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Abstract

In state-of-the-art image retrieval systems, an image is

represented by a bag of visual words obtained by quantiz-

ing high-dimensional local image descriptors, and scalable

schemes inspired by text retrieval are then applied for large

scale image indexing and retrieval. Bag-of-words repre-

sentations, however: 1) reduce the discriminative power of

image features due to feature quantization; and 2) ignore

geometric relationships among visual words. Exploiting

such geometric constraints, by estimating a 2D affine trans-

formation between a query image and each candidate im-

age, has been shown to greatly improve retrieval precision

but at high computational cost. In this paper we present

a novel scheme where image features are bundled into lo-

cal groups. Each group of bundled features becomes much

more discriminative than a single feature, and within each

group simple and robust geometric constraints can be effi-

ciently enforced. Experiments in web image search, with a

database of more than one million images, show that our

scheme achieves a 49% improvement in average precision

over the baseline bag-of-words approach. Retrieval per-

formance is comparable to existing full geometric verifica-

tion approaches while being much less computationally ex-

pensive. When combined with full geometric verification

we achieve a 77% precision improvement over the baseline

bag-of-words approach, and a 24% improvement over full

geometric verification alone.

1. Introduction

Our goal, given a query image, is to locate its near- and

partial-duplicate images in a large corpus of web images.

There are many applications for such a system, for example

detecting copyright violations or locating high-quality, or

canonical, versions of a low-resolution or altered image.

Web image search differs from image-based object re-

trieval, where image variations can be due to 3D view-point

change, lighting, object deformations, or even object-class
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Figure 1. Examples of partial-duplicate web images.

variability. In our case, target images are obtained by edit-

ing the original 2D image through changes in scale, crop-

ping, partial occlusions, etc. This is a less challenging task

than full object retrieval, and so the bar is set higher for a

system’s performance, scalability and accuracy. Neverthe-

less, modifications to the original web images are often sub-

stantial and cannot be described by a single 2D transforma-

tion such as a homography. Figure 1 shows some examples

of partial-duplicate web images. As the figure shows, users

often take different portions from the original image and

paste them to the target image with modifications, resulting

in a partial-duplicate image that differs from the original not

only in appearance, but also in 2D layout.

State-of-the-art large scale image retrieval systems [1, 3,

11, 12] have relied on quantizing local SIFT descriptors [6]

into visual words, and then applying scalable textual index-

ing and retrieval schemes [15]. The discriminative power of

local descriptors, however, is limited due both to quantiza-

tion and to the large number of images (e.g. greater than

a million images). Geometric verification [3, 6, 12, 15]

becomes an important post-processing step for getting a

reasonable retrieval precision, especially for low-resolution

images. But full geometric verification is computationally

expensive. In practice therefore it is only applied to a subset

of the top-ranked candidate images. For web image retrieval

the number of near or partial duplicates could be large, and

applying full geometric verification to only these top-ranked



images may not be sufficient for good recall.

In this paper we propose a novel scheme to bundle SIFT

features into local groups. These bundled features are re-

peatable and much more discriminative than an individual

SIFT feature. Equally importantly, they provide a flexi-

ble representation that allows simple and robust geometric

constraints to be efficiently enforced when querying the in-

dex. Experiments in web image search, with a database

of more than a million web images, show that our simple

scheme achieves a 49% improvement over the baseline bag-

of-words approach. Retrieval performance is comparable

to existing full geometric verification approaches while be-

ing much less computationally expensive. When combined

with full geometric verification we achieve a 77% improve-

ment in average precision over the baseline bag-of-words

approach and a 24% improvement over full geometric veri-

fication alone.

1.1. Related work

State-of-the-art large scale image retrieval systems [1, 3,

11, 12] have been significantly advanced by two seminal

works: 1) the introduction of local SIFT descriptors [6] for

invariant image representation; and 2) the quantization of

local descriptors into visual words for scalable image in-

dexing and query [15]. By using an inverted-file index of vi-

sual words one not only avoids storing and comparing high-

dimensional local descriptors, but also reduces the number

of candidate images since only those images sharing com-

mon visual words with the query image need to be exam-

ined. While critical for scalability, quantization has two ma-

jor issues. First, modifications to an image patch can lead

to its corresponding descriptor being quantized into differ-

ent visual words. Second, quantization reduces the discrim-

inative power of local descriptors since different descriptors

quantized to the same visual word are considered to match

with each other. These two issues reduce the precision and

recall in image retrieval, especially for low resolution im-

ages.

Soft-quantization [4, 13] has been proposed to improve

recall by quantizing a descriptor to more than one visual

word. Query expansion [2] is another successful technique

to boost recall but it can fail on queries with poor initial

recall. To improve precision, a visual word may be aug-

mented with compact information from its original local

descriptor, including a Hamming code [3], descriptor scale

and angle [3], and the distance (in descriptor space) to its

neighboring visual words [13]. While these methods are

effective at improving the discriminative power at a rea-

sonable cost in index file size, they still ignore the geo-

metric relationship between feature points—an important

characteristic for images that has no direct analog in tra-

ditional text retrieval. Exploiting such geometric relation-

ships with full geometric verification (e.g. by estimating

an affine transformation between the query image and a

candidate image) has been shown to significantly improve

the retrieval precision [3, 6, 12]. But full geometric ver-

ification is computationally expensive. Local spatial con-

sistency from k (=15) spatial nearest neighbors, a weaker

but computationally more feasible geometric constraint, is

used in [15] to filter false visual-word matches. However,

we have found spatial nearest neighbors to be sensitive

to the image noise and resolution changes that are typical

in web images. Other related works on higher-order fea-

tures(c.f. [5, 14, 16, 17]) require data-dependent training to

select co-occurrence features, or combinatorial feature pair-

ing/grouping. Such training schemes do not scale for web

images containing all kinds of object categories.

2. Bundled Features

In this section we first compare the discriminative power

of two popular local image features: SIFT and MSER.

We then motivate the use of grouped features to improve

discrimination, and introduce the notion of a bundled fea-

ture which is a flexible representation that facilitates partial

matches between two grouped features.

Notation. In the rest of this paper we adopt the following

terminology:

• SIFT feature: a keypoint and the SIFT descriptor com-

puted from the scale-invariant region centered at the

keypoint [6];

• MSER detection: a maximally stable region [8];

• MSER feature: an MSER detection and the SIFT de-

scriptor computed from the detected region.

2.1. Point feature: SIFT

The SIFT feature (keypoint and descriptor) is one of the

most robust and distinctive point features [6]. The SIFT

keypoint gains invariance to scale and rotation by exploit-

ing scale-space extrema and the local dominant orientation.

The SIFT descriptor assembles a 4x4 array of 8 gradient

orientation histograms around the keypoint, making it ro-

bust to image variations induced by both photometric and

geometric changes.

In large scale image search, however, we need to match a

single SIFT feature to millions or billions of SIFT features

computed from a corpus of web images. In this scenario

the discriminative power of the quantized SIFT feature de-

creases rapidly, resulting in many false positive matches be-

tween individual features. Figure 2(a) shows an example.

On the left column is a query SIFT feature, followed by its

top five matches from a dataset with 100,000 images. The

figure shows that the four best candidates are actually mis-

matches.
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Figure 2. Matching bundled features: (a) a query SIFT feature and

its top matches; (b) a query MSER feature and its top matches

(green boxes in (a) and (b) indicate correct matches); (c) partial

matching of two bundled features (some features are not matched);

(d) matched SIFT features inside the MSER detection region.

2.2. Region feature: MSER

The Maximally Stable Extremal Region (MSER) [8] is

another widely-used feature in large scale image-retrieval

systems. Unlike the SIFT feature detector, MSER detects

affine-covariant stable regions. Each detected elliptical re-

gion is normalized into a circular region from which a SIFT

descriptor is computed.

Usually the MSER detector outputs a relatively small

number of regions per image and their repeatability and dis-

tinctness are higher [9, 10] than that of the SIFT keypoint.

However, false positive matches remain an issue for large

image databases. Figure 2(b) shows a query MSER feature

and several retrieved, mismatched features from the same

database. The sources of false positives are twofold: 1) each

MSER feature is still represented by a single SIFT descrip-

tor no matter how large the region is; and 2) quantization

further decreases the discriminative power of the feature.

2.3. Bundled features

A straightforward way to increase the discriminative

power of a local feature is to increase its region size in

the image (e.g. increasing its scale by a constant factor)

and/or the dimensionality of the descriptor. A larger fea-

ture, however, is less repeatable and has a lower localization

accuracy and it is more sensitive to occlusion and image

variations caused by photometric and geometric changes.

Figure 2(c) shows two MSER detections from two near-

duplicate images that are of different sizes and corrupted by

noise. Since the two regions are not well aligned, a larger

(a) (b)

Figure 3. Examples of bundled features. (a) SIFT features and

MSER detections; (b) bundled features from (a). The bundling

MSER detections are indicated by ellipses, and the SIFT features

in each bundled feature are shown in blue “+”.

descriptor with higher dimension will be more sensitive to

overlap error [10]. However, if we closely inspect the two

MSER detections in Figure 2(c) we can observe that some

parts of these detected regions match very well. Figure 2(d)

highlights the matched partial regions. If we can partially

match two MSER regions and represent them with a more

discriminative descriptor, we may improve both precision

and recall. This motivates us to combine several point fea-

tures within a region to form a bundled feature.

Denote S = {sj} the SIFT features and R = {ri} the

MSER detections computed in an input image. We define

the bundled feature B = {bi} to be:

bi = {sj |sj ∝ ri, sj ∈ S}, (1)

where sj ∝ ri means that the point feature sj falls inside

the region ri. (In fact we enlarge the ellipse of the bundling

MSER slightly when computing sj ∝ ri. We considered

enlargement factors between 1 and 2 and get the best perfor-

mance using a factor of 1.5.) bi is discarded if it is empty. A

bundled feature is simply several SIFT features “bundled”

by an MSER detection. Note that one SIFT feature may be-

long to multiple bundled features or may not belong to any

bundled feature. Figure 3 shows several bundled features.

We discard any MSER detection whose ellipse spans more

than half the width or height of the image, since such large

regions are generally not repeatable.

A bundled feature is more discriminative than a single

SIFT feature as it consists of multiple SIFT features. Un-

like a single large feature, a bundled feature provides a flex-

ible representation that allows us to partially match two

groups of SIFT features. Specifically, two matched bun-

dled features are allowed to have large overlap error in their

bundling MSER, and to have different number of SIFT fea-

tures with only a subset of them matched. Thus the more

discriminative bundled feature is also robust to occlusion

and other image variations induced by photometric and ge-

ometric changes, making it possible to achieve both high



precision and recall. The remaining challenge is how to ef-

ficiently perform partial matching of two bundled features

in a large scale image search system.

3. Image Retrieval using Bundled Features

This section shows how to exploit two simple weak geo-

metric constraints for efficient partial matching of bundled

features in a large scale image-search system. First, SIFT

features that are bundled in the query image should typi-

cally match with corresponding SIFT features in a target

image that also reside in a common bundle. Second, the rel-

ative spatial configuration of the SIFT features within one

bundled feature should remain approximately the same in

query and target images.

3.1. Feature quantization

To build a large scale image indexing and retrieval sys-

tem, we need to quantize local descriptors into visual words.

For a given bundled feature, we quantize its constituent

SIFT descriptors individually. We use hierarchical K-

means [11] to obtain a vocabulary of one million visual

words from a training set of 50 thousand images. Follow-

ing [12] we use a k-d tree to organize these visual words

for nearest neighbor search during quantization. To reduce

quantization error, we use a soft quantization scheme [13],

mapping a descriptor to its n-nearest visual words in the k-d

tree.

3.2. Matching bundled features

Let p = {pi} and q = {qj} be two bundled features

with quantized visual words pi, qj ∈ W , where W is our

visual vocabulary. First, we sort {pi} and {qj} in a geomet-

ric order (as explained below). Next, we discard any pi ∈ p

that does not have a matching qi ∈ q. Then for each re-

maining visual word pi in the bundled feature p, we find

its matched visual word q∗(pi) in the bundled feature q and

denote the order of q∗(pi) in q by Oq[pi].
Now, we define a matching score M(q;p) between p

and q. The score M(q;p) consists of a membership term

Mm(q;p) and a geometric term Mg(q;p):

M(q;p) = Mm(q;p) + λMg(q;p), (2)

where λ is a weighting parameter.

Membership term. We simply use the number of com-

mon visual words between two bundled features to define

the membership term Mm(q;p):

Mm(q;p) = |{pi}|. (3)

This term gives a higher score for matched bundles with

more common visual words, enforcing a weak spatial con-

sistency. This score is not normalized by the total number
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Figure 4. The ordering constraint for bundled features. (a) Correct

matches preserve the relative ordering of the SIFT features inside

the bundled feature; (b) Wrong matches result in inconsistent rel-

ative orders.

of matched and unmatched features in p and q so regions

with many matching features score higher than regions with

fewer matching features, even if the proportion of features

that match is higher in the latter case.

Geometric term. Our geometric term performs a weak

geometric verification between two bundled features p and

q using relative ordering:

MD
g (q;p) = −

∑

i

δ(Oq[pi] > Oq[pi+1]), (4)

where D is some pre-defined geometric order, and

δ(Oq[pi] > Oq[pi+1]) is an indicator function that measures

the consistency between the order i < i + 1 (before match-

ing) and the order Oq[pi] > Oq[pi+1] (after matching). In

other words, we penalize geometric inconsistency (as de-

fined by our ordering) of the matching between two bundled

features. We do not compare the absolute ordered rank of

matched SIFT features. Instead, we only use the relative or-

dering relationship since it is more robust to inconsistencies

resulting from partial matches of features between bundles.

So far we have not defined what the geometric order is,

and in fact it may be application dependent. Since there is

no significant rotation between duplicate images in our web

image search scenario, we use the X- and Y-coordinates of

{pi} and {qj} to define the geometric order:

Mg(q;p) = min(MX
g (q;p), MY

g (q;p)), (5)

where MX
g (q;p) is computed by sorting {pi} and {qj} ac-

cording to their X-coordinates, and MY
g (q;p) by sorting

on their Y-coordinates. The generalization to handle larger

rotations is straightforward, e.g. by ordering features along

the dominant orientation of the bundling MSER detection.

Figure 4 shows two matching pairs. In the correctly

matching case (a), the geometric score is M(q;p) = 4 −
0 = 4. In the mismatched case (b), there are four matched

features of which two are in reversed relative orders, lead-

ing to a lower score M(q;p) = 4 − 2 = 2 (where in this

example λ = 1).

Note that the definition of matching score in Equation (2)

is very general. We show particular implementation choices



Indexed 

features
……

Image ID

9 bits 5 bits 5 bits

Bundle ID X-Order Y-Order

Visual

word

…
…

…
…

Features 

Count

Bundled 

Bits
…… Bundled 

Bits

Figure 5. Inverted file structure. “Feature count” is the number of
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of Mm(q;p) and Mg(q;p) for our system, however more

suitable forms may be defined for other image retrieval ap-

plications.

3.3. Indexing and retrieval

We use an inverted-file index [7] for large-scale indexing

and retrieval. Fig. 5 shows the structure of our index. Each

visual word has an entry in the index that contains the list of

images in which the visual word appears. In addition to the

image ID, for each occurrence of a visual word in a bundled

feature we use 19 “bundled bits” to record the geometric in-

formation: 9 bits for the ID of the bundled feature within

the image, 5 bits for X-order, and 5 bits for Y-order. This

format supports at most 512 bundled features per image. If

an image contains more than 512 bundles, the bundles con-

taining the fewest features are discarded to remain within

this limit. If a bundle contains more than 32 features, the

ordinals denoting order are projected onto the range [0, 31]
to fit into 5 bits, so adjacent features may end up mapped to

the same position in the order. If two bundled features have

greater than 97% overlap in their constituent SIFT features,

we only index one bundled feature. A traditional text index

would contain the location of each word within the docu-

ment in place of the bundled bits and thus this representation

uses indexing space comparable to a text index containing

an equivalent number of terms and documents.

Image retrieval is formulated as a voting problem. Each

visual word in the query image votes on its matched images.

The matched images are ranked by the sum of weighted

votes. Suppose a query visual word and its matched vi-

sual word belong to the bundle feature p in the query image

and the bundle feature q in the matched image respectively,

we weight this vote using the matching score between two

bundled features:

v = vtfidf · M(q;p), (6)

where vtfidf is standard tf-idf weight [15] and v is the fi-

nal weight. Thus features that occur as part of spatially-

consistent groups across the two images score more highly,
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Figure 6. Comparison of different methods using mAP: “HE” is

the baseline approach enhanced by hamming embedding; “bun-

dled (membership)” is the approach using bundled features but

with only the membership term in (2), i.e. without the geomet-

ric term. We also combine our bundled features with hamming

embedding: the “bundled + HE” approach.

and we have augmented the bag-of-words model with a

weak local geometric matching.

4. Experimental Results

We crawled one million images that are most frequently

clicked in a popular commercial image-search engine to

form our basic dataset. Then, we collected and manu-

ally labeled 780 partial-duplicate web images for our ex-

periments1. These “ground truth” images form 19 groups

and the images in each group are partial duplicates of each

other. There are no exact (or very near-exact) duplicates

in these images. Figures 1 and 11 show typical examples.

We add the labeled images into the basic dataset to con-

struct an evaluation dataset. To evaluate the performance

with respect to the size of the dataset, we also build three

smaller datasets (50K, 200K, and 500K) by sampling the

basic dataset.

In the following evaluation, we select 150 representative

images from the ground truth set as our queries. Follow-

ing [3, 12] we use mean average precision (mAP) as our

evaluation metric. For each query image we compute its

precision-recall curve, from which we obtain its average

precision and then take the mean value over all queries.

4.1. Evaluation

Baseline. We use a bag-of-features approach with soft as-

signment [13] as the “baseline” approach. We use a vocab-

1The basic dataset contains partial duplicates of our ground truth

dataset. For evaluation purposes we identify and remove these partial-

duplicate images from the basic dataset by querying the database using

every image from the ground-truth dataset, and manually examining the

returned images sharing any common visual words with the query images.



ulary of 1M visual words and the number of nearest neigh-

bors in the soft assignment is set to 4. We experimented

with different sizes (both larger and smaller) of visual word

vocabulary, and found the 1M vocabulary to give the best

overall performance.

Comparisons. We also enhance the baseline method with

hamming embedding [3] by adding a 24-bit hamming code

to filter out target features that have the same quantized vi-

sual word but have a large hamming distance from the query

feature. We call this method “HE.” Our bundled-feature

based approach has three variants: 1) “bundled (member-

ship),” in which we only use the membership term in (2);

2) “bundled,” in which we use both the membership term

and the geometric term; and 3) “bundled + HE,” our “bun-

dled” approach enhanced by the hamming embedding. In

our implementation, λ in (2) is set to be 2 (see below for an

experimental study of the effect of varying λ).

Figure 6 compares the above five approaches using mAP,

leading to three major observations. First, the bundle mem-

bership term (see (2)) significantly improves the mAP, as

can be seen by comparing the results for “bundled (mem-

bership)” to “baseline.” On the 1M dataset, mAP is in-

creased from 0.35 to 0.40, a 14% improvement. Second, the

weak geometric term (relative ordering) plays a role as im-

portant as that of the membership term. The mAP reaches

0.49 (a 40% improvement) with both bundled-feature terms

(membership + geometric), as shown by the curve labeled

“bundled.” Finally, the hamming embedding boosts both

approaches. With the hamming embedding, we achieve the

highest mAP 0.52 (“bundled + HE”) on the 1M dataset, a

49% improvement over the baseline approach. Thus the

bundled features are complementary to the hamming em-

bedding.

Re-ranking. In the pipeline of an image retrieval sys-

tem, re-ranking (full geometric verification) can substan-

tially improve the retrieval performance as well as remov-

ing false positives by filtering out images that do not arise

from valid 2D geometric transformations of the query im-

age [6, 12]. We therefore evaluate the results of applying a

full affine-transformation based re-ranking in our system.

Re-ranking can be expensive since it requires additional

disk IO and, for a distributed index, network communica-

tion on top of the computational cost of estimating affine

transformations using RANSAC. Therefore we only re-rank

a short list of the top 300 candidate images.

Figure 7 shows the re-ranking results. As can be ex-

pected, all approaches (“baseline,” “bundled,” and “bundled

+ HE”) benefit from re-ranking. Note that even without

the re-ranking, our approach (“bundled”) achieves almost

the same performance as “baseline + re-ranking” on the

1M dataset. When combined with re-ranking, our approach

achieves mAP of 0.62, while the mAP of “baseline + rerank-
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Figure 7. Comparison of different methods with and without re-

ranking. In our system, re-ranking is performed on a short list

of the top 300 images. The bundled features without re-ranking

achieve performance comparable to the “baseline + re-ranking”

approach.

ing” is 0.50. We obtain a 77% improvement over “baseline,”

and a 24% improvement over “baseline + reranking.” This

is because re-ranking can only re-sort the short list, whereas

our bundled-feature approach can fundamentally improve

the ranking quality and bring more correctly matched im-

ages into the short list.

Impact of λ. The λ value in (2) determines the weight of

the geometric consistency term. We test the performance of

our bundled features (“bundled” approach) using different λ

values on the 1M dataset. Geometric consistency plays an

important role in improving the mAP. Relying too much on

geometric consistency at the expense of other signals, how-

ever, can reduce mAP. As Table 1 shows, [1.5, 2.5] is the

most effective range for the value of λ and in our reported

results we use λ = 2.

λ 0 1.0 1.5 2.0 2.5 3.0

mAP 0.401 0.470 0.484 0.492 0.482 0.474

Table 1. Comparing the performance of bundled features on 1M

dataset for different values of λ.

Runtime. We perform our experiments with a single CPU

on a 3.0GHz Core Duo desktop with 16G memory. Table 2

shows the average query time for one image query. The

feature extraction time is not included. As can be seen, the

hamming embedding speeds up the system by filtering out

some feature mismatches and thus reducing the number of

features used for voting in the retrieval stage. Our bundled-

feature approach achieves a significant improvement in the

retrieval accuracy, while only introducing a modest time

penalty (0.7 seconds). In comparison, full geometric re-

ranking on the top 300 candidates introduces an additional
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Figure 8. Sample results comparing our approach (without full ge-

ometric re-ranking) to the baseline approach. (a) Query image and

a comparison of the Precision-recall curves. (b) The top images re-

turned by the baseline approach (starting from the 13
th image). (c)

The top images returned by our approach (starting from the 13
th

image). The false positives are shown with red dashed bounding

boxes. Note that the 3
rd image of (c) is a combination of three low

resolution sub-images.

cost of 3.0 seconds, a much larger overhead but with mAP

comparable to our bundled-feature approach.

baseline bundled features

without HE 1.7s 2.5s

with HE 1.2s 1.9s

Table 2. Average query time (not including feature extraction

time).

4.2. Sample results

Figure 8 gives examples of our results on the 1M dataset.

We show all results without full geometric re-ranking to em-

phasize the power of the bundled features. For this query,

compared to baseline approach, our “bundled” approach

improves the mAP from 0.51 to 0.74, a 45% improvement.

Figure 8 (b) and (c) show the top images returned by the

baseline approach and our approach, respectively. Because

the top 12 images of both approaches are all correct (though

they may be different), we show results starting from the

13th returned image. The false positives are marked by

red dashed bounding boxes. Although these false positives

look irrelevant to the query image, they contain many local

patches similar to those in the query image. These similar
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Figure 9. Two example queries and their precision-recall curves.
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Figure 10. Top-ranked images returned from a “Da Vinci Code”

image query. The query image is shown with a green bounding

box and false positives with red dashed bounding boxes.

features are quantized into same visual words and contribute

to false positives appearing in top images in the baseline ap-

proach.

Figure 9 shows the precision-recall curves for another

two example queries. The improvement on the “Hello

Kitty” image is not as significant as for the other queries,

since the baseline approach works relatively well on this

image. In Figure 10 we show some false positives with low

ranks. These false positives actually have similarities to the

“Da Vinci Code” query image, in regions containing face,

hair, shoulder, or text. Figure 11 shows more example re-

sults using our “bundled” approach without re-ranking. The

retrieved images are diverse and contain large changes in

scale and/or contrast, additions of text or framing, or signif-

icant editing (cropping and composition).

5. Conclusion

We have introduced bundled features for large scale par-

tial duplicate web image search. Bundled features are a flex-

ible representation with several desirable properties. First,

they are more discriminative than individual SIFT features.

Second, they allow us to enforce simple and robust geo-

metric constraints at the bundle level. Finally, they allow

us to partially match two groups of SIFT features, improv-

ing robustness to occlusion and image variations induced

by photometric and geometric changes. Feature bundling

and partial matching are a general and powerful frame-

work. Our current implementation uses an MSER detec-



Figure 11. Example results. Queries are shown with green bounding boxes, and highly-ranked images (selected from those before the first

false positive) from the query results are shown on the right.

tion to bundle SIFT features, but other bundling approaches

could be applied. In the future we plan to investigate alter-

native bundling approaches as well as new bundle-level con-

straints for robust partial matching. As a flexible representa-

tion that is capable of partial matching, bundled features are

also attractive for image-based object retrieval. Our recent

experiments on reference data sets [11] showed a substan-

tial improvement by using our bundled features. We plan to

pursuit further along this direction.
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