = (Qv, Qm) is an indifference curve. The consumer chooses the combination

(Qv, Qm) where his indifference curve is tangent to the isocost curve, i.e (Qv, Qm) satisfies

C1(Qv, Qm)

C2(Qv, Qm)
=
h(θv, θm)U01(Qv, Qm)

h(θv, θm)U02(Qv, Qm)
=
U01(Qv, Qm)

U02(Qv, Qm)
,

where the index 1 or 2 refers to the first or second argument for the partial derivative,

respectively. When the payment and hence the cost increase, the bundle (Qv, Qm) varies

along the curve displayed in Figure 12. The actual consumption pair (qv, qm) is represented

in the figure as q, which deviates from Q due to (ǫv, ǫm) .

Because T (·) is strictly increasing, the payment t and the cost c are related through

a one-to-one mapping. Since there is a one-to-one mapping between the cost c and the

aggregate type h, we also have a one-to-one mapping between t and h. The latter property

is crucial to our identification results. Moreover, for any t ∈ [t, t], where t = t(h0) and

t = t(h), there exists a unique pair of quantities Qv and Qm such that t = T (C(Qv, Qm)).

We also denote these two mappings by Qv(·) and Qm(·) whether the argument is t or h.

Assuming that we can identify (Qv(·), Qm(·)) as shown below, several difficulties remain.

In the previous literature on the identification of models with incomplete information such

as auctions and nonlinear pricing, we exploit a one-to-one mapping between an unobserved

type and an observed choice. For instance, in auctions, the one-to-one mapping between the

unobserved bidder’s private value and his observed bid is the key to identify the distribution

of private values. See Guerre, Perrigne, and Vuong (2000) and Athey and Haile (2007) for

a survey.9 In the case of nonlinear pricing with a single product, the unobserved type is the

consumer’s willingness to pay and the observed choice is a quantity. This mapping combined

9When bidders are risk averse, the bidder’s utility function is an additional primitive to identify. Because
no other observation can be exploited in auctions, identification is achieved by exploiting some exogenous
variation in the number of bidders as in Guerre, Perrigne, and Vuong (2009).
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with the tariff as a function of quantity is used to identify the distribution of types and

the consumer’s utility. See Perrigne and Vuong (2011a). Because of the multidimensional

screening problem, we have a cost-based tariff and thus an additional difficulty due to the

unobserved cost. This problem is solved with the identification of the cost parameters κ

and γ.

Identification of V ′
0(·), κ, γ and φ(·)

We first address the identification of Qv(·) and Qm(·) as functions of the payment t.

From the definition of Qv and Qm, we have

logQv = log qv + log ǫv, logQm = log qm + log ǫm

Since (ǫv, ǫm) are unobserved, we make a standard location normalization on (ǫv, ǫm).

Assumption A5: We have E[log ǫv] = 0 and E[log ǫm] = 0.

Using the independence of h with (ǫv, ǫt) from A2-(ii) combined with the one-to-one mapping

between t and h gives E[log ǫv|T = t] = 0 and E[log ǫm|T = t] = 0. Thus,

logQv(t) = E[log qv + log ǫv|T = t] = E[log qv|T = t],

logQm(t) = E[log qm + log ǫm|T = t] = E[log qm|T = t].

Thus Qv(·) and Qm(·) are identified as the regressions of log qv and log qm on t, respectively.

Formally, we have

Proposition 2:The functions Qv(·) and Qm(·) are identified on [t, t].

To clarify ideas, we first suppose that the cost c is observed. Let Gc(·) be its distribution

on [c, c]. Thus, the tariff function T (·) is known as well from the observations on t and c. We

can then rely on Perrigne and Vuong (2011a). Namely, we express the cost-based indirect

utility V0(·) and the unobserved aggregate taste as functions of the cost c of producing the

bundle (Qv, Qm). These results are stated in the next lemma.
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Lemma 1:For any h† ∈ [h0, h], the first-order conditions (11) and (12) are equivalent to

V ′
0(c) =

T ′(c)

h†ξ(c)
, h(c) = h†ξ(c), (14)

for all c ∈ [c, c], where

ξ(c) =

(
1 −Gc(c)

1 −Gc(C(h†))

) 1
T ′(c)

−1

exp

{∫ c

C(h†)

T ′′(x)

T ′(x)2
log(1 −Gc(x))dx

}
, (15)

with ξ(C(h†)) = 1 and ξ(c) = limc↑c ξ(c) = h/h†.

The proof of Lemma 1 follows Perrigne and Vuong (2011a) (Lemma 5) by noting that their

marginal cost is equal to one here. Lemma 1 exploits the one-to-one mapping between

the cost c of producing the bundle (Qv, Qm) and the consumer’s aggregate type h. It is

important to note that Lemma 1 applies only to individuals who are not excluded and hence

who buy cellular phone services, i.e. whose aggregate type is larger than h0.

Lemma 1 shows that the marginal indirect utility V ′
0(·) and the unobserved aggregate

type h are identified up to h† from the observed cost and tariff suggesting a normalization on

h†. Moreover, (15) involves the cost evaluated at h†, namely C(h†) = κQv(t†)
γQm(t†)

1−γ ,

where h† = h(t†). Because we estimate nonparametrically Qv(·) and Qm(·), we choose h†

to be the median of the aggregate type distribution to minimize boundary effects and set

it at 1.

Assumption A6:The median of the subscriber’s type is equal to 1.

This identifies V ′
0(·) and h(·) on [c, c] when c is observed. Moreover, h0 is identified from

(14) and (15) by h0 = h(c) = 2(1/T ′(c))−1.

In practice, however, the cost c is not observed. But we know that t = T (qv, qm; ǫv, ǫm) =

T (C(Qv, Qm)) = T (κQγ
vQ

1−γ
m ), where T (·), κ and γ are unknown. The quantities (Qv, Qm)

are not observed but can be recovered from the payment t using Proposition 2. The problem

is reminiscent of single-index and transformation models. See e.g. Horowitz (1996) and

Powell, Stock, and Stoker (1989). The next lemma shows that κ, γ and T (·) are identified.

Proposition 3: The cost parameters γ and κ as well as the tariff T (·) are identified if and
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only if

(
Q′

m(t) − log 2

gt(t)
Q′′

m(t) − Qm(t)

t

)(
Q′

v(t) − log 2

gt(t)
Q′′

v(t) − Qv(t)

t

)
< 0.

The proof is given in Appendix A. In particular, γ is identified by the lower boundary

defined by (13) leading to the quadratic equation

γ
d logQv(t)

dt
+ (1 − γ)

d logQm(t)

dt
− 1

t
=

log 2

gt(t)

[(
γ
d logQv(t)

dt
+(1−γ)

d logQm(t)

dt

)2

+γ
d2 logQv(t)

dt2
+(1−γ)

d2 logQm(t)

dt2

]
, (16)

which has a unique solution under the condition of Proposition 3.10 Moreover, κ is identified

by exploiting (11) and (12) at the upper boundary leading to

1

κ
= Qv(t)γQm(t)1−γ

{
γ
d logQv(t)

dt
+ (1 − γ)

d logQm(t)

dt

}
. (17)

To identify T (·), we know that t = T (κQv(t)γQm(t)1−γ) or equivalently log T−1(t) = log κ+

γ logQv(t) + (1 −γ) logQm(t) showing that T−1(·) is identified using Proposition 2, namely

log T−1(t) = log κ+ γE[log qv|T = t] + (1 − γ)E[log qm|T = t], (18)

for any t ∈ [t, t].

Once κ, γ and T (·) are identified, we use Lemma 1 to identify V ′
0(·) and h(·) with the

normalization in A6. The latter is then used to identify the subscribers type distribution

Φ∗(·) = [Φ(·) − Φ(h0)]/[1 − Φ(h0)]. This result is stated in the next proposition. The proof

follows from Perrigne and Vuong (2011a) (Proposition 2).

Proposition 4: The marginal indirect utility function V ′
0(·) and the distribution of the

subscribers’ aggregate type Φ∗(·) are identified on [c, c] and [h0, h], respectively.

As a matter of fact, the cost-based indirect utility function V0(·) is identified on [c, c] because

10This condition can be checked ex post from the estimates of Qv(·) and Qm(·).
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V0(c) =
∫ c

c V
′

0(x)dx +V0(c), where V0(c) = t/h0 from the boundary condition for the tariff.

Moreover, if one knew the proportion of consumers Φ(h0) who do not purchase cellular

phone services, we could identifiy Φ(·) on [h0, h]. In addition, we also identify the cost as a

function of the bill, i.e. C(t) = κQv(t)γQm(t)1−γ for t ∈ [t, t].

Identification of U0(·, ·), fh(·) and f0(·, ·, ·, ·)
It remains to discuss the identification of the utility function U0(·.·) and the joint density

of types f(·, ·, ·, ·). We have

V0(c) = max
κQγ

v Q1−γ
m ≤c

U0(Qv, Qm).

Because the optimal solution (Qv(c), Qm(c)) of this problem is equal to (Qv(t), Qm(t)) when

c = C(t), then

U0(Qv(t), Qm(t)) = V0[κQv(t)γQm(t)1−γ ].

Hence, the utility function U0(·, ·) is identified on the curve {(Qv(t), Qm(t)); t ∈ [t, t]} de-

picted in Figure 5. The latter is similar to an income curve but with the difference that

parallel budget lines are replaced by isocost curves. Without a parameterization of U0(·, ·),
we cannot infer further the complementarity and/or substitution between voice and message

services because the domain where we identify the utility function is unlikely to allow us to

derive the demand functions and estimate the cross-price elasticities.

Regarding the identification of f(·, ·, ·, ·), the model tells us that subscribers with the

same aggregate type h = h(θv, θm) have the same effective consumption levels Qv and Qm

of voice and message services though consumers may differ through θv and θm. This arises

from the pooling at equilibrium due to multi-dimensional screening. Thus, despite the

identification of the aggregate type h, the function h(·, ·) is not identified. Moreover, even if

h(·, ·) was known, we do not have any variation in the data that would allow us to identify

θv and θm and hence their marginal densities. On the other hand, we have φ(h) = khfh(h).

Thus, fh(·) is identified up to a multiplicative constant on [h0, h] since the aggregate type h

is identified on this interval following Lemma 1. Moreover, from Proposition 2, we identify
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ǫv = Qv(t)/qv and ǫm = Qm(t)/qm since Qv(·) and Qm(·) are identified and (t, qv, qm) are

observed. Thus the joint distribution of (ǫv, ǫm) conditional on t ∈ [t, t] is identified. Since

the distribution of payments is observed, it follows that the joint distribution of (ǫv, ǫm) is

identified. The above results are summarized in the next proposition.

Proposition 5: The utility function U0(·, ·) and the type density f(·, ·, ·, ·) are partially

identified. In particular, U0(·, ·) is identified at values {(Qv(t), Qm(t)); t ∈ [t, t]}, while the

joint density of (ǫv, ǫm) is identified.

2.4.2 Nonparametric Estimation

The data consist of (qvi, qmi, ti), i = 1, . . . , N . Equations (14) and (15) provide the marginal

cost-based indirect utility function V ′
0(·) and the aggregated type h(·) as functionals of T ′(·),

T ′′(·) and Gc(·). We proceed in several steps. In a first step, we estimate the parameters

κ and γ of the cost function and the tariff T (·) using Proposition 3. In particular, this

step requires the estimation of the lower and upper boundaries of the tariff, its density at

the lower boundary and the functions Qv(·) and Qm(·) as well as their first and second

derivatives evaluated at these boundaries. In a second step, we use Lemma 1 to estimate

V ′
0(·) and h(·). We then construct a sample of pseudo aggregate types h and estimate its

truncated density φ∗(·). In a third step, we estimate U0(·, ·) and the joint density of (ǫv, ǫm)

using Proposition 5.

Estimation of κ, γ and T (·)
The first step consists in estimating κ, γ and T−1(·). We first estimate κ and γ using

(16) and (17). These two equations requires estimators for t, t, gt(t), Qv(·), Qm(·) and their

first and second derivatives at these two boundaries. We use consistent estimators t̂ and t̂

such as the minimum and maximum of the observed bills ti. We estimate the bill density

gt(·) by kernel estimator. Because of boundary effects, we use a one-sided kernel. Following

Campo, Guerre, Perrigne, and Vuong (2011), we use K(x) = (−6x+ 4)1I(0 ≤ x ≤ 1) giving

ĝt(̂t) =
1

Nbt

N∑

i=1

K

(
t̂− ti
bt

)
, (19)
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where bt is a bandwidth.

To estimate Qv(·) and Qm(·), we use sieve estimators so as to impose easily some possible

shape constraints. Specifically, we use the constrained regression splines proposed by Dole

(1999) where

Qj(t) ≈ βj0 + βj1t+
KN∑

k=1

δjkψk(t)

where KN is the number of interior knots, for j = v,m and t ∈ [t, t]. The range [t, t] is

partioned into KN + 1 bins of the form [τk−1, τk) for k = 1, . . . ,KN + 1 with τ0 = t and

τKN +1 = t. The basis function ψk(·) is

ψk(t) =





0 if t ∈ [−∞, τk−1]

(t− τk−1)3/[6(τk − τk−1)] if t ∈ [τk−1, τk]

((t− τk+1)3/[6(τk − τk+1)]) + a1t+ a0 if t ∈ [τk, τk+1]

a1t+ a0 if t ∈ [τk+1,+∞]

where a1 = (τk+1 − τk−1)/2 and a0 =
(
(τk − τk−1)2 − (τk − τk+1)2 + 3τk(τk+1 − τk−1)

)
/6.

The estimator Q̂j(·) is obtained from logQj(t) = E[log qj |T = t] leading to the least square

minimization

min
δjN

1

N

N∑

i=1


log qji − log


βj0 + βj1ti +

KN∑

k=1

δjkψk(ti)






2

, (20)

where δjN = (βj0, βj1, δj1, . . . , δjKN
). Thus, Q̂j(t) = β̂j0 + β̂j1ti +

∑KN

k=1 δ̂jkψk(ti). Thus, its

first and second derivatives are Q̂′
j(t) = β̂j1 +

∑KN

k=1 δ̂jkψ
′
k(t) and Q̂′′

j (t) =
∑KN

k=1 δ̂jkψ
′′
k(t),

respectively. These expressions are used to estimate d log Q̂j(t)/dt = Q̂′
j(t)/Q̂j(t) and

d2 log Q̂j(t)/dt2 = (Q̂′′
j (t)/Q̂j(t)) − (Q̂′

j(t)/Q̂j(t))2. These are then evaluated at t̂ and t̂

for j = v,m. Inserting these estimates in (16) and solving for γ gives γ̂. Using γ̂ in (17)

gives κ̂.

To estimate T−1(·), we use (18). To impose that T−1(·) is increasing and convex, we
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estimate T−1(·) by a constrained sieve estimator. Specifically,

T−1(t) ≈ βt0 + βt1t+
KN∑

k=1

δtkψk(t)

where KN is the number of interior knots and the ψk(·)s are the basis functions defined

above. Let δtN = (βt0, βt1, δt1, . . . , δtKN
) and ∆tN = {δtN : β1 ≥ 0, δ1 ≥ 0, . . . , δKN

≥ 0}.

The estimator T̂−1(·) is obtained from (18) replacing κ and γ by their estimates κ̂ and γ̂

leading to the least square minimization

min
δtN ∈∆tN

1

N

N∑

i=1


log κ̂+ γ̂ log qvi + (1 − γ̂) log qmi − log


βt0 + βt1ti +

KN∑

k=1

δtkψk(ti)






2

,(21)

giving T̂−1(t) = β̂t0 + β̂t1t+
∑KN

k=1 δ̂tkψk(t) for t ∈ [t, t].11

Estimation of V ′
0(·), h(·) and φ∗(·)

One could use (14) and (15) to estimate V ′
0(·) and h(·). These are functions of the cost

c that can be estimated from c = κQγ
v(t)Q1−γ

m (t). To minimize estimation errors, we prefer

instead to rewrite (14) and (15) directly from the observed bills t as there is a one-to-one

mapping between c and t. In particular, for any c ∈ [c, c], we have Gc(c) = Pr(c̃ ≤ c) =

Pr[T (c̃) ≤ T (c)] ≡ Gt(T (c)), where Gt(·) denotes the distribution of consumers’ bills. Thus

making the change of variable c = T−1(t), we can rewrite ξ(·) as

ξ(T−1(t)) = [2(1 −Gt(t))]
T −1′(t)−1 exp

{∫ t

t†

T ′′[T−1(x)]

T ′[T−1(x)]2
log[1 −Gt(x)]T−1′(x)dx

}

= [2(1 −Gt(t))]
T −1′(t)−1 exp

{
−
∫ t

t†

T−1′′(x) log[1 −Gt(x)]dx

}
, (22)

for t ∈ [t, t], where we have used Gt(t†) = 1/2 as t† is the median, T−1′(t) = 1/T ′[T−1(t)]

11An alternative estimation method for the first step would be to estimate simultaneously κ, γ and
T−1(·). In this case, δtN would also include the parameters (κ, γ) while ∆tN would need to include
the additional identifying conditions for κ and γ. For instance, (17) is equivalent to T−1′(t) = 1

or β1 +
∑KN

k=1
δkψ

′
k(t) = 1. Thus the estimator would rely on a minimum distance estimator based

on the moment E
[
E2[log κ+ γ log qv + (1 − γ) log qm − log T−1(ti)|T = ti]

]
= 0 as proposed by Ai and

Chen (2003). Alternatively, we could use Lavergne and Patilea (2010) estimator based on the moment
E
[
(log κ+ γ log qv + (1 − γ) log qm − log T−1(ti))E[γ log qv + (1 − γ) log qm − log T−1(ti)|T = ti]

]
= 0
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and T−1′′(t) = −(T ′′[T−1(t)]/T ′[T−1(t)]2) × T−1′(t).

For every t ∈ [t, t), the estimator of ξ(·) is obtained by replacing T−1(·) by its estimator

obtained from the first step and Gt(·) by its empirical distribution

Ĝt(t) =
1

N

N∑

i=1

1I(ti ≤ t).

Because Ĝt(·) is a step function with steps at the ordered observations t1, . . . , tN , the integral

in (22) can be written as a finite sum of integrals. On each of these integrals, log[1 − Ĝt(·)]
is a constant, while the primitive of T−1′′(·) is T−1′(·). For t values above the median, i.e.

t ∈ [t†, t) with t† = t[N/2], we obtain

ξ̂(T̂−1(t)) = [2(1 − Ĝt(t))]
T̂ −1′(t)−1 exp

{
−

j∑

k=[N/2]

(
T̂−1′(tk+1) − T̂−1′(tk)

)
log(1 − Ĝt(t

k))

−
(
T̂−1′(t) − T̂−1′(tj)

)
log(1 − Ĝt(t

j))

}

for t ∈ [tj , tj+1) and j ≥ [N/2]. Similarly, for values below the median, we obtain

ξ̂(T̂−1(t)) = [2(1 − Ĝt(t))]
T̂ −1′(t)−1 exp

{ [N/2]∑

k=j+1

(
T̂−1′(tk+1) − T̂−1′(tk)

)
log(1 − Ĝt(t

k))

+
(
T̂−1′(tj+1) − T̂−1′(t)

)
log(1 − Ĝt(t

j))

}

for t ∈ [tj , tj+1) and j < [N/2].

From (14) we then estimate V ′
0(·) and h(·) by

V̂ ′
0(T̂−1(t)) =

1

T̂−1′(t)ξ̂(T̂−1(t))
, ĥ(T̂−1(t)) = ξ̂(T̂−1(t)) (23)

where t = T̂ (c), for c ∈ [c, c) = [T−1(t), T−1(t)). We can then construct a sample of

pseudo values ĥi = ξ̂(T̂−1(ti)), i = 1, . . . , N . We use these pseudo sample to estimate

nonparametrically the density of aggregated type φ̂∗(·) on a subset of its support [h0, h].
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Namely,

φ̂∗(h) =
1

Nhh

N∑

i=1

K

(
h− ĥi

hh

)
(24)

for h ∈ (h0, h), hh is a bandwidth and K(·) is a triweight kernel.

Estimation of U0(·, ·) and fǫvǫm(·, ·)
Following Proposition 5, the utility function U0(·, ·) can be estimated at (Qv(t), Qm(t)),

which can be replaced by their estimates Q̂v(t) and Q̂m(t) obtained from the first step.

Specifically, we have Û0(Q̂v(t), Q̂s(t)) = V̂0(κ̂Q̂v(t)γ̂Q̂m(t)1−γ̂) = V̂0(Ĉ(t)) ≡ V̂0(t) for t ∈
[t, t], with

V̂0(Ĉ(t)) ≡
∫ Ĉ(t)

ĉ
V̂ ′

0(x)dx+ V̂0(ĉ)

=

∫ t

t̂
V̂ ′

0 [T̂−1(y)]T̂−1′(y)dy + V̂0(̂t)

=

∫ t

t̂

1

ξ̂[T̂−1(y)]
dy + V̂0(̂t), (25)

where the second equality uses the change of variable x = T̂−1(y) and the third equality fol-

lows from (22). Moreover, V̂0(̂t) = t̂/ĥ0 = t̂21−T̂ −1′ (̂t). The latter comes from the boundary

condition combined with h0 = 2(1/T ′(c))−1 and c = T−1(t).

Lastly, regarding the density of (ǫv, ǫm), from Proposition 2 we can estimate ǫvi and

ǫmi by ǫ̂vi = Q̂v(ti)/qvi and ǫ̂mi = Q̂m(ti)/qmi, respectively. Using this pseudo sample, we

estimate nonparametrically fǫvǫm(·, ·) by

f̂ǫvǫm(ev, em) =
1

Nh2
e

N∑

i=1

K

(
ev − ǫ̂vi

he

)
K

(
em − ǫ̂mi

he

)
(26)

for (ev, em) ∈ (ǫv, ǫv) × (ǫm, ǫm), where K(·) is the triweight kernel and he is a bandwidth.
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2.5 Empirical Results

The first step consists in estimating κ, γ and T−1(·). The estimates of κ and γ are 0.2232 and

0.7544, respectively. This means that increasing by 1% the quantity of voice Qv increases

the production cost by 0.75%, while increasing the quantity of message Qm by 1% increases

the cost by 0.25%, respectively. The quantity Qm includes MMS and other data features

which are quite costly to produce. Figure 6 displays the concave cost-based tariff T̂ (c).

The second step consists in estimating the marginal indirect utility V ′
0(·), the aggregate

type function h(·) and its truncated density φ∗(·). Figure 5 displays the former two. Both

satisfy the assumptions of the theoretical model, i.e. V̂ ′
0(·) is decreasing in cost, while ĥ(·) is

increasing in cost. In Figure 7, the density of aggregate types truncated at ĥ0 is unimodal

and displays an important skewness. Figure 8 displays 1 − Φ∗(h)/[hφ∗(h)], which appears

to be increasing thereby satisfying A3. Since t = T (c), we can also represent the payoff as

a function of t. Figure 9 displays the estimated indirect base utility V̂0(·) and the payoff

ĥ(t)V̂0(t). Both are increasing in t as assumed by the theoretical model. The difference

between ĥ(t)V̂0(t) and t (the 45 degrees line) measures the rent left to the consumers due

to asymmetric information. This rent is increasing in t, which is predicted. As displayed

by Figure 9, this rent increase is mainly due to the dramatic increase in the aggregate

type and modestly to the increase in the base indirect utility. This suggests that some

subscribers with a high willingness to pay for cellular phone services enjoy a much larger

payoff relative to subscribers with a lower taste for cellular phone services. As displayed

in Table 3, the informational rents show an important variability as shown by a coefficient

of variation larger than one and a high skewness. We remark the important difference

between the median at $6.55 and the mean at $15.17. When computing the informational

rent as a fraction of the payment, this proportion is on average 0.31 with a median value

at 0.22. Figure 10 displays its estimated density. For the company, the ratio of the total

informational rent left to consumers by the sum of payments and informational rent gives

30.45%. This measures the cost of asymmetric information for the firm.

Regarding unobserved heterogeneity, Table 4 provides some summary statistics on ǫ̂v

and ǫ̂m. In the model, they capture the extra features that subscribers add to customize
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their voice and message services. Though the median is smaller for message than for voice,

the average value is three times larger for the former than for the latter. Figure 11 displays

the two marginal densities estimated nonparametrically and confirms these results. The

density of ǫv is more peaked than that of ǫm. Here again, a few percent of subscribers

are heavy consumers of extra features even if their voice and message consumptions qv and

qm are relatively small. Although we do not have detailed data on these extra features,

they are likely to be related to MMS and other data features, which are becoming more

popular amoung cellular phone users. On the other hand, the correlation between the two

unobserved heterogeneity terms is quite small of the order of 0.03. Additional data on extra

features would help to refine the model and the results.

2.6 Conclusion

This paper studies multiproduct nonlinear pricing in the cellular phone industry with voice

and message services. We develop a model based on Armstrong (1996) in which the un-

known types of consumers are aggregated while the firm designs an optimal cost-based tariff.

Moreover, given that the consumers add a large number of unobserved extra features, we

introduce two terms of unobserved heterogeneity for voice and message add-ons. Our model

defines two one-to-one mappings between the unknown aggregate type to the cost and the

cost to the payment. Under some identifying assumptions such as a parameterization of

the cost function, we show that the primitives of the model are identified from observables.

We develop a semiparametric estimation method to recover the model primitives and apply

it to data from a major mobile service provider in Asia. The empirical results support the

model and display an important heterogeneity in types and unobserved heterogeneity. The

cost of asymmetric information for the firm is assessed.



Chapter 3

Bundling and Nonlinear Pricing in

Telecommunications

Ah, the Internet! The source of so much goodness. The font of e-mail, news, chat, TV,

blogs, books and Facebook. What would we do without it?

– David Pogue (The New York Times. March 21, 2012)

3.1 Introduction

Bundling and nonlinear pricing have become increasingly prevalent practices in sectors such

as travel services, retail and telecommunications. Many telecommunication service providers

are now offering bundled service packages with internet, phone and cable TV. Moreover,

they often offer nonlinear tariffs by providing additional discounts when subscribers buy

larger quantities. In this paper, I study bundling and nonlinear pricing by a multiproduct

firm that sells its products to customers with privately known multidimensional types. I

develop a new model that endogenizes both the firm’s bundling and pricing decisions. It

explains which bundling strategy should be adopted by the firm: component pricing, pure

bundling, semi-mixed bundling or mixed bundling. In particular, the complementarity

utility effect, the cost saving effect and the dependence between the multidimensional types

will play crucial roles. The existing theoretical literature, by contrast, has mainly focused

47
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on the benefits of mixed/pure bundling over component pricing. See, e.g., Adams and

Yellen (1976), McAfee, McMillan, and Whinston (1989) and Salinger (1995). In addition,

while the existing literature mostly addresses bundling and nonlinear pricing separately, my

model incorporates both simultaneously as recently done by Armstrong and Vickers (2010).

An illustration on China Telecom data with internet and phone services empirically assesses

the benefits to the firm of adopting such a pricing strategy as well as the consumers’ gain.

There is an extensive theoretical and empirical literature on bundling and nonlinear pric-

ing within an incomplete information framework. Regarding nonlinear pricing, Armstrong

(2006) and Stole (2007) provide recent theoretical surveys. In particular, Armstrong (1996)

and Rochet and Chone (1998) show that nonlinear pricing for a multiproduct firm is a com-

plex problem because of multidimensional screening. On the empirical side, Leslie (2004),

McManus (2007) and Crawford and Shum (2007) render this problem one-dimensional by,

e.g., considering unit-demand consumers or homogenizing the products. Using convenient

parameterization of model primitives, Ivaldi and Martimort (1994) and Miravete and Röller

(2004) endogenize the firm’s pricing decision. Recently, Luo, Perrigne, and Vuong (2012)

rely on Armstrong (1996) model to analyze nonlinear pricing of mobile voice and messaging

services.1

Regarding bundling, the early theoretical literature considered a benchmark case with

two single unit products and additive separable utility. See, e.g., Adams and Yellen (1976),

McAfee, McMillan, and Whinston (1989) and Salinger (1995). The main condition under

which pure or mixed bundling is preferred by the firm over component pricing relates to

the correlation of types for the two products. Considering a large number of products,

Armstrong (1999) and Bakos and Brynjolfsson (1999) show that the firm can approximate

the first-best by bundling. Chu, Leslie, and Sorensen (2011) provide a simulation of bundle-

size pricing. On the empirical side, Crawford and Yurukoglu (2012) and Ho, Ho, and

Mortimer (2012) consider the firm’s bundling decision as exogenous and estimate the welfare

1Nonlinear pricing for a single product firm leads to a closed-form solution. See, e.g., Maskin and Riley
(1984). Most of the empirical literature, including Leslie (2004) and McManus (2007), uses discrete choice
models while considering prices exogenous. While endogenizing the price, Perrigne and Vuong (2011a) show
that the model primitives are identified and develop a nonparametric estimation method for nonlinear pricing
models.
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effects of bundling between upstream and downstream firms.

I develop a model combining bundling and nonlinear pricing to analyze data from a

major telecommunication company in China selling internet and phone services.2 Assuming

a separable utility into the benefit of consuming phone service only and the complementary

benefit of using both internet and phone services, as well as positively dependent types

for internet and phone services, I exploit the discrete level of internet service to solve

the multidimensional screening problem. In particular, the number of effective incentive

compatibility constraints is significantly reduced. This allows me to characterize the optimal

exclusion conditions, the assignment schedules and the tariff functions in an equivalent one-

dimensional formulation. Specifically, the provider offers usage-based nonlinear tariffs for

phone service and a fixed-fee for internet-only users. The curvature of the tariffs for phone

service will differ according to the internet service level. In other words, bundling enables

the provider to further discriminate consumers choosing different levels of internet. In

addition, I provide the conditions on the primitives under which the firm optimally chooses

his bundling strategy, i.e., component pricing, pure bundling, semi-mixed bundling or mixed

bundling. Bundling is more likely to dominate component pricing when the cost to provide

phone service is lower or consumers value phone service more highly.

I study the identification of the model structure from observables: the price paid and the

level of consumption. Under a parameterization of the cost function and a multiplicative

separability of the utility function in the willingness-to-pay for phone service, I show that the

primitives are identified. In particular, the complementary utility function is identified by

exploiting the phone usage and tariff variation across consumers adopting different internet

levels. While cost saving effects are identified by exploiting the firm’s optimal exclusion

conditions, the dependence between the two types is identified using the one-to-one mapping

between phone usage and the corresponding consumer type.

In view of these identification results, I propose a three-step semiparametric estimation

method involving a new regression spline estimator under both monotonicity and bound

2While considering a duopoly and multi-unit demand, Armstrong and Vickers (2010) establish the con-
ditions on model primitives under which nonlinear pricing and mixed bundling generate more profit than
linear pricing. They also analyze the harming effects on consumer surplus.
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restrictions. This estimator is used to estimate the distribution of the consumers’ tastes. It

has several advantages over classical kernel estimators also used in auctions to estimate the

bidders’ private value distribution. See, e.g., Guerre, Perrigne, and Vuong (2000). Specif-

ically, the difference between the willingness-to-pay and the inverse hazard rate function,

which is usually assumed to be increasing, contains information on the underlying screen-

ing mechanism. Also, this difference is bounded by the identity function. A key advantage

of this regression spline estimator is that it easily incorporates monotonicity and bound

restrictions suggested by theory. See also Chen (2007). Moreover, since the support of con-

sumer taste is a compact interval and exclusion is likely in multiproduct nonlinear pricing

models as shown by Armstrong (1996), a kernel estimator can be biased at the boundary.

Sieve estimators are known not to suffer from boundary effects.

The analysis of China Telecom data shows that (i) internet and phone services tend to

be substitutes, (ii) the additional fixed cost to bundle internet with phone service is small,

and (iii) a higher speed internet adopter tends to have a higher willingness-to-pay for phone

service. Counterfactuals assess the gain for both the firm and consumers from bundling

internet and phone services. My simulation results show that unbundling would lead to a

10.14% decrease in firm’s profit and a 17.18% decrease in consumer surplus.

The paper is organized as follows. Section 2 presents the data. Section 3 introduces the

model, while Section 4 studies the identification of the model primitives and develops a semi-

parametric estimation procedure. Section 5 presents estimation results and counterfactuals.

Section 6 concludes. An appendix collects the proofs.

3.2 Data

The Chinese telecommunications industry is dominated by three state-owned firms: China

Telecom, China Unicom and China Mobile. Table C.1 gives the nationwide market structure

by the number of subscribers. While China Mobile has dominated mobile services since its

inception, China Telecom and China Unicom roughly divide the territory in half for internet

and land line services: China Telecom in southern China and China Unicom in northern

China.
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I collected data from China Telecom in a major metropolitan area, where it enjoys a

market share of 85% for both internet and land line subscriptions. The sample is composed

of new residential subscribers in August 2009, who receive internet and phone services

(including land line and mobile) through the One Home label. For the month of September

2009, the data contain for each subscriber: his/her choice of internet service, the total

number of minutes used and the amount paid. There are two internet levels, 1 Mbps

or 2 Mbps, resulting in three possible bundles with phone service: phone service only

(no internet), a bundle with 1 Mbps internet and a bundle with 2 Mbps internet. Table

C.2 provides summary statistics on the bill measured in RMB and the number of phone

minutes by internet choice with the corresponding number of subscribers. The bill paid by

a consumer combines internet, different types of phone calls, roaming charges, extra fees for

peak hours usage and several add-ons such as voice mail service, music on hold, ring tones,

news, etc. The data do not provide detailed information on these extra features and the

corresponding prices. All these extra features explain the important variability of the per

minute rate. The consumption of phone calls tends to increase with the level of internet. I

remark that the per minute rate tends also to increase with the level of internet.

China Telecom implements mixed bundling, i.e., internet and phone services are offered

either separately or in a bundle. The firm charges a fixed fee to internet-only users and a

usage-based tariff to bundle users. Specifically, the monthly fixed fee is 78 and 88 RMB for

1 and 2 Mbps, respectively. The usage-based tariff differs with the level of internet and is

nonlinear. Table C.3 provides the regression of the bill on the number of total minutes and

its square for each bundle. The three tariffs are increasing and concave, i.e., consumers pay

a lower price per minute of call time when they consume more. Moreover, subscribers tend

to pay more for the same amount of phone calls when they choose a higher internet speed.

To see this, I calculate the mean of the per minute rate for the three bundles: 21.29 cents

with no internet, 24.96 cents with 1 Mbps internet, and 27.27 cents with 2 Mbps internet.

Table C.3 suggests that bundling enables the provider to discriminate further phone service

users depending on their choice of internet.

Given that I need the tariff functions in view of Sections 3 and 4, I follow Luo (2011)
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method to estimate the tariff function for each bundle while taking into account unobserved

add-ons and features. Details can be found in Appendix B. Figure C.3 displays the resulting

three tariff functions denoted by T0(·), T1(·), T2(·) for the three bundles. I then construct a

quantity of phone usage q ≡ T−1
j (t), where t is his/her payment and j is his/her internet

choice. The quantity q aggregates all observed quantity of minutes as well as the unobserved

phone services chosen by the consumer. In Section 4 (on identification and estimation), I

consider that (t, q, j, Tj(·)) are the observables.

3.3 The Model

3.3.1 Assumptions and Notations

In view of the discussion in Section 2, I consider a monopoly provider selling internet and

phone services as separate products or in a bundle. Internet is offered at several speed levels,

denoted by j ∈ J , where J ≡ {0, 1, 2, . . . , J} is the possible choice set of internet levels with

0 denoting no internet.3 Phone service is measured by q ∈ IR+. Due to implementation

difficulties of random contracts, the provider offers non-random nonlinear pricing schedules

of the general form T (q, j), with q ∈ IR+ and j ∈ J .

A consumer is characterized by a vector of types (θ, β) ∈ Θ ≡ [θ, θ] × [β, β], where

0 < θ < θ < ∞ and β ≤ 0 < β < ∞. The type θ represents his taste or willingness-to-pay

for phone service and β defines the minimum internet need above which he will consider

buying internet. The latter can be nonpositive because some consumers may have negative

perspectives on internet. The vector (θ, β) is private information. That is, the provider

does not know the consumer’ types but knows the joint distribution F (·, ·) on [θ, θ]× [β, β].4

The consumer chooses internet speed and phone usage. Following Dubin and McFadden

(1984) and Hanemann (1984), I assume that there is no uncertainty in the decision on the

3This choice set is exogenous given by technological constraint. See Mazzeo (2002) and Seim (2006) for
endogenizing the product decisions of the firm.

4Because modeling competition is out of the scope of this paper, we can view θ as a sufficient statistic that
summarizes preferences of the consumer for phone service by China Telecom and its competitors. Moreover,
I do not consider uncertainty on types, which leads to a two-stage model. See, e.g., Miravete (2002), Miravete
(2005), Narayanan, Chintagunta, and Miravete (2007), Economides, Seim, and Viard (2008) and Grubb and
Osborne (2012).
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continuous variable (phone usage) at the time of the choice for internet. In other words,

both choices are made simultaneously. I make the following assumption on the consumer’s

utility function.

Assumption 1. A (θ, β) agent consuming (q, j) gets utility

U(q, j; θ, β) =





U(q, j; θ) for j ≥ β,

−∞ for j < β.

Assumption 1 prevents the consumer to choose a bundle with an internet speed that

falls below his minimum need β. It is analogous to the absolute spending limit assumption

in Che and Gale (2000). The value β results from the consumer’s internet use such as

sending emails, shopping online, playing games or streaming movies. Internet connection

speed determines whether these applications will run effectively. Thus I assume failing

to meet the minimum internet need leads to a very large disutility. Once the minimum

internet speed is satisfied, the underlying family of indifference curves of (q, j) bundles can

be described by the variation of a single parameter, i.e., the taste for phone service θ.5

Assumption 1 has several advantages. First, it makes the optimal selling mechanism with

multidimensional types tractable. See e.g. Armstrong (1996), Rochet and Chone (1998) and

Rochet and Stole (2003) for mechanism design with multidimensional types. Second, while

maintaining multidimensional types, this general utility function allows complementarity

between the two products as well as dependence between the types θ and β. Consequently,

all the possible scenarios of bundling may arise at the equilibrium such as component pricing,

pure bundling, semi-mixed bundling and mixed bundling. See footnote 7 for a discussion

on the generalization of my results with a multi-dimensional type θ.

A (θ, β) consumer chooses a quantity of phone service and internet level (q, j) to maxi-

5An alternative assumption would be to consider the utility as U(q, j; θ) − δ(β) for j < β where δ(β) cap-
tures the disutility for not getting the desired amount of internet speed. If δ(β) is large enough, Proposition
1 extends resulting in the same optimal selling mechanism. However, the proofs of Lemmas 1 and 3 wound
be significantly longer.
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mize his payoff

max
q∈IR+

,j∈J

U(q, j; θ) − T (q, j)

s.t. j ≥ β.

The firm needs to design a price schedule T (·, ·) that maximizes his expected profit.

Without loss of generality, I apply the Revelation Principle. In particular, any imple-

mentable allocation achieved with a price schedule T (·, ·) can also be achieved with a truth-

ful direct mechanism of the form (t(·, ·), q(·, ·), j(·, ·)). This mechanism specifies the payment

made t(θ, β), the quantity of phone service q(θ, β) and internet speed j(θ, β) for a (θ, β)

consumer. As information goods, internet and phone services involve very small variable

production costs but substantial transaction costs per customer, such as usage recording,

billing and customer service. Thus I assume that the provider’s total cost is additively

separable across consumers. The cost to serve a consumer with a bundle (q, j) is denoted

as c(q, j).6

The optimal selling mechanism solves

max
t(·,·),q(·,·),j(·,·)

∫

Θ

[
t(θ, β) − c

(
q(θ, β), j(θ, β)

)]
f(θ, β)dθdβ

s.t. U(q(θ, β), j(θ, β); θ) − t(θ, β) ≥ U(q(θ̃, β̃), j(θ̃, β̃); θ) − t(θ̃, β̃),

U(q(θ, β), j(θ, β); θ) − t(θ, β) ≥ 0,

j(θ, β) ≥ β,

for all (θ, β) ∈ Θ and (θ̃, β̃) ∈ Θ such that j(θ̃, β̃) ≥ β. The first inequality is the incentive

compatibility (IC) constraint, which requires that the consumer truthfully reports his types.

The second inequality is the individual rationality (IR) constraint, which requires that the

consumer has the option of not buying anything from the provider. The outside option is

normalized to 0. The third inequality is the minimum need (MN) constraint, which requires

6Perrigne and Vuong (2011a) consider instead the cost for the total amount produced across consumers.
Luo (2011) shows that these two models are nonnested except if one assumes a constant marginal cost.
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that the consumer can use an internet level above his minimum need for internet.

Hereafter, the subscript q (θ) denotes the partial derivative with respect to q (θ) respec-

tively. I make the following assumptions on the model structure.

Assumption 2. For all (θ, β) ∈ Θ, q ∈ IR+, and j ∈ J , U(·, ·; ·), c(·, ·) and F (·, ·) satisfy

(i) U(0, 0; θ) = 0, Uq(q, j; θ) ≥ 0, Uqq(q, j; θ) ≤ 0, Uθ(q, j; θ) > 0, Uθθ(q, j; θ) ≤ 0,

(ii) Uqθ(q, j; θ) > 0,

(iii) ∂
∂θ

−Uqq(q,j;θ)
Uq(q,j;θ) ≤ 0,

(iv)
cqq(q,j)
cq(q,j) >

Uqq(q,j;θ)
Uq(q,j;θ) ,

(v) H(θ|j) ≡ θ − 1−F (θ|D(β)=j)
f(θ|D(β)=j) is increasing in θ, where D(β) ≡ min

{
j ∈ J : j ≥ β

}
,

(vi) U(0, j; θ) = v(0, j) ≥ c(0, j), for some function v(·, ·) : Θ → IR+.

All these assumptions with the exception of (vi) are standard in the nonlinear pricing

literature. See e.g. Maskin and Riley (1984). Assumption 2-(i) says that the outside

option (not buying) provides a zero utility and the marginal utility from phone service is

nonnegative and decreasing. Moreover, a consumer with a higher taste θ gets a larger utility

and this increase is diminishing as θ increases. Assumption 2-(ii) is the standard Spence-

Mirrlees single-crossing condition, which says that a consumer with a higher taste θ enjoys

a larger marginal payoff for phone usage across every (q, j). Assumption 2-(iii) implies

nonincreasing absolute risk aversion, while 2-(iv) requires that the cost function is not too

concave in q. The latter is satisfied by any linear or convex cost function. Assumption 2-(v)

says that the conditional hazard rate does not decline too rapidly as θ increases, where

the term D(β) represents a (θ, β) consumer’s minimum acceptable internet speed. Most

commonly used unimodal distributions satisfy the hazard rate assumption. Assumption

2-(vi) says that the willingness-to-pay for phone service θ does not matter to the consumer

unless his phone usage is positive. Thus internet-only users have no parameter θ in their

utility function. I call this assumption "weak complementarity". Consequently, the firm

can charge a fixed fee v(0, j) and leave no rent to internet-only users. Finally, Assumption

2-(vi) also implies that serving internet as a separate product is profitable for the firm.
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3.3.2 Characterization of the Optimal Selling Mechanism

The approach I adopt is close to the separability case discussed in Rochet and Stole (2003).

Specifically, I partition the set of types into one-dimensional subsets and reduce the multi-

dimensional problem to a unidimensional problem. To clarify ideas, I first study the case

when the provider observes β. Thus the problem becomes unidimensional and I explicitly

characterize the optimal selling mechanism. I then show that this mechanism is still op-

timal under a standard affiliation assumption when β is not observed, thereby solving the

multidimensional screening problem.

Solving the Model when β is Observed

When β is observed, the provider solves the following problem for each value of β

max
t(·,β),q(·,β),j(·,β)

∫ θ

θ

[
t(θ, β) − c(q(θ, β), j(θ, β))

]
f(θ|β)dθ

s.t. U(q(θ, β), j(θ, β); θ) − t(θ, β) ≥ U(q(θ̃, β), j(θ̃, β); θ) − t(θ̃, β),

U(q(θ, β), j(θ, β); θ) − t(θ, β) ≥ 0,

j(θ, β) ≥ β,

for all (θ, β) and (θ̃, β) such that j(θ̃, β) ≥ β. Since the consumer cannot misreport β, the

two-dimensional IC and IR constraints reduce to one-dimensional constraints. Moreover, the

information structure reduces to the conditional density f(θ|β). The problem then becomes

a multiproduct nonlinear pricing problem in which a consumer’s private information is one-

dimensional. 7 I denote the optimal selling mechanism as (t∗(·, ·), q∗(·, ·), j∗(·, ·)).
I make the following assumption on the utility and the cost functions.

Assumption 3. For all θ ∈ [θ, θ], q ∈ IR+ and j ∈ J , U(·, ·; ·) and c(·, ·) satisfy

(i) The utility function is additively separable as follows

U(q, j; θ) = u(q; θ) + v(q, j),

7The model can be extended to entertain both q and θ multidimensional relying on Armstrong (1996).
The basic idea would be to design a cost-based tariff. To do so, I would need to define the cost-based indirect
utility function V (c, j; θ) ≡ maxc(q1,q2,j)≤c U(q1, q2, j; θ1, θ2), and V (c, j; θ) = h(θ1, θ2)u(c, j) + v(c, j). This
model is left for future research. See also Luo, Perrigne, and Vuong (2012).
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where u(·; ·) satisfies u(0; θ) = 0.8

(ii) For all j̃ > j, where j̃ ∈ J

Uq(q, j̃; θ) − Uq(q, j; θ) ≤ cq(q, j̃) − cq(q, j),

v(0, j̃) − v(0, j) ≤ c(0, j̃) − c(0, j).

Assumption 3-(i) borrows from Sundararajan (2003) and Chen and Luo (2012) in the

context of nonlinear pricing with network effects where j is replaced by the total quantity

of product used by all consumers in the market Q =
∫ θ

θ q(θ)f(θ)dθ. I remark that the cross

derivative Uqj(·, ·; ·) becomes independent of θ. Although the interaction between internet

and phone services is the same for consumers with different tastes, I allow this interaction to

vary with the bundle. Hereafter, I call u(·; ·) the intrinsic utility function for phone service,

and v(·, ·) the complementary utility function for the bundle.9

Assumption 3-(ii) says that the increment of marginal cost for phone service is larger

than the marginal utility when one increases the internet level. Similarly, the cost increment

for serving internet only is larger than the corresponding incremental utility. It implies

U(q, j̃; θ) − c(q, j̃) ≤ U(q, j; θ) − c(q, j). Hence, when the provider observes β, he always

prefers to assign the minimum internet speed the consumer can accept.10

I can now show that the problem reduces to several standard single product nonlinear

pricing problems. I need first to show that the provider will always assign the minimum

internet speed D(β) that the consumer can accept when β is observed. This gives the

following lemma.

Lemma 1. Under Assumptions 1 and 3, j∗(θ, β) = D(β), q∗(θ, β) = q∗
(
θ,D(β)

)
, and

8The utility U(q, j; θ) = u(q; θ) + v(q, j) + ω(θ, j) is more general but does not satisfy the weak comple-
mentarity assumption. See Assumption 2-(vi).

9Liu, Chintagunta, and Zhu (2010) find evidence of strong complementarity between local phone consump-
tion and DSL internet. In view of their results, I call v(·, ·) the complementary utility function. However, I
do not impose any restriction on the cross derivative of v(·, ·).

10Assumption 3-(ii) can be weakened. I can assume instead that the two terms
[
Uq(q, j; θ) − cq(q, j)

]
−[

Uq(q, j̃; θ) − cq(q, j̃)
]

and
[
v(0, j) − c(0, j)

]
−
[
v(0, j̃) − c(0, j̃)

]
have the same sign for all θ ∈ [θ, θ], q ∈ IR+,

j belonging to a larger choice set J 0. Under complete information on β, the provider solves for each β

D0(β) ≡ arg maxj≥β,j∈J 0

{
v(0, j) − c(0, j)

}
. This weaker assumption ensures that the assignment does not

depend on θ. With J ≡ {j ∈ J 0 : j = D0(β) for some β ∈ [β, β]}, I can show that Assumption 3-(ii) is
satisfied, thereby endogenizing the choice of internet options.
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t∗(θ, β) = t∗
(
θ,D(β)

)
for all (θ, β) ∈ Θ.

Lemma 1 says that β only affects the optimal selling mechanism through the step func-

tion D(β).11 Thus consumers having the same minimum acceptable internet speed D(β)

face the same phone service assignment q∗(·, ·), the same internet assignment j∗(·, ·) and

price schedule t∗(·, ·). The following lemma characterizes the optimal mechanism.

Lemma 2. Under Assumptions 1, 2 and 3, for any given value of β, the optimal phone

service assignment q∗(·, β) and price schedule t∗(·, β) satisfy:

(i) There exists a cutoff taste θc
β ∈ [θ, θ], above which consumers are assigned a bundle

with internet D(β) and phone service, and below which consumers are assigned internet

D(β) only. The cutoff taste θc
β is defined as

θc
β ≡ min

{
θ ∈ [θ, θ] : M

(
θ,D(β)

)
≥ 0

}
, (1)

and

M(θ, j)≡
[
U
(
q∗(θ, j), j; θ

)
−v(0, j)

]
−
[
c
(
q∗(θ, j), j

)
− c(0, j)

]
−Uθ

(
q∗(θ, j), j; θ

)1−F (θ|j)
f(θ|j) .

(ii) If θ ∈
[
θc

β, θ
]
, q∗(·, β) and t∗(·, β) are solution of

Uq
[
q∗(θ, β), D(β); θ

]
= cq

[
q∗(θ, β), D(β)

]
+ Uqθ

[
q∗(θ, β), D(β); θ

]1 − F [θ|D(β)]

f [θ|D(β)]
, (2)

t∗(θ, β) = U
[
q∗(θ, β), D(β); θ

]
−
∫ θ

θc
β

Uθ

[
q∗(x, β), D(β);x

]
dx. (3)

(iii) If θ ∈
[
θ, θc

β

)
, q∗(θ, β) = 0 and t∗(θ, β) = v

(
0, D(β)

)
.

The proof is in two steps. In a first step, I derive the optimal selling mechanism

conditionally on serving consumers with a willingness-to-pay equal or above θc, which

is an arbitrary cutoff value. Thus the optimal selling mechanism is defined by (2) and

(3) by replacing θc
β with θc. An important feature is that the phone service assignment

11By considering non-random nonlinear pricing schedules of the form T (x, j), consumers’ report of β is
constrained to belong to J . The problem of discrimination on any value of β is left for future research.
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q(·, ·) does not depend on θc while the price schedule t(·, ·) is decreasing in θc. In a sec-

ond step, I find the optimal cutoff value θc that maximizes the profit. It is defined by

(1). Intuitively, when the firm slightly lowers θc, the term [U(q∗(θc, j), j; θc) − v(0, j)] is

the incremental utility for a (θc, j) consumer switching from internet only to a bundle,

[c(q∗(θc, j), j) − c(0, j)] is the incremental cost for the firm, and Uθ(q∗(θc, j), j; θc) is the

additional informational rent everyone in the customer base gets. Therefore, the term

{[U
(
q∗(θc, j), j; θc) − v(0, j)] − [c(q∗(θc, j), j) − c(0, j)]}f(θc|j) is the marginal gain for ex-

panding the customer base by lowering θc, while Uθ(q∗(θc, j), j; θc)[1 − F (θc|j)] is the cor-

responding marginal loss for reducing the tariff to every consumer above θc. Equation (1)

balances these two effects. In addition, it is easy to see that θc
β = θc

j , where j = D(β). The

term β only affects the cutoff taste through the step function D(β). My results are in the

spirits of Armstrong and Rochet (1999) recommendation where they advise to discretize

the type space to simplify the multidimensional screening problem.

Equations (2) and (3) define the phone service assignment q∗(·, ·) and price schedule

t∗(·, ·) for the bundle users. In particular, (2) says that the marginal payoff for each type

equals the marginal cost plus a nonnegative distortion term due to incomplete information.

Intuitively, {Uq[q∗(θ, β), D(β); θ] − cq[q∗(θ, β), D(β)]}f(θ|D(β)) represents the firm’s desire

to implement an efficient allocation weighted by the density while Uqθ(q∗(θ, β), D(β); θ)[1 −
F (θ|D(β))] represents the informational rent the firm has to give up to the consumer for re-

vealing their private information. Equation (3) says that the payment equals the consumer’s

utility minus some informational rent. Following Assumption 2, the resulting usage-based

tariffs T ∗(·, j) are increasing and concave for all j.

If a consumer is excluded from consuming phone service, then his utility function be-

comes U(q, j; θ) = v(0, j) by Assumption 2-(vi). Since there is no asymmetric informa-

tion, the firm can take all the consumer surplus by charging T ∗(0, j) = v(0, j), leading to

t∗(θ, β) = v(0, D(β)), for any (θ, β) ∈ Θ such that θ ∈ [θ, θc
β).

Solving the Model when both θ and β are Unobserved

I now show that the previous mechanism is still optimal when both θ and β are not

observed by the firm. To do so, I would need to make an additional assumption. This con-
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stitutes an interesting result given the complexity of multidimensional screening problems.

I first need to establish the desirability of the minimum acceptable internet speed. Let

(tsb(·, ·), qsb(·, ·), jsb(·, ·)) be the optimal selling mechanism when both θ and β are private

information. The following lemma shows that β affects this mechanism only through D(β).

Lemma 3. Under Assumptions 1 and 3, jsb(θ, β) = D(β), qsb(θ, β) = qsb
(
θ,D(β)

)
, and

tsb(θ, β) = tsb
(
θ,D(β)

)
for all (θ, β) ∈ Θ.

This result parallels Lemma 1. It remains to show that this second-best mechanism is

the same as the one with asymmetric information on θ only. The basic idea is to reduce the

number of binding IC constraints. Since the consumer can either overreport, underreport

or report truthfully each parameter of his private information. The number of potential

deviations increases to eight in a two-dimensional problem from two in a unidimensional

problem. However, I show that only three deviations matter as stated in the next lemma.

Lemma 4. Following Assumption 1, when both θ and β are private information, the IC

constraints are satisfied if and only if the following two one-dimensional IC constraints are

satisfied. Namely,

U(q(θ, β), D(β); θ)−t(θ, β)≥U(q(θ̃, β), D(β); θ)−t(θ̃, β) ∀θ, β, θ̃,

U(q(θ, β), D(β); θ) − t(θ, β)≥U(q(θ, β̃), D(β̃); θ) − t(θ, β̃) ∀θ, β, β̃ such that D(β̃) ≥ β.

Following Assumption 1, the (θ, β) and (θ, β̃) consumers have the same preferences

over outcomes as long as their minimum needs for internet are satisfied. If the two one-

dimensional IC constraints above are true, then the (θ, β) consumer does not want to pretend

to be (θ, β̃), and the (θ, β̃) consumer does not want to pretend to be (θ̃, β̃). Therefore, by

transitivity, the (θ, β) consumer has no incentive to pretend to be (θ̃, β̃). Thus consumers

report truthfully. Intuitively, if one considers θ on the x-axis and β on the y-axis, the

potential deviations can be horizontal for θ and vertical for β. Lemma 4 tells us that the

only binding constraints are only upward for β and upward and downward for θ, while

the other deviations are redundant, thereby reducing the number of binding constraints to

three.
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Before showing that the second-best mechanism is the one given in Lemma 2, I make

an affiliation assumption on the joint distribution of θ and β.

Assumption 4. ∀θ ∈ [θ, θ] and ∀j ∈ J , 1−F (θ|D(β)=j)
f(θ|D(β)=j) is increasing in j.

Assumption 4 follows Che and Gale (2000). It is equivalent to assume H(θ|j) be decreas-

ing in j. Intuitively, a consumer is relatively more likely to have a higher willingness-to-pay

for phone service if he needs a higher speed internet. According to Horrigan (2010), the Fed-

eral Communications Commission 2009 survey shows that higher speed internet adopters

tend to be better educated with higher incomes. Since phone service is a normal good, I

consider it as a reasonable assumption.

I can now show that the consumer has no incentive to misreport β given a willingness-

to-pay θ. This is the purpose of the next lemma.

Lemma 5. Under Assumptions 1, 2, 3 and 4, q∗(θ, β) is decreasing in β and θc
β is increasing

in β. Therefore, a (θ, β) consumer’s indirect utility is decreasing in β. Moreover, T ∗(q, j)−
v(q, j) is increasing in j.

The intuition is as follows. Following Assumption 4, the firm knows that a consumer is

more likely to have a higher taste for phone service when he needs a higher speed internet.

By exploiting this positive dependence, it can charge the consumer more for the same

amount of q when the consumer chooses a higher j. This in turn implies that the subscriber

would consume less phone service giving a decreasing assignment q∗(·, ·) in β. While the

optimal exclusion is the result of a trade-off between the marginal gain and the loss of

expanding the customer base, Assumption 4 favors the latter as one moves from a low

speed internet to a high speed one. Therefore, it becomes more profitable to exclude a

larger range of low taste consumers if they adopt a higher speed internet. This explains

why the cutoff value θc
β is increasing in β. Under Assumption 3, a (θ, β) consumer solves

max
(q,j):j≥β

u(q; θ) + v(q, j) − T ∗(q, j).

Following Lemma 5, because T ∗(q, j) − v(q, j) is increasing in j, the additional payment for

a higher internet level is larger than the additional utility it brings. Therefore, the consumer
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will choose the minimum internet speed meeting his needs.

We are now in a position to show that (t∗(·, ·), q∗(·, ·), j∗(·, ·)) is the optimal mechanism

when both θ and β are private information. When β is observed, the firm’s profit is weakly

higher than the one when β is not observed. Thus, I only need to show that the two-

dimensional IC and IR constraints still hold if the provider uses (t∗(·, ·), q∗(·, ·), j∗(·, ·)). Re-

garding the IR constraints, they are satisfied automatically because they are the same. Fol-

lowing Lemma 4, the IC constraints are satisfied as long as the two one-dimensional IC con-

straints are. On one hand, misreporting θ is not profitable because of (t∗(·, ·), q∗(·, ·), j∗(·, ·)).
On the other hand, misreporting β is not profitable either following Lemma 5. The following

proposition summarizes these results.

Proposition 1. Under Assumptions 1, 2, 3 and 4, we have t∗(·, ·) = tsb(·, ·), q∗(·, ·) =

qsb(·, ·) and t∗(·, ·) = jsb(·, ·).

In view of Lemma 2 and Proposition 1, consumers are segmented into several groups

based on their internet needs and tastes for phone service. All consumers with β such that

D(β) = j uses the same internet level, j. I refer to them as group j. Consumers in group

j are further divided into 2 parts according to their values of θ, namely, [θ, θc
j) and [θc

j , θ].

The former or low taste subscribers will consume internet service j only, while the latter or

high taste subscribers consume the bundle with q > 0 and internet service j. I call these

two groups internet j users and bundle j users, respectively. In addition, the firm proposes

J usage-based tariffs to bundle users (q > 0 and j > 0) and phone-only users (q > 0 and

j = 0). It proposes J − 1 fixed fees to internet-only users (q = 0 and j > 0). These

correspond to the data I will analyze in Section 5.

Armstrong and Rochet (1999) remark that phenomena such as bunching and exclusion

that arise in multiproduct nonlinear pricing models create technical difficulties, making it

hard to generate closed-form solutions. Following Proposition 1, the optimal selling mecha-

nism reduces to a combination of optimal selling mechanisms for a series of one-dimensional

problems. Therefore, I characterize explicitly the optimal exclusion, the assignment sched-

ules and the tariff functions. In my model, bunching arises at equilibrium through D(β)

and because people with low taste for phone service will consume internet only.
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Bundling Decisions

The results on optimal exclusion have important implications on bundling choices. For

instance, the firm will sell internet j only if θc
j = θ. Similarly, he will sell internet only in

a bundle if θc
j = θ. For any other value of θc

j ∈ (θ, θ), the firm will propose both. Thus,

my model is general as it allows the three possible incentives to bundle, namely utility

complementarity, cost efficiency and correlation between θ and β. To some extent, my

model confirms Schmalensee (1984) and Fang and Norman (2006) results, i.e. the higher

the cost or the lower the valuation, the less likely that bundling dominates component

pricing. Moreover, my model admits a variety of bundling outcomes, including component

pricing, pure bundling, semi-mixed bundling and mixed bundling.

When it is too costly to provide phone service to internet users, i.e. β ≤ 0 and θc
j = θ for

all j > 0, the firm can exclude all internet users from consuming phone service. In this case,

the firm would sell internet and phone services separately, which is known as component

pricing (CP). When it is optimal for the firm to exclude some but not all internet users

from consuming phone service, the provider wound sell internet and phone services not only

as separate products but also in a bundle. If all the possible combinations of internet and

phone services are offered, i.e. β ≤ 0 and θc
j ∈ (θ, θ) for all j ∈ J , the firm implements

mixed bundling (MB). If some combination is not offered, the firm implements semi-mixed

bundling (SMB). Moreover, if we let β > 0, pure bundling (PB) arises when it is optimal

for the firm to serve phone service to everyone, i.e. β > 0 and θc
j = θ for all j > 0.

Hereafter, I provide a numerical example to illustrate Proposition 1 and the various

bundling possibilities.

Numerical Example

Let the quadratic utility function

U(q, j; θ) =





(w + θ)q − 1
2q

2 + ν(j) if q ≤ w + θ,

(w+θ)2

2 + ν(j) if q > w + θ,

where w represents the average household income and determines the consumer’s minimum

willingness-to-pay for phone service. The cost function is c(q, j) = κ0✶(q > 0) + κj✶(j >
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0) + γq, where κ0 is a fixed cost associated to any positive phone usage, κj is a fixed cost

for internet, and γ is the marginal variable cost of phone service. In addition, consumers’

tastes for phone service are distributed as F (θ|j) = 1 − (1 − θ)bj , with support θ ∈ [0, 1]

and bj ≥ 1. Suppose bj is decreasing in j.

After elementary algebra, Lemma 2 leads to the following optimal phone service assign-

ment

q∗(θ, j) =





(w − γ − 1
bj

) + θ(1 + 1
bj

), if θ ∈ [θc
j , 1]

0, if θ ∈ [0, θc
j)

where

θc
j =

√
2κ0 + γ − w + 1

bj

1 + 1
bj

.

Figure C.1 displays H(·, ·), q∗(·, ·) and T ∗(·, ·) − v(·, ·) for the values J = {0, 1, 2} , w =

0.25, κ0 = 0.1, γ = 0.05, b0 = 2, b1 = 1.5 and b2 = 1. Note that H(θ|j) = θ − [1 −
F (θ|j)]/f(θ|j) = [θ(1+bj)−1]/bj is decreasing in j and increasing in θ. I remark that these

functional forms satisfy Assumptions 3 and 4. To see why this mechanism is still optimal

when both θ and β are private information, I consider a consumer who overreports and

switches to a higher speed internet. Figure C.1-(c) shows that the additional payment is

larger than the marginal utility he can get. Therefore, no consumer would like to overreport

his internet need.

The firm’s optimal bundling strategy depends on Λ ≡ √
2κ0 + γ − w. In particular,

the firm will provide group j consumers with internet only if Λ ≥ 1, the bundle of internet

and phone services if Λ ≤ −1/bj , and both otherwise. When j > 0, some consumers will

switch from bundles to internet only if either the cost parameters κ0 or γ increase or their

income level w decreases. Intuitively, the firm bundles internet and phone services when

the latter is cheap to produce and unbundles them otherwise. Figure C.2 displays how the

population of subscribers is segmented under different bundling scenarios. The gray color

is used for consumers who are excluded from consumption, while the green color is used

for phone-only users. The two red colors are used for internet-only users: the light one for

j = 1 and the dark one for j = 2. The two blue colors are used for bundle users: the light
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one for j = 1 and the dark one for j = 2. The bold lines give the cutoff values of θ. In

Figure C.2-(a), the cutoff values are at θ because Λ > 1. The firm will not propose either

bundling or phone service because they are too costly to produce. Despite the fact that

there is no phone service, this case corresponds to component pricing. In Figure C.2-(e),

the cutoff values are at θ because Λ < −1/b2. The firm proposes bundles and phone-only

because either phone calls are very cheap to produce or consumers value them very highly.

This is the case of semi-mixed bundling without exclusion. Figures C.2-(b) and C.2-(c)

display mixed bundling with exclusion where the cutoff value increases with j. While in

C.2-(b) there will be some consumers excluded from buying anything, the firm provides

services to every consumer in C.2-(c). In Figure C.2-(d), only consumers with a high need

for internet may not buy a bundle leading to semi-mixed bundling with exclusion. Lastly,

in Figure C.2-(f) with β > 0, the firm will propose bundling to everyone.

3.4 Identification and Estimation

In view of Section 3.3, the optimal mechanism is defined by (1), (2) and (3). Because the

data display mixed bundling, I focus on this case. However, the results below can be readily

adapted to the other cases of bundling. It is useful to recall the model structure and the

observables. The model primitives are
{
u(·; ·), v(·, ·), F (·, ·), c(·, ·)

}
, which are the intrinsic

utility function from consuming phone service, the complementary utility function from

consuming internet and phone services, the joint distribution of consumers’ types and the

firm’s cost function. Because j can take values in {0, 1, 2}, the model primitives become
{
u(·; ·), vj(·), Fj(·), cj(·)

}
, where vj(·) ≡ v(·, j), Fj(·) ≡ F (·|D(β) = j) and cj(·) ≡ c(·, j)

for j = 0, 1, 2. Regarding the observables, following Section 2, I observe the tariff Tj(·) for

j = 0, 1, 2. Moreover, data on internet-only users provide information on Tj(0) for j = 1, 2.

Since I observe q, we have the distribution of consumption G∗
j (·) for j = 0, 1, 2 and q > 0

as well as Gj(0) from internet-only users. To summarize, the observables are {Tj(·), G∗
j (·)}

for q > 0 and j = 0, 1, 2 and {Tj(0), Gj(0)} for j = 1, 2.
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3.4.1 Identification

From the auction literature, the one-to-one mapping at the equilibrium plays a crucial role to

identify the model primitives. See Guerre, Perrigne, and Vuong (2000) and Athey and Haile

(2007). In nonlinear pricing models, Perrigne and Vuong (2011a) show that the optimality

of tariff in addition to the one-to-one mapping between the observed quantity and the

unobserved taste are both needed to identify the model primitives. See also Luo, Perrigne,

and Vuong (2012). The multidimensional screening problem adds additional difficulties. In

the context of insurance, Aryal, Perrigne, and Vuong (2009) exploit a repeated outcome,

i.e. the number of accidents, to identify the model structure.

Here, the idea is to exploit the variation offered by the data across the different groups

of users, including those using either internet or phone only, in addition to the first-order

conditions (1), (2) and (3). I proceed in several steps. First, I study which primitives the

data on internet-only users and phone-only users will allow me to identify. While assuming

multiplicative separability of the intrinsic utility function and linearity of the cost function,

I will show that the intrinsic utility function, the marginal cost parameter as well as the

conditional density of θ for j = 0 are identified. Second, I investigate the identification of

the complementary utility function and the conditional densities of θ for j = 1, 2 from the

bundle users data. Third, I show how to exploit the firm’s optimal exclusion conditions to

identify the fixed cost parameters. Therefore, the optimality of tariffs and bundling as well

as one-to-one mapping at the equilibrium between the consumption of phone service and

the unknown type θ will play crucial roles.

Identifying Assumptions

I make the following identifying assumptions on the model primitives. Hereafter, the

prime denotes a derivative with respect to q.

Assumption 5. For all θ ∈ [θ, θ] and q ∈ IR+,

(i) The intrinsic utility u(q; θ) satisfies

u(q; θ) = θu0(q),
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with u0(0) = 0, u′
0(q) ≥ 0 and u′′

0(q) ≤ 0.

(ii) The cost function is of the form

cj(q) = κ0✶(q > 0) + κj✶(j > 0) − ∆j✶(qj > 0) + γq,

where γ > 0, κ0 > 0, κj > 0, and ∆j ∈
[
0,min{κ0, κj}

)
for j = 1, 2.

(iii) v0(q) = 0.

Following Perrigne and Vuong (2011a) and Perrigne and Vuong (2011b), I assume mul-

tiplicative separability of the intrinsic utility function in the type θ as stated in Assumption

5-(i). Thus, I interpret u0(·) as the base intrinsic utility function. However, Assumption

5-(i) will not be sufficient to achieve identification. I provide an intuitive argument. Equa-

tions (2) and (3) provide 2J one-to-one mappings between θ and q and between t and q,

respectively. On the other hand, I have to identify J cost functions cj(·), J complementary

utility functions vj(·), and J conditional type distributions Fj(·) as well as the base intrinsic

utility function u0(·). It is clear that additional restrictions need to be imposed.

Several identifying assumptions can be entertained. Following Section 2, the production

of telecommunication services tends to involve high fixed costs and small marginal costs.

Therefore, I assume a linear cost function as stated in Assumption 5-(ii). The term κ0

is a fixed cost associated to any positive production of phone service, while κj is a fixed

cost to provide internet level j. The term ∆j is the difference between the sum of these

two fixed costs and the fixed cost to sell a bundle. It measures the cost saving effect of

selling internet and phone services as a bundle. I also assume that the fixed cost of serving

a bundle is higher than the separate fixed costs, i.e. κ0 + κj − ∆j ≥ max{κ0, κj}. Thus

∆j ∈ [0,min{κ0, κj}).

Lastly, Assumption 5-(iii) says that there is no complementary utility when there is no

consumption of internet. It implies that v′
0(q) = 0 for all q ∈ IR+.12 I can then rewrite the

12An alternative normalization would be to assume a similar value for another internet level instead.
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first-order conditions (2) and (3) defining the optimal selling mechanism. Namely,

θu′
0(q) + v′

j(q) = γ + u′
0(q)

1 − Fj(θ)

fj(θ)
, ∀q ∈ [q

j
, qj ] (4)

T ′
j(q) = θu′

0(q) + v′
j(q), ∀q ∈ [q

j
, qj ] (5)

where q
j

= q∗(θc
j , j) and qj = q∗(θ, j) for j = 0, 1, 2. Together with the boundary conditions

Tj(q
j
) = θc

ju0(q
j
) + vj(q

j
) and the cutoff tastes in (1), (4) and (5) define the optimal

mechanism.

Identification of γ, vj(0), Fj(θc
j), F0(·) and u0(·)

Under Assumption 5-(ii), only the marginal variable cost enters in (4). Thus, γ is

identified from (4) and (5) evaluated at the maximum phone usage. This gives γ = T ′
j(qj),

∀j ∈ {0, 1, 2}. The identification of the fixed cost parameters κ0, κj and ∆j will be shown

later.

From the model of Section 3, internet-only users pay Tj(0) = vj(0) for any j = 1, 2,

which renders the identification of vj(0) immediate. Moreover, the proportion of individuals

using internet only among their group of users gives F (θc
j |j) for j = 1, 2. These results are

summarized in the following proposition while the identification of θc
j will be addressed

later.

Proposition 2. The cost parameter γ is identified. vj(0) and Fj(θc
j) are identified for

j = 1, 2.

I now turn to data from phone-only users. The following lemma exploits the one-to-one

mapping between the observed q and the unobserved type θ as well as the price schedule

T0(·). See Perrigne and Vuong (2011a) for a detailed proof.

Lemma 6. Under Assumptions 1-5, the first-order conditions (4) and (5) for j = 0 are

equivalent to

u′
0(q) =

T ′
0(q)ξ(q)

θ
, (6)

θ0(q) =
θ

ξ(q)
, (7)



69

for all q ∈ [q
0
, q0], where

ξ(q) =
[
1 −G∗

0(q)
]1− γ

T ′
0

(q) exp
{
γ

∫ q0

q

T ′′
0 (x)

T ′
0(x)2

log
[
1 −G∗

0(x)
]
dx
}
, (8)

with γ = T ′
0(q0).

Lemma 6 shows that the marginal intrinsic utility u′
0(·) and the unobserved taste for

phone service θ for phone-only users are identified up to a constant. In view of Lemma 6,

a natural normalization is θ=1.

Assumption 6. θ = 1.

Under such a normalization, u0(·) can be interpreted as the intrinsic utility function for

the highest taste. Since θc
0 = θ0(q

0
), θc

0 is identified. Moreover, I can further identify u0(·)
using the boundary condition T0(q

0
) = θc

0u0(q
0
).13 Namely,

u0(q) =
T0(q

0
)

θc
0

+

∫ q

q0

u′
0(x)dx, (9)

for all q ∈ [q
0
, q0]. The next proposition summarizes these results.

Proposition 3. Under Assumptions 1-6, the base intrinsic utility function u0(·) and the

type θ0(·) are identified on [q
0
, q0]. Moreover, the truncated conditional taste distribution

F ∗
0 (·) is identified on [θc

0, θ], while the conditional taste distribution F0(·) is identified up to

a constant on [θc
0, θ].

The distribution F0(·) is identified up to a constant because I do not observe the pro-

portion of consumers who do not buy internet and phone services. Moreover, usage and

payment data do not provide any variation to identify u(·) and F0(·) on [0, q
0
) and [θ, θc

0),

respectively.

Identification of vj(·) and Fj(·)
13Perrigne and Vuong (2011a) identify the marginal utility function only. The reason is that the minimum

consumption in their model (standard listing) is offered for free in yellow pages. Therefore, they could not
relate the minimum consumption to a utility level.
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I now turn to the second step, which addresses the identification of vj(·) and Fj(·) for

j = 1, 2. I exploit the one-to-one mapping between phone usage q and taste θ for bundle

users, which implies for each q ∈ [q
j
, qj ], G∗

j (q) = [Fj(θ) − Fj(θc
j)]/[1 − Fj(θc

j)]. Taking

the derivative gives g∗
j (q) = θ′

j(q)fj(θ)/[1 − Fj(θc
j)]. Thus the inverse hazard rate becomes

[1 − Fj(θ)]/fj(θ) = θ′
j(q)[1 −G∗

j (q)]/g∗
j (q).

From (4), replacing the left-hand side by T ′
j(q) and [1 − Fj(θ)]/fj(θ) by θ′

j(q)[1 −
G∗

j (q)]/g∗
j (q) in the right-hand side gives

θ′
j(q) =

T ′
j(q) − γ

u′
0(q)

g∗
j (q)

1 −G∗
j (q)

.

Integrating both sides from q to qj leads to

θj(q) = 1 −
∫ qj

q

T ′
j(x) − γ

u′
0(x)

g∗
j (x)

1 −G∗
j (x)

dx, (10)

where the normalization of Assumption 6 is used. Equation (10) shows that θj(·) is identified

wherever both u′
0(·) is identified and g∗

j (·) is observed.

Once θj(·) is identified, v′
j(·) is identified by plugging (10) into (5). That is,

v′
j(q) = T ′

j(q) − θj(q)u′
0(q). (11)

To understand better the intuition behind these results, I consider alternative expres-

sions for (10) and (11). Using (5), (10) can be rewritten equivalently as

θj(q) = 1 −
∫ qj

q

T ′
j(x) − γ

T ′
0(x)

g∗
j (x)

1 −G∗
j (x)

θ0(x)dx. (12)

Intuitively, the difference between a consumer’s taste and the highest taste is the weighted

average of θ0(·) over [q, qj ], where the weight is determined by the slope of the tariff functions

and the conditional distribution of phone usage.

Similarly, (11) can be rewritten equivalently as

v′
j(q) = T ′

j(q) − θj(q)

θ0(q)
T ′

0(q).
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Here again, the weighted shape difference between the two tariff functions Tj(·) and T0(·) is

used to recover the complementary utility function vj(·). The weight is determined by the

ratio of corresponding tastes θj(q)/θ0(q).

The following proposition summarizes these results.

Proposition 4. Under Assumptions 1-6, the marginal complementary utility function v′
j(·)

and the type θj(·) are identified on [q
j
, qj ], where q

j
≡ max{q

j
, q

0
} and j = 1, 2. More-

over, the truncated conditional taste distribution F ∗
j (·) is identified on [θj(q

j
), θ], while the

conditional taste distribution Fj(·) is identified on [θj(q
j
), θ].

I remark that v′
j(·) is identified only on the range where u′

0(·) is identified. By Lemma 5,

qj ≤ q0. However, it is not necessary that q
j

≥ q
0
. Therefore, v′

j(·) is not identified on [q
j
, q

0
)

if q
j
< q

0
. The type distribution Fj(·) can be recovered from F ∗

j (·) on [θj(q
j
), θ] because (i)

I observe the proportion of consumers whose phone usage is less than q
j
, Fj(θj(q

j
)), and (ii)

Fj(·) = Fj(θj(q
j
)) + [1 − Fj(θj(q

j
))]F ∗

j (·). On the other hand, usage and payment data do

not provide any variation to identify v′
j(·) and Fj(·) on [0, q

j
) and [θ, θj(q

j
)), respectively.

Finally, if q
j

≥ q
0
, then θc

j is identified because θc
j = θj(q

j
). As in Proposition 3, vj(·) is

identified using the boundary condition Tj(q
j
) = θc

ju0(q
j
) + vj(q

j
).

Corollary 1. If q
j

≥ q
0
, the complementary utility function vj(·) is identified as

vj(q) = Tj(q
j
) − θc

ju0(q
j
) +

∫ q

q
j

v′
j(x)dx, (13)

for all q ∈ [q
j
, qj ].

Identification of κ0, κj and ∆j

It remains to address the identification of the fixed cost parameters κ0, κj and ∆j .

Only the marginal variable cost enters the first-order condition (4). Among the equilibrium

conditions, only the cutoff tastes involve the fixed costs. First, I use information from

phone-only user data to identify κ0. Second, I exploit information from bundle users data

to identify ∆1 and ∆2. However, κ1 and κ2 remain not identified. By Assumption 2-(vi), κ1

and κ2 are bounded by the monthly fees for internet-only users. The following proposition

formalizes these results.
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Proposition 5. Under Assumptions 1-6, we have

(i) The minimum phone usage q
j
> 0 for j = 0, 1, 2.

(ii) The parameters κ1 and κ2 are bounded, i.e. κj ≤ Tj(0) for j = 1, 2.

(iii) The parameter κ0 is identified as

κ0 =
γ

T ′
0(q

0
)
T0(q

0
) − γq

0
.

(iii) If q
j

≥ q
0
, the parameters ∆1 and ∆2 are identified.

∆j =
[ γ

T ′
0(q

0
)
T0(q

0
)−γq

0

]
−
[
Tj(q

j
)−Tj(0)−γq

j

]
+θ0(q

j
)u0(q

j
)
T ′

j(q
j
)−γ

T ′
0(q

j
)
, for j=1, 2

Because q
j
> 0 for j = 0, 1, 2, the optimal usage-based tariffs are nonlinear two-part

tariffs. There is a minimum price Tj(q
j
) for usage above 0 but lower than q

j
, and a variable

price beyond that. Regarding the identification of the fixed cost parameters, following (1),

some consumers switch from bundle-j to internet-j as the firm lowers the cutoff taste. As

a result, the difference in the fixed cost (κ0 + κj − ∆j) − κj affects the optimality of the

cutoff tastes. Thus κ0 and ∆j relate to the utility, cost and inverse hazard rate at the cutoff

values. If q
j

≥ q
0
, the latter are identified from following Propositions 3 and 4 as discussed

above, thereby identifying κ0 and ∆j . On the other hand, if q
j
< q

0
, ∆j is not identified

although I can still derive a bound for it. Using u′′
0(·) ≤ 0, we have

∆j ≤
[ γ

T ′
0(q

0
)
T0(q

0
)−γq

0

]
−
[
Tj(q

j
)−Tj(0)−γq

j

]
+θ0(q

j
)[u0(q

0
)−(q

0
−q

j
)u′

0(q
0
)]
T ′

j(q
j
)−γ

T ′
0(q

j
)
.

3.4.2 Estimation

Since the estimation of vj(0) and F (θc
j) can be calculated directly from internet-only users

data, I focus on the estimation of all the other primitives. I then use data from phone-only

and bundle users. For convenience, I order them lexicographically by their consumption

bundles. For all the consumers having a positive quantity of phone service, I group those

using the same internet level j = 0, 1, 2 and then order them according to their phone usage

q. I denote N∗
j as the number of users for group j. This would give {(qi

j , t
i
j)}i=1,...,N∗

j
, where
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0 < q1
j ≤ q2

j ≤ . . . ≤ q
N∗

j

j and 0 < t1j ≤ t2j ≤ . . . ≤ t
N∗

j

j .

I propose a three-step estimation procedure. First, I estimate γ and ξ(·) using γ = T ′
0(q0)

and (8), respectively. An estimate for ξ(·) will allow me (i) to obtain an estimate of the

marginal intrinsic utility function u′
0(·) using (6) and (ii) to construct a sample of pseudo

tastes for phone-only users from (7). To complete the estimation of u0(·), I will estimate

θc
0 and u0(q

0
) using θc

0 = θ0(q
0
) and T0(q

0
) = θc

0u0(q
0
), respectively. Second, the estimated

marginal intrinsic utility function is used to (i) estimate the marginal complementary utility

functions v′
j(·) using (11) and (ii) to construct a sample of pseudo tastes for bundle-j users

from (12). To complete the estimation of vj(·), I will estimate θc
j , u0(q

j
) and vj(q

j
) using

θc
j = θj(q

j
) and Tj(q

j
) = θc

ju0(q
j
) + vj(q

j
), respectively. Third, I use the estimated pseudo

tastes to estimate the conditional taste densities.

Estimation of γ, u0(·) and θ0(·)
In this subsection, I use phone-only users data, i.e.

{
(qi

0, t
i
0)
}

i=1,...,N∗
0
. To obtain an

estimate of γ, I need to estimate q0. A convenient estimator that converges very fast is to

take the maximum value, i.e. q̂
0

= q
N∗

0
0 , leading to an estimator of γ, i.e. γ̂ = T ′

0(q
N∗

0
0 ).

Following (8), I need to estimate G∗
0(·). I use the following empirical distribution esti-

mator leading to

Ĝ∗
0(q) =

1

N∗
0

N∗
0∑

i=1

✶(qi
0 ≤ q), (14)

for an arbitrary value of q ∈ [q
0
, q0]. An estimator of ξ(·) is obtained by replacing G∗

0(·) by

its empirical distribution Ĝ∗
0(·) and γ by γ̂. Since Ĝ∗

0(·) is a step function, the integral in (8)

can be rewritten as a finite sum of integrals. Since in each of these integrals, log(1 −G∗
0(·))

is a constant and the primitive of T ′′
0 (·)/T ′

0(·) is −1/T ′
0(·), ξ̂(q) is equivalent to

ξ̂(q)=
[
1−Ĝ∗

0(q)
]1− γ̂

T ′
0

(q)

×exp
{
γ̂
[ 1

T ′
0(q)

− 1

T ′
0(ql+1

0 )

]
log(1−Ĝ∗

0(ql
0))+γ̂

N∗
0−1∑

k=l+1

[ 1

T ′
0(qk

0 )
− 1

T ′
0(qk+1

0 )

]
log(1−Ĝ∗

0(qk
0 ))
}
,

for q ∈ [ql
0, q

l+1
0 ), where l = 0, 1, . . . , N∗

0 − 1. For q ∈ [q
N∗

0
0 , q0], I have ξ̂(q) = 1.
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Using (6) and (7), I then estimate u′
0(·) and θ0(·) by

û′
0(q) = T ′

0(q)ξ̂(q),

θ̂0(q) =
1

ξ̂(q)
,

for an arbitrary value of q ∈ [q
0
, q0]. Lastly, I estimate θc

0 by θ̂c
0 = θ̂0(q1

0) and u0(q
0
) by

û0(q
0
) = T0(q

0
)/θ̂c

0. These estimates will allow me to obtain an estimate of u0(·) following

(9).

Estimation of vj(·), θj(·), κ0, κ1, κ2, ∆1 and ∆2

In this subsection, I am now using the bundle users data
{
(qi

1, t
i
1)
}

i=1,...,N∗
1

and
{
(qi

2, t
i
2)
}

i=1,...,N∗
2
.

Following (10), since estimates for γ and u′
0(·) have been obtained previously, I need an es-

timate of g∗
j (·) and G∗

j (·). I use the empirical distribution for G∗
1(·) and G∗

2(·) from (14) by

replacing 0 by 1 and 2, respectively. For the density, I use a kernel density estimator to

estimate g∗
1(·) and g∗

2(·). Following (10) and (11), the pseudo type θj(·) and the marginal

complementary utility v′
j(·) can be estimated as

θ̂j(q) = 1 −
∫ qj

q

T ′
j(x) − γ̂

û′
0(x)

ĝ∗
j (x)

1 − Ĝ∗
j (x)

dx,

v̂′
j(q) = T ′

j(q) − θ̂j(q)û′
0(q),

where q ∈ [q
j
, qj ] and j = 1, 2. Lastly, I estimate θc

j by θ̂c
j = θ̂j(q1

j ) and u0(q
j
) by û0(q1

j ).

These estimates will allow me to obtain an estimate of vj(·) following (13).

Following Proposition 5, the fixed cost parameters κ0, ∆1 and ∆2 are estimated by

κ̂0 =
γ̂

T ′
0(q

0
)
T0(q

0
)−γ̂q

0
,

∆̂j =
[ γ̂

T ′
0(q

0
)
T0(q

0
)−γ̂q

0

]
−
[
Tj(q

j
)−Tj(0)−γq

j

]
+θ̂0(q

j
)û0(q

j
)
T ′

j(q
j
)−γ̂

T ′
0(q

j
)
, for j=1, 2,

where q
0

and q
j

can be replaced by their estimated counterparts, which are q1
0 and q1

j .

The bounds for κ1 and κ2 are directly obtained from the data as the monthly fees for the
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internet-only users.

Estimation of f0(·), f1(·) and f2(·)
The previous two steps provide estimates of the pseudo types {θ̂1

0, θ̂
2
0, . . . , θ̂

N∗
0

0 , θ̂1
1, θ̂

2
1, . . . , θ̂

N∗
1

1 ,

θ̂1
2, θ̂

2
2, . . . , θ̂

N∗
2

2 }, where θ̂i
j = θ̂j(qi

j) for i = 1, 2, . . . , N∗
j and j = 0, 1, 2. I could use standard

kernel estimators to estimate f∗
0 (·), f∗

1 (·) and f∗
2 (·) using these pseudo values. From the

model of Section 3, the conditional density of types should satisfy the hazard rate property

given by Assumption 2-(v). I then propose a new regression spline estimator that allows me

to impose the monotonicity restriction on H(·|j) for j = 0, 1, 2. In addition, I remark that

H(θ|j) is bounded by θ since [1−Fj(θ)]/fj(θ) ≥ 0. This represents a bound restriction that

will also be imposed in the estimator. Specifically, I estimate f∗
j (·) under the restrictions

that Hj(·) ≡ · − 1−Fj(·)
fj(·) is increasing on [θc

j , 1], and Hj(θ) ≤ θ for all θ ∈ [θc
j , 1]. This new

estimator is studied in Luo (in progress). For the sake of completeness, I briefly describe

the main idea here.

Let the hazard function be hj(θ) = f∗
j (θ)/[1−F ∗

j (θ)] = fj(θ)/[1−Fj(θ)] = 1/[θ−Hj(θ)]

for j = 0, 1, 2. Using splines to approximate Hj(·), I can use the well-known expression

f∗
j (θ) = hj(θ) exp

[
−
∫ θ

θc
j

hj(x)dx
]
,

to obtain a maximum likelihood estimate for f∗
j (·). However, the direct implementation

of the usual quadratic splines can ensure the monotonicity restriction but may violate

the bound restriction. Instead, I define quadratic splines imposing the former, and then

transform the coordinates to ensure the latter. In particular, I define the knots θc
j = ϑ0

j <

ϑ1
j < · · · < ϑ

kj

j < ϑ
kj+1
j = 1. For any θ ∈ [θc

j , 1], let ψ(θ; δj) ≡ ∑kj+3
l=1 δl

js
l
j(θ), where the

sl
j(·)s are quadratic basis functions satisfying ψ(·; δj) positive and increasing if and only if

the coefficients δj are positive. I then define

Hj(θ; δj) = θ
ψ(θ; δj)

1 + ψ(θ; δj)
.

One can show that Hj(·; δj) is positive, increasing and bounded by the 45 degree line if

the coefficients δl
j are non-negative. Therefore, the hazard function can be expressed as
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hj(θ; δj) = [1 + ψ(θ; δj)]/θ, from which I can construct the log-likelihood of the pseudo

sample as

lj(δj) =

N∗
j∑

i=1

{
log

[1 + ψ(θ̂i
j ; δj)

θ̂i
j

]
−
∫ θ̂i

j

θ̂c
j

1 + ψ(x; δj)

x
dx
}
.

Finally, I estimate f∗
j (·) by

f̂∗
j (θ) = ĥj(θ) exp[−

∫ θ

θc
j

ĥj(x)dx],

for θ ∈ [θc
j , 1], where ĥj(θ) = [1 + ψ(θ; δ̂j)]/θ and δ̂j maximizes lj(δj).14

3.5 Empirical Analysis of China Telecom Data

3.5.1 Estimation Results

As discussed in Section 2, I estimate the tariff functions T0(·), T1(·) and T2(·) and the

resulting phone usage q. See Appendix B and Figure 3 displaying T0(·), T1(·) and T2(·).
Regarding the cost, I obtain an estimate for the marginal variable cost γ which is equal

to 5.95 cents. This is approximately a fourth of the average price charged per minute. The

fixed cost for phone service is 6.58 RMB, while the estimate of the bound for the fixed cost

of 1 Mbps (2 Mbps) internet κ1 (κ2) is 78 RMB (88 RMB). The estimate of the cost saving

parameter for 1 Mbps internet ∆1 is 2.60 RMB while this value increases to 3.27 RMB for

∆2. The fixed cost for phone service seems to be small. It is approximately a tenth of the

average bill of phone-only subscribers. These cost parameters suggest that the firm has a

comfortable profit margin as discussed later. Relative to providing internet only, providing

a bundle does not impose much additional cost to the firm as suggested by the estimates

of ∆1 and ∆2. China Telecom mainly uses Asymmetric Digital Subscriber Line (ADSL) to

provide internet service. Thus internet is transmitted through telephone lines. Moreover,

fixed transaction costs such as mailing statement do not increase much because bills are

merged if the consumer uses a bundle.

14This estimator does require much computing time because of the explicit form of the log-likelihood
function. It remains to study the asymptotic properties of this new estimator.
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I then obtain estimates of the marginal intrinsic utility u′
0(·) and the marginal comple-

mentary utility functions v′
1(·) and v′

2(·). The first is displayed in Figure C.4 while the latter

two are displayed in Figure C.5. The estimated marginal intrinsic utility u′
0(·) is positive

and decreasing, thereby satisfying Assumption 5-(i). The estimated marginal complemen-

tary utility functions v̂′
1(·) and v̂′

2(·) are both negative and increasing with v̂′
1(·) above v̂′

2(·),
thereby satisfying Assumption 3-(ii). Since both are negative, internet and phone services

seem to be substitutes. Internet offers alternative communication tools such as email, skype

and so on, which can explain the substitutability with phone service. Thus the utility of

a bundle user is smaller than the sum of the utilities for a phone service user only and

a internet user only. Moreover, this substitution effect is stronger with a higher level of

internet because a faster internet service allows better alternative communication tools.

Figure C.6 displays the inverse of the estimated θ0(·), θ1(·) and θ2(·). They are increasing

in the type and decreasing in the internet choice j, thereby satisfying Lemma 5. As internet

speed increases, a larger range of low taste (for phone service) consumers are excluded from

using phone service. These observations satisfy the predictions of my model in Section 3.

Figure C.7 displays the estimated type densities f∗
0 (·), f∗

1 (·) and f∗
2 (·). As the internet

speed increases, the density function becomes less skewed to the left, thereby implying that

consumers are more likely to have a higher taste for phone service. Here again, one sees the

increase in the cutoff taste as the level of internet increases. Figure C.8 displays the hazard

rate functions H0(·), H1(·) and H2(·). They are increasing in the type and decreasing in

the internet choice j, thereby satisfying Assumptions 2-(v) and 4.

Using these estimated values, I can access empirically the firm’s profit as well as the

consumers’ informational rents. The informational rent is estimated by θ̂i
j û0(qi

j) + v̂j(qi
j) −

Tj(qi
j). The ratio of the total informational rent across all consumers by the total amount

paid is 29.76%. This measures the cost of asymmetric information. When considering by

group of users, I find 53.27% for phone-only users, 27.02% for bundle users with 1 Mbps

of internet level and 27.66% for bundle users with 2 Mbps. These overall rents tend to

decrease with the level of internet. I recall that internet-only users do not enjoy any rent

since the firm can extract all their rents by charging them a fixed fee. Regarding the firm’s



78

profit, because I obtain only bounds for the cost parameters κ1 and κ2, namely 78 RMB

for the former and 88 RMB for the latter, the firm’s profit margin ranges from 39.46% (if

κ1=78 and κ2=88) to 74.06% (if κ1=0 and κ2=0). The profit margins for different groups

are of the following: group 0 at 54.36%, group 1 between 33.24% (if κ1=78) and 76.43%

(if κ1=0) and group 2 between 40.96% (if κ2=88) and 75.78% (if κ2=0). Overall, China

Telecom seems to be making a comfortable profit margin.

3.5.2 The Welfare Effects of Bundling and Nonlinear Pricing

With structural estimates at hand, I can perform a counterfactual to evaluate the effects of

bundling on firm’s profit, consumer surplus and social welfare relative to component pricing.

In particular, I simulate the case where the firm offers instead two fixed-fee contracts for

internet and one usage-based contract for phone service. I assume that the firm does not

change the internet speeds it offers.

A Theoretical Discussion

In general, the effects of bundling on consumer surplus and social welfare are ambiguous.

However, the literature offers a consensus that lower prices or higher output levels are

necessary for welfare improvement. For instance, in a discrete choice framework, Salinger

(1995) shows that bundling can increase consumer surplus when it results in lower prices.

Schmalensee (1981) and Schwartz (1990) formally show that welfare must fall if output does

not rise with third degree price discrimination. While the previous literature has mainly

focused on the use of bundling as a price discrimination device (See Kobayashi (2005)),

my model allows utility complementarity, cost saving effects and dependence between the

two dimensions of asymmetric information. They may have different roles in determining

the welfare effects of mixed bundling relative to unbundling. I will construct two examples

below showing the ambiguity of the results in my model.

Under component pricing, the firm’s problem is to maximize its profit by designing a

tariff function while the consumers’ taste are distributed according to a mixture of three

conditional distributions. Since these three distributions differ in location and shape, their

mixture is obtained by shifting and reshaping them. To isolate the role of these two proce-
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dures, I consider two examples. Let U(q, j, θ) = θq− 1
2q

2 if q ≤ θ and θ2/2 otherwise, while

the cost function is c(q, j) = κ0 + γq.

First, I consider two groups whose tastes for phone service are uniformly distributed

on [L,M] and [M,R], respectively. If the firm can discriminate among the two groups, the

optimal phone service assignments would be q∗
1(θ) = 2θ − M − γ and q∗

2(θ) = 2θ − R − γ,

while the cutoff tastes would be θc
1 = (

√
2κ0 + M + γ)/2 and θc

2 = (
√

2κ0 + R + γ)/2. If the

firm cannot discriminate, it proposes a single assignment q∗(θ) = 2θ − R − γ with a cutoff

taste θc = (
√

2κ0 + R + γ)/2. I remark that in this case, the firm does as it was facing only

consumers with a higher need of internet. Thus bundling benefits to the consumers because

consumers with a lower taste will not be excluded. This would results an increase in the

consumer surplus. Similarly, since the firm would get the same profit from the consumers

with a higher taste of internet, it will get a larger profit as bundling will allow it to get

profit from the other group of consumers as well.

Second, I consider two groups whose tastes for phone service are distributed on the same

interval [0.25, 1.25] with densities f1(θ) = 2.5 − 2θ and f2(θ) = 1. Group 1 accounts for a

proportion of λ. Figure C.9 displays the firm’s profit (dash-dot lines) and consumer surplus

(dashed lines) under mixed bundling in blue and component pricing in red. In this case, the

firm benefits from bundling while the consumer are penalized. Thus bundling can reduce

consumer surplus because it provides an additional instrument for the firm to discriminate

across consumers.

Counterfactual Simulation

Solving the firm’s problem under unbundling is a hard task because the model does

not lead to a closed-form solution, I will propose instead a numerical approximation of the

solution. In particular, I will search numerically an optimal usage-based tariff function that

is approximated by quadratic splines T (·; δ) =
∑K

k=1 δkψk(·), where ψk(·) is a quadratic

basis function. The tariff T (·; δ) is non-negative and increasing if and only if the coefficients

δk are non-negative. Moreover, as I do not identify the type densities f0(·), f1(·) and f2(·)
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below the cutoff tastes, I assume

f̂j(θ) =





f̂∗
j (θ̂c

j)[1 − Fj(θc
j)]( θ

θ̂c
j

)k if θ < θ̂c
j ,

f̂∗
j (θ̂c

j)[1 − Fj(θc
j)] if θ ≥ θ̂c

j ,

where k = [θ̂c
j f̂

∗
j (θ̂c

j)(1−Fj(θc
j))/Fj(θc

j)]−1. This approximation satisfies all the assumptions

of Section 3. It allows continuity at the cutoff point (θ̂c
j , f̂

∗
j (θ̂c

j)[1−Fj(θc
j)]) and its integration

from 0 to θ̂c
j equals Fj(θc

j).

The estimated optimal tariff function solves the following problem

max
δ≥0

N0

∫ θ

θ

(
T (q0(θ; δ); δ) − (κ̂0 + γ̂q0(θ; δ))

)
f̂0(θ)dθ

+N1

∫ θ

θ

(
T (q1(θ; δ); δ) − (κ̂0 + κ1 − ∆̂1 + γ̂q1(θ; δ))

)
f̂1(θ)dθ

+N2

∫ θ

θ

(
T (q2(θ; δ); δ) − (κ̂0 + κ2 − ∆̂2 + γ̂q2(θ; δ))

)
f̂2(θ)dθ,

where qj(θ; δ) ≡ arg maxq{θû0(q) + v̂j(q) − T (q; δ)} and Nj is the number of group-j con-

sumers. Since κ1 and κ2 are not identified, I set them to zero. I use equally-spaced knots

and increase number of parameters K until the marginal benefit of adding one more knot

is less than 0.1%. The resulting estimated tariff function captures the optimal nonlinear

price schedule under unbundling. See e.g. Wilson (1997) who shows that the loss of using

n-part price schedules relative to the optimal nonlinear price schedule is of order 1/n2.

My simulation results show that unbundling would lead to a 10.14% decrease in firm’s

profit and a 17.18% decrease in consumer surplus, resulting in a 12.16% decrease in social

welfare. These can be explained by the fact that unbundling would exclude too many

consumers as discussed previously in my first numerical example. Figure C.10 compares

the tariff functions under mixed bundling (dashed lines) and component pricing (solid lines).

Relative to mixed bundling, groups 0 and 1 would face more expensive tariff functions under

component pricing, while group 2 would face a less expensive one. As a result, group 0 would

lose by 58.11% of consumer surplus, while group 1 would lose 39.57%. On the contrary,

group 2 would see an increase in their surplus by 9.48%. Thus unbundling would only
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benefit to those who value highly internet.

Figure C.11 displays the breakdown of expected social welfare into consumer surplus and

firm profit, while Figure C.12 displays the breakdown of expected bill into cost and firm

profit. I treat mixed bundling as the benchmark and normalize its corresponding welfare

and bill to 100. Since the cost function is linear, changes in expected cost reflect changes

in expected phone usage. Figure C.11 confirms that groups 0 and 1 are losing the most

in terms of consumer surplus under component pricing. The firm is losing profit as well.

The loss is decreasing with internet speed. Figure C.12 provides a justification, namely the

production cost much decreases under component pricing because of a dramatic decrease

in consumption of phone service. For instance, group 0 users’ expected phone usage would

drop from 497.62 to 253.09 minutes, while their expected indirect utility would decrease

from 34.54 to 14.47 RMB. On the contrary, group 2 users would use 7.09% more of phone

calls and thus would see their consumer surplus increasing by 9.48%. Finally, the ratio

of the total informational rent by the total of bill would be 27.71% in component pricing,

which represents a decrease in the cost of asymmetric information relative to bundling.

This arises from a larger proportion of consumers who would be excluded under component

pricing.

3.6 Conclusion

This paper studies bundling and price discrimination by a multiproduct firm selling internet

and phone services in an imperfect information setting. Consumers are characterized by a

taste for phone service and a minimum need for internet, thereby leading to a multidimen-

sional screening problem. I derive the optimal selling mechanism, as well as the conditions

on the model primitives under which different bundling strategies arise. I show that the

model primitives are identified under parameterization of the cost function and multiplica-

tive separability of the utility function. I develop a semiparametric estimator involving

kernel density estimation and sieve estimators. The empirical analysis of China Telecom

data suggests that both the firm and consumers benefit from bundling internet and phone

services.
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A first extension would be to consider a multiproduct model that would distinguish land

line and mobile services. With the methodology I develop in this paper, potential applica-

tions include insurance contracts in which insurees bundle automobile and home insurance,

and also a large number of products from manufacturing industries such as automobiles or

computers where each product can be viewed as a bundle of various customized attributes.

Lastly, the results I developed in this paper can also be used to analyze products under

nonlinear pricing with important network effects. See e.g. Chen and Luo (2012).



Appendix A

Nonlinear Pricing with Product

Customization

Proofs

Proposition 1. Under Assumptions 1, given a cutoff taste θc ∈ [θ, θ] such that consumers

with θ < θc are excluded, the functions (q(·, ǫ), τ(·; ǫ)) that solve the firm’s problem satisfy:

τ ′ (q(θ, ǫ) ; ǫ) = ǫθu′
0(ǫq(θ, ǫ)),

ǫθu′
0(ǫq(θ, ǫ)) = ǫγ + ǫu′

0(ǫq(θ, ǫ))
1 − F (θ)

f(θ)
,

where the prime denotes a derivative with respect to its first argument for τ(·; ·). The first

equation is the consumer’s first-order condition while the second one is the firm’s. Moreover,

"no informational rent at the bottom" defines a boundary condition: τ(ǫ) = τ(q(θc, ǫ); ǫ) =

θcu0(ǫq(θc, ǫ)). Dividing both sides by ǫ, the firm’s first-order condition implies that ǫq (θ, ǫ)

would not depend on ǫ. Thus, there exists a function Q(·) such that Q(θ) ≡ ǫq(θ, ǫ) and

θu′
0(Q(θ)) = γ +

1 − F (θ)

f(θ)
u′

0(Q(θ)).

Moreover, the boundary condition does not depend on ǫ either. Namely, τ = θcu0(Q(θc)).

83
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The consumer’s first-order condition then can be rewritten as

τ ′(q(θ, ǫ); ǫ)

ǫ
= θu′

0(Q(θ)),

whose right-hand side depends only on θ. Denote the right-hand side as r(θ). Then this

equation implies τ ′(q; ǫ) = ǫr(Q−1(qǫ)). Integrating from Q(θc)/ǫ to q and making the

change of variable x̃ = xǫ gives

τ(q; ǫ) = τ +

∫ q

Q(θc)/ǫ
ǫr(Q−1(xǫ))dx = τ +

∫ qǫ

Q(θc)
r(Q−1(x̃))dx̃,

which implies that there exists a function T (·) such that τ(q; ǫ) = T (qǫ). It is easy to see

that the consumer’s first-order condition is equivalent to T ′(Q(θ)) = θu′
0(Q(θ)).

Notice that the allocation Q(·) does not depend on the cutoff taste θc while the optimal

tariff function T (·) does. I denote the latter as T (·; θc). I then find an optimal θc to maximize

the firm’s profit: ∫ θ

θc

[
T (Q(x); θc) − γQ(x)

]
f(x)dx

whose first-order condition with respect to θc leads to Equation 3.

Proposition 2. The identification of α is immediate under Assumption 2. I now show that

T (·) is identified. Define Y ≡ α′
q and λ(·) ≡ Λ′(·). Let G̃(·|t) be the CDF of Y conditional

on t and F̃ (·) be the CDF of − log ǫ. Equation (5) implies that G̃(y|t) = F̃ (y − Λ(t)).

Therefore, G̃y(y|t) = f̃(y− Λ(t)), G̃t(y|t) = −λ(t)f̃(y− Λ(t)), and λ(t) = −G̃t(y|t)/G̃y(y|t)
for any (y, t) such that G̃y(y|t) 6= 0. It follows that, given t† ∈ [t, t],

Λ(t) = Λ(t†) −
∫ t

t†

G̃t(y|x)

G̃y(y|x)
dx = E (y|t†) −

∫ t

t†

G̃t(y|x)

G̃y(y|x)
dx,

where the second equation is obtained using Assumption 2-(iii). This equation implies that

Λ(t) =

∫

Sw

w(y)
[
E (y|t†) −

∫ t

t†

G̃t(y|x)

G̃y(y|x)
dx
]
dy,

where w(·) is a scalar-valued function on IR with compact support Sw such that
∫

Sw
w(y)dy =
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1. Therefore, T (·) is identified.

Lemma 1. Evaluating Equations (1) and (2) at θ gives γ = T ′(Q) = T ′(T−1(t)). Moreover,

evaluating FOCs and boundary conditions at θ0 gives

K = θ0u0(Q) − γQ− 1 − F (θ0)

f(θ0)
u0(Q)

= θ0u0(Q) − γQ−
T ′(Q) − γ

u′
0(Q)

u0(Q)

= θ0u0(Q) − γQ−
T ′(Q) − γ

T ′(Q)/θ0
u0(Q)

= t− γQ−
T ′(Q) − γ

T ′(Q)
t

= γ
[ t

T ′(T−1(t))
− T−1(t)

]
.

The first equation follows from Equation (3), while the second and third equations follow

from FOCs evaluated at θ0. The second last equation follows from Equation (4), while the

last equation follows definition.

Equation (8). I have the estimating equations

Var[Db(t)α
′
q|t] −Db(t)Var[α′

q|t] = 0

for every b ∈ {1, 2, . . . ,B} and t ∈ [t, t]. Taking expectation of the left-hand side gives

α′
[
E {Var[Db(t)q|t]} − E[Db(t)]E(Var[q|t])

]
α

=α′
[
E
{

E
[
Db(t)(q−E(q|t))(q−E(q|t))′|t

]}
−E[Db(t)]E

{
E
[
(q−E(q|t))(q−E(q|t))′]|t

}]
α

=α′
[
E
{
Db(t)(q−E(q|t))(q−E(q|t))′

}
−E[Db(t)]E

{
(q−E(q|t))(q−E(q|t))′

}]
α

for b ∈ {1, 2, . . . ,B}. I use D2
b (t) = Db(t) and Var[α′

q|t] is a constant.
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Figures and Tables

Figure A.1: Tariff T̂ (·)

Figure A.2: One-to-one mapping θ̂(·)

Figure A.3: Base utility û0(·)
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Figure A.4: Truncated taste density f̂∗(·)

Figure A.5: Density of unobserved heterogeneity ĝ(·)
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Figure A.6: Tariffs

Figure A.7: Consumer surplus
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Table A.1: Summary Statistics

Variablea Obs Mean Std. Dev. Min Max

t 2000 27.27 12.95 12.38 99.67

qL 2000 571.17 419.43 0 5471

qD 2000 114.33 183.19 0 1776

qR 2000 76.13 187.22 0 2626

q 2000 111.28 112.72 2.30 1030.63

Q 2000 85.58 55.29 30.71 442.89

θ 2000 1.45 0.40 1.01 2.69

ǫ 2000 1.34 1.32 0.15 21.48

rent 2000 10.37 11.50 0.096 52.84

rentratio 2000 0.2939 0.2028 0.0078 0.7083
a Note: qL, qD and qR are the quantities of local, distance and

roaming calls. q is the aggregation of phone minutes and Q is the
effective quantity of mobile service usage. θ is consumer taste
while ǫ is unobserved heterogeneity. rent is informational rent
left to consumers while rentratio is the ratio of informational
rent by payment.
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Table A.2: Product Customization

payment range Variablea Obs Mean Std. Dev.

< 24 t 1065 18.64 2.71

minutes 1065 504.43 338.58

[24, 34) t 518 28.68 2.81

minutes 518 823.00 282.03

[34, 44) t 219 38.55 2.69

minutes 219 1127.06 343.36

[44, 54) t 102 48.24 2.90

minutes 102 1363.82 379.92

[54, 64) t 49 58.21 2.68

minutes 49 1660.86 464.87

[64, 74) t 24 68.43 2.74

minutes 24 1668.63 509.19

≥ 74 t 23 85.70 7.92

minutes 23 2276.26 962.75
a Note: t is the payment and minutes is the number of total

phone minutes used.
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Table A.3: Results of Counterfactual Experiments

NLPa ID AUD QF LP

Expected revenue 27.66 27.04 23.19 19.12 18.42

Expected consumer surplus 10.70 9.73 9.31 7.56 7.26

Expected firm profit 10.42 10.09 9.74 8.74 8.56

Expected purchase 86.63 87.82 66.17 49.81 45.36
a Note: See Section 1.5 for explanations of each experiment. NLP means

nonlinear pricing. ID means incremental discounts. AUD means all-units
discounts. QF means quantity forcing. LP means linear pricing.



Appendix B

Multiproduct Nonlinear Pricing

Proofs

Optimal Exclusion: Conditioning on serving customers with aggregate type in [h0, h]

and dropping ǫ to simplify notations, c(h) and T (c) satisfy (8) and (9), respectively. We

remark that c(·) does not depend on h0, while T (·) does through the boundary condition

(7). Multiplying (8) by c′(h) and integrating by parts the resulting equation from h0 to h

gives

T (c(h)) − T (c(h0)) =

∫ h

h0

zV ′
0(c(z))c′(z)dz = hV0(c(h)) − h0V0(c(h0)) −

∫ h

h0

V0(c(z))dz.

Using (7), this gives

T (c(h)) = hV0(c(h)) −
∫ h

h0

V0(c(z))dz.

Thus, the provider’s expected profit is

∫ h

h0

[T (c(z)) − c(z)]φ(z)dz =

∫ h

h0

{[
zV0(c(z)) −

∫ z

h0

V0(c(x))dx

]
− c(z)

}
φ(z)dz.
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Its first derivative with respect to h0 is

− [h0V0(c(h0)) − c(h0)]φ(h0) +

∫ h

h0

V (c(h0))φ(z)dz

= −φ(h0)

{[
h0 − 1 − Φ(h0)

φ(h0)

]
V0(c(h0)) − c(h0)

}
,

which gives the boundary condition (6).

Proof of Proposition 3: We first prove that γ is identified. From the one-to-one mapping

between h and t, we have Φ(h(t)) = Gt(t), which gives φ(h(t)) = h′(t)gt(c). Thus,

1 − Φ(h)

φ(h)
= h′(T−1(t))T−1′(t)

1 −Gt(t)

gt(t)

since h(t) = h(T−1(t)). Hence, (13) can be written as

c =

[
h0 − h′(c)T−1′(t)

1 −Gt(t)

gt(t)

]
V0(c)

=

[
1 − h′(c)T−1′(t)

h0gt(t)

]
t, (B.1)

using c = C(h0) = T−1(t) and V0(c) = t/h0 from the boundary condition.

We now compute the derivative h′(·). From (14) and A6, h′(c) = ξ′(c). UsingGc(C(h†)) =

1/2 and taking the derivative of the logarithm of 15 gives

ξ′(c) = ξ(c)

[(
1

T ′(c)
− 1

) −gc(c)

1 −Gc(c)
+ log(2(1 −Gc(c)))

−T ′′(c)

T ′(c)2
+
T ′′(c)

T ′(c)2
log(1 −Gc(c))

]

= ξ(c)

[(
1

T ′(c)
− 1

) −gc(c)

1 −Gc(c)
+

−T ′′(c)

T ′(c)2
log 2

]
.

Evaluating this at c gives

h′(c) = −h0

[(
1

T ′(c)
− 1

)
gc(c) +

T ′′(c)

T ′(c)2
log 2

]
.
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Inserting this in (B.1) gives

c =

[
1 +

((
1

T ′(c)
− 1

)
gc(c) +

T ′′(c)

T ′(c)2
log 2

)
T−1′(t)

gt(t)

]
t

=

[
1 +

((
T−1′(t) − 1

) gt(t)

T−1′(t)
− T−1′′(t)

T−1′(t)
log 2

)
T−1′(t)

gt(t)

]
t

=

[
T−1′(t) − T−1′′(t)

gt(t)
log 2

]
t (B.2)

using gc(c) = gt(t)/T
−1′(t), T−1′(t) = 1/T ′(c) and T−1′′(t) = −(T ′′(c)/T ′(c)2)T−1′(t). Since

log T−1(t) = log c = log κ+ γ logQv(t) + (1 − γ) logQm(t), we obtain by taking derivatives

T−1′(t) = T−1(t)

(
γ
d logQv(t)

dt
+ (1 − γ)

d logQm(t)

dt

)
,

T−1′′(t) = T−1′(t)

(
γ
d logQv(t)

dt
+ (1 − γ)

d logQm(t)

dt

)

+T−1(t)

(
γ
d2 logQv(t)

dt2
+ (1 − γ)

d2 logQm(t)

dt2

)
,

= T−1(t)

[(
γ
d logQv(t)

dt
+(1−γ)

d logQm(t)

dt

)2

+γ
d2logQv(t)

dt2
+(1−γ)

d2logQm(t)

dt2

]
.

Evaluating these derivatives at t and inserting them in (B.2) give (16). This equation is

quadratic in γ. For it to have a unique solution in (0, 1), it is necessary and sufficient that

the quadratic form evaluated at 0 and 1 be non zero and of opposite sign. Namely,

[
d logQm(t)

dt
− log 2

gt(t)

((
d logQm(t)

dt

)2

+
d2 logQm(t)

dt2

)
− 1

t

]

×
[
d logQv(t)

dt
− log 2

gt(t)

((
d logQv(t)

dt

)2

+
d2 logQv(t)

dt2

)
− 1

t

]
< 0.

Noting that d logQm(t)/dt = Q′
m(t)/Qm(t) and d2 logQm(t)/dt2 = (Q′′

m(t)/Qm(t))−(Q′
m(t)/Qm(t))2

with Qm(·) > 0 and similarly for logQv(t) give the necessary and sifficient condition of

Proposition 3. This identifies γ.

To identify κ, evaluating (11) and (12) at h and c gives T ′(c) = 1. Thus, taking the

derivative of t = T (κQv(t)γQm(t)1−γ) with respect to t and evaluating it at t gives (17),

where we have used T ′(c) = 1. This equation identifies κ given that γ is identified. To
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identify T (·), we know that t = T (κQv(t)γQm(t)1−γ) or equivalently log κ + γ logQv(t) +

(1 − γ) logQ)m(t) = log T−1(t). Since Qv(·) and Qm(·) are identified by Proposition 2,

T−1(·) is identified and given by (18).

Aggregation of Voice Consumption

Our data provide the quantities qL, qD and qR of phone calls measured in minutes and

the quantity qm of SMS measured in units. See Table 1. Since some of them can be zero,

throughout the paper we add one unit to every quantity. We aggregate these three quantities

into a single one qv = A(qL, qD, qR) to capture voice consumption. We follow Luo (2011)

and we make the following assumption on the aggregation function.

Assumption B1:The aggregation function is of the form A(qL, qD, qR) = (qL)α1(qD)α2

(qR)α3, with α1, α2, α3 ≥ 0 and
∑3

j=1 αj = 1.

Assumption B1 corresponds to a standard Cobb-Douglas specification. Using A4, the cost-

based tariff becomes

t = T
[
{(qL)α1(qD)α2(qR)α3ǫv}γ{(qm)ǫm}1−γ

]
,

where T (·) is strictly increasing and concave. Considering the inverse and taking the loga-

rithm gives

γ
[
α1 log qL + α2 log qD + α3 log qR + log ǫv

]
+ (1 − γ) [log qm + log ǫm] = log[T−1(t)],

where α3 = 1 − α1 − α2.

Luo (2011) shows that the coefficients of α1, α2 and α3 as well as the function T−1(·) are

identified. A more general specification is studied in Luo and Xu (in progress). We denote

α = (α1, α2, α3)′ and q = (log qL, log qD, log qR)′. The above equation can be written as

α′q = r(t; γ) − log ǫv, (B.3)

where r(t; γ) = (1/γ) log[T−1(t)/Q1−γ
m (t)] since Qm = qmǫm = Qm(t) from Section 4.1.
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Hence, Var[α′q|t] = Var[log ǫv|t], where the latter is a constant from A2-(ii) and (3). To

estimate α, we partition the range of bills into B bins and define the dummy variable

Db(t) = 1 if t belongs to the bin b and zero otherwise. Thus, for any value b, multiplying

both sides of (B.3) by Db(t) and taking the variance conditional on t gives Var[Db(t)α
′q|t] =

Db(t)Var[log ǫv|t]. Thus we have the estimating equations

Var[Db(t)α
′q|t] −Db(t)Var[α′q|t] = 0

for every b ∈ {1, . . . , B} and t ∈ [t, t]. Taking expectation, using D2
b (t) = Db(t) and

Var[α′q|t] is a constant gives the moment equations

0 = α′
[
E {Var[Db(t)q|t]} − E[Db(t)]E(Var[q|t])

]
α

= α′
[
E
{

E
[
Db(t)(q−E(q|t))(q−E(q|t))′|t

]}
−E[Db(t)]E

{
E
[
(q−E(q|t))(q−E(q|t))′]|t

}]
α

= α′
[
E
{
Db(t)(q−E(q|t))(q−E(q|t))′

}
−E[Db(t)]E

{
(q−E(q|t))(q−E(q|t))′

}]
α (B.4)

for b ∈ {1, . . . , B}.

Replacing E[q|t] by a nonparametric regression estimator and E[Db(t)] by Nb/N , the

sample analog of the right-hand side of (B.4) is

α′


 1

N

∑

i∈b

(q−Ê(q|ti))(q−Ê(q|ti))′
}

−Nb

N

1

N

N∑

i=1

(qi−Ê(q|ti))(qi−Ê(q|ti))′


α (B.5)

where Nb is the number of observations in bin b and N is the total number of observations.

Our estimator of α minimizes the sum over b of the the square of (B.5) weighted by (N/Nb)
2,

namely

min
α:α1+α2+α3=1

B∑

b=1


α′


 1

Nb

∑

i∈b

(q−Ê(q|ti))(q−Ê(q|ti))′
}

− 1

N

N∑

i=1

(qi−Ê(q|ti))(qi−Ê(q|ti))′


α




2

,
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The conditional expectation of q given ti is estimated using a standard kernel estimator

Ê[q|ti] =

∑N
k=1 qkK

(
ti−tk

ht

)

∑N
k=1K

(
ti−tk

ht

) ,

where K(·) is a kernel function and ht is a bandwidth. Using 19 bins, a triweight kernel

and the rule of thumb bandwidth, the estimated coefficients are α̂1 = 0.4295, α̂2 = 0.3199,

α̂3 = 0.2505. Thus, qvi = (qL
i )0.4295(qD

i )0.3199(qR
i )0.2505 for i = 1, . . . , N .
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Figures and Tables

Figure B.1: Scatter plot (qv, t)

Figure B.2: Scatter plot (qm, t)

Figure B.3: Scatter plot (qv, qm)
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Figure B.4: Fitted Regression of the Tariff

Figure B.5: ĥ(c) and V̂ ′
0(c)

Figure B.6: T̂ (c)
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Figure B.7: φ̂∗(h)

Figure B.8: 1 − Φ̂∗(h)

hφ̂∗(h)

Figure B.9: V̂0(t), ĥ(t)V̂0(t)
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Figure B.10: Density of informational rent by payment

Figure B.11: Densities of unobserved heterogeneity f̂ǫv (·), f̂ǫm(·)
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Figure B.12: Cost-based tariff
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Table B.1: Summary statistics

Mean Median Min Max STD

Bill 34.65 30.34 13.97 99.78 16.56
qL 488.15 420 0 2,673 331.61
qD 145.41 60 0 3,095 237.68
qR 160.28 28 0 3,179 288.25
qSMS 100.87 38 0 1,786 161.35
qv 135.03 86.12 2.24 1,051.07 129.90

N.B.: qL, qD and qR are the quantities of local,
distance and roaming calls.
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Table B.2: Correlations

Bill Variable Sample Mean STD Correlation Matrix
Range Size Bill qv qm

< 24 Bill 1,446 19.57 2.93 1
qv – 62.56 49.93 0.321 1
qm – 37.27 51.99 0.207 0.043 1

[24, 34) Bill 1,317 28.77 2.98 1
qv – 106.50 78.29 0.172 1
qm – 83.55 108.64 0.074 -0.119 1

[34, 44) Bill 790 38.59 2.76 1
qv – 156.28 103.76 0.117 1
qm – 113.69 144.44 0.102 -0.157 1

[44, 54) Bill 479 48.65 2.82 1
qv – 205.12 140.11 0.090 1
qm – 162.17 213.50 0.089 -0.231 1

[54, 64) Bill 246 58.47 2.97 1
qv – 251.41 155.68 0.100 1
qm – 210.66 253.68 0.133 -0.248 1

[64, 74) Bill 167 68.47 2.89 1
qv – 308.82 203.85 0.002 1
qm – 240.27 280.35 0.049 -0.083 1

≥ 74 Bill 166 84.23 7.25 1
qv – 342.03 227.52 0.068 1
qm – 279.13 289.87 -0.031 -0.239 1

Full sample Bill 4,611 34.65 16.56 1
qv – 135.03 129.90 0.595 1
qm – 100.87 161.35 0.408 0.112 1
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Table B.3: Informational Rents

Mean Median Min Max STD

Rents 15.17 6.55 0.00 102.84 21.02
Rent/Bill 0.31 0.22 0.00 1.15 0.28

Table B.4: Unobserved Heterogeneity

Mean Median Min Max STD

ǫv 1.40 0.97 0.17 45.33 1.62
ǫm 4.47 0.74 0.04 166.30 10.44



Appendix C

Bundling and Nonlinear Pricing in

Telecommunications

Proofs

Proof of Lemma 1: Due to minimum internet need, j(θ, β) ≥ D(β) at equilibrium. I establish

that any mechanism in which j(θ, β) > D(β) for some (θ, β) is dominated by a mechanism in which

j(θ, β) = D(β) for all (θ, β). Fix any mechanism {t(·, ·), q(·, ·), j(·, ·)} satisfying the IC, IR and

MN constraints. Suppose that there exists some (θ, β) such that j(θ, β) > D(β). I now consider a

mechanism
{
t̃(·, ·), q̃(·, ·), j̃(·, ·)

}
where t̃(θ, β) = t(θ, β) +U(q̃(θ, β), j̃(θ, β); θ) −U(q(θ, β), j(θ, β); θ),

q̃(θ, β) = q(θ, β), and j̃(θ, β) = D(β). The original mechanism is less profitable than the new one

because of Assumption 3-(ii).

By definition, the consumer surplus keeps the same. Thus, the IR constraints hold under the

new mechanism. I need to show that the IC constraints hold under the new mechanism. Consider

the following inequality:

U(q̃(θ, β), j̃(θ, β); θ) − t̃(θ, β) ≥ U(q̃(θ̃, β̃), j̃(θ̃, β̃); θ) − t̃(θ̃, β̃),

which is equivalent to

U(q̃(θ, β), j̃(θ, β); θ) −
[
t(θ, β) + U(q̃(θ, β), j̃(θ, β); θ) − U(q(θ, β), j(θ, β); θ)

]

≥ U(q̃(θ̃, β̃), j̃(θ̃, β̃); θ) −
[
t(θ̃, β̃) + U(q̃(θ̃, β̃), j̃(θ̃, β̃); θ̃) − U(q(θ̃, β̃), j(θ̃, β̃); θ̃)

]
.
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The left-hand side equals U(q(θ, β), j(θ, β); θ)−t(θ, β), whereas the right-hand side equals U(q(θ̃, β̃), j(θ̃, β̃); θ)−
t(θ̃, β̃) if Assumption 3-(i) is satisfied. In fact,

{
U(q̃(θ̃, β̃), j̃(θ̃, β̃); θ) −

[
t(θ̃, β̃) + U(q̃(θ̃, β̃), j̃(θ̃, β̃); θ̃) − U(q(θ̃, β̃), j(θ̃, β̃); θ̃)

]}
−

{
U(q(θ̃, β̃), j(θ̃, β̃); θ) − t(θ̃, β̃)

}

= U(q̃(θ̃, β̃), j̃(θ̃, β̃); θ)−U(q̃(θ̃, β̃), j̃(θ̃, β̃); θ̃)+U(q(θ̃, β̃), j(θ̃, β̃); θ̃)−U(q(θ̃, β̃), j(θ̃, β̃); θ)=0,

where the last equation is true if Assumption 3-(i) is satisfied.

The IC constraints hold under the new mechanism because they do under the original one. Thus

j∗(θ, β) = D(β). I now turn to q∗(·, ·) and t∗(·, ·). Given j∗(θ, β) = D(β), the consumer’s problem

becomes max
q∈IR+ U(q,D(β); θ)−T ∗(q,D(β)). This implies that β only affects phone usage through

D(β). Hence, q∗(θ, β) = q∗(θ,D(β)). Given that I consider non-random nonlinear pricing schedules,

it further implies that t∗(θ, β) = T ∗(q∗(θ,D(β)), D(β)) = t∗(θ,D(β)).

Proof of Lemma 2: For a given cutoff taste θc, the optimal mechanism {q∗(·, ·; θc), j∗(·, ·; θc), t∗(·, ·; θc)}
can be derived following Sundararajan (2004) and is defined by (2), j∗(θ, β; θc) = D(β), and (3) by

replacing θc
j with θc. An important feature is that the allocation q∗(θ, β; θc), j∗(θ, β; θc) does not

depend on θc, while the optimal price schedule t∗(·, ·; θc) does. The provider’s problem is then to

find an optimal θc to maximize its expected profit

∫ θ

θc

[
t∗(θ, β; θc) − c(q∗(θ, β), D(β))

]
f(θ|D(β))dθ +

∫ θc

θ

[
v(0, D(β)) − c(0, D(β))

]
f(θ|D(β))dθ,

=

∫ θ

θc

[
U(q∗(θ, β), D(β); θ) −

∫ θ

θc

Uθ(q∗(z, β), D(β); z)dz − c(q∗(θ, β), D(β))
]
f(θ|D(β))dθ

+
[
v(0, D(β)) − c(0, D(β))

]
F (θc|D(β)),

where the first part is the profit collected from all consumers buying internet and phone services

and the second part is the profit collected from consumers buying only internet. The first-order

derivative with respect to θc is

−
[
U(q∗(θc, β), D(β); θc) − c(q∗(θc, β), D(β))

]
f(θc|D(β)) +

∫ θ

θc

Uθ(q∗(θc, β), D(β); θc)f(θ|D(β))dθ

+
[
v(0, D(β)) − c(0, D(β))

]
f(θc|D(β))

= −f(θc|D(β))M(θc, D(β)).
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which gives the boundary condition (1).

Proof of Lemma 4: If the two-dimensional IC constraints hold, the two one-dimensional con-

straints hold automatically. I now establish that, if the two one-dimensional IC constraints hold, the

two-dimensional IC constraints hold as well. To see this, consider any two pairs (θ, β) and (θ̃, β̃),

such that D(β̃) ≥ β. Consider (θ, β) and (θ, β̃). The second one-dimensional IC constraint at (θ, β)

implies

U(q(θ, β), D(β); θ) − t(θ, β) ≥ U(q(θ, β̃), D(β̃); θ) − t(θ, β̃). (C.1)

Now consider (θ, β̃) and (θ̃, β̃). The first one-dimensional IC constraint at (θ, β̃) implies

U(q(θ, β̃), D(β̃); θ) − t(θ, β̃) ≥ U(q(θ̃, β̃), D(β̃); θ) − t(θ̃, β̃). (C.2)

Combining (C.1) and (C.2) gives U(q(θ, β), D(β); θ) − t(θ, β) ≥ U(q(θ̃, β̃), D(β̃); θ) − t(θ̃, β̃). There-

fore, the two-dimensional IC constraints are satisfied.

Proof of Lemma 5: First, I show that q∗(θ, β) is decreasing in β. Since q∗(θ, β) = q∗(θ,D(β)),

without loss of generality I show that ∂q∗(θ,j)
∂j

≤ 0.1 To simplify the exposition, I suppress the

arguments of functions and omit the asterisk superscript hereafter.

Taking the total derivative of (2) with respect to j gives

∂q(θ, j)

∂j
=

−Uqj + cqj + Uqθj
1−F

f
+ Uqθ

∂ 1−F
f

∂j

Uqq − cqq − Uqqθ
1−F

f

≤ 0,

where the inequality holds since cqj ≥ Uqj (following Assumption 3-(ii)), Uqθj = 0 (following As-

sumption 3-(i)), Uqθ > 0 (following Assumption 2-(ii)),
∂ 1−F

f

∂j
≥ 0 (following Assumption 4). The

denominator is negative under Assumption 2. See Sundararajan (2004) for details.

Second, I show that θc
j is increasing in j. Suppose the contrary, i.e. θc

j > θc
j̃

for some j, j̃ ∈ J . I

show that this leads to a contradiction in all cases.

(i) θ < θc
j < θ and θ < θc

j̃
< θ. By definition, for all j ∈ J , M(θc

j , j) = 0 if θ < θc
j < θ.

1For notation convenience, I use differentiation as if the variable j is continuous.
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Computing the total differential of M(θc
j , j) = 0 with respect to j gives

∂θc
j

∂j
= −

[Uq − Uqθ
1−F

f
− cq] ∂q

∂j
+
[
Uj − vj(0, j)

]
−
[
cj − cj(0, j)

]
− Uθj

1−F
f

− Uθ
∂ 1−F

f

∂j

[Uq − Uqθ
1−F

f
− cq] ∂q

∂θ
+ Uθ − Uθ

∂ 1−F
f

∂θ
− Uθθ

1−F
f

= −
[
Uj − vj(0, j)

]
−
[
cj − cj(0, j)

]
− Uθ

∂ 1−F
f

∂j

Uθ(1 − ∂ 1−F
f

∂θ
) − Uθθ

1−F
f

≥ 0,

leading to a contradiction as θc
j > θc

j̃
by assumption. The second equality holds since Uq −Uqθ

1−F
f

−
cq = 0 (following Equation (2)), Uθj = 0 (following Assumption 3-(i)), while the inequality holds

since Uθ ≥ 0 (following Assumption 2-(i)), Uθθ ≤ 0 (following Assumption 2-(i)), Hθ ≥ 0 (following

Assumption 2-(v)),
∂ 1−F

f

∂j
≥ 0. Moreover, Assumption 3-(ii) implies [U(q, j̃; θ)−v(0, j̃)]−[U(q, j; θ)−

v(0, j)] ≤ [c(q, j̃) − c(0, j̃)] − [c(q, j) − c(0, j)].

(ii) θ < θc
j ≤ θ and θc

j̃
= θ. By definition, M(θ, j̃) ≥ 0. Differentiating M(θ, j) with respect to j

gives

∂M(θ, j)

∂j
=[Uq − Uqθ

1

f(θ|j) − cq]
∂q

∂j
+
[
Uj − vj(0, j)

]
−
[
cj − cj(0, j)

]

=
[
Uj − vj(0, j)

]
−
[
cj − cj(0, j)

]
≤ 0,

which implies that M(θ, j) ≥ M(θ, j̃) ≥ 0, leading to a contradiction by definition of θc
j .

(iii) θc
j = θ and θ < θc

j̃
< θ. By definition, M(θc

j̃
, j̃) = 0. Differentiating M(θc

j̃
, j) with respect

to j gives

∂M(θc
j̃
, j)

∂j
=[Uq − Uqθ

1 − F (θc
j̃
|j)

f(θc
j̃
|j) − cq]

∂q

∂j
+
[
Uj − vj(0, j)

]
−
[
cj − cj(0, j)

]

=
[
Uj − vj(0, j)

]
−
[
cj − cj(0, j)

]
≤ 0,

which implies that M(θc
j̃
, j) ≥ M(θc

j̃
, j̃) = 0, leading to a contradiction by definition of θc

j .

Third, consider a (θ, j) consumer’s indirect utility S(θ, j) =
∫ θ

θc
j

Uθ

(
q(x, j), j;x

)
dx. The first-

order derivative with respect to j is

∂S(θ, j)

∂j
= −Uθ

(
q(θc

j , j), j; θ
c
j

)∂θc
j

∂j
+

∫ θ

θc
j

Uqθ

(
q(x, j), j;x

)∂q(x, j)
∂j

+ Ujθ

(
q(x, j), j;x

)
dx

= −Uθ

(
q(θc

j , j), j; θ
c
j

)∂θc
j

∂j
+

∫ θ

θc
j

Uqθ

(
q(x, j), j;x

)∂q(x, j)
∂j

dx ≤ 0,
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where the second equality follows from Assumption 3 while the inequality follows from the above

results. Therefore, the consumer gets lower indirect utility if he overreport his β.

Finally, I show that T ∗(q, j) − v(q, j) is increasing in j. By Lemma 2, we know that

T ∗(q, j) − v(q, j) = t∗(θ(q, j), j) − v(q, j) = u(q, θ(q, j)) −
∫ θ(q,j)

θc
j

uθ(q(x, j), x)dx,

where θ(·, j) is the inverse function of q∗(·, j). Differentiating with respect to j gives

∂
[
T ∗(q, j) − v(q, j)

]

∂j
=uθ

(
q, θ(q, j)

)∂θ(q, j)
∂j

− uθ

(
q, θ(q, j)

)∂θ(q, j)
∂j

+

uθ

(
q
(
θc

j , j
)
, θc

j

)∂θc
j

∂j
−
∫ θ(q,j)

θc
j

uqθ

(
q(x, j), x

)∂q(x, j)
∂j

dx

=uθ

(
q
(
θc

j , j
)
, θc

j

)∂θc
j

∂j
−
∫ θ(q,j)

θc
j

uqθ

(
q(x, j), x

)∂q(x, j)
∂j

dx ≥ 0,

where the inequality holds since uθ > 0,
∂θc

j

∂j
≥ 0, uqθ > 0 and ∂q(θ,j)

∂j
≤ 0.

Proof of Proposition 5: First, I show that q
j
> 0 for all j = 0, 1, 2. Suppose the contrary, i.e.

q
j

= 0. Thus Mj(θc
j) = 0 − u0[(1 − F )/f ] − (κ0 − ∆j) < ∆j − κ0 < 0, thereby contradicting the

definition of θc
j . Therefore, q

j
> 0 for all j = 0, 1, 2.

Second, I show that fixed cost parameters κ0 − ∆j can be identified for j = 1, 2. The cutoff

consumer receives no information rent. Namely, tj(θc
j) = θc

ju0(q∗
j (θc

j)) + vj(q∗
j (θc

j)), which can be

written as

Tj(q
j
) = θc

ju0(q
j
) + vj(q

j
). (C.3)

By definition of the cutoff taste, I have

[
θc

ju0(q
j
) + vj(q

j
) − vj(0)

]
− u0(q

j
)
1 − Fj(θc

j)

fj(θc
j)

=
(
κ0 + κj − ∆j + γq

j

)
− κj . (C.4)

Equations (C.3) and (C.4) imply

κ0 − ∆j = Tj(q
j
) − Tj(0) − γq

j
− u0(q

j
)
1 − Fj(θc

j)

fj(θc
j)

= Tj(q
j
) − Tj(0) − γq

j
− θ0(q

j
)u0(q

j
)
T ′

j(q
j
) − γ

T ′
0(q

j
)

, (C.5)
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where the last equality holds since

1 − Fj(θc
j)

fj(θc
j)

=
T ′

j(q
j
) − γ

u′
0(q

j
)

= θ0(q
j
)
T ′

j(q
j
) − γ

T ′
0(q

j
)

.

Similarly, if j = 0, then κ0 = T0(q
0
) − 0 − γq

0
− T0(q

0
)

T ′

0(q
0
)−γ

T ′

0
(q

0
) = γ

T ′

0
(q

0
)T0(q

0
) − γq

0
, where the

first equality following from θ0(q
0
)u0(q

0
) = T0(q

0
). Thus κ0 is identified, leading to the identification

of ∆1 and ∆2 by (C.5).
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Estimation of Tariff Functions and Construction of Phone Us-

age

The data provide the quantity of phone calls Q measured in minutes, the internet speed j measured

in Mbps and the payment t measured in RMB. Following Luo (2011), I aggregate phone call minutes,

add-ons and additional features into a single index q = Q × ǫ to capture phone usage. The term

ǫ captures the add-ons and additional features, which are unobserved by the analyst. Thus the

tariff for group-j becomes t = Tj(Qǫ), where j ∈ J , and Tj(·) is strictly increasing and concave.

Considering the inverse and taking the natural logarithm gives

logQ = log T−1
j (t) − log ǫ. (C.6)

Following Luo (2011), I assume that ǫ ⊥ θ. The tariff function Tj(·) is identified.

To estimate Tj(·), I approximate its inverse function with splines and find the optimal approxi-

mate spline that minimizes the sum of squared errors in (C.6). Since T−1
j (·) is increasing and convex,

I use constrained smoothing regression splines proposed by Dole (1999) to approximate it

ψ(·; δj) ≡
nj∑

l=1

δl
js

l
j(·),

where δj is a vector of parameters δl
j , sl

j is a cubic basis function, and nj is the number of interior

knots. The function ψ(·; δj) is increasing and positive if and only if δj ≥ 0.

I then solve the following problem:

min
δ0,δ1,δ2≥0

∑

j∈J

N∗

j∑

i=1

[
logQi

j − logψ(tij ; δj)
]2
.

I estimate T (·) as T̂ (·) = ψ−1(·; δ̂j). Figure C.3 displays the estimated tariff functions T0(·), T1(·), T2(·).
I construct a bundle-j user’s phone usage as q = T̂−1

j (t) = ψ(t; δ̂j) for all t ∈ [t, t]. The data on

bundle-j users are
{

(qi
j , t

i
j)
}N∗

j

i=1
and T̂j(·).
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Figures and Tables

Figure C.1: Numerical Example

(a) θ − 1−F (θ|j)
f(θ|j)

(b) q∗(·, ·)

(c) T ∗(·, ·) − v(·, ·)
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Figure C.2: Numerical Example: Bundling

(a) Component Pricing

Λ > 1
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θ
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β

(b) Mixed Bundling
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0
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2

β

(c) Mixed Bundling

Λ ∈ (− 1
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,− 1
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β
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0
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β

(d) Semi-mixed Bundling with Exclusion
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β

θ
0
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β

(e) Semi-mixed Bundling without Exclu-

sion

Λ ≤ − 1
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β

θ
0

1
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β

(f) Pure Bundling

Λ ≤ − 1
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β

θ
0

1

2

β
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Figure C.3: Tariffs T̂0(·), T̂1(·), T̂2(·)

Figure C.4: Marginal Intrinsic Utility û′
0(·)

Figure C.5: Marginal Complementary Utilities v̂′
1(·), v̂′

2(·)
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Figure C.6: Phone Service Assignments q̂0(·), q̂1(·), q̂2(·)

Figure C.7: Conditional Type Densities f̂∗
0 (·), f̂∗

1 (·), f̂∗
2 (·)

Figure C.8: Ĥ0(·), Ĥ1(·), Ĥ2(·)
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Figure C.9: Example with Mixing Two Groups on the Same Interval

Figure C.10: Tariff Functions under Mixed Bundling and Component Pricing



118

Figure C.11: Breakdown of Welfare

Figure C.12: Breakdown of Bill
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Table C.1: Number of Subscribers as of Dec 31, 2009 (in millions)

Fixed Line Broadband Mobile Service

China Telecom 189 53 56
China Unicom 103 39 145
China Mobile 25 6 522

Table C.2: Summary Statistics

Internet Variable N Mean S.D. Min Max

0
bill 7683 74.91 76.17 19 972.70
total minutes – 600.21 720.84 10 4990
per minute rate – 0.2129 0.2981 0.0057 9.2333

1
bill 11206 131.06 48.70 99.92 998.84
total minutes – 627.88 717.66 10 4956
per minute rate – 0.2496 0.4637 0.0060 10.4996

2
bill 12406 176.47 60.85 108 985.99
total minutes – 973.13 1045.65 10 4992
per minute rate – 0.2727 0.6037 0.0077 23.5360

Table C.3: Regression of the Bill

Internet (Mbps) 0 1 2

bill
TotalMin 0.0859 0.0978 0.1049

(0.0010) (0.0013) (0.0011)
TotalMin2 -3.61e-06 -4.12e-06 -7.01e-06

(1.04e-07) (1.61e-07) (1.40e-07)
Constant 81.1750 112.1811 150.8603

(0.8021) (0.9854) (1.1487)

Adjusted R2 0.2711 0.4186 0.4086
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