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Abstract—Wireless energy transfer is a promising technology
to fundamentally address energy and lifetime problems in a
wireless sensor network (WSN). On the other hand, it has
been well recognized that a mobile base station has significant
advantages over a static one. In this paper, we study the
interesting problem of co-locating the mobile base station on
the wireless charging vehicle (WCV). The goal is to minimize
energy consumption of the entire system while ensuring none of
the sensor nodes runs out of energy. We develop a mathematical
model for this complex problem. Instead of studying the general
problem formulation (OPT-t), which is time-dependent, we show
that it is sufficient to study a special subproblem (OPT-s)
which only involves space-dependent variables. Subsequently,
we develop a provably near-optimal solution to OPT-s. The
novelty of this research mainly resides in the development of
several solution techniques to tackle a complex problem that is
seemingly intractable at first glance. In addition to addressing
a challenging and interesting problem in a WSN, we expect the
techniques developed in this research can be applied to address
other related networking problems involving time-dependent
movement, flow routing, and energy consumption.

I. INTRODUCTION

Recently, wireless energy transfer based on magnetic res-

onant coupling was shown to be a promising technology

to fundamentally address energy and lifetime problems in

a wireless sensor network (WSN) [13], [14]. Compared to

other wireless energy transfer technologies such as electro-

magnetic radiation [3], [11], magnetic resonant coupling [5],

[6] enjoys significant advantages. These advantages include

higher wireless power transfer efficiency, immunity to the

neighboring environment, and no requirement of line-of-sight

or any alignment (omnidirectional) [16]. Nevertheless, due

to the potential large geographical coverage of a WSN, it is

still necessary to employ a vehicle (called wireless charging

vehicle (WCV) in [13], [14]) to carry the charging device and

bring it to a reasonable distance close to the sensor nodes.

Note that in [13], [14], although the WCV is mobile, the base

station in the WSN (sink node for all sensing data) is fixed.

On the other hand, it has been well recognized that a

mobile base station can achieve significant energy saving and

network lifetime extension [8], [10], [17]. Given that mobile

base station also needs a vehicle to carry, a natural question

to ask becomes: Is it possible to have the base station co-

∗For correspondence, please contact Tom Hou (thou@vt.edu).

locate on the same vehicle used for wireless energy transfer?1

This is the main motivation of this investigation.

In this paper, we explore problems centered around

bundling the mobile base station and the WCV. When there

is no ambiguity, we still call the combined two systems as

WCV. We envision the WCV starts from its home service

station, travels along a pre-planned path and returns to its

home service station at the end of a trip. While traveling

on its path, the WCV can make a number of stops and

charge sensor nodes near those stops. At any time, all data

collected by the sensor nodes are relayed (via multi-hop)

to the mobile base station (on WCV). Apparently this is

a very complex system, involving variables across multiple

dimensions — time, space, and energy. A basic requirement

is that by employing wireless energy transfer, none of the

sensor nodes run out of energy while all sensing data are

relayed to the base station in real time. A more aggressive

goal is to minimize energy consumption of the entire system

(see Section IV for more details).

This is a challenging optimization problem that involves

several subproblems, each of which is interesting on its own.

First, the WCV’s movement behavior needs to be optimized,

which will tell us where the WCV will make stops along

its path and how long it will stay at each stop. Second,

the flow routing among sensor nodes need to be optimized,

which depends on the location of WCV (and time). Finally,

the energy transfer behavior of the WCV depends on its

stopping locations and their distances to neighboring sensor

nodes. Apparently, these subproblems are tightly coupled

together (both in time/space and under a global optimization

objective).

The main contributions of this paper are as follows:

• We develop a mathematical model for co-locating the

mobile base station on the WCV. This includes energy

criteria to ensure that the energy level at each sensor

node never falls below some minimum threshold, and

a general optimization problem formulation (OPT-t) in-

volving the WCV’s stopping behavior, energy charging,

and data flow routing. We also show that the goal

of minimizing energy consumption associated with the

1Although two separate vehicles may be employed (one is WCV and
the other for mobile base station), the costs (both equipment and energy)
associated with the two vehicles will be much higher.
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WCV is equivalent to maximizing the fraction of the

WCV’s vacation time at the service station.

• The general problem OPT-t has a time-dependent formu-

lation, which is difficult to devise any solution. We show

that a special case of OPT-t, where data flow routing and

energy consumption of sensor nodes only depend on

the WCV’s location, can in fact offer the same optimal

objective value as that for OPT-t. Therefore, we propose

to study this simpler formulation, denoted as OPT-s, that

only involves location-dependent variables.

• For problem OPT-s, we develop an (1 − ε)-optimal

solution with any desired level of accuracy ε. Our

solution involves discretizing path into a finite number

of segments and representing each segment as a logical

point. By exploiting the worst case and the best case

representation for each logical point, we can find a

lower bound and an upper bound for OPT-s by solving

two linear programs (LPs). Depending on the required

accuracy, we show how to discretize segments into

smaller segments. We prove that the gap between the

lower and upper bounds will close as the number of

iterations increases and we will eventually obtain an

(1− ε)-optimal solution.

It is worth contrasting this paper with [10] in terms of

problem scope and solution techniques. In [10], only a mobile

base station problem was investigated while in this paper,

we investigate the WCV and mobile base station co-location

problem. In [10], it was assumed that the time for the base

station to move from one point to another is negligible while

in this paper we explicitly consider the traveling time in

problem formulation and solution. Further, in this paper, we

generalize the “fictitious cost point” concept proposed in

[10], which only considered energy consumption. That is,

the so-called “logical point” concept in this paper considers

both energy reception and energy consumption.

The remainder of this paper is organized as follows. In

Section II, we describe some basic models for the WCV’s

stopping behavior, flow routing, and energy charging and

consumption in a WSN. Section III presents energy criteria to

ensure that each sensor node is always operational. A general

optimization formulation (OPT-t) is given in Section IV. In

Section V, we show that we can study a special case of

OPT-t that only involves space-dependent formulation, which

we denote as OPT-s. Section VI presents an (1− ε)-optimal

solution to OPT-s. Section VII presents numerical results and

Section VIII concludes this paper.

II. BASIC NETWORK AND ENERGY MODELS

In this section, we present some basic models for the

WCV’s stopping behavior, flow routing, and energy charging

and consumption in a WSN.

Mobile WCV

Service station

Sensor node

Fig. 1. An example WSN with a mobile WCV.

A. WCV and Travel Path

Suppose we have a sensor network N deployed over a

two-dimensional area, with the location of each node i ∈ N
being (xi, yi). A WCV is employed to charge sensor nodes in

the network. This WCV starts from a service station, travels

along a pre-planned path in the area and returns to the service

station at the end of its trip. While on its path, the WCV can

make a number of stops and charge sensor nodes near those

stops (see Fig. 1). The detailed energy charging model will

be described in Section II-D.

Denote P as the traveling path and τ as the total amount

of time for the WCV to complete the trip. Then τ includes

three components:

• The total traveling time along path P is DP/V , where

DP is the distance of path P and V is the traveling

speed of WCV.

• The vacation time τvac, which refers to the amount of

time that the WCV stays at the service station (at point

pvac) before leaving for the next trip.

• The total stopping time along path P . Denote ω(p) as

the aggregate amount of time the WCV stops at point

p ∈ P . Since the WCV may stops at p more than once

during τ , we have:

ω(p) =

∫

{t∈[0,τ ]:(x,y)(t)=p}

1 dt , (1)

where (x, y)(t) is the location of the WCV at time t.

Then the total stopping time is
∑ω(p)>0

p∈P, p "=pvac
ω(p).

Then we have:

τ =
DP

V
+ τvac +

ω(p)>0
∑

p∈P, p "=pvac

ω(p) . (2)

B. Mobile Base Station and Data Flow Routing

As discussed, we assume that the base station is co-located

at the WCV. Therefore, the base station is also mobile and
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serves as the sink node for all data collected by the WSN. To

conserve energy, multi-hop data routing is employed among

the sensor nodes in the network.

Suppose each sensor node i produces its local data with a

constant rate Gi (in b/s), i ∈ N . Denote fij(t) and fiB(t) as

the flow rates from node i to node j and the base station at

time t, respectively. Then we have the following flow balance

at each sensor node i:

k "=i
∑

k∈N

fki(t) +Gi =

j "=i
∑

j∈N

fij(t) + fiB(t) (i ∈ N ) . (3)

Note that we are dealing with real-time flow routing rather

than delay-tolerant data MULEs [9] or message ferry [19]

type of communications.

C. Sensor Energy Consumption

At a sensor node, we assume that communications are the

dominant source for the node’s energy consumption. Denote

Cij as the energy consumption rate for transmitting one unit

of data flow from sensor node i to sensor node j. Then Cij

can be modeled as [2], [4]:

Cij = β1 + β2D
α

ij ,

where Dij is the distance between nodes i and j, β1 and β2

are constant terms, and α is the path loss index. Suppose all

sensor nodes are stationary. Then the inter-sensor distance

Dij and Cij are all constants.

Denote CiB(p(t)) as the energy consumption rate for

transmitting one unit of data flow from sensor node i to base

station B when B is at location p(t). Then we have

CiB(p(t)) = β1 + β2

[

√

(x(t)− xi)2 + (y(t)− yi)2
]α

, (4)

where (x(t), y(t)) and (xi, yi) are the coordinates of p(t)
and node i, respectively. Note that unlike Cij’s, which are

all constants, CiB(p(t)) varies with the base station’s location

over time.

Denote ρ as the rate of energy consumption for receiving

one unit of data flow. Then the total energy consumption

rate for both transmission and reception at node i, denoted

as ri(t), is

ri(t) = ρ

k "=i
∑

k∈N

fki(t) +

j "=i
∑

j∈N

Cij · fij(t) + CiB(p(t)) · fiB(t)

(i ∈ N , t ≥ 0) . (5)

D. WCV Charging Model

We assume that the WCV can only perform its charging

function when it makes a full stop somewhere along path

P (except pvac). Denote UiB(p) as the power reception rate

at node i when the WCV is located at p ∈ P . Denote the

efficiency of wireless charging by µ(DiB(p)), which is a

decreasing function of distance DiB(p). Then the wireless

charging model [14] is:

UiB(p) =

{

µ(DiB(p)) · Umax if DiB(p) ≤ Dδ

0 if DiB(p) > Dδ ,
(6)

where Umax is the maximum output power for a single sensor

node and Dδ is the charging range of the WCV, below which

wireless charging cannot be performed. In other words, Dδ is

defined in a way such that the power reception rate at a sensor

node is at least over a threshold value δ. We assume that a

sensor node can be charged only if it is within a distance of

Dδ from path P .

When multiple nodes receive power from the WCV simul-

taneously, interference may occur due to resonant coupling

between receiving nodes. The interference can be handled

by adjusting resonant frequencies at the source and receiving

nodes [1].

III. ENERGY CRITERIA FOR CYCLES

We assume that the WCV follows a fixed travel schedule

along P with a period of τ . Then we have p(t) = p(t+ kτ)
for 0 ≤ t ≤ τ , k = 1, 2, · · · . Further, we assume that

the flow routing in the network also follows a periodic

cycle, i.e., fij(t) = fij(t + kτ) and fiB(t) = fiB(t + kτ)
for 0 ≤ t ≤ τ , k = 1, 2, · · · . Then by (5), the energy

consumption rate at each node also follows a periodic cycle,

i.e., ri(t) = ri(t + kτ) for 0 ≤ t ≤ τ , i ∈ N . Since

the WCV’s charging behavior only depends on its travel

schedule, then the charging behavior also forms a periodic

cycle. In summary, the travel schedule of the WCV, its

charging behavior along its path, flow routing among the

nodes, and energy consumption at each node are all cyclic

and repeat themselves with a period of τ .

Suppose that each sensor node has a battery capacity of

Emax and is fully charged initially. Denote Emin as the mini-

mum energy at a sensor node battery for it to be operational.

We are interested in developing a particular travel cycle so

that the energy level at each sensor node at time t, denoted

as ei(t), i ∈ N , never falls below Emin. In the following, we

will offer two constraints for the first cycle. We will show

that once these two constraints hold for the first cycle, then

ei(t) ≥ Emin for t ≥ τ , i.e., all future cycles.

The first constraint ensures that ei(t), which starts from

Emax at t = 0, will not fall below Emin at t = τ ,

Emax −
{

∫

{t∈[0,τ ]:ω(p(t))=0}

ri(t) dt+

∫

{t∈[0,τ ]:ω(p(t))>0, DiB(p(t))>Dδ}

ri(t) dt
}

≥ Emin (i ∈ N ),

(7)

where
∫

{t∈[0,τ ]:ω(p(t))=0}ri(t) dt is the amount of energy

consumed at node i when the WCV is moving along path P
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while
∫

{t∈[0,τ ]:ω(p(t))>0, DiB(p(t))>Dδ}
ri(t) dt is the amount

of energy consumed at node i when the WCV is making

stops but node i is outside the WCV’s charging range.

The second constraint ensures that ei(t), which starts from

Emax at t = 0, will be charged back to Emax before the end of

the first cycle τ . We have

∫ τ

0

ri(t) dt ≤

ω(p)>0, DiB(p)≤Dδ
∑

p∈P

UiB(p) · ω(p) (i ∈ N ), (8)

where the left hand side is the amount of energy consumed

at node i during τ and the right hand side is the maximum

possible amount of energy received by node i in a cycle.

Note that the actual amount of energy received by node i in

the first cycle may be less than the right hand side due to

potential battery overflow.2

Note that (7) and (8) characterize the energy consumption

and reception in the first cycle. The following lemma says

that if both (7) and (8) hold for the first cycle, then we have

e(t) ≥ Emin for all cycles.

Lemma 1 (Energy Criteria): If both (7) and (8) are sat-

isfied for the first cycle, then ei(t) ≥ Emin for all t ≥ 0,

i ∈ N .

Lemma 1 can be proved by showing that ei(t) ≥ Emin for

the second cycle and a node’s energy behavior repeats from

cycle to cycle (starting at the second cycle). A formal proof

of Lemma 1 is given in [15].

IV. PROBLEM FORMULATION

In Section III, we explained energy criteria for cycles.

Under Lemma 1, we showed that under certain conditions,

ei(t) ≥ Emin for all t ≥ 0, i ∈ N . In addition to these

constraints, we can also consider optimizing some global

performance objective. In particular, we want to minimize

the rate of energy consumption for the entire system, which

encompasses all energy consumption at the WCV as follows:3

• The energy consumption rate for carrying the WCV to

move along P during τ is

Rv ·
[

DP

V +
∑ω(p)>0

p∈P, p "=pvac
ω(p)

]

τ
, (9)

where DP/V +
∑ω(p)>0

p∈P, p "=pvac
ω(p) is the time that the

WCV is at work during τ (i.e., outside its service

station), and Rv denotes the energy consumption rate for

carrying the WCV in this period. Note that the energy

2Once a battery is charged to Emax, its energy level cannot be further
increased.

3Note that except their initial energy, the energy consumed in the WSN
comes from the WCV.

consumed at the WCV when it makes stops along P
should be included as the vehicle’s engine is still on.

• The rate of energy transferred from the WCV to the

sensor nodes in the network is at most
∑

i∈N
ri

δ/Umax
, where

∑

i∈N ri is the sum of energy consumption rates at the

sensor nodes, and δ/Umax is the minimum efficiency for

effective wireless charging.4

To date, the most fuel-efficient vehicle has an energy

consumption of 17.4 kW-h per 100 km [12], which indicates

that Rv is on the order of 1 kW. In contrast, the rate of energy

transferred to sensor nodes is roughly on the order of 0.1 to

1 W (see Section VII). Since the energy consumed to carry

the WCV is the dominant source of energy consumption, we

only need to consider this dominant part, i.e., minimizing

(9). Since Rv is a constant factor, we can remove it from the

objective function.

It is interesting that, by (2), minimizing
DP/V+

∑ω(p)>0
p∈P, p "=pvac

ω(p)

τ
is equivalent to maximizing

τvac

τ
, which is the percentage of time that the WCV is on

vacation at its service station. This is intuition. Therefore,

we have the following optimization problem.

OPT-t:

maximize τvac

τ

s.t. Time constraints: (1), (2);

Flow routing constraints: (3);

Energy consumption model: (4), (5);

Energy criteria constraints: (7), (8) .

τ, τvac,ω(p) ≥ 0, (x, y)(t) ∈ P (p ∈ P, 0 ≤ t ≤ τ)
fij(t), fiB(t), CiB(t), ri(t) ≥ 0, (i, j ∈ N , i %= j, 0 ≤ t ≤ τ) .

In this formulation, P , DP , V , Gi, β1, β2, α, xi, yi, ρ, Cij ,

Emax, and Emin are given a priori, and UiB(p) can be computed

by (6). The time intervals τ , τvac, and ω(p), the WCV’s

location (x, y)(t), the flow rates fij(t) and fiB(t), the unit

cost rate CiB(t), and the power consumption rate ri(t) are

optimization variables. Among these variables, there are three

sets of variables that constitute the solution space: (i) the

WCV’s location (i.e., (x, y)(t)); (ii) the WCV’s sojourn time

at each location p ∈ P and p %= pvac (i.e., ω(p)) or vacation

time at the service station (i.e., τvac); (iii) the corresponding

flow routing (i.e., fij(t) and fiB(t)). Problem OPT-t is a

continuous-time nonlinear program [18], and is NP-hard in

general.

V. DOWNSIZING SOLUTION SPACE: A LOCATION-BASED

FORMULATION

Roadmap. OPT-t is a general formulation of our prob-

lem. It is difficult as its variables are time-dependent (e.g.,

4From experimental results in [6], the ratio of δ to Umax can be set as
20% (see Section VII).
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OPT−s

OPT−s

OPT−t OPT−t

Problem OPT−t

Problem OPT−s

with the same objective value

as that of can be found

ψ∗

ψ∗

ψ∗
ψ∗

Fig. 2. Solution space for problems OPT-t and OPT-s. ψ∗

OPT-t
and ψ∗

OPT-s
are optimal solutions to OPT-t and OPT-s, respectively.

(x, y)(t), fij(t)). In this general formulation, OPT-t allows

data flow routing and energy consumption of sensor nodes to

vary over time, even when the WCV visits the same location.

In this section, we consider a special case of problem

OPT-t, where data flow routing and energy consumption of

sensor nodes only depend on WCV’s location. That is, as long

as the WCV visits a location p ∈ P , the data flow routing and

energy consumption of sensor nodes are the same regardless

when the WCV visits this location. This location (space)-

dependent problem is a special case of Problem OPT-t. We

denote this problem as OPT-s. The solution space for OPT-s

and OPT-t is shown in Fig. 2, in which the solution space

for OPT-s is completely contained in that for OPT-t.

We will show that the optimal objective value for OPT-s

is the same as that for OPT-t, despite that its solution space

is smaller (Theorem 1). This result is significant as it allows

us to study OPT-s, which has a simpler formulation that only

involves location-dependent variables.

Location-dependent Formulation. We now formulate

OPT-s. First, we need some new notations. Denote fij(p)
and fiB(p) as flow rates from sensor node i to sensor node j
and to the base station when the WCV is at location p ∈ P ,

respectively. Then (3) is rewritten as

k "=i
∑

k∈N

fki(p) +Gi =

j "=i
∑

j∈N

fij(p) + fiB(p) (i ∈ N , p ∈ P).

(10)

Similarly, denote CiB(p) and ri(p) as the energy consump-

tion for transmitting one unit of data flow from node i to the

base station and the energy consumption rate at node i when

the WCV is at location p ∈ P , respectively. Then (5) can be

rewritten as:

ri(p) = ρ

k "=i
∑

k∈N

fki(p) +

j "=i
∑

j∈N

Cij · fij(p)

+ CiB(p) · fiB(p) (i ∈ N , p ∈ P) . (11)

Now we rewrite (7) and (8) into location-based constraints.

We start with (8). In (8),
∫ τ

0
ri(t) dt can be split into two

parts:

• energy consumed when WCV makes stops (including

vacation at the service station), which is, ri(pvac) · τvac +
∑ω(p)>0

p∈P, p "=pvac
ri(p) · ω(p);

• energy consumed when WCV travels along P , i.e.,

∫ ω(p(t))=0

t∈[0,τ ]

ri(t) dt =

∫ ω(p(s))=0

s∈[0,DP ]

ri(p(s))
dt

ds
ds , (12)

where s ∈ [0, DP ] is the distance traversed by the WCV

along P (starting from its service station), and p(s) is

the WCV’s location corresponding to s. Denote W =
lim∆→0

∆t
∆s . Then W = 1

V , and (12) can be rewritten

as:
∫ ω(p(t))=0

t∈[0,τ ]

ri(t) dt =

∫ ω(p(s))=0

s∈[0,DP ]

W · ri(p(s))ds .

Based on the above discussion, (8) can be rewritten as:

ri(pvac) · τvac +

ω(p)>0
∑

p∈P, p "=pvac

ri(p) · ω(p)

+

∫ ω(p(s))=0

s∈[0,DP ]

W · ri(p(s))ds

≤

ω(p)>0, DiB(p)≤Dδ
∑

p∈P

UiB(p) · ω(p) (i ∈ N ), (13)

which is a location-dependent formulation.

Similarly, (7) can be rewritten as:

ri(pvac) · τvac +

ω(p)>0, DiB(p)>Dδ
∑

p∈P, p "=pvac

ri(p) · ω(p)

+

∫ ω(p(s))=0

s∈[0,DP ]

W · ri(p(s))ds ≤ Emax − Emin (i ∈ N ). (14)

We now have a formulation for OPT-s, which only involves

location-dependent variables.

OPT-s:

maximize τvac

τ

s.t. Time constraint: (2);

Flow routing constraints: (10);

Energy consumption model: (11);

Energy criteria constraints: (13), (14).

τ, τvac,ω(p) ≥ 0 (p ∈ P)
fij(p), fiB(p), ri(p) ≥ 0 (i, j ∈ N , i %= j, p ∈ P).

Proof of Equivalence. We now show that the optimal

objective value of OPT-s is the same as that for OPT-s

(see Fig. 2). For Problem OPT-t, denote ψ
OPT-t

and ψ∗
OPT-t

as a feasible solution and an optimal solution, respectively.

Similarly, for Problem OPT-s, denote ψ
OPT-s

and ψ∗
OPT-s

as a

feasible solution and an optimal solution, respectively.

Theorem 1: The optimal objectives achieved by ψ∗
OPT-s

and

ψ∗
OPT-t

are identical.
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The proof of this theorem is based on two results. First, we

show that the optimal objective achieved by ψ∗
OPT-t

is no less

than that achieved by solution ψ∗
OPT-s

. This is straightforward

as OPT-s is a subproblem of OPT-t. Second, we show

that the converse is also true. Instead of considering an

optimal solution, we will show that for any objective value

achieved by a feasible solution ψ
OPT-t

, we can always find a

feasible solution ψ
OPT-s

, which achieves the same objective

value (Lemma 2). If this is true, in the special case when

the feasible solution ψ
OPT-t

is the optimal solution ψ∗
OPT-t

, the

objective by ψ∗
OPT-t

can also be achieved by some feasible

solution ψ
OPT-s

.

Lemma 2: Given a feasible ψ
OPT-t

, we can construct a

feasible ψ
OPT-s

with the same objective value.

A formal proof of Lemma 2 is given in [15]. Based

on Theorem 1, we know that as long as our objective is

concerned, it is sufficient to study OPT-s, which has a simpler

formulation than OPT-t.

VI. A NEAR-OPTIMAL SOLUTION TO PROBLEM OPT-S

Although OPT-s is simpler than OPT-t, path P still has

infinite number of points. In this section, by discretizing path

P into a finite number of segments and representing each

segment as a logical point, we develop a provably (1 − ε)

near-optimal solution.

A. Basic Idea

Fig. 3 shows the flow chart of our proposed algorithm.

In Step 1, we discretize path P into M1 segments of equal

distance, i.e., DP/M1. For each segment, we represent it as a

logical point. Once the WCV is within a segment, we say that

it is visiting the corresponding logical point, regardless the

specific location within this segment. Note that the time that

the WCV spends at a logical point includes both its traveling

time over this segment as well as stopping time at any point

in this segment.

Since each sensor node’s energy consumption and charging

behaviors depend on the specific location of the WCV within

a segment, it is not obvious to characterize these energy

behaviors for the corresponding logical point. Fortunately,

we find that for the purpose of developing an (1− ε)-optimal

algorithm, it is sufficient to use the worst case behavior. That

is, to characterize a sensor node’s energy consumption and

charging behaviors when the WCV is at a logical point, it

is sufficient to consider maximum energy consumption and

minimum energy charging.

Once we have a worst case representation for each logical

point, in Step 3, we can find a lower bound for OPT-s by

solving a LP. Also in Step 3, by developing a best case

representation for each logical point (following the same

Discretize path

 into segments

Logical point representation

      for each segment

bounds for OPT-s

Find lower and upper

       Is the gap

between two bounds 

    small enough?

Recover a feasible

 solution to OPT-s

Yes

No

 Discretize path into 

  smaller segments

Problem OPT-s

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Fig. 3. A flow chart of our algorithm.

token for the worst case representation), we can find an upper

bound for OPT-s by solving another LP.

In Step 4, we check the gap between objective values of the

lower and upper bounds. If the gap is within ε of the upper

bound, we have an (1−ε)-optimal solution (corresponding to

the lower bound solution, which is feasible); otherwise, we

increase the number of segments (Step 5) linearly and return

to Step 2.

As the iteration continues, we expect the gap between

lower and upper bounds gets closer and closer and we shall

have an (1 − ε)-optimal solution (when the lower bound

is within (1 − ε) of the upper bound). From the solution

corresponding to the final lower bound, we can construct a

feasible solution to Problem OPT-s (Step 6).

B. Some Details

In this section, we give some details on each step of our

algorithm.

Path Discretization (Step 1). In the first iteration, path

P is equally divided into M1 segments, each of which is

indexed in increasing order following the WCV’s traveling

direction. Denote Sm and D(Sm), m = 1, 2, . . . ,M1, as the

m-th segment and its length, with D(Sm) = DP/M1, m =
1, 2, . . . ,M1.

Logical Point Representation (Step 2). For segment

Sm, m = 1, 2, . . . ,M , we represent it as a logical point

pm. The traveling time by the WCV on segment Sm (ex-

cluding stopping time) is D(Sm)/V . Denote ω(pm) as the
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total stopping time that the WCV is in segment Sm, i.e.,

ω(pm) =
∑ω(p)>0

p∈Sm
ω(p). Denote τ(pm) as the total time that

the WCV spends at pm, which includes traveling time and

stopping time. Then,

τ(pm) =
D(Sm)

V
+

ω(p)>0
∑

p∈Sm

ω(p) .

Note that energy consumption rate CiB(p) and energy

charging rate UiB(p) may vary at different point in the same

segment. To develop an (1− ε)-optimal solution, we use the

worst case values of energy consumption rate and energy

charging rate within the segment to characterize a logical

point. That is, for i ∈ N , define UiB(pm) and CiB(pm) as

UiB(pm) ! min
p∈Sm

{UiB(p)} , CiB(pm) ! max
p∈Sm

{CiB(p)} .

Since there are |N | sensor nodes in the network, a logical

point pm is represented by 2|N |-tuple vector [U1B(pm),
. . . , U|N |B(pm), C1B(pm), . . . , C|N |B(pm)].

Find Lower and Upper Bounds (Step 3). Once we have

a worst case representation of each logical point, we can

obtain a formulation for a lower bound to OPT-s, which we

denote as OPT-lb. Through a systematic change-of-variable

technique, OPT-lb can be reformulated into an LP and can

be solved in polynomial time (see [15] for more details).

Following the same token, we can find an upper bound

to OPT-s by developing a best case representation for each

logical point. This is done by defining

ŪiB(pm) ! max
p∈pm

{UiB(p)} , C̄iB(pm) ! min
p∈Sm

{CiB(p)}.

Based on this best-base representation, we obtain a formula-

tion for an upper bound to OPT-s, denoted as OPT-ub. Similar

to OPT-lb, OPT-ub can be reformulated into an LP and can

be solved in polynomial time [15].

Termination Condition (Step 4) and Discretizing into

Smaller Segments (Step 5). We can check the gap between

the lower and upper bounds. If the gap is within desired

accuracy (denoted by ε), the algorithm terminates and returns

an (1 − ε)-optimal solution; otherwise, we need to further

discretize existing segments into smaller ones and perform

another iteration and so forth.

For discretization, we denote Mi, i = 1, 2, · · · , as the

number of segments in the i-th iteration. By intuition, among

all variables, ω(pm)’s directly determine the WCV’s stopping

behavior at pm and thus the final objective value. Thus, we

sort segments pm, m = 1, 2, . . . ,Mi, in the decreasing value

of ω(pm) (a tie is broken randomly). From the ordered seg-

ments, we pick the first |N | segments and equally subdivide

each of them into two segments.5 As a result, at most |N |

5As there are |N | sensor nodes, the number of stops by the WCV (for
charging) should be on the same order of |N |. If Mi < |N |, then we just
divide all Mi segments.

segments are added at each iteration, i.e., a linear increase in

the number of segments.

Denote ψ(Mi)
OPT-lb

and ψ(Mi)
OPT-ub

as the optimal solutions to OPT-lb

and OPT-ub at the end of the i-th iteration, respectively.

Denote η(Mi)
vac

and η̄(Mi)
vac

as the objective values in ψ(Mi)
OPT-lb

and ψ(Mi)
OPT-ub

, respectively. Then we have the following lemma:

Lemma 3: For i ≥ 1, η(Mi+1)
vac

> η(Mi)
vac

, and η̄(Mi+1)
vac

<
η̄(Mi)

vac
.

Lemma 3 says that as the number of segments increases

with the number of iterations, the lower bound to OPT-s

strictly increases while the upper bound strictly decreases.

Lemma 3 can be proved by construction [15].

Recover a Feasible Solution to OPT-s (Step 6). Once

the lower bound is within (1 − ε) of the upper bound, the

algorithm terminates. With the current lower bound solution

to OPT-lb (denoted as ψ
OPT-lb

), we can construct a feasible

solution to OPT-s (denoted as ψ
OPT-s

). Solution ψ
OPT-s

consists

of several components, including (i) cycle time τ ; (ii) for p %=
pvac, stopping time ω(p), flow routing fij(p) and fiB(p), and

energy consumption rate ri(p); and (iii) vacation time at the

service station τvac, and corresponding flow routing fij(pvac)
and fiB(pvac), and energy consumption rate ri(pvac). From

ψ
OPT-lb

, ψ
OPT-s

can be constructed as follows:

• It has the same cycle time τ as that in ψ
OPT-lb

.

• For p %= pvac, the WCV may traverse segment Sm

with or without any stop. To see if the WCV makes

any stop in Sm, we calculate τ(pm) − D(Sm)/V . If

the difference is greater than 0, then the WCV stops

within Sm and in ψ
OPT-s

the WCV may stop at any

point p ∈ Sm. For this p, the WCV will stay for

τ(pm) − D(Sm)/V amount of time. Otherwise (i.e.,

τ(pm)−D(Sm)/V = 0), the WCV does not stop within

Sm. Regardless of stopping or not, the flow routing

solution at a point p ∈ Sm is: fij(p) = fij(pm) and

fiB(p) = fiB(pm). Corresponding to p ∈ Sm, ri(p) is

defined by (11).

• For p = pvac, we have that τvac, fij(pvac), fiB(pvac), and

ri(pvac) are the same as those in ψ
OPT-lb

.

Denote η
OPT-lb

and η
OPT-s

as the objective values achieved by

ψ
OPT-lb

and ψ
OPT-s

, respectively. Since τ and τvac are unchanged

in the foregoing solution construction, we have

η
OPT-s

= η
OPT-lb

. (15)

C. Proof of (1− ε) Optimality

Let η∗
OPT-s

be the (unknown) optimal objective value to

OPT-s. The following theorem says that the constructed

solution ψ
OPT-s

is (1− ε)-optimal.

Theorem 2: For any 0 < ε & 1, η
OPT-s

≥ (1− ε)η∗
OPT-s

.

1690



Fig. 4. Drillfield driveway on Virginia Tech campus. A star represents the
WCV’s home service station. A flag represents a stopping point in the case
study (Section VII-B).

Proof: Upon termination, we have η
OPT-lb

≥ (1− ε)η
OPT-ub

,

where η
OPT-lb

and η
OPT-ub

are the objective values achieved by

the lower bound solution to OPT-lb and the upper bound

solution to OPT-ub, respectively. Therefore, we have

η
OPT-s

= η
OPT-lb

≥ (1− ε)η
OPT-ub

≥ (1− ε)η∗
OPT-s

,

where the first equality holds by (15), and the last inequality

holds since η
OPT-ub

is an upper bound for OPT-s. This com-

pletes the proof.

VII. NUMERICAL RESULTS

In this section, we use numerical results to demonstrate

how our algorithm solves the WCV and mobile base station

co-location problem.

A. Network and Parameter Settings

We use Virginia Tech’s Drillfield (see Fig. 4) for sensor

network deployment. Sensor nodes are deployed within a

distance of the charging range along the side of the Drillfield

driveway, which is roughly an ellipse. The home service

station (marked as a star in Fig. 4) is located at (540,160) (in

m) along the driveway. For the Drillfield path P , DP = 1228
m. The travel speed of the WCV is V = 5 m/s.

The number of sensor nodes in the network will be spec-

ified later for different results. The data rate Gi, i ∈ N for

each node is randomly generated within [1, 10] Kb/s. Suppose

a sensor node uses a rechargeable NiMH battery (connected

to an energy receiving coil). Assume Emax = 10.8 kJ [7],

and Emin = 0.05 · Emax = 540 J. The power consumption

coefficients are β1 = 50 nJ/b, β2 = 0.0013 pJ/(b ·m4),
and ρ = 50 nJ/b [13]. The path loss index is α = 4. For

the charging efficiency function µ(DiB), we refer to the

experimental results in [6]. Through curve fitting to Fig. 3

TABLE I
LOCATION AND DATA RATE Gi FOR EACH NODE IN A 25-NODE

NETWORK.

Node Location Gi Node Location Gi

Index (m) (Kb/s) Index (m) (Kb/s)

1 (626.0, 236.1) 1 14 (247.6, 181.6) 7
2 (623.3, 235.6) 7 15 (245.9, 180.4) 4
3 (624.0, 237.2) 1 16 (247.7, 181.0) 10
4 (625.6, 237.1) 1 17 (220.5, 118.0) 5
5 (460.8, 357.8) 1 18 (220.5, 121.1) 2
6 (462.6, 361.9) 4 19 (219.5, 119.8) 7
7 (459.8, 359.0) 2 20 (220.7, 118.3) 6
8 (461.1, 359.0) 3 21 (328.8, 12.2) 2
9 (435.7, 337.8) 2 22 (335.2, 13.2) 9
10 (433.3, 337.7) 4 23 (334.2, 13.0) 4
11 (435.2, 338.5) 5 24 (333.2, 13.9) 8
12 (434.8, 337.4) 5 25 (331.5, 13.7) 8
13 (245.1, 180.3) 1

TABLE II
INDEX OF STOPPING POINT ALONG THE PATH, LOCATION AND TIME

SPENT AT EACH STOPPING POINT FOR THE 25-NODE NETWORK.

Visit Location ω(p) Visit Location ω(p)
Order (m) (s) Order (m) (s)

1 (625.7, 235.3) 23 6 (221.0, 119.4) 219
2 (461.1, 357.4) 358 7 (329.3, 11.9) 2
3 (464.5, 360.2) 9 8 (332.4, 12.1) 9
4 (435.4, 336.2) 98 9 (333.9, 12.4) 2318
5 (247.3, 179.3) 42

in [6], we obtain µ(DiB) = −0.0958D2
iB−0.0377DiB+1.0.

Letting Umax = 5 W and δ = 1 W, we have Dδ = 2.7 m for

a maximum distance of effective charging.6 We set ε = 0.05.

B. A Case Study

We first present results for a 25-node sensor network. The

location of each node and its data rate are given in Table I.

Applying our (1−ε)-optimal algorithm, we find that the algo-

rithm finds a solution after the third iteration. In this solution,

we have τ = 17.29 h, τvac = 16.29 h, and the objective value

is 94.21%.7 Since the total traveling time along path P is

1228/5 = 245.6 s ≈ 0.07 h, we have that the total stopping

time for charging is 17.29− 16.29− 0.07 = 0.93 h.

Upon termination, there are a total of 316 segments (cor-

responding to 316 logical points). However, the WCV only

makes 9 stops among these segments, and merely traverses all

the other segments without stop. For illustration purpose, we

use a physical point (x, y) within the corresponding segment

to represent the segment where the WCV makes a stop. These

stopping points are marked with flags in Fig. 4, and the

location and the amount of time at each stop are given in

Table II. Note that the number of stops for the WCV is much

fewer than the number of sensor nodes due to multi-node

charging. For example, the WCV charges nodes 1, 2, 3, and 4

6The charging distance can be extended by using larger coils.
7The objective value achieved by the upper bound solution is 95.91%.

This means that our solution achieves an objective value that is at least
0.9421/0.9591 = 99.0% of the optimum.
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at the same time when it stops at the 1st point (625.7, 235.3).
Also, it is possible that a node may be charged more than

once in a cycle. For example, node 25 is charged when the

WCV stops at both the 8th point (332.4, 12.1) and the 9th

point (333.9, 12.4).

VIII. CONCLUSIONS

This paper explored the complex problem of co-locating a

mobile base station on the wireless charging vehicle (WCV).

The motivation was to take advantage of the mobility feature

of the WCV and use it as a carrying platform for the mobile

base station at the same time. The goal was to minimize

energy consumption of the entire system while ensuring none

of the sensor nodes runs out of energy. We developed a

mathematical model for this problem and found that it is a

highly complex problem involving time-dependent variables.

Instead of studying the original problem formulation (OPT-t),

we showed that it is sufficient to study a special subproblem

(OPT-s) which only involves space-dependent variables. Sub-

sequently, we developed a provable near-optimal solution to

OPT-s. There are a number of novel techniques that are worth

being disseminated to the research community, most notably,

downsizing solution space without compromising optimal

objective value, discretizing a continuous path into a finite

number of segments and representing each segment with a

logical point. These powerful techniques allow development

of a provably near-optimal solution to a complex problem

that is seemingly intractable at first glance. In our future

work, we will further explore these techniques to address

other difficult networking problems involving time-dependent

movement, flow routing, and energy consumption.
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