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1 Introduction 

Maritime transportation is the backbone of world trade, and world seaborne trade was 

estimated at 8.4 billion tons in terms of the total goods loaded in 2011 (UNCTAD, 2011). In 

recent years, increased competition and global shipping downturn have been putting 

downward pressure on the revenues of shipping companies; at the same time, increased 

security regulations and fuel prices continued to increase their operating costs. The bunker 

cost constitutes a large proportion of the operating cost of a shipping company (Notteboom, 

2006). For example, Ronen (2011) estimated that when bunker fuel price is around 500 USD 

per ton the bunker cost constitutes about three quarters of the operating cost of a large 

containership. 

The amount of bunker consumed by ships also determines the amount of gas emission, 

including Green House Gas (GHG) such as carbon dioxide (CO2), methane (CH4), and 

nitrous oxide (N2O), Non-Green House Gases such as sulphur oxides (SOx) and nitrogen 

oxides (NOx), and various other pollutants, such as particulate matter, volatile organic 

compounds, and black carbon (Psaraftis and Kontovas, 2013). The above gases have negative 

effect on global climate. For example, GHGs contribute to global warming, SOx causes acid 

rain and deforestation, and NOx causes undesirable health effects. According to the 2009 

GHG study by the International Maritime Organization (IMO, 2009), international shipping 

contributes 2.7% of the CO2 emitted globally. IMO is currently considering many measures 

to reduce GHGs (Psaraftis, 2012). For instance, the IMO Marpol 73/78 Annex VI regulations 

aim to reduce nitrogen oxide (NOx) emissions and prevent sulphur oxide (SOx) and 
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particulate matter emissions from ships. In view of strict regulations on CO2 emission, 

tradable CO2 emission schemes have been developed and applied, and the current average 

contract price is about 8 Euros per ton of CO2 emitted (ICE-ECX, 2012). To meet future 

regulation on emission, shipping companies must either reduce bunker consumption or use 

cleaner but more expensive bunker fuel, or purchase emission quota from other companies. 

1.1 Impact of sailing speed on shipping capacity, inventory cost and bunker 

consumption 

The bunker consumption of a ship on one hand depends on the design and structure of 

the ship, and it is on the other hand very sensitive to the sailing speed. This study focuses on 

the impact analysis of sailing speed on bunker consumption. 

Fig. 1 plots the relations between sailing speed and bunker consumption for 4 types of 

ships: ships with a capacity of 3000 twenty-foot equivalent units (3000-TEU ships for short), 

5000-TEU ships, 8000-TEU ships and 10000-TEU ships. Clearly, when the speed increases, 

the bunker consumption increases more than linearly. Ronen (1982) mentioned that daily 

bunker consumption is approximately proportional to the sailing speed cubed, and Wang and 

Meng (2012a) further calibrated the relation using historical operating data of containerships 

and found that the exponent is between 2.7 and 3.3, which supports the third power 

approximation. Du et al. (2011) used the exponent of 3.5 for feeder containerships, 4 for 

medium-sized containerships, and 4.5 for jumbo containerships according to suggestions of a 

ship engine manufacturing company. Kontovas and Psaraftis (2011) suggested using an 

exponent of 4 or greater when the speed is greater than 20 knots.  
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<Fig 1 is inserted here> 

In general, a higher sailing speed has both advantages and disadvantages. The first 

advantage is that the amount of cargo that can be shipped annually is larger. For example, 

consider a ship with a capacity of 10,000 tons that sails between two ports (A and B) whose 

distance is 10000 n miles, and suppose that the total time for discharging and then loading a 

full ship load is 3 days at each port, as shown in Fig. 2. If the ship sails at 15 knots, it needs 

3+10,000/(24×15)≈30.8 days to transport 10,000 tons of cargo from port A to port B (or from 

port B to port A). Therefore in one year it can transport 365/30.8×10,000 = 1.19×10
6
 tons of 

cargo. If the ship sails at 20 knots, it needs only 23.8 days to ship cargo from A to B and 

hence would be able to transport 1.53×10
6
 tons of cargo annually. The second advantage is 

that the inventory cost associated with shipping is lower. In the above example, the cargo 

needs a total of 30.8 days for maritime transportation and handling if the ship sails at 15 knots, 

and needs only 23.8 days at the speed of 20 knots. The inventory cost of containerized cargos 

is high because of the high value of the cargos. For instance, Notteboom (2006) estimated 

that one day delay of a 4, 000-TEU ship implies a total cost of 57, 000 Euros associated with 

the cargos in the containers; Bakshi and Gans (2010) estimated the inventory cost of 

containerized cargo at 0.5 per cent the value of a container per day.  

The disadvantage of a higher sailing speed is that the amount of bunker burned is much 

higher. Suppose that the daily bunker consumption is proportional to the sailing speed cubed. 

As a result, the bunker consumption for accomplishing a trip from port A to port B in Fig. 2 is 

proportional to the sailing speed squared (the daily bunker consumption is proportional to the 

sailing speed cubed, but the number of days required is inversely proportional to the sailing 
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speed). Therefore, the amount of bunker consumed annually at the speed of 20 knots 

(proportional to 20
2
×(365/23.8) ≈6134) is 130% higher than that at the speed of 15 knots 

(proportional to 15
2
×(365/30.8) ≈2666), and the amount of cargo carried is only (1.53-

1.19)/1.19≈29% higher. Consequently, the optimal sailing speed is desirable to balance the 

tradeoffs between cargo shipping capability, inventory cost, and bunker cost. 

<Fig 2 is inserted here> 

1.2 Contexts of bunker consumption optimization 

In literature, bunker consumption optimization is cast into three application contexts. The 

first one is minimizing the operating cost of a shipping company by optimizing the sailing 

speed. For example, in shipping network design (Alvarez, 2009), ship fleet deployment 

(Gelareh and Meng, 2010), ship schedule construction (Qi and Song, 2012; Wang and Meng, 

2012b), sailing speed optimization (Norstad et al., 2011; Ronen, 2011; Wang and Meng, 

2012a), and selection of bunkering port and volume (Yao et al., 2012). As aforementioned, a 

lower speed means larger inventory cost. However, the inventory cost is borne by shippers 

and hence is not directly related to the shipping companies. Therefore, inventory cost is not 

considered in most of the studies in this category. Some studies explicitly incorporate the 

inventory cost (e.g., Wang and Meng, 2011 for schedule design), or impose a certain level of 

service in terms of the maximum allowable origin-to-destination (OD) transit time (Meng and 

Wang, 2011). 

In the second category, the amount of emission (usually converted to CO2 equivalent) is 

formulated in the model (Corbett, 2009; Kontovas and Psaraftis, 2011). From the 
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government’s viewpoint, imposing a fuel tax would effectively lower down the sailing speed 

of ships, thereby reducing the emissions at least in the short term (Corbett, 2009). From the 

shipping company’s viewpoint, taking the minimization of bunker consumption (which is 

proportional to emission) as an objective has two implications: one is to fulfill the 

international or local regulations on ship emission; the other is to build an image of social 

responsibility. To account for emission in modeling, one approach is to minimize the 

weighted sum of operating cost and emission. Mathematically, this approach is equivalent to 

an increase of bunker price. Another possible approach aims to minimize the operating cost 

while ensuring that the emission cannot exceed a certain upper limit. This approach can be 

adopted to find Pareto-optimal solutions that minimize the operating cost and emission, as 

shown in Fig. 3. 

<Fig 3 is inserted here> 

In the third category, port operators take into account the bunker cost of the shipping 

companies (Golias et al., 2010; Lang and Veenstra, 2010; Du et al., 2011; Wang et al., 2013), 

which contrasts conventional planning approaches where port operators maximize their own 

efficiency in berth allocation. In such a setting, port operators prioritize the berthing of 

incoming ships while accounting for the bunker cost of incoming ships. After that, port 

operators inform each ship captain a suggested arrival time, and as a result the ship could 

slow down to save bunker if the port is already very congested. For example, suppose that the 

ship is 200 n miles away from the port, and it has to wait for 5 hours for a berth if it sails at 

its current speed 20 knots. If the port operator informs the ship captain that a berth is 

available only 200/20+5=15 hours later, then the captain could slow down to a speed of 
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200/15=13.3 knots, resulting in a significant reduction in bunker consumption. We give 

another example with more than one ship. Suppose that there are two identical ships 

approaching one port. One ship is sailing at the speed of 20 knots from 1000 n miles away, 

and the other is sailing at 25 knots from 1250 n miles away. Both ships need 10 hours’ time 

for container handling at berth and both ships desire to be berthed in 60 hours. Only one berth 

is available for these two ships. If all other conditions are the same (identical ships sailing 

under the same condition and requiring the same container handing operations at the port), 

the port operators should let the ship at 20 knots be berthed first, and inform the ship at 25 

knots to slow down to the speed of 1250/(1000/20+10)=20.8 knots. Note that if the ship at 25 

knots is berthed first, the resulting bunker cost reduction is smaller, because the bunker 

consumption is more sensitive to speed when the speed is higher. 

1.3 Objectives and contributions 

Investigations on the solution methods are of considerable difficulty/significance for the 

bunker consumption optimization problems, due to the nonlinearity of bunker consumption 

relation with sailing speed and existence of discrete decision variables (the number of ships to 

deploy or berth allocation decisions). As a consequence, the objective of this paper is to 

critically review the solution methods proposed in the literature and then design efficient 

solution methods that supplement the existing methods. Contributions of this paper are 

threefold. First, we provide a complete framework on tailored ε-optimal solution methods, 

and this framework enables us to design six new tailored ε-optimal solution methods. Second, 

based on Du et al. (2011), we introduce an auto-conduction second-order cone programming 
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(SOCP)-transformation procedure that provides the optimal solution. Third, we review the 

existing methods in the literature and methods proposed by this paper and then analyze the 

advantages and disadvantages of each method. Hopefully, this review could provide 

guidelines for researchers and practitioners for optimizing bunker consumption to minimize 

operating cost and emission from the viewpoints of both shipping companies and port 

operators. Moreover, the approaches may also be applied to optimize sailing speed in settings 

with fixed speed (Christiansen et al., 2004; Shintani et al., 2007; Karlaftis et al., 2009; 

Gelareh et al., 2010; Bell et al., 2011; Brouer et al., 2011; Reinhardt and Pisinger, 2012). 

The remainder of this paper is organized as follows. Section 2 gives a simple bunker 

consumption example for us to demonstrate the solution approaches. Section 3 presents two 

basic solution methods: enumeration and dynamic programming. Section 4 introduces a 

discretization approach. Section 5 proposes a complete framework on tailored ε-optimal 

solution methods. Section 6 is dedicated to an exact SOCP approach. A summary of these 

methods are provided in Section 7. 

2 A simple bunker consumption optimization example 

We present a simple speed optimization example that belongs to the first category of 

bunker consumption optimization context. Using this simple example we analyze the steps 

and properties of each solution method. It should be mentioned that these methods are also 

applicable to other bunker consumption optimization contexts. 

Consider the Central China Express (CCX) container liner shipping service operated by 

OOCL (2012), as shown in Fig. 4. The port rotation of CCX can be coded by its port calling 
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sequence - 1 2, 1N→ → → →�  - where the numbers 1 and N denote its first and last ports 

of call, respectively. Define : {1, 2 }N=� � . Any port on the service can be coded as the first 

port of call because the itinerary is a directed loop. Two different ports of call may denote the 

same port with different port calling sequences. The voyage between two consecutive ports of 

call on the service is referred to as a leg. The th
i  leg is defined as the voyage from the th

i  port 

of call to the th( 1)i +  port of call when 1, 2, , 1i N= −�  and the th
N  leg is from the th

N  port 

of call to the 1
st
 port of call. For example, after choosing Qingdao as the first ports of call in 

Fig. 4, the CCX service can be coded as follows: 1 (Qingdao) → 2 (Ningbo) → 3 

(Shanghai(WGQ)) → 4 (Shanghai(YAN)) → 5 (Pusan) → 6 (Los Angeles) → 7 (Oakland) 

→ 8 (Pusan) → 1 (Qingdao). 

<Fig 4 is inserted here> 

A string of homogeneous ships are deployed on CCX to provide a weekly service 

frequency. For example, if the round-trip time is 42 days, then six ships are deployed to 

ensure that each port of call is visited once every week. Every port of call is visited on the 

same day of each week. Note that a port of call is different from a port in this study. For 

example, the port of Pusan in Fig. 4 is visited twice a week, and hence it corresponds to two 

ports of call, one of which is after Shanghai(YAN), and the other of which is after Oakland. 

The round-trip time consists of port time and sea time. We assume that the time spent at 

each port of call i∈�  in a round-trip is fixed and denoted by port

it  (h). The time at sea 

depends on the distance of each voyage leg and the sailing speed. Let 
i

L  be the oceanic 

distance (n mile) and 
i

v  (knot) be the speed on leg i . Then the sailing time on leg i  is /
i i

L v  

(h). We assume that ships have a maximum speed max
V  that is subject to the mechanical 
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properties of the ships. Assuming that a total of m  ships are deployed on CCX, to maintain a 

weekly service, we have 

 
port/ 168i i i

i i

L v t m
∈ ∈

+ =∑ ∑
I I

 (1) 

where 168 is the number of hours in a week.  

Providing a weekly service alone is not sufficient for customer satisfaction. As a 

consequence of competition, a maximum allowable transit time from port of call i∈�  to port 

of call ,j j i∈ ≠�  would be set when designing the service. In fact, the sailing speed has a 

significant impact on the level of service. For example, if the distance between two ports is 

5000 n miles, then the difference in transit time when sailing at 25 knots and 20 knots is 50 

hours, which translates to a total cost of 119, 000 Euros associated with the cargos on a 4, 

000-TEU ship (Notteboom, 2006). Let 
ijT  (h) represent this maximum allowable transit time. 

If there is no container shipped from port of call i  to port of call j , then we could simply set 

ijT  at a very large number. The transit time from port of call i  to port of call j , including the 

container handling time at these two ports of call, should not exceed 
ijT .  

Eq. (1) further indicates that generally when the sailing speed is higher (higher bunker 

consumption), fewer ships are required to maintain a weekly service (lower ship cost), and 

vice versa. Therefore an optimal trade-off between bunker cost and ship cost is desirable. As 

the bunker consumption function is different on different voyage legs, we denote by ( )
i i

g v  

(tons/n mile) the bunker consumption per nautical mile at the speed 
i

v  on leg i . If the daily 

bunker consumption is proportional to the speed to the power of 
i

ω , then ( )
i i

g v  is 

proportional to the speed to the power of 1
i

ω − . It is reasonable to assume that ( )
i i

g v  is a 

strictly convex and non-decreasing function. It should be mentioned that in reality the relation 
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between speed and bunker consumption ( )
i i

g v  may change in different trips because of the 

uncertain currents, wind, tides and seasonal storms. In fact, the function ( )
i i

g v  is calibrated 

from historical data of different trips. Therefore, when modeling the function ( )
i i

g v  can be 

considered as an average bunker consumption at the speed 
i

v . 

Represent by bunα (USD/ton) the bunker fuel price and let ship
c  (USD/week) be the fixed 

operating cost of a ship on CCX. The bunker consumption optimization (BCO) problem aims 

to determine the number of ships m  to deploy and the sailing speed 
i

v  on each leg, in order 

to minimize the total operating cost while fulfilling the weekly service and transit time 

constraints. The BCO problem can be formulated as: 

[BCO] 
bun ship

,
(m )in

i

i i i
v m

i

L g v c mα
∈

+∑
�

 (2) 

subject to: 

 
port/ 168i i i

i i

L v t m
∈ ∈

+ =∑ ∑
I I

 (3) 

 
port

1

/ , , ,
k k k ij

i k j i k j

L v t T i j i j
≤ ≤ − ≤ ≤

+ ≤ ∈ <∑ ∑ �  (4) 

 
port

,1 1 ,1

/ , , ,
k k k ij

i k N k j i k N k j

L v t T i j i j
≤ ≤ ≤ ≤ − ≤ ≤ ≤ ≤

+ ≤ ∈ >∑ ∑ �  (5) 

 max
0 ,iv V i≤ ≤ ∀ ∈ �  (6) 

 m  is a positive integer (7) 

The objective function (2) minimizes the sum of bunker cost and ship cost. Constraint (3) 

imposes the weekly service frequency. Constraints (4)-(5) enforce the transit time 

requirement. Note that we assume that ij
T  is greater than the second term on the left-hand 

side of Eqs. (4)-(5) as otherwise there is no solution. Constraint (6) defines the speed range. 

We may also impose a minimum speed as in Ronen (2011) to account for engine wear, then 

we need to incorporate some slack time at port or at sea to ensure that “=” holds in constraint 
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(3). Whether the minimum speed is equal to 0 or greater than 0 does not affect the solution 

method. Constraint (7) defines the number of ships to be a positive integer. 

3 Basic optimization methods 

[BCO] is a mixed-integer nonlinear programming model with nonlinear terms in its 

objective function (2) and constraints (3)-(5). Moreover, constraints (3)-(5) are non-convex. 

Therefore it is very difficult to solve [BCO] directly. There are some basic optimization 

methods in literature that address special cases of the BCO problem. One method addresses 

the problem by assuming that bunker consumption function ( )
i i

g v  does not change over 

different voyage legs and that there is no transit time constraints shown in Eqs. (4)-(5). The 

other is a dynamic programming approach which extends the analytical method by relaxing 

the assumption of uniform bunker consumption function ( )
i i

g v . Other approaches, such as 

linear programming by assuming the bunker consumption is linear with speed (Lang and 

Veenstra, 2010) and genetic-algorithm (Golias et al., 2010) cannot guarantee optimality; the 

gradient descent method (Qi and Song, 2012) is a general solution method. Therefore, these 

methods  are not elaborated. 

3.1 Enumeration method  

Corbett et al. (2009) and Ronen (2011) have implicitly made two assumptions about the 

BCO problem. First, they assume that that bunker consumption function ( )
i i

g v  does not 

change over different voyage legs. Second, 
ijT  is assumed to be infinite, or in other words, 

constraints (4)-(5) are not incorporated. Under these two assumptions, we prove the following 
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two theorems, which are used by Corbett et al. (2009) and Ronen (2011) without a rigorous 

proof. 

Theorem 1: The optimal sailing speed *

iv  is uniform over all voyage legs. 

Proof: Suppose that there exist , ,i j i j∈ ≠�  such that 
* *

i jv v≠ . Define  

 * *
1 / ,i iu v i= ∀ ∈ �  (8) 

and 

 ( ) (1/ ) ( ),
i i i i

G u G v g v i= = ∀ ∈�  (9) 

The total bunker consumption on legs i  and j  is: 

 * * * *( ) ( ) ( ) ( ) ( )
ji

i i i j j j i j i j

i j i j

LL
L g v L g v L L G u G u

L L L L

 
+ = + + 

+ +  
 (10) 

If the ship sails at the same speed on legs i  and j  and the total travel time does not 

change, then the common speed would be  

 
* *

/ /

i j

ij

i i j j

L L
v

L v L v

+
=

+
 (11) 

Its reciprocal is 

 
* *1/

ji

ij ij i j

i j i j

LL
u v u u

L L L L
= = +

+ +
 (12) 

The total bunker consumption is: 

 * *( ) ( ) ( )
ji

i j ij i j i j

i j i j

LL
L L G u L L G u u

L L L L

 
+ = + +  + + 

 (13) 

Since ( )
i i

g v  is strictly convex and non-decreasing and 1 /i iu v=  is also strictly convex 

when 0iv > , ( )
i

G u  is strictly convex. Therefore the bunker consumption (13) is less than 

(10). Hence, the optimal sailing speed *

iv  is uniform over all voyage legs. □ 

Similarly, we have 



 14 

Theorem 2: The optimal sailing speed is constant on each voyage leg. □ 

In view of these two theorems, the BCO problem can be solved easily as it only has two 

decision variables: the number of ships m  and the common speed denoted by v . The number 

of ships m  is a positive integer and smaller than e.g. 20 from practical point of view. 

Therefore we could enumerate all the possible values of m . For each m  we determine the 

speed according to Eq. (3) and subsequently calculate the total cost function (2). The optimal 

number of ships and the optimal common sailing speed could be determined. Ronen (2011) 

employed exactly this procedure and plotted a figure of the change of total operating cost 

with the common speed, as shown in Fig. 5. If ( )
i i

g v  changes over different voyage legs or 

ijT  is finite, then the optimal speeds on different voyage legs may be different and hence the 

above enumeration procedure is no longer applicable. 

<Fig 5 is inserted here> 

3.2 Dynamic programming method 

The dynamic programming (DP) method was applied by Norstad et al. (2011) for solving 

a tramp ship routing and scheduling problem. This method is also applicable to the BCO 

problem excluding constraints (4)-(5). To implement the dynamic programming method, we 

first construct a space-time network where the horizontal axis corresponds to time (time is 

discretized into units of e.g. days, 12 hours, 4 hours, or 1 hour, depending on the precision) 

and the vertical axis corresponds to the ports of call, as shown in Fig. 6. Note that the 

discretization of time corresponds to the discretization of ship speed. For clarity, in Fig. 6 we 

assume that the port time port
0it = , i∈� . Without loss of generality, the ship visits the first 
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port of call on day 0. An arc from the node (Port 1, Day 0) to a node corresponding to the 2
nd

 

port of call determines the sailing time, speed, and bunker consumption (note that ( )
i i

g v  

changes over different voyage legs). For example, the arc from (Port 1, Day 0) to (Port 2, 

Day 1) corresponds to a much higher bunker cost than the arc from (Port 1, Day 0) to (Port 2, 

Day 3) as the former has a much larger sailing speed. Path 1 and Path 2 converge at (Port 3, 

Day 6). These two paths have different bunker costs and the same ship cost (or more exactly, 

the same trip time from the 1
st
 port of call to the 3

rd
 one). Evidently, the optimal path in the 

space-time network starting from (Port 3, Day 6) relies exclusively on the state (Port 3, Day 6, 

and the optimal total bunker cost on leg 1 and leg 2). As a result, only the best path from 

(Port 1, Day 0) to (Port 3, Day 6) needs to be recorded when we extend the path to the 4
th

, 5
th

 

ports of call, etc. Therefore, a dynamic programming approach is suitable for finding the 

optimal number of ships to deploy and the optimal speed *

iv  on each voyage leg i∈� .  

If 
ijT  is finite, then at each node more information must be recorded. For example, at 

(Port 3, Day 6) we also need to record the arrival time at the 2
nd

 port of call because it affects 

the feasibility of the transit time constraint from the 2
nd

 port of call to other ports of call. As a 

consequence, the state of a node contains information on the arrival time at all the previous 

ports of call. Therefore, the BCO problem is no longer tractable due to the curse of 

dimensionality. 

<Fig 6 is inserted here> 
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4 Discretization Methods 

To overcome the deficiencies of the basic optimization methods, Gelareh and Meng 

(2010) and Yao et al. (2012) have proposed a discretization method. The method works as 

follows. First, similar to Eqs. (8)-(9), the reciprocal of speed is used as the decision variable, 

and [BCO] is reformulated as follows: 

 [P] 
bun ship

,
(m )in

i

i i i
u m

i

LG u c mα
∈

+∑
�

 (14) 

subject to: 

 
port 168i i i

i i

L u t m
∈ ∈

+ =∑ ∑
� �

 (15) 

 
port

1

, , ,
k k k ij

i k j i k j

L u t T i j i j
≤ ≤ − ≤ ≤

+ ≤ ∈ <∑ ∑ �  (16) 

 
port

,1 1 ,1

, , ,
k k k ij

i k N k j i k N k j

L u t T i j i j
≤ ≤ ≤ ≤ − ≤ ≤ ≤ ≤

+ ≤ ∈ >∑ ∑ �  (17) 

 max
1 / ,iu V i≥ ∀ ∈ �  (18) 

 m  is a positive integer (19) 

[P] is a mixed-integer nonlinear programming model where only the objective function (14) 

has nonlinear terms. 

The range of 
i

u  can be uniformly or non-uniformly divided into 
i

K  segments, see Fig. 7. 

The larger 
i

K  is, the more accurate the solution is. Note that although 
i

u  does not have an 

upper bound, it is not difficult to impose a reasonable upper bound max

iu  considering that in 

practice ships will not sail at a speed lower than e.g. 1 knot. After division, we obtain 1
i

K +  

speed values (strictly speaking, values of the reciprocal of speed), denoted by 0

iu , 1

iu  … iK

iu . 

To indicate which speed to adopt, we define binary variable 
ib
κ , {0,1 }

i
K∈ �κ , which equals 

1 if and only if speed 
iu
κ  is adopted on leg i∈� , and 0 otherwise. As a result, [P] can be 

approximated by an integer programming model: 
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[P1] bun ship

,
{0,1 }

( )min
i

i

i i i i
b m

i K

L b G u c m
κ

κ κ

κ

α
∈ ∈

+∑ ∑
��

 (20) 

subject to: 

 port

{0,1 }

168
i

i i i i

i K i

L b u t m
∈ ∈ ∈

+ ≤∑ ∑ ∑
�

κ κ

κI I

 (21) 

 port

1 {0,1 }

, , ,
k

k k k k ij

i k j K i k j

L b u t T i j i j
≤ ≤ − ∈ ≤ ≤

+ ≤ ∈ <∑ ∑ ∑ �

�

κ κ

κ

 (22) 

 port

,1 1 {0,1 } ,1

, , ,
k

k k k k ij

i k N k j K i k N k j

L b u t T i j i j
≤ ≤ ≤ ≤ − ∈ ≤ ≤ ≤ ≤

+ ≤ ∈ >∑ ∑ ∑ �

�

κ κ

κ

 (23) 

 
{0,1 }

1,
i

i

K

b iκ

κ∈

= ∀ ∈∑ �

�

 (24) 

 {0,1}, , {0,1 }i ib i K∈ ∀ ∈ ∀ ∈� �
κ κ  (25) 

 m  is a positive integer (26) 

Note that in Eq. (21) we use “≤” rather than “=” as in Eq. (15) because of the discretization. 

Note further that the dynamic programming method in Section 3.2 is also based on the 

discretization of speed. 

[P1] is an integer linear programming model and may be solved by optimization solvers 

such as CPLEX. The discretization method is capable of handling all the necessary 

constraints. The precision depends on the number of discretization intervals and how the 

speed range is discretized. Nevertheless, the disadvantage is that there are a large number of 

integer decision variables in [P1], thereby posing considerable computational difficulties. 

<Fig 7 is inserted here> 

5 Tailored methods 

Although the objective function (20) in [P1] is nonlinear, it is convex. In view of this 

sound property, a number of tailored methods are proposed, as summarized in Table 1. We 

elaborate on a few representative methods, and other methods follow in a similar manner. 
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<Table 1 is inserted here> 

5.1 Linear static outer-approximation method 

In contrast to the discretization method that adds more binary decision variables, the 

linear static outer-approximation method adds linear constraints to model [P]. As shown in 

Fig. 8 (a), a number of tangent lines are generated, for example, by uniformly dividing 
i

u , or 

uniformly dividing ( )
i i

G u , or using as few lines as possible while guaranteeing a maximum 

approximation tolerance. The slopes and intercepts of these tangent lines are recorded in a set 

i
� . After introducing auxiliary variables 

i
G , [P] can be linearized as follows: 

[P2] 
bun ship

, , 0
min

i i

i i
u m G

i

LG c mα
≥

∈

+∑
�

 (27) 

subject to: 

 slope intercept , , (slope , intercept )i i i i i i iG u i
κ κ κ κ≥ × + ∀ ∈ ∀ ∈��  (28) 

 
port 168i i i

i i

L u t m
∈ ∈

+ =∑ ∑
I I

 (29) 

 
port

1

, , ,
k k k ij

i k j i k j

L u t T i j i j
≤ ≤ − ≤ ≤

+ ≤ ∈ <∑ ∑ �  (30) 

 
port

,1 1 ,1

, , ,
k k k ij

i k N k j i k N k j

L u t T i j i j
≤ ≤ ≤ ≤ − ≤ ≤ ≤ ≤

+ ≤ ∈ >∑ ∑ �  (31) 

 max
1 / ,iu V i≥ ∀ ∈ �  (32) 

 m  is a positive integer (33) 

 [P2] is a mixed-integer linear programming model. Compared with [P1], the number of 

integer decision variables does not increase. Therefore, the computational efficiency of [P2] 

is much higher than [P1]. 

<Fig 8 is inserted here> 
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5.2 Linear dynamic outer-approximation method 

The tangent lines can also be generated dynamically whenever necessary, as shown in 

Fig. 9. Wang and Meng (2012c) applied the linear dynamic outer-approximation approach in 

a slightly different context. The procedure is as follows. First, solve [P2] without constraints 

(28). The optimal solution is denoted by * * *
( , , , )i i im u G i∈ � . For each leg i∈� , check the gap 

between *
( )i iG u  and *

iG . If this gap is too large, generate a new tangent line at point 

* *
( , ( ))i i iu G u , add such a constraint to [P2], and resolve. Otherwise, the approximation gap is 

acceptable, and the solution is ε-optimal, where ε>0 is a pre-specified tolerance level.  

In general, linear dynamic outer-approximation method needs fewer tangent lines than its 

static counterpart. However, [P2] has to be solved more than once. Therefore, there is no 

straightforward answer whether the dynamic or the static method is preferable. 

The static and dynamic methods could also be combined. First, some tangent lines are 

generated a priori. Then model [P2] is solved subject to the constraints (28) of these tangent 

lines. If the approximation gap is large, generate more tangent lines and resolve. Otherwise 

the solution is good enough for practical applications. 

<Fig 9 is inserted here> 

5.3 Linear branch-and-bound outer-approximation method 

The approximation gap can also be narrowed by a branch-and-bound (B&B) scheme. 

This method works as follows. First, a few (e.g. 2) tangent lines are generated for each leg, 

and model [P2] is solved. The optimal solution is denoted by * * *
( , , , )i i im u G i∈ � . If the gap 

between *
( )i iG u  and *

iG  is large, then we branch the feasible range of 
i

u , which is 
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max max
[1 / , ]iV u , into two ranges: max *

[1 / , ]iV u  and * max
[ , ]i iu u . Therefore in one branch, 

max *
[1 / , ]i iu V u∈  and in the other branch * max

[ , ]i i iu u u∈ . The tangent lines for the original 

range max max
[1 / , ]iV u  are removed and two new tangent lines for the feasible range of 

i
u  in 

each branch are generated. Since the width of the ranges of the two new branches is narrower 

than the original range, the approximation error on the two new branches should be smaller. 

This process is repeated combined with a bounding process, and finally an ε-optimal solution 

is obtained. 

Meng and Wang (2011) compared the efficiency of the linear B&B outer-approximation 

method and the discretization method. Results demonstrate that the former is several orders 

more efficient than the latter. 

<Fig 10 is inserted here> 

5.4 Linear static secant-approximation method 

Instead of using tangent lines, we could also use secant lines to approximate the 

nonlinear function ( )
i i

G u , as shown in Fig. 8 (b). The tangent lines always underestimate 

bunker consumption and secant lines may underestimate or overestimate bunker consumption. 

Tangent lines seem to be the natural choice of approximation. However, to achieve the same 

accuracy, fewer secant lines are needed than tangent lines. 

Given an approximation tolerance ε>0 , the secant lines can be generated as follows, as 

shown in Fig. 11: 

Function Generate Secant Lines 
min max max

( , ( ), 1/ , )
i i i i i

u G u u V u= { 
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Define points 
min min

1 ( , ( ))
i i i

A u G u= , 
max max

1 ( , ( ))
i i i

D u G u= , 
min min

2 ( , ( ) )
i i i

A u G u ε= − , 

max max

2 ( , ( ) )
i i i

D u G u ε= + . 

(a)  If the maximum gap between line 2 2A D  and the curve ( )
i i

G u  over the interval 

min max
[ , ]

i i
u u  does not exceed ε, as shown in Fig. 11 (a)-(b), then only the line 2 2A D

is generated. Return. 

(b)  Generate a line that passes point 2A  with slope k  (the value of k  is to be 

determined). The line is: 

 min min
( ) ( )i i i i iG k u u G u ε= − + −  (34) 

Let 
*

i
u  be the point corresponding to the maximum difference of the line and the 

curve ( )
i i

G u  over the interval 
min max

[ , ]
i i

u u , that is, 

 * min max min min
: arg max{ [ , ] | ( ) ( ) ( )}i i i i i i i i i iu u u u k u u G u G uε= ∈ − + − −  (35) 

The value of k  is chosen such that the maximum gap is equal to ε, that is, 

 * min min *
( ) ( ) ( )i i i i i ik u u G u G uε ε− + − − =  (36) 

as shown in Fig. 11 (c), where the point 
* *

1 ( , ( ))
i i i

B u G u= , and point 

* *

2 ( , ( ) )
i i i

B u G u ε= + . Apparently,  

 min * max

i i iu u u< <  (37) 

(b.1) If the gap between the curve ( )
i i

G u  and the line at max

i iu u=  is not greater 

than ε, as shown in Fig. 11 (c). The line is sufficient to ensure ε-optimality. 

Return. 

(b.2) Record the generated line and find the value of min -new

i iu u=  such that the 

difference of the curve ( )
i i

G u  and the line at min -new

i iu u=  is equal to ε, as shown 
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in Fig. 11 (d). Call the function Generate Secant Lines 
min -new max

( , ( ), , )
i i i i i

u G u u u . 

Return. 

}□ 

<Fig 11 is inserted here> 

5.5 Quadratic static outer-approximation method 

Instead of using straight lines, we could also use parabolic curves to approximate the 

nonlinear function ( )
i i

G u , as shown in Fig. 8 (c). A parabola can be defined by three 

parameters a , b , ci i i

κ κ κ . Let parabola

i�  be a set representing the parameters a , b , ci i i

κ κ κ  of the 

parabolas). Eq. (28) can be replaced with: 

 2 parabola
a ( ) b c , , (a , b , c )i i i i i i i i i iG u u i
κ κ κ κ κ κ≥ × + × + ∀ ∈ ∀ ∈��  (38) 

Evidently, a 0i >κ  and therefore Eq. (38) can be transformed to second-order cone 

programming (SOCP) constraints. A simple SOCP constraint has the form 

 2 2

2|| , || ,  that is, x y z x y z≤ + ≤  (39) 

A frequently encountered form 2x yz≤ , , , 0x y z ≥  can also be transformed to SOCP 

constraint  

 2|| , ( ) / 2 || ( ) / 2x y z y z− ≤ +  (40) 

Optimization solvers such as CPLEX could solve mixed-integer SOCP models. How to 

generate the parabolic curves and how to transform Eq. (38) to SOCP constraints are 

elaborated in Wang et al. (2013). 

A parabola outperforms a straight line in approximating the nonlinear function ( )
i i

G u  

because a straight line can be considered an extreme case of a parabola when a 0i =κ . 

However, solving a model with an SOCP constraint is more time-consuming than a linear 
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constraint. Therefore it is not easy to say whether straight lines or parabolic curves are 

preferable. 

6 An exact second-order cone programming approach 

The function ( )
i i

G u  is generally assumed or calibrated to be a power function in most 

studies. If the daily bunker consumption is proportional to the th
i

ω power of the speed, 

defining 1-
i i
=ρ ω , then ( )

i i
G u  can be represented by: 

 1
( ) ( ) ( ) ,i i

i i i i i iG u u u i
ω ρβ β−= = ∀ ∈ �  (41) 

where 
i

β  is a parameter calibrated from historical data. After introducing intermediate 

variables 
i

h , the objective function (27) and constraint (28) in [P2] can be replaced by 

[P3] 
bun ship

, , 0
min

i i

i i i
u m h

i

L h c mα β
≥

∈

+∑
�

 (42) 

 ( ) ,i

i ih u i
ρ≥ ∀ ∈ �  (43) 

To simplify the notation, we suppress the subscript i  in Eq. (43) in the sequel. Du et al. 

(2011) showed that when {3.5, 4.0, 4.5}∈ω , constraint (43) can be transformed (NOT 

approximated) to SOCP constraints. For example, when 3=ω , the constraint 2
h u

−≥  is 

equivalent to two SOCP constraints by introducing an intermediate variable s : 

 2 2 21 ,  ,  that is, 1 ,  su s h su s h≤ ≤ ≤ ≤  (44) 

As a result, [P3] can be transformed to a mixed-integer SOCP model and solved by CPLEX. 

The seminal work by Du et al. (2011) pointed out that a more general constraint h u≥ ρ  

can be transformed to SOCP constraints. However, this work did not mention how to 

implement such a transformation. In this paper we introduce an auto-conduction SOCP-

transformation procedure. To this end, we rewrite it as:  
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 1- 11h u h u h u
ρ ρ ω ω= −≥ ⇔ ≥ ⇔ ≤ �  (45) 

We can state 1ω −  as the quotient of two positive integers 1n  and 2n : 

 2

1

1
n

n
ω − =  (46) 

Hence, Eq. (45) is: 

 
2

11

n

n
h u≤ �  (47) 

or 

 1 21
n n

h u≤  (48) 

Define 

 
1 2: arg min{  is an integer | 2 }n n

κκ κ= ≥ +�
�  (49) 

Eq. (47) can be transformed to: 

 1 2 1 2221 1
n n n n

h u
κκ − −≤  (50) 

We examine a general case of Eq. (50) and transform it to SOCP constraints. The general 

case we consider is: 

 31 22

1 2s h u s≤
κ θθ θ

 (51) 

where 1 2, , ,s h u s  are nonnegative variables, 1 2 3, , ,θ θ θ κ  are nonnegative integers, and  

 
1 2 3 2+ + = κθ θ θ  (52) 

Evidently, if we can transform Eq. (51) to SOCP constraints, we can also transform Eq. (50) 

to SOCP constraints by adding linear constraints 1 1s =  and 2 1s = . Without loss of generality, 

we define that 1 2 3≥ ≥θ θ θ . In other words, whenever we call the repetitive SOCP 

Transformation function below, we should ensure that: 

 1 2 3≥ ≥θ θ θ  (53) 

Function SOCP Transformation 1 2 1 2 3( , , , , , , , )s h u s κ θ θ θ { 
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(a)  If 1=κ , then there are only two possible scenarios: 1 2 32, 0= = =θ θ θ  or 

1 2 31, 0= = =θ θ θ . (a.1) If 1 2 32, 0= = =θ θ θ , constraint (51) is equivalent to: 

 
1s h≤  (54) 

(a.2) Else we have 1 2 31, 0= = =θ θ θ  and thus constraint (51) is equivalent to: 

 2

1s hu≤  (55) 

Return. 

(b)  Else if all 1 2 3, ,θ θ θ  are even and 2≥κ , we can divide each of 1 2 3, ,θ θ θ  by 2, and 

set 1← −κ κ . Call SOCP Transformation 1 2 1 2 3( , , , , 1, / 2, / 2, / 2)s h u s −κ θ θ θ , 

return. 

(c) Else there are two possible scenarios: (c.1) 1

1 2
−≥ κθ  and (c.2) 

1

1 1 2 3max( , , ) 2
−= < κθ θ θ θ .  

(c.1) If 1

1 2
−≥ κθ , after introducing intermediate nonnegative variable 3s , Eq. (51) is 

transformed to: 

 
11 1 1 1 1

31 222 2 2 2 2 2

1 3 3 2 and s s h s h h h u s
−− − − − − −≤ ≤

κκ κ κ κ κ κ θθ θ
 (56) 

or,  

 
11

31 222 2

1 3 3 2 and s s h s h u s
−− −≤ ≤

κκ θθ θ
 (57) 

The first constraint in Eq. (57) is already an SOCP constraint. To transform the 

second constraint in Eq. (57) and impose the condition in Eq. (53), there are three 

scenarios. (c.1.1) If 1

1 22
−− ≥κθ θ , call SOCP Transformation 

1

3 2 1 2 3( , , , , 1, 2 , , )s h u s
−− − κκ θ θ θ ; (c.1.2) else if 1

1 32
−− <κθ θ , call SOCP 

Transformation 1

3 2 2 3 1( , , , , 1, , , 2 )s u s h
−− − κκ θ θ θ ; (c.1.3) else call SOCP 

Transformation 1

3 2 2 1 3( , , , , 1, , 2 , )s u h s
−− − κκ θ θ θ . Return. 
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(c.2) Else we have 1

1 1 2 3max( , , ) 2
−= < κθ θ θ θ . Hence 1

3 2
−< κθ . As 

1 2 3 2+ + = κθ θ θ , we 

have 1

1 2 2
−+ > κθ θ . After introducing intermediate nonnegative variables 4s  and 

5s , Eq. (51) is transformed to: 

 
1 11 1 1 1

31 1 1 22 22 2 2 2 2

1 3 4 3 4 2 and   s s s s s h u u s
− −− − − − − + −≤ ≤

κ κκ κ κ κ κ θθ θ θ θ
 (58) 

or,  

 
1 11 1

31 1 1 22 22 2 2

1 3 4 3 4 2,  and  s s s s h u s u s
− −− −− + −≤ ≤ ≤

κ κκ κ θθ θ θ θ
 (59) 

The first constraint in Eq. (59) is already an SOCP constraint. The second 

constraint can be written as: 

 
11

1 122 0

3 3s h u s
−− −≤

κκ θ θ
 (60) 

To transform the second constraint in Eq. (59), noting that we have 1

1 12
−> −κθ θ , 

we call SOCP Transformation 1

3 3 1 1( , , , , 1, , 2 , 0)s h u s
−− −κκ θ θ . The third constraint 

can be written as: 

 
11

31 2 22 0

4 2 4 s u s s
−− + −≤

κκ θθ θ
 (61) 

To transform Eq. (61) and impose the condition in Eq. (53), there are two scenarios. 

(c.2.1) If 1

1 2 32
−+ − ≥κθ θ θ , call SOCP Transformation 

1

4 2 4 1 2 3( , , , , 1, 2 , , 0)s u s s
−− + − κκ θ θ θ ; (c.2.2) else call SOCP Transformation 

1

4 2 4 3 1 2( , , , , 1, , 2 , 0)s s u s
−− + − κκ θ θ θ . Return. 

}□ 

Note that the above function of SOCP transformation terminates in a finite number of 

iterations because after one iteration the value of κ  decreases by 1. 
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In theory, the SOCP approach is exact. However, in reality the coefficient 
i

β  and the 

exponent 
i

ω  are obtained from regression of historical data, and therefore there will be errors 

associated with the estimation of 
i

β  and
i

ω . 

7 Conclusions 

This study has reviewed and extended a number of bunker consumption optimization 

methods. The enumeration method is supplemented by proving that the sailing speed is 

constant in a round-trip. The dynamic programming method is borrowed from tramp shipping 

speed optimization to solve the liner ship speed optimization problem. The scheme of the 

discretization method is introduced in detail. A complete framework on tailored ε-optimal 

solution methods that take advantage of the convexity of the problem is proposed based on 

the existing studies. This framework enables us to design six new tailored ε-optimal solution 

methods. Finally, an auto-conduction second-order cone programming (SOCP)-

transformation procedure is introduced. These methods could be used to optimize the sailing 

speed of ships, minimize emissions, and plan jointly for port operations and shipping 

operations. The properties of these approaches are summarized in Table 2. 

<Table 2 is inserted here> 
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Fig. 10 Linear B&B outer-approximation method 
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Fig. 11 Linear static secant-approximation method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 37 

Table 1 Tailored methods 

Literature 
 Outer-approximation  Secant-approximation 

 Static Dynamic B&B  Static Dynamic B&B 

Linear  Wang and 

Meng 

(2012a) 

Wang and 

Meng (2012c) 

Meng and 

Wang 

(2011) 

 Wang and 

Meng 

(2012b) 

* * 

Quadratic  Wang et al. 

(2013) 

Wang et al. 

(2013) 

*  * * * 

*Proposed by this paper 

 

Table 2 Comparison of the solution methods 

Methods 

 Application capabilities  Optimality  

Efficiency 

Implement 

in 

software 

tools 

 Varying 

( )
i i

g v  

Transit time 

constraint 

 ε-

optimal 

Optimal  

Enumeration  N N  Y Y  High Easy 

Dynamic 

programming 

 Y N  Y N  High Easy 

Discretization  Y Y  Y N  Low MIP 

Linear methods
a
   Y Y  Y N  High MIP 

Quadratic 

methods
b
 

 Y Y  Y N  High MISOCP 

SOCP   Y Y  Y Y  Depend on 

input 

parameters 

MISOCP 

Note: Y: Yes, N: No; MIP: Require mixed-integer linear programming (MIP) solvers; MISOCP: Require mixed-

integer SOCP (MISOCP) solvers 

a
 Include 6 methods – linear outer/secant static/dynamic/B&B approximation methods; 

b
 Include 6 methods – quadratic outer/secant static/dynamic/B&B approximation methods;  

 




