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Time-dependent interactions between two buoyancy-driven deformable drops are 
studied in the low Reynolds number flow limit for sufficiently large Bond numbers 
that the drops become significantly deformed. The first part of this paper considers 
the interaction and deformation of drops in axisymmetric configurations. Boundary 
integral calculations are presented for Bond numbers 9l = Apga2/o in the range 
0.25 < .uA < co and viscosity ratios 2 in the range 0.2 < 3, < 20. Specifically, the case 
of a large drop following a smaller drop is considered, which typically leads to the 
smaller drop coating the larger drop for 9i?+ 1. Three distinct drainage modes of the 
thin film of fluid between the drops characterize axisymmetric two-drop interactions : 
(i) rapid drainage for which the thinnest region of the film is on the axis of symmetry, 
(ii) uniform drainage for which the film has a nearly constant thickness, and (iii) 
dimple formation. The initial mode of film drainage is always rapid drainage. As 
the separation distance decreases, film flow may change to uniform drainage and 
eventually to dimpled drainage. Moderate Bond numbers, typically B = O(10) for 
,I = 0(1), enhance dimple formation compared to either much larger or smaller Bond 
numbers. The numerical calculations also illustrate the extent to which lubrication 
theory and analytical solutions in bipolar coordinates (which assume spherical drop 
shapes) are applicable to deformable drops. 

The second part of this investigation considers the 'stability' of axisymmetric 
drop configurations. Laboratory experiments and two-dimensional boundary integral 
simulations are used to study the interactions between two horizontally offset drops. 
For sufficiently deformable drops, alignment occurs so that the small drop may 
still coat the large drop, whereas for large enough drop viscosities or high enough 
interfacial tension, the small drop will be swept around the larger drop. If the large 
drop is sufficiently deformable, the small drop may then be 'sucked' into the larger 
drop as it is being swept around the larger drop. In order to explain the alignment 
process, the shape and translation velocities of widely separated, nearly spherical 
drops are calculated using the method of reflections and a perturbation analysis for 
the deformed shapes. The perturbation analysis demonstrates explicitly that drops 
will tend to be aligned for 93 > O ( d / a )  where d is the separation distance between 
the drops. 

1. Introduction 

The low Reynolds number study of the buoyancy-driven interaction between a pair 
of drops or a drop and an interface serves as a useful model for understanding the 
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dynamics of multiphase systems, e.g. liquid-liquid extraction which eventually requires 
the coalescence of a drop with its homophase, or the evolution of the dispersed phase 
volume fraction in multiphase flows common to industrial processing. Most previous 
studies of two-drop interactions assume spherical drop shapes, a limit which requires 
that interfacial tension forces are large compared to viscous and pressure forces. For 
example, the Stokes flow field around two translating spherical drops, as well as the 
rise speed and associated drag forces, have been examined theoretically using bipolar 
coordinates, the method of images, and the method of reflections (e.g. see references 
given by Barnocky & Davis 1989). 

In this paper we consider the hydrodynamic interactions between two buoyant 
drops in a viscously dominated flow. Our contribution to the subject area is to 
investigate the case where buoyancy forces are much larger than the restoring forces 
due to interfacial tension, and hence large drop distortions are possible. First we 
use a boundary integral method to study numerically the on-axis interaction of two 
deformable translating drops. A related problem with hydrodynamic interactions 
between deformable drops was studied by Pozrikidis (1992~) in an investigation of a 
train of drops translating in a cylindrical tube. Second we consider experimentally 
and numerically the interaction of two buoyant, deformable drops which are not 
aligned vertically, and we develop simple far-field expressions describing the motion 
of a pair of deformable drops. For such off-axis configurations, the flow produced 
by the hydrodynamically interacting translating drops induces shape distortions that 
are responsible for the eventual on-axis rise of the two drops, leading to similar 
interactions characteristic of initially aligned drops. 

Coalescence of two drops requires that the separation distance between the two 
drops eventually becomes very small; thus, the thin-film geometry and flow charac- 
teristic of the near contact between two drops has received much attention. Most 
studies make ad hoc approximations for some features of the thin-film flow geom- 
etry, though two recent studies obviate this deficiency. An approximate lubrication 
theory description of the two-drop geometry, valid for two nearly touching spherical 
drops, is presented by Davis, Schonberg & Rallison (1989) and Barnocky & Davis 
(1989). Yiantsios & Davis (1990, 1991) extend the lubrication approach to account 
for interface deformation in the limit that interfacial tension is sufficiently large to 
allow only small deformations; the evolution of drop shape as a function of viscosity 
ratio between the two fluids is determined and the formation of a dimpled shape is 
demonstrated without any ad hoc approximations other than assuming the validity of 
the lubrication approximation. The finite deformation and associated film drainage 
of a drop approaching a deformable fluid-fluid interface, in particular the effects of 
viscosity contrasts and interfacial tension, is addressed by Chi & Leal (1989) using a 
boundary integral method. The studies of Yiantsios & Davis and Chi & Leal thus 
describe the complete time evolution of an isolated drop interacting with a deformable 
boundary, at least for cases where only modest drop deformation occurs. 

In the limit of low interfacial tension, drops may become highly deformed even 
when separation distances are large. Large shape distortions lead to a number of 
different types of two-drop interactions at low Reynolds numbers. The flows are 
characterized by large values of the Bond number, B = Apga:/a,  which represents 
the ratio of buoyancy forces to interfacial tension forces: A p  is the density difference 
between the drop and surrounding fluid, g is the gravitational acceleration, al is the 
radius of the larger of the two drops, and 0 is the interfacial tension. In figure 1 we 
show the interaction that results from two air bubbles translating along their line-of- 
centres in a large container of corn syrup. The Bond number for this experiment is 
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FIGURE 1. Sequence of photographs of air bubbles in corn syrup. The Bond number based on the 
larger drop is 98 = 100 and the Reynolds number is W = lo-*. Photographs are shown at 5 s 
intervals. The trailing bubble has a small tail which develops as the bubble breaks off from the 
injection tube; at the time of break-off the tail is about one bubble radius long. Owing to the large 
viscosity of corn syrup, the tail does not completely relax before the first photograph is taken. In 
the experiments, coalescence occurs about 10 s after the final photograph shown. 

large, P2 = 100, and the Reynolds number based on the bubble radius at and rise 
speed U is small, .@ = p U q / , u  = lop2. This series of photographs illustrates that 
deformation may be large even when separation distances are large, and that the 
spherical-drop assumption commonly used to study drop interactions is not always 
a reasonable approximation. In the experiment, coalescence occurs shortly after the 
final photograph. 

We note here that for situations where the interfacial tension forces are weak, 
such as the experiment illustrated in figure 1, the flow field created by the trailing 
drop (radius al) will tend to flatten the leading drop into an oblate shape. The 
velocity difference thus generated across the leading drop (radius a2) is approximately 
Au = a z U l / d  for large separation distances d in a viscously dominated flow where 
UI is the speed of the trailing drop. Consequently, neglecting interfacial tension, the 
total strain or deformation experienced by the leading drop is zAu/az, where z is 
a characteristic time for the deformation to occur. Choosing z = al/U1, which is 
the advective timescale characteristic of interaction of the two drops, gives a strain 
a l / d  experienced by the leading drop as a consequence of motion of the trailing 
drop. Thus, for separation distances of 4 drop radii, we can expect strains of 25%, 
or aspect ratios of about 3 /2 .  We will see that even such modest shape distortions 
are important when considering the interaction of two drops which are not aligned 
initially along the vertical direction. 

The two-drop interaction shown in figure 1, characterized by large distortions 
owing to large Bond numbers, is the primary focus of this paper. In 53 we use the 
boundary integral method to study axisymmetric two-drop configurations. In $4, we 
show experimental results typical of the interaction of initially offset drops and study 
a model for this off-axis configuration using a two-dimensional boundary integral 
formulation. Finally, in 85 we develop simple analytical results for the far-field, 
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interaction-induced deformation and translational velocities using the method of 
reflections and the Reciprocal theorem in the limit of small shape distortions. 

The spherical shape assumption is justified in many chemical engineering systems 
involving aqueous media so long as the drop radii are smaller than O(10 pm). Larger 
drops may be characterized by Bond numbers greater than 0(1) and significant 
deformation should be expected. We note that the study here is also relevant to 
a number of geological and geophysical problems where the Reynolds number is 
small because of high viscosities and the Bond number is large because of large 
lengthscales. At the longest lengthscales the behaviour of mantle plumes and diapirs, 
with lengthscales ranging from 10 km to 1000 km, can be modelled as buoyancy- 
driven drops (Manga, Stone & OConnell 1993; Koch 1993). At smaller lengthscales, 
bubbles in high-viscosity silicate magmas, with typical radii of 1 mm to 1 cm, have 
Bond numbers greater than O(1). Large Bond numbers may also be achieved owing 
to the presence of surfactants which may substantially decrease interfacial tension, 
though surfactants also induce motion because of gradients of interfacial tension. 
Such Marangoni motions are outside the scope of this investigation. 
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2. Problem formulation 

The interaction of drops translating parallel to their line-of-centres is modelled 
by considering three fluid domains, the ambient fluid and the two drops, as shown 
in figure 2. To reduce the number of parameters we assume that the drops are 
composed of the same fluid, which corresponds to the most common problems of 
physical interest. The boundary integral method is used to numerically study this flow 
problem. The technique is well-established and has been used, for example, to study 
drop deformation in extensional flows (Rallison & Acrivos 1978) and the buoyancy- 
driven motion and stability of translating drops (Koh & Leal 1989; Pozrikidis 1990). 
Here we summarize for completeness the basic equations. 

In the low Reynolds number limit the flow in each fluid domain satisfies the Stokes 
and continuity equations 

V . T = pV2u - Vp + pg = 0 and V . u = 0, (2.1) 

where u is the fluid velocity, p is the fluid pressure, T is the stress tensor defined to 
incorporate the body force pg, i.e. T = --p/ + p[Vu + ( V U ) ~ ]  + pg . x/, and p is the 
fluid viscosity. As the stress tensor T is defined to be divergence free, the body force 
thus appears in the boundary conditions, equations (2.4) and (2.5) below. We denote 
the fluid domains by subscripts 1 and 2 for drops 1 and 2, respectively, and by the 
subscript ext for the external fluid. 

We require that the velocity decays to zero far from the drops, 

uext --+ 0 as 1x1 + 00 (2.2) 

u1 = uext on Sl and u2 = uext on S I I ,  (2.3) 

and that the velocity is continuous across all interfaces, 

where SI is the surface bounding drop 1, and Sll  is the surface bounding drop 2. 
The stress jump En. 7'J across an interface is balanced by the density contrast and 
interfacial tension forces, which depend on the local curvature V,s . n of the interface: 

(2.4) 
I 

En. T'J = n . Text - n * Ti = o (V, . n)n + nAp (g . x) on S,, 

[n . T"] = n . T:Lt - n . T: = CJ (V, . n)n + nAp (g  . X) on S I I ,  (2sj  
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FIGURE 2. Geometry of the problem considered in 9 3. The unit normal vector n is directed outward 
from the drops. Drops 1 and 2 have radii a, and a2, respectively. The drops have viscosity ,lp and 
density p - A p ;  the external fluid has viscosity p and density p. The interfacial tension is denoted 
by 0. The separation distance between the drops is h ~ .  The surfaces of the drops are denoted by 
SI and S l l .  

where CJ denotes the constant interfacial tension, n is the unit normal directed into the 
external fluid, and V, = (I - nn) . V is the gradient operator tangent to the interface. 
Additionally there is a kinematic constraint, which requires that a fluid element on 
a fluid-fluid interface remain on that interface for all time; formally, the kinematic 
constraint may be expressed with the Lagrangian description 

on SI and SII .  

For convenience, the trailing drop is labelled drop 1, and the leading drop is labelled 
drop 2. The equations are non-dimensionalized by choosing the characteristic length 
as the radius of the trailing drop, radius al, the velocity scale as A p g a : / p ,  and an 
advective time-scale of p / A p g a , .  For a given initial configuration (dimensionless 
separation distance h in figure 2), three dimensionless parameters characterize the 
flow: the ratio of drop radii, a1/a2, the viscosity ratio, A, and a Bond number based 
on the properties of the trailing drop 

The Bond number characterizing the deformation of drop 2 with radius u2 is L i i ? ( ~ ~ / a ~ ) ~ .  
In this paper we will assume that the drops are of comparable sizes, and often use a 
to denote a typical drop radius. 

We solve for the time-dependent deformation and translation of the drops by 
recasting the Stokes equations as a pair of coupled integral equations of the second 
kind for the interfacial velocities. The integral equations involve only stress jumps 
(equations (2.4) and (2.5)) across the interfaces and the unknown velocities along 
the interfaces, uI and uII ,  and are given by (see Appendix A for a derivation of the 
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boundary integral equations for generic two-interface problems) 
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where J and K are known kernels for velocity and stress, respectively (Pozrikidis 
1992b), ij is a unit vector in the direction of gravity, and y is the integration variable. 
The interfacial velocities uI and UrI are determined by solving equation (2.8) and the 
time-dependent motion of the interface is determined using the kinematic condition 
(2.6). The numerical procedure for solving (2.8) is straightforward and is similar to 
the method outlined in Stone & Leal (1989). For the axisymmetric configuration 
studied in 5 3, azimuthal integration may be performed analytically (Lee & Leal 1982) 
reducing (2.8) to a line integral. The integral equation is solved by a collocation 
procedure and integration is performed using Gauss-Legendre quadrature. The 
interface shapes are described by taut cubic splines (de Boor 1978) parameterized in 
terms of arclength. Typically, we use 50-90 collocation points on each half-interface. 
For a more complete discussion of boundary integral methods as applied to free- 
boundary problems the reader is referred to Pozrikidis (1992b) and Tanzosh, Manga 
& Stone (1992). 

Cumulative numerical error, estimated by monitoring the volume change of the 
drops, may occasionally be as high as 5-10% for the most severe distortions and 
the times of the longest numerical simulations, particularly for problems involving 
large viscosity contrasts. Such volume changes are larger than those reported in 
previous studies because of the large distances over which the drops translate in the 
simulations. Typically, calculated interfacial velocities for a single spherical drop in 
an unbounded fluid differ by less than 1% from the exact Hadamard-Rybczynski 
result. In the results presented here, the volume changes were always less than 10% 
and no volume rescaling was implemented. 

3. On-axis interaction of axisymmetric drops 

The numerical results presented below illustrate the interaction between two ax- 
isymmetric drops translating along their line-of-centres. Qualitatively, the numerical 
results have some similarities with the problem of a drop approaching a deformable 
interface (Chi & Leal 1989). Most notably, the style of film drainage between the 
two drops is similar to the film formed between a drop and a fluid-fluid interface, 
though we allow for large interface distortions since the zero interfacial tension limit 
is studied. 

We consider the case of a large drop following a smaller drop so that interaction 
eventually occurs; the two drops are composed of the same fluid and the radius ratio 
a l /a2  = 2 in all the simulations. Thus, the Bond number for the smaller drop is 
0.2539'. Both drops are assumed to be initially spherical and the initial separation 
distance between the two drops (the distance h shown in figure 2) is usually chosen 
as one half the radius of the large drop. Changing the ratio of drop sizes and the 
initial drop separation distance results in only modest qualitative changes in drop 
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FIGURE 3. Effect of interfacial tension on drop deformation; 49 = cu, 10, 1; 1 = 1; u1/u2 = 2. 
Interface shapes are shown at times t = 0, 10 and 20. 

behaviour. However, the history of deformation is important for understanding the 
detailed drop deformation in the high Bond number limit owing to the long-range 
nature of Stokes flows; in § 3.4 we summarize typical results observed when the initial 
separation distance is changed. 

3.1. Eflect of interfacial tension 

In figure 3 we illustrate the effect of interfacial tension on the shapes of translating 
drops. A sequence of interface shapes at equal time increments is shown for Bond 
numbers W = 03, 10 and 1. For all Bond numbers the smaller leading drop initially 
deforms into an oblate shape and the larger trailing drop deforms into a prolate shape; 
both types of deformation are a result of the flow produced by the neighbouring drop. 
For example, as schematically indicated in figure 4 using the simple idealization of 
treating the translating drop as a point force, the trailing drop becomes elongated 
(prolate distortion) owing to the viscous stresses associated with the convergence of 
streamlines in the flow produced by the leading drop; conversely, the leading drop 
becomes flattened (oblate distortion) owing to the viscous stresses associated with 
the divergence of streamlines in the flow produced by the trailing drop (analytical 
descriptions of the non-spherical shapes are given in 0 5) .  

For translational motions in an unbounded fluid the spherical drop shape is stable 
to infinitesimal perturbations provided the interfacial tension is finite, i.e. 96' -=z co 
(Kojima, Hinch & Acrivos 1984). However, finitely deformed drop shapes are unstable, 
and subsequently undergo a continual deformation, if the restoring interfacial tension 
forces are not sufficiently large: prolate drops will develop long tails and oblate drops 
will develop cavities (Koh & Leal 1989; Pozrikidis 1990). For the isoviscous drops 
shown in figure 3, Bond numbers of order 10 appear to be sufficient to prevent 
the large drop from developing a tail (see figure 6 for shapes at longer times). As 
the restoring interfacial tension force is reduced, the smaller leading drop deforms 
substantially, spreading over the surface and thus coating the larger drop, as illustrated 
for the 98 = GO and W = 10 simulations. At longer times, the separating film thins 
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Deformed shape 

Undeformed shape - - - - - - - - - 

FIGURE 4. Illustration of the effect of a point force on drop deformation. Drops in front of a point 
force, which models the presence of a second drop, have oblate spheroidal shapes. Conversely, 
drops behind a point force have prolate spheroidal shapes. 

substantially, the drops numerically make contact, and the simulation is terminated. 
The same manner of interaction and deformation was shown previously for the two 
air bubbles translating through corn syrup (figure 1). 

3.2. The style of Jilm drainage 

The interaction over long times and possible coalescence of two nearly touching 
drops is controlled by the dynamics of the thin film between the drops. Interest in the 
coalescence process has been the primary motivation for the extensive study of the 
film drainage problem; the use of a boundary integral method allows us to study the 
complete evolution of the thin film for large drop deformations. When the interfaces 
are deformable, three distinct modes of film drainage characterize the interaction of 
two drops, analogous to the three modes described by Chi & Leal (1989) for a drop 
approaching its initially planar homophase. The three styles of interface deformation, 
which provide insight into the probable manner and location of coalescence, are 
referred to as (i) rapid drainage, (ii) uniform drainage and (iii) dimple formation, 
depending on the thickness profile of the film and the manner in which the film thins. 

Numerical simulations illustrating the three modes of film flow are presented in 
figure 5. The film profiles (gap thickness as a function of radial position) are also 
shown. We note that ‘uniform drainage’ characterizes an almost (but not exact) 
uniform film thickness between two drops. 

The three modes of film drainage also characterize different stages in the evolution 
of a given film. As we will see in the following sections, as the separation between 
the drops decreases, the characterization of the drainage flow may change from rapid 
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FIGURE 5. The three modes of film drainage, analogous to the three modes described in Chi & Leal 
(1 989) : (i) rapid drainage, (ii) uniform drainage, and (iii) dimple formation. Examples of calculated 
shapes for each mode are shown for &' = 10; 2 = 0.2, 1 and 5;  a l / a z  = 2. In the lower portion of 
the figure we plot gap thickness versus radial distance to illustrate more clearly the differences in 
gap geometry. 

to uniform drainage and then dimple formation. For the range of viscosity ratios 
considered in this paper, the separation distance h at which dimple formation begins 
decreases with decreasing viscosity ratio I I  for a given Bond number. In the studies 
by Yiantsios & Davis (1990, 1991), which are restricted to small Bond numbers, 
9 el, dimple formation is always predicted to eventually occur, provided attractive 
van der Waals forces are negligible. However, in our high Bond number calculations 
(e.g. 98 = cc shown later in figure 6) and experiments with air bubbles (e.g. figure 
1) dimple formation never appears to occur prior to coalescence. In the following 
section we discuss the effects of interfacial tension and drop viscosity on the style 
of drainage and outline the physical mechanisms responsible for the corresponding 
drainage mode. 

3.3. Rate ofJilm drainage and dimple ,formation 

In figure 6 we present the time evolution of the gap thickness measured at Y = 0, shown 
with a solid line, for different values of the Bond number and A = 1. Corresponding 
drop shapes at different stages of the interaction are shown and identified with the 
letters a, b, c, etc. The minimum separation distance between the two drops is shown 
with a dashed line. Dimple formation in the thin film thus begins when the solid 
and dashed lines diverge indicating that the smallest separation distance is no longer 
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FIGURE 6 .  The rate of film drainage versus time for drops with Bond numbers B = 1, 10 and co; 
1 = 1 ; a l / u 2  = 2. The solid curve corresponds to the thickness of the film on the axis of symmetry, 
Y = 0, and the dashed curve corresponds to the minimum film thickness. Drop shapes at different 
times are shown for reference. 
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along the centreline. The solid and dashed curves for B = 1 and co overlap since no 
dimple develops. The film thickness decreases most rapidly for the large interfacial 
tension simulation (B = l),  and most slowly for the moderate interfacial tension 
simulation (&I = 10) which forms a dimpled film. 

In order to explain the variation of film thickness with time, we note that for smaller 
Bond numbers (hence smaller distortions), film drainage is more rapid because the 
two drops remain nearly spherical and thus fluid in the gap is not forced to flow 
over too large a surface area. For the case of vanishing interfacial tension (a = a), 

the smaller drop coats the larger drop, so that the increase in surface area provides 
additional resistance to fluid motion in the narrow gap which delays film thinning. 
Dimple formation for moderate Bond numbers (8 = 10; see also figure 5) means 
that the narrowest portion of the film is away from the centreline; this geometric 
constriction further slows the rate of film drainage. From the results shown in figure 
6, we observe that in the absence of interfacial tension (93 = co) the thin film has a 
nearly uniform thickness over the entire surface of near-contact and no dimpled film 
develops; hence, the rate of thinning is intermediate between the &? = 1 and B = 10 
simulations. 

Varying the viscosity ratio also has a significant effect on the rate and manner of 
film drainage, as shown in figure 7 for the case of 8 = 10. A dimpled film forms 
earliest for the isoviscous drops; for higher viscosity ratios, a dimple forms at larger 
drop separation distances. Nevertheless, if we instead choose to non-dimensionalize 
time so as to highlight the higher viscosity fluid, i.e. define dimensionless time such 
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Time 
FIGURE 7. The rate of film drainage versus time for drops with viscosities I = 0.2, 1 and 5; &I = 10; 
a1/a2 = 2. The solid curve corresponds to the thickness of the film on the axis of symmetry, r = 0, 
and the dashed curve corresponds to the minimum film thickness. Drop shapes at different times 
are shown for reference. 

that t = t / ( l  + A), then dimple formation actually occurs earlier for high-viscosity 
drops. 

For low-viscosity drops, corresponding to a more mobile interface (Davis et al. 
1989), the rate of film drainage is enhanced. For high-viscosity drops the interface 
becomes immobile, and not only offers additional resistance to fluid flow in the thin 
flm, but also enhances the formation of dimples thus leading to a slower rate of 
drainage. We observe that in the higher viscosity ratio simulations, such as the case 
A = 5 shown in figure 7, the gap thickness along the axis of symmetry actually 
increases after a certain stage in the development of a dimpled film. Since large 
pressures exist at r = 0 in order to squeeze fluid out of the thinning film, it becomes 
easier for the drop to distort such that the thickness of the gap increases at the film 
midpoint. This behaviour is associated with moderate values of the Bond number 
and is to be contrasted with the qualitatively different, monotonically thinning, low 
Bond number film profiles determined by Davis et at. (1989) and calculated by Chi 
& Leal (1989). 

Although the thin film thickens along the axis of symmetry, the volume of fluid 
contained within the thin-film region continues to decrease with time. We also note 
that in the calculations of Yiantsios & Davis (1991), which incorporate van der Waals 
forces, the thickness of the gap increases once ‘rim-rupture’ begins. 

For drops that remain nearly spherical (small Bond numbers), the radius of the 
dimple can be predicted by balancing the pressure in the film against the buoyancy 
force, giving a dimple radius of r d / a l  = O(B4) (e.g. Yiantsios & Davis 1991). In 



658 

Y .- 
0.6 

.+ "a & e, E 0.4 0.2 

0 -  

M. Manga and H .  A. Stone 

O " I f f  / 1=  20 

I I I I I -  

figure 8 we plot the dimple radius against time for the case of 99 = 10 and 3, = 1, 
5 and 20. For all cases the initial dimple radius is about 0 . 1 5 ~ ~  and increases with 
time. The low Bond number estimate is not valid for these highly deformed drops 
since dimple radii greater than the drop radius are predicted. Predicting dimple radii 
for highly deformed drops is difficult since simple analytical approximations of drop 
shapes and pressure in the gap are not yet available. 

3.4. History ejiects 

For each of the above calculations we have assumed that the initial separation 
distance is 0 . 5 ~ ~ .  In figure 9 we show the rate of decrease of gap thickness dhldt 
for initial separation distances of 0 . 5 ~ ~  and 2 . 5 ~ ~  and different viscosity ratios. The 
Bond number is taken to be large enough, 99 = 10, that large distortions are possible. 
The results in figure 9 demonstrate that for small dimensionless separation distances 
h the approach velocity dhldt is smaller at a given h for larger initial separations. If 
the initial separation distance is large (2.5ul), the corresponding drop distortions are 
larger : larger initial separations provide more time for deformation. 

From the numerical simulations, we observe that for the drop pairs with 2 = 1 and 
5, the dimple forms at larger separations h which leads to smaller rates of approach 
dh/dt when two different initial conditions are compared at the same separation 
distance. For the case with 2 = 0.2 dimples do not develop during the simulation. 
We note that although dhldt initially increases for 1 = 0.2 for the small initial 
separation distance (because the large trailing drop becomes a prolate ellipsoid and 
is extended) the separation distance between the centre-of mass of the two drops 
decreases monotonically. 

3.5. Comparison with analytical results 

Here we consider the extent to which analytical results may be applied to describe 
the on-axis interaction of deformable drops. In figure 10 we show the rate of decrease 
of gap thickness dhldt as a function of the dimensionless separation distance h for 
(i) two numerical simulations (99 = 1 and 10; 1 = 1) indicated by the solid curves, 
(ii) the results of a lubrication analysis indicated by a dotted line, and (iii) an exact 
solution for spherical drops in bipolar coordinates indicated by a dashed curve. 

The lubrication analysis which combines lubrication theory and boundary integral 
methods (Barnocky & Davis 1989; Davis et al. 1989) is applicable to spherical shapes 
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FIGURE 9. The effects of initial drop separation distances. Examples are shown for 1 = 0.2, 1 and 5 
with 98 = 10 and initial separation distances of 0 . 5 ~  and 2 . 5 U l ;  u1/u2 = 2. The initial configuration 
does not change results qualitatively. 

characteristic of small Bond numbers, &!I el, and not surprisingly differs significantly 
from the behaviour of moderately distorted drop pairs characteristic of larger Bond 
numbers, LA? > 1. Exact solutions in bipolar coordinates for spherical drops (Haber, 
Hestroni & Solan 1973) are reasonably accurate for deformable drops when separation 
distances are large and thus the drops have not distorted to a significant degree. As 
the separation distance decreases, the analytical result for the rate of approach 
overpredicts the deformable drop result. The calculated and analytical results differ 
by less than 10% for separation distances greater than 0.8al for B = 10 and 0.07aI 
for &I = 1. 

Although the drops for 9i9 = 1 appear to be nearly spherical (figure 6, drop c), 
the inset of figure 10 shows a magnification of the thin gap between the deformable 
drops (solid line) and undeformed spherical drops with the same volume (dashed 
line). Clearly, the area over which fluid in the gap is squeezed is larger for the 
deformed drops, and the mode of film flow is characterized by uniform drainage. 
For comparison, the results of Yiantsios & Davis (1990) show that for drops with 
9941 approaching a deformable surface, the rate of film drainage decreases from 
dh/dt cc h i  for large and moderate gap thicknesses h, characteristic of spherical drop 
solutions (Davis et al. 1989; Haber et al. 1973) to dh/dt cc h4 along the axis of 
symmetry and dh/dt cc h5I2 for the minimum gap thickness (at the rim of the dimple) 
when h becomes very small. For comparison, we find numerically that dh/dt cc h4.3 
at h = 0.02 and r = 0 for the simulation with LA? = 1 in figure 10. 

3.6. Cusps and tails 

In the experiments (later stages in figure 1) and in the calculations ( e g  figure 6, drop 
h), regions of very high curvature develop at the back of the trailing bubble or drop, 
Two features of the flow contribute to the development and maintenance of interface 
shapes with high curvatures. First, by analogy to the formation of pointed ends on a 
drop in a steady extensional flow, where the radius of curvature of the end of the drop 
scales as ( e g  Acrivos 1983), we might expect that the flow behind the trailing 
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FIGURE 10. Comparison of boundary integral results with analytical results for spherical drops; 
1, = 1 ;  al/az = 2. Numerical results are shown by solid curves for .93 = 1 and i!8 = 10. The bipolar 
coordinate solution is shown by a dashed curve (Haber et al. 1973). The combined lubrication 
theory and boundary integral analysis for spherical drops is shown by a dotted line (Davis et al. 
1989). The inset shows a (distorted) magnification of the geometry of the gap between the drops 
with solid curves for .93 = 1 at h = 0.02; the shapes of spherical drops with the same volume are 
shown by dashed curves. 

drop, which locally resembles an extensional flow, may allow a tail with a region of 
high curvature to develop. Second, while the spherical drop shape exactly satisfies the 
normal stress balance (Batchelor 1967) and is stable to infinitesimal distortions for 
98 < co, the effect of the leading drop is to allow the trailing drop to become prolate, 
and thus to become unstable for large Bond numbers (Koh & Leal 1989; Pozrikidis 
1990). The combination of the local extensional flow and a distorted prolate shape 
allow the drop to be extended and the tail to develop. 

Regions of very high curvature also develop at the rim or edge of the coating drop 
(see figure 1 and figure 6,  drop h) where the flow is locally extensional. Near the 
rim of the coating drop the flow is locally two-dimensional since the thickness of the 
coating drop is much smaller than the radius of the larger drop. 

Recent studies of two-dimensional free-surface flows by Joseph et al. (1991) and 
Jeong & Moffatt (1992) have demonstrated that regions of very high curvature, which 
may appear macroscopically to be cusps, may develop even for systems with finite 
interfacial tension. The two-drop interactions shown here fall into the category of 
flows which allow regions of high curvature to develop. 

4. Interaction and stability of offset drops 

In this section we consider the stability of the axisymmetric drop configuration 
studied in 0 3. Stability is examined by considering the tendency for an initially off-axis 
configuration to evolve either towards or away from an aligned configuration. Again 
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we will consider the case of a large drop translating behind a smaller drop; however, 
the centres-of-mass are initially offset horizontally. Experimental results are presented 
in $4.1, and a qualitative explanation for the evolution of off-axis configurations is 
presented in $ 4.2. Numerical solutions of an analogous two-dimensional geometry 
are presented in $ 4.3 to provide an improved quantitative understanding. 

In general the two-drop free-boundary problem is difficult for non-aligned drops, 
and numerical solutions are complicated by the necessity of treating three-dimensional 
geometries. Previous analytical studies of two-drop interactions have been limited to 
spheres. Some of the features characteristic of drop interaction and deformation at low 
Reynolds numbers have been observed in finite-difference/front-tracking numerical 
studies at finite Reynolds numbers for both two-dimensional and three-dimensional 
drops (Unverdi & Trygvasson 1992). 

The interactions between two drops model a great many two-body interactions 
common in multiphase sedimentation processes. The results presented below demon- 
strate that sufficiently deformable drops (moderate Bond numbers, low viscosity 
ratios) with only modest horizontal displacements will interact in a manner which 
induces alignment. The alignment of deformable drops owing to hydrodynamic inter- 
actions increases the likelihood of coalescence of buoyancy-driven drops. Hence final 
configurations similar to the results presented in $ 3  are obtained. We note that drop 
interaction and alignment may produce uneven concentrations of drops and bubbles 
in dispersed multiphase systems, analogous to the inhomogeneities which develop in 
suspensions of non-spherical particles (e.g. Koch & Shaqfeh 1989). 

4.1. Experimental results 

In figures 11 and 12 we show examples of two types of interactions between air 
bubbles rising in a large container of corn syrup. The interactions leading to alignment 
arise as a consequence of the deformation of the bubbles. The Reynolds numbers in 
these experiments are small, W = 5 x and the Bond numbers are large, 3 = 50. 

The experiment in figure 11 illustrates a process we will refer to as drop alignment. 
In this case the long-range, interaction-induced deformation of the bubbles leads to a 
lateral component of translation and the eventual alignment of the bubbles. The two 
bubbles start about one bubble radius apart and eventually align and coalesce over a 
translational distance of about five drop radii. 

The experiment in figure 12 illustrates a short-range process in which the small 
bubble is advected around the larger bubble and is ‘sucked’ or entrained into the 
larger bubble, finally translating vertically with an almost axisymmetric configuration 
prior to eventually coalescing. The bubbles in figure 12, as well as those in figures 
1 and 11, coalesce within 5-30 s after the last photograph shown. The difference 
between the experiments shown in figures 11 and 12 is that in figure 12 the initial 
horizontal separation distance was large enough that the small bubble does not coat 
the larger trailing bubble. 

The experimental results indicate that the axisymmetric two-drop configuration 
studied in $ 3  is a stable geometry in the limit of large Bond numbers since bubble 
and drop deformations lead to alignment. For both experiments shown in figures 11 
and 12 we note the large degree and complexity of deformation of both bubbles and 
the formation of tails or regions of high curvature. 

4.2. Flow-induced deformation leading to alignment 

As a preliminary, we note that the corresponding problem of two translating spherical 
drops evolves so that, relative to a reference frame translating with the larger sphere, 
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FIGURE 11. Sequence of photographs showing the interaction of initially offset air bubbles in corn 
syrup, with a = 50 and W = 5 x lop3. Photographs are shown at 5 s intervals. The bubbles coalesce 
about 10 s after the last photograph shown. 

FIGURE 12. Sequence of photographs showing the interaction of initially offset air bubbles in corn 
syrup, with a = 50 and 92 w 5 x Photographs are shown at 10 s intervals. The bubbles 
coalesce within about 30 s after the last photograph shown. 

the small sphere is swept around toward the back, as shown in figure 13. The off-axis 
configuration is clearly unstable as a consequence of the hyperbolic stagnation point 
at the front of the larger drop. 

For the dynamics shown in figure 11, it is straightforward to provide a qualitative 
explanation, schematically illustrated in figure 14, for the alignment of offset de- 
formable drops. The alignment occurs since the long-range effect of drop interactions 
(figure 4) is to deform the trailing drop into a prolate shape, suitably inclined with 
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FIGURE 13. Illustration of the interaction between non-deformable spherical drops. Owing to the 
reversibility property of Stokes flows, the horizontal offset between the drops is preserved as the 
small drop is swept around the larger drop. 

Flow-induced shape 6 \ 

Undeformed ',, I 

shape 
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FIGURE 14. Illustration of the mechanism for the alignment of two rising deformable drops. The 
deformation of each drop by the flow produced by the other drop, as shown in figure 4, allows 
the drops to translate with velocities u, and U, which have horizontal components that favour 
alignment. 



664 M .  Manga and H. A. Stone 

(b) 

FIGURE 15. Streamlines, relative to the translating drop, (a) for a single deforming drop, and (b) 
for a pair of drops (the volume of the trailing drop is a the volume of the leading drop); 3 = 50; 
A = 1 .  Notice that the streamlines leave the drop and travel through the developing cavity at the 
back of the drop. Thus, fluid elements in this cavity will be entrained into the drop. The effect of 
the second drop is to further extend the vortex outside the leading drop. An axisymmetric geometry 
is assumed and the streamlines are calculated using the boundary integral method described in 5 2. 

respect to the vertical; the leading drop is deformed into an oblate shape. Owing 
to the deformation, each drop has a horizontal component of velocity in a direction 
opposite to that shown in figure 13. If deformation is sufficiently large, the horizontal 
velocities may favour alignment, as indicated in figure 14. In $ 5  we calculate the 
deformation-induced velocity. 

We suggest that the second type of two-drop interaction (figure 12), in which the 
small drop is first advected around the larger drop and then sucked in from behind, 
is the result of short-range dynamics owing to the deformation of the larger drop. 
The dynamics are dictated by the continual deformation of the larger drop so that in 
a frame of reference moving with the larger drop, streamlines will not be contained 
entirely within the drop, as they are for spherical drops. Deformation at the back of 
the drop results in closed streamlines which leave and re-enter the drop, defining a 
vortex shown in figure 15(a) for an axisymmetric drop. Thus, a neutrally buoyant fluid 
element in the region behind the leading drop may be advected into the cavity which 
develops behind the deforming leading drop. In figure 15(b) we show streamlines 
(again in a frame of reference moving with the front of the leading drop) for an 
axisymmetric two-drop geometry (the volume of trailing drop is the volume of the 
leading drop). The effect of the second drop is to increase the extent of the vortex 
outside the leading drop. A sufficiently deformable drop partly located in the vortical 
region will tend to be entrained. At higher Reynolds numbers a similar phenomenon 
occurs for two spherical drops owing to the formation of a low-pressure wake. We 
emphasize the distinction between the high Reynolds number dynamics, and the low 
Reynolds number dynamics shown in figure 12 which rely on the deformation of the 
drop. 
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FIGURE 16. The effect of initial configuration. Results are shown for three different offsets; 1 = 1; 
W = co; u , / Q ~  = 2. The horizontal line represents a free-slip lower planar surface. 

4.3. Numerical results 

A full three-dimensional treatment of the boundary integral equations (the geom- 
etry required to study offset drops) requires the numerical description of a twice- 
differentiable three-dimensional surface. The boundary integral method has been 
used to study three-dimensional free-surface problems, but has been limited to mod- 
est deformations (e.g. de Bruijn 1989; Pozrikidis 19928). We introduce a simplification 
and consider two-dimensional (cylindrical) drops. This geometry allows us to con- 
sider the most important feature of the problem, namely, the horizontal offset. To 
the extent that such two-dimensional simulations represent the important dynamical 
processes of the three-dimensional problem, the results presented below provide an 
improved understanding of the nature of two-drop interactions. We will see that 
the two-dimensional calculations reproduce the qualitative behaviour of two-drop 
systems for both types of interactions observed in the experiments shown in figures 
11 and 12. 

The boundary integral method has had limited application to two-dimensional free- 
boundary problems (e.g. Newhouse & Pozrikidis 1990). An important consideration 
with two-dimensional Stokes flows is the logarithmic behaviour of the velocity kernel 
which in unbounded domains leads to Stokes paradox. We eliminate this difficulty 
by including a planar free-slip lower surface; boundary conditions for the planar 
surface are accounted for by using the appropriate image system. This boundary has 
the physical effect of creating tails on drops due to viscous resistance by the planar 
surface. However, the development of a tail does not have a noticeable effect on the 
dynamics of drop interaction. The parameters which describe the two-dimensional 
problem are the same as the parameters describing axisymmetric drops. The numerical 
implementation follows the discussion given in Q 2; the kernel functions and image 
singularities are given in Appendix B. 

25 FLM 256 
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t = O .  t - 1 0  t = 2 0  t = 30 t = 40 t = 50 

FIGURE 17. The effect of interfacial tension and drop viscosity on drop interactions illustrated in 
a frame of reference translating with the drops. The initial geometry is the same as the initial 
geometry in figure 16(a). Calculations are shown for 1 = 1, W = 2 and 1 = 50, W = 03; ul/a2 = 2. 
For both cases the small drop is swept around the leading drop, whereas in figure 16(a) the small 
drop coats the large drop. The horizontal planar surface is not shown. 
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FIGURE 18. The effect of interfacial tension on the interactions between a small drop trailing a 
larger drop illustrated in a frame of reference moving with the drops. Calculations are shown for 
L% = 2.5,1.25 and 0.5; 1 = 0.1; u1/a2 = 1/2 (Bond number based on the trailing drop). For large 
enough Bond numbers, the small drop may be sucked into the larger drop owing to the deformation 
of the larger drop. The horizontal planar surface is not shown. 
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In figure 16 we show three simulations for different horizontal offsets for the case 
A = 1 and zero interfacial tension. As the initial horizontal offset increases, the 
tendency of the smaller leading drop to spread over the larger trailing drop decreases. 
Even for large offsets, the deformation of the leading drop is large owing to the long- 
range nature of Stokes flows. For the axisymmetric two-drop interactions studied 
in $3, a tail develops on the trailing drop owing to the deformation induced by the 
leading drop and the natural instability of non-spherical shapes when the interfacial 
tension is small (Kojima et al. 1984) ; the tail which develops in the two-dimensional 
calculations is larger because of the presence of a nearby free-slip surface. 

In figure 17 we show that provided the drops can sufficiently resist deformation, by 
either having a large viscosity contrast or large interfacial tension, then the small drop 
may be swept around the large drop. Specifically we show calculations for I I  = 50 and 
9? = 00, and 1 = 1 and 28 = 2. Since the drops translate very large distances in the 
simulations shown in figure 17, typically about 40 drop radii, we show drop shapes 
at different times in a frame of reference moving with the drops. The initial drop 
configuration is the same as the initial configuration for the drops shown in figure 
16(a). In both cases shown in figure 17 the small drop is swept around the large drop. 
However, the interaction between the two drops differs in the two cases. For large 
viscosity ratios (such as the A = 50 case) the separation distance between the drops 
remains large since the fluid between the drops is squeezed out slowly owing to the 
small amount of flow in the drop. For the case of L = 1 the fluid can drain more 
quickly and the separation distance may become small (e.g. 9? = 2, t = 30). 

Finally, in figure 18, we illustrate the importance of drop deformation on the 
‘suction’ or entrainment of a small trailing drop by a larger drop. As in figure 17, we 
show drop shapes at different times in a frame of reference translating with the front 
of the large drop. Simulations are shown for 1 = 0.1 (which allows for rapid and 
larger drop distortions) and 28 = 0.5, 1.25 and 2.5 (where the Bond number is based 
on the radius of the smaller trailing drop). For large interfacial tension, 28 = 0.5, the 
small drop is left behind. Notice however that the drops are eventually aligned. For 
smaller interfacial tension, 9 = 2.5, the larger drop is indented and the trailing small 
drop is advected into the developing cavity. At times greater than t = 5 the drops 
numerically make contact and the simulation is stopped. In the two-dimensional 
simulations, we found that the initial separation distance needed to be very small 
in order for the small drop to be entrained into the larger drop. This quantitative 
feature is not characteristic of the experimental results presented in figure 12. 

5. Long-range drop interactions 

In this section we study analytically the lateral translation of two drops arising from 
their interaction-induced deformation. We demonstrate explicitly that the amount of 
deformation, controlled primarily by the Bond number and the separation distance 
between two drops, determines whether two drops will eventually coalesce. 

There are three analytical features necessary to calculate the shape-induced migra- 
tion. The method of reflections (e.g. Happel & Brenner 1965; Leal 1992) is used 
in $5.2 to determine the approximate velocity field in the neighbourhood of each 
drop. The local velocity gradient deforms the drop and the deformation is calculated 
in Q 5.3 using standard procedures for nearly spherical, distorted drops. The trans- 
lational velocity induced by the non-spherical shape is then calculated in $ 5.4 using 
the Reciprocal theorem (e.g. Haj-Hariri, Nadim & Borhan 1990). We will assume for 
simplicity that both drops are composed of the same fluid. 

25-2 
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FIGURE 19. Geometry of the two-drop problem and definition of the normals II and no. Drops 1 
and 2 have radii al and a2, respectively, are separated by a distance d ,  and are oriented at angle 
with respect to gravity. 

5.1. Scaling analysis: an overview of drop alignment by jow-induced shape changes 

Consider two widely separated drops, labelled 1 and 2, rising in an unbounded fluid at 
low Reynolds numbers (figure 19). The vector d indicates the direction and magnitude 
of the separation between the centres of the two drops. We will always choose drop 
1 to be the trailing drop. 

Each drop will rise, to a first approximation, as though alone in an unbounded 
fluid. The rise speed as a function of the viscosity ratio 2 is given by the Hadamard- 
Rybczynski result 

g, i = 1,2, 
2(1 + 2) Apa: 

3(2 + 3 4  
u“’ = - 

where the subscript i is used to denote drops 1 or 2. 
Drop 2 experiences an O(Up’a,/d) change in the Hadamard-Rybczynski velocity 

owing to the long-range interaction with drop 1. If the drops remain spherical, the 
next correction to the rise speed is 0(U[0)a:/d3) (Kim & Karrila 1991). However, when 
deformation occurs, we will show that there is a translational velocity component due 
to the non-spherical shape. Let e measure the small distortion away from a spherical 
shape. The far-field velocity gradient generated by drop 1 in the vicinity of drop 2 is 
Ulal/d2. A balance of viscous stresses, pUlal /d2 ,  by the interfacial tension stresses 
of drop 2, ea/az, which tend to keep the drop nearly spherical, leads to a small shape 
distortion with magnitude 

A similar analysis for drop 1 gives E = Wag/ald2. 
We note that the small drop is always more deformed than the larger drop (see 
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figures 1, 3, 11 and 12). Although restoring interfacial tension stresses are larger for 
small drops, scaling as m / a 2  for drop 2, the viscous stresses deforming drop 2 are 
proportional to a:. Thus, the size of the other drop controls the magnitude of drop 
distortion. By contrast, for 93-4, the larger drop becomes more deformed than the 
smaller drop (Yiantsios & Davis 1991). 

The small distortions are oblate for the leading drop and prolate for the trailing 
drop, e.g. figure 4. We will demonstrate that the O(E)  shape distortion leads to an 
0 (CUP)) contribution to the drops' translational velocity, with particular importance 
assigned to the horizontal component of translation which may lead to alignment. 
Thus, drop alignment depends on the relative magnitudes of a / d  and E .  We will show 
that drop deformation should lead to drop alignment when 

Nevertheless, there is an upper bound on the small-deformation analysis we describe 
which requires 93 < O ( d / a ) 2 .  

A quasi-steady small distortion is assumed implicitly to derive equation (5.2) ; the 
drop deforms, in response to the viscous stresses created by the motion of the second 
drop, on a timescale zd that is less than the timescale z, over which the separation 
distance d changes. Estimates of these timescales for drop 2 are 

z d  = az(l + I ) p / o  and z, = d/lU1 - U21, (5.4) 

where the factor of 1 + I indicates that the largest fluid viscosity controls the rate of 
drop deformation. The quasi-steady assumption neglects explicit time-dependence in 
the free-boundary problem, and thus requires that 

For nearly equal-sized drops, large separation distances, and I < 0(1) the right-hand 
side of equation (5.5) is very large and the assumption of rapid shape adjustment to 
changes in the local flow is justified. For (5.3) and (5.5) to be consistent the drops 
must have similar radii so that the local flow near either drop changes slowly. For 
equal-sized drops, z, NN cU(O) (see §5.4), and thus leads to the constraint B2 < O ( d 3 / a 3 )  
which is less restrictive than (5.5). The quasi-steady assumption, though restrictive, is 
assumed in the analysis below. 

5.2. Migration of spherical drops: application of the method of rejections 

As a first approximation we assume the drops are spherical. Let rj denote the position 
vector relative to the centre of drop i (see figure 19). The velocity field due to the 
translation of drop i in an unbounded fluid is 

where 

(5.7) 

U,!o' is the Hadamard-Rybzcynski velocity given by equation (5.1), and the superscript 
(0) is used to denote the first approximation to the detailed velocity field. 

Each drop will move faster owing to the interaction with the far-field flow produced 
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by the other drop. The change in translational velocity is proportional to the speed 
of the other drop, so has magnitude O(U(O)a/d). The corrected rise speed of drop 1 
is caused by drop 2 and has a value uf)(r2 = d ) ;  thus drop 1 translates with velocity 

M. Manga and H. A. Stone 

Ul = Up' + (%> Uf' + 0 (Uf)ai/d ') 

where d  ̂ = d/ld[  is a unit vector in the direction of the line-of-centres of the two 
drops, directed from drop 1 to drop 2 (figure 19). Similarly, drop 2 rises with velocity 

The horizontal separation distance between the drops increases or decreases due to 
the difference in horizontal velocities, AUH = (U, - U2) . ex, gven by 

(5.10) 

where we observe that equation (5.10) is independent of the viscosity ratio 2. We 
note that if drop 1 is larger than drop 2, the case of interest here, then the horizontal 
separation distance will increase for spherical drops (AUH > 0), whereas if drop 2 is 
larger than drop 1 the separation distance will decrease (AUH < 0), in agreement with 
the illustration shown in figure 13. In the following section we consider the correction 
to the translational velocity arising from drop deformation with magnitude 9?7(a/d)2, 
e.g. equation (5.2). For the horizontal separation distance to decrease (for the drops 
to align as in figures 11 and 14) we then require that 9?7 > O(d/a) to counteract the 
drifting described by equation (5.10). 

5.3. Shape calculation 

The contribution of the second reflection to the flow field due to translating spher- 
ical drops produces corrections that are 0(U(')a3/d3) (Kim & Karrila 1991). The 
corrections due to the second reflection are smaller than the high Bond number 
non-spherical shape corrections which we now describe. 

In the vicinity of drop 2 the velocity field produced by drop 1 may be represented 
as a Taylor series 

(5.1 1) 

The velocity gradient VulIr+ in the neighbourhood of drop 2 is responsible for drop 
deformation. Using the velocity field in equation (5.6) we find that 

uI(rI = d+r2) = ul l r ,=d  +r2 VulIr,=d +. . .. 

(5.12) 

We will assume that the deformed shape of drop 2 may be described in spherical 
coordinates (r ,  6,4) by 

r2 = a2 t1 + ef2(e, 411 7 (5.13) 

where €4. A drop immersed in a linear flow, r 2 .  (Vu,), is distorted into an ellipsoidal 
shape (Taylor 1932), described by 

(5.14) 
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where no is a unit normal to a spherical drop. In the derivation of (5.14) the quasi- 
steady boundary condition u .  no = 0 is used. This approximation is justified provided 
the timescale for drop deformation by viscous stresses is shorter than the timescale for 
changes in the local flow producing the deformation, as discussed in 8 5.1. Thus, using 
equations (5.12)-(5.14) and the definition of the Bond number given by equation (2.7), 
the steady deformed shape of each drop is an ellipsoid described by second-degree 
Legendre polynomials as 

and 

. no)’] cos /3] , (5.16) 

where the orientation angle /? is defined in figure 19. The drop shapes in the 
experiments in figures 1, 11 and 12 and the numerical calculations eventually lose 
the ellipsoidal symmetry as the separation distance a / d  becomes order one and E 

becomes large. 
In equations (5.15) and (5.16) the small parameter E can be identified as &9ula2/d2 

for drop 2 (as deduced in 85.1) and 98u:/ald2 for drop 1. For simplicity, in the 
discussion that follows we refer to the small deformation of either drop as having 
magnitude O(98a2/d2). 

As expected on physical grounds, or from a sketch of the streamlines, the leading 
drop deforms into an oblate spheroidal shape whereas the trailing drop is deformed 
into a prolate spheroidal shape. We may expect by analogy to the motion of ellipsoidal 
rigid particles in low Reynolds number flows that the ellipsoidal shapes will migrate 
in a manner tending to promote on-axis configurations (and possibly coalescence). 
We now calculate explicitly this translational velocity. Rather than solving for the 
flow field and then computing the translational velocity, we will use the Reciprocal 
theorem to provide a direct calculation of the velocity. 

5.4. Translational velocity from the Reciprocal theorem 

The above analysis suggests a small O ( B u 2 / d 2 )  correction to the local description of 
the flow field owing to the drop’s deformation. Since a/d and 98 are independent 
parameters we seek the next-order correction to the velocity field, 98(u/d)’u(’)(r), 
satisfying the Stokes equations both inside and outside the drop. This analysis 
corresponds to the translation of an isolated slightly deformed drop in an otherwise 
quiescent fluid. Thus, we seek solutions for the approximate translational velocity in 
the form 

Provided 9 > O(d/a)  the dominant correction to the migration velocity arises from 
the third term on the right-hand side. Furthermore, so long as 98 > O(a/d) ,  shape 
modifications are at least as important as the O ( U / ~ ) ~  corrections calculated using 
the method of reflections for spherical drops. 

The boundary conditions satisfied by u(*)(r) are obtained by using standard domain 
perturbation techniques whereby all variables are expanded in the neighbourhood of a 
spherical shape and evaluated at (riJ = ai. For this part of the analysis it is convenient 
to non-dimensionalize the equations and boundary conditions. The dimensionless 
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boundary value problem assumes the form (see Appendix C) 

u ( ~ )  - i$2) = A(n , , f )  on r = 1, (5.19) 

(5.20) 

(5.21) 

where A denotes variables inside the drop. The dimensionless functions A,  B and C 
are derived in Appendix C, and depend on the detailed drop shape f(6,4). 

We can then use the Reciprocal theorem (equation (C35) in Appendix C) to obtain 
the second-order velocity correction 

4) 
no . T’*) - An, * T = C(n, , f )  on r = 1, 

where S denotes a spherical drop surface. Evaluating the integrals we find 

where e, is a unit vector in the vertical direction and 

(16 + 191)(8 - 1 + 3A2) 

240(1 + 1)2(2 + 32) 
. c(n) = (5.24) 

Note that c = 4/15 for a bubble, c = 19/240 for a rigid particle, and c has a 
minimum value for 1 w 2.64. The function c(1) is plotted in figure 20. The condition 
that the horizontal se aration between the drops decreases (see equation (5.17)) is 
given by 2#(a~/ald2)U,  1 ) . ex - 2#(alaz/d2)>f)  * e, + AUH < 0, i.e. 

d 2+3A 

a1 24(1 + 1)~(1) C O S ~  #? 
B > -  (5.25) 
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FIGURE 21. Trajectories of two bubbles (2 = 0) for different values of the Bond number and bubble 
sizes, in the limit of small deformation. The solid lines are for B = 0, the dashed lines for 9 = 10, 
and the dotted lines for 9 = 50. The curves for u2/a1 = 0.95 and 93 = 10 are stopped when the 
bubbles have aspect ratios greater than 3/2. The bubbles are initially separated by a horizontal 
distance of 5al and a vertical distance of 10al. 

Using the above results we can integrate the drop velocities to determine the 
trajectory of a $air of drops, assuming a quasi-steady deformation given by the 
instantaneaus separation distance- In figure 21 bubble trajectories (A = 0) are shown 
for W = 0, 10 and 50, and radii ratios a2/a1 = 1 and 0.95. The bubbles are separated 
initially by a horizontal (x) distance of 5 and a vertical (z) distance of 10, where the 
lengthscale is normalized to the radius of the larger bubble al .  The vertical lengthscale 
is compressed significantly. The calculations are stopped when the aspect ratio of one 
of the bubbles exceeds 3/2. 

For the equal-sized bubbles shown on the left, the 9Y = 50 bubbles (trajectories 
shown with dotted curves) are aligned. For comparison, spherical bubbles (W = 0) 
drift horizontally maintaining the same orientation and separation distance. Even for 
the 9Y = 10 simulation there is a noticeable difference in bubble translation compared 
to the simulation for spherical bubbles. When the leading bubble is smaller than 
the trailing bubble (az/al = 0.95), the small bubble is swept around the larger one 
for small Bond numbers, W = 0 and 10. In the 9Y = 50 simulation, the bubbles are 
aligned and in real systems would be expected to coalesce eventually. The examples 
shown in figure 21 demonstrate explicitly the importance of deformation on drop and 
bubble interactions, particularly for large Bond numbers. 
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6. Concluding remarks 

In this paper we have considered the time-dependent interactions between two 
low Reynolds number buoyancy-driven deformable drops in the limit that buoyancy 
forces dominate restoring interfacial tension forces. For axisymmetric configurations, 
the film drainage between the drops may be characterized by three distinct modes: (i) 
rapid drainage for which the thinnest region of the film is on the axis of symmetry, 
(ii) uniform drainage for which the film has a nearly constant thickness, and (iii) 
dimple formation. As the separation distance between the two drops decreases, the 
mode of film drainage may change from rapid drainage to uniform drainage and 
eventually a dimple may form. The numerical calculations presented in $ 3  cover 
Bond numbers 0.25 < a < co and viscosity ratios 0.2 < 1 < 20. For a given viscosity 
ratio (e.g. 1 = 1) the separation distances at which the dimple begins to form is larger 
for intermediate Bond numbers (a = 10) than for very large or very small Bond 
numbers (99 = co and 1). The separation distance between the drops at which a 
dimple begins to form decreases as the viscosity ratio decreases. Lubrication theory 
results and combined lubrication theory-boundary integral analyses (Barnocky & 
Davis 1989; Yiantsios & Davis 1990, 1991; Davis et aZ. 1989), which are appropriate 
for 9 4 ,  differ significantly from the behaviour of drops for > 1. Exact solutions 
in bipolar coordinates for spherical drops (Haber et al. 1973) are reasonably accurate 
for deformable drops when drop separation distances are large. 

Calculations and experiments with initially offset drops show that the axisymmetric 
drop configuration is stable for sufficiently deformable drops. A small leading drop 
may still coat a larger trailing drop, whereas for large enough drop viscosities or 
small enough Bond numbers, the small drop will be swept around the large drop. 
In the latter case, if the large drop is sufficiently deformable, the small drop may be 
sucked or entrained into the large drop as a result of the deformation of the larger 
drop. In 9 5 we showed, using far-field approximations, that deformable drops migrate 
towards each other provided 99 > O ( d / a ) .  

Although the spherical-drop assumption allows for the development of many 
analytical results and approximations, in the limit of moderate to large Bond numbers, 
typically B > 1, drops become highly deformed, and results based on spherical drops 
may become invalid. Some characteristics of drop interaction cannot be predicted by 
assuming spherical drop shapes, such as the alignment of drops owing to interaction- 
induced deformation and the coating of large drops by smaller drops. Although 
we have not included the effects of surfactants, we expect that these results may 
qualitatively describe the behaviour of drops where the interfacial tension is greatly 
reduced by the presence of surfactants. 

Large Bond numbers are characteristic of many problems in solid-earth geophysics 
and geology because of the large lengthscales in these systems. The Reynolds number 
is generally much less than 1 since the viscosity of the mantle is about 1021 Pa 
s and the viscosity of magmas ranges from 10 to lo7 Pa s. For example, mantle 
plumes, which are believed to be low-viscosity (relative to the rest of the mantle) 
and low-density instabilities produced in a thermal boundary layer at the base of a 
convecting mantle, may be described to a good approximation as buoyant drops since 
the Piclet number is very large (Olson & Singer 1985; Griffiths, Gurnis & Eitelberg 
1989). Mantle plumes are thought to consist of a large nearly spherical plume head 
followed by a tail or conduit attached to the thermal boundary layer (Griffiths & 
Campbell 1990). On the basis of the results presented in this paper, we expect 
that mantle plume heads (which may described as buoyant drops) in close spatial 
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Thermocapillary migration 

Point force 

RGURE 22. The flow produced by a small drop in thermocapillary motion, and the flow produced by 
a point force. Both flows produce drop deformation which may eventually lead to drop alignment. 

and temporal proximity would tend to merge. Mantle plume heads form frequently 
enough and rise slowly enough that situations may arise in which plumes interact, 
particularly during the Cretaceous period when many plumes erupted on the surface 
of the Earth. The interaction of plumes may explain some of the apparent variation 
in plume size (Richards, Duncan & Courtillot 1989) and some of the variation in the 
size of highlands and coronae on Venus which are thought to be produced by plumes 
spreading beneath the planet’s surface (Koch 1993). 

At smaller lengthscales, geological applications associated with high Bond number 
dynamics include gas bubbles in magmas, where bubble radii are less than a few 
centimetres. The coalescence and interactions of bubbles in ascending magmas and in 
magma chambers may be important processes governing the style of volcanic eruptions 
(Jaupart & Vergniolle 1989). Characterizing the interactions between bubbles may 
aid in the interpretation of the distribution of bubbles in solidified volcanic flows 
and understanding the process of bubble formation in magmas. In addition, at small 
lengthscales, the rate of coalescence of drops of liquid iron during the earliest stages 
of the Earth’s history would affect the rate of segregation of the Earth’s core and 
also the amount of iron and other heavy metals that were removed from the mantle 
(Honda, Mizutani & Yamamoto 1993). Bubbly suspensions in viscous suspending 
fluids also occur in a wide range of industrial processes. 

Finally, we note that although we only considered buoyancy-driven drops in @4 
and 5, drop alignment should be characteristic of drops driven by other mechanisms. 
For example, neutrally buoyant drops driven by thermocapillary forces may also be 
aligned. For neutrally buoyant drops in a temperature gradient G, in which the 
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interfacial tension gradient Vo GC G, the external flow is described by 
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Streamlines corresponding to (6.1) and flow due to a point force are shown in 
figure 22. Streamlines produced by a drop translating, as a consequence of interfacial 
tension variations, diverge in front of the drop and converge behind the drop. We 
expect deformable drops to interact similarly to the interaction shown in figures 4 
and 14 (provided the trailing drop is in a region where the streamlines produced by 
the leading drop converge, and the leading drop is in a region where the streamlines 
produced by the trailing drop diverge). The magnitude of the deformation, however, 
will scale as O ( & l ( ~ / d ) ~ )  for thermocapillary flows (where the Bond number &l = 

pUc/a is based on an average value of o, which changes slowly as the drops translate, 
and the translational velocity U,) compared to 0 (&l(a/d)2) for buoyancy-driven flows. 
Thus, for thermocapillary-driven motions the process of alignment will be slower 
than for buoyancy-driven motions since the velocity disturbances and associated 
deformations are weaker. 
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Appendix A. Integral equations for multiple fluid-interface problems 

In this appendix, following the discussion in Power (1993), we derive a set of integral 
equations of the second kind for the interfacial velocities and bulk fluid velocities 
in each fluid domain in terms only of stress jumps across the bounding fluid-fluid 
interfaces. Previous applications of the boundary integral equations to multiple- 
interface problems (e.g. Stone & Leal 1990; Chi & Leal 1989) also required the 
solution of integral equations of the first kind for the tractions n - T on the interfaces. 
These earlier approaches to multiple interface problems have the disadvantage of 
involving the solution of numerically ill-posed integral equations of the first kind, as 
well as solving for twice as many unknowns as is necessary. 

The Stokes equations recast as integral equations may be written as 

u(x), x inside S (A 1) 
(A 2) 1 J n . T . J d S , + ~ n . K . u d S , =  iu(x) ,  x = x ,  o n S  

P s  (0. x outside S, (A 3) 

where S represents all surfaces bounding the fluid domain including the surface at 
infinity, and y is the integration variable. J and K are the known Green's functions 
for the velocity and stress fields, respectively, given for a three-dimensional geometry 

by 

where Y = x - y .  Equations (Al)-(A3) follow from an application of the Reciprocal 
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Pl 

FIGURE 23. Geometry of the generic axisymmetric two-drop problem. The unit normal vector n 
is directed into fluid 1. Fluid viscosities are denoted by p and fluid densities by p ,  and o is the 
coefficient of interfacial tension. The surfaces of the drops are denoted by SI and S I I .  

theorem (for a derivation of (A1)-(A3) the reader is referred to Rallison & Acrivos 
1978). 

Consider the case of two fluid drops, with volumes V2 and V3, in an unbounded 
fluid of volume V,  (figure 23). We can neglect bounding surfaces at large distances 
since disturbance Stokes flow fields decay as O(r-')  and stresses decay as O(r-2). As 
in 8 2 we require that velocities be continuous across fluid interfaces. For the problem 
shown in figure 23 the stress jumps are given by 

For each fluid domain, we can write the set of equations 

uZ(X), E v2 @ Vl, v3 
(A 7 )  

1 

P2 Sl 

-- / n . T2 . J dS, - n . K . u2 dS, = 
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and 
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Ul(X), 

I U I ( ~ ) ,  xs E S i , s r i ,  
0, 

x E Vl  $ v 2 ,  v3 
x E V2, V3 (A 9) 

1 + - J n * l1 . J dSy + 11, K - u1 dS, = 
Sl1 

where n is the unit inward normal from fluid 1, as shown in figures 2 and 23. 
Multiplying (A7) by I (the viscosity ratio between fluids 1 and 2) and adding to (A9), 
multiplying (A8) by y (the viscosity ratio between fluids 1 and 3) and adding to (A9) 
and using the stress boundary conditions (A5)-(A6), we obtain a system of coupled 
integral equations for the interfacial velocities, which may written compactly as 

(A 10a) 
(A 10 b) 
(A 10 c) 

(A 10 d) 

(A 10 e) 

To calculate the interfacial velocities u' and u" we solve equations (AlOd,e) which 
are coupled integral equations of the second kind. Once the interfacial velocities are 
known, the velocities in the drop and bulk fluid may be calculated from (AlOa-c). 

Appendix B. Stokes flow kernels in two dimensions 

.Ping and Ksing which appear in (2.8) are given, respectively, by 
For a two-dimensional point force at y, the fundamental singular solutions (kernels) 

and 

where r = x - y, and x is the point at which velocity is to be calculated. 
For flow reflectionally symmetric across a plane at z = h (free-slip and zero 

vertical velocity boundary conditions apply along this plane), the fundamental singular 
solution for J (with a similar solution for K )  is given by 

Jij(r) = J?(Y) + (-l)j+'~?(f), (B 3) 

where v" = r - 2he,, and the indices i ,  j = 1,2 correspond to the x- and z-directions, 
respectively (Pozrikidis 1992b). The inclusion of an image Stokeslet resolves Stokes 
paradox since the logarithmic singularity in the velocity kernel (Bl) disappears. The 
function J given by (B3) is the appropriate image system kernel to use in the integral 
equation (2.8) for a two-dimensional geometry with a planar free-slip surface. 
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Appendix C. The reciprocal theorem applied to the translation of 

non-spherical drops 

C. 1. Perturbation solution for the translation of a non-spherical drop 

The non-dimensionalized Stokes flow boundary value problem for a deformed drop 
with radius 

r = 1 + cf (@,4) 
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has the form 

V * T = O ,  r >  I+rf(O,+), v . ~ = o ,  r < l + e f ( @ , 4 )  
v . u  = 0, v . i i=o ;  

with boundary conditions 

u - i i = O  on S ,  

3(2 + 3 4  g . x n  on S, nV, , + 
2(1 + A) 

A 3(2 + 3 4  

2B( 1 + A) n - T - A n - T =  

where S is the deformed drop shape, U is the steady translational velocity of the drop, 
and 8 is a unit vector in the direction of the gravitational acceleration. Velocities 
are normalized by the Hadamard-Rybzcynski velocity U(') given by equation (5.1). 
Lengths are normalized by the drop radius a, and the stress and pressure are 
normalized by p U / a  and ApU/a outside and inside the drop, respectively. The 
parameter e is small, €4. It follows that the normal and the curvature of nearly 
spherical surfaces, may be expanded as 

n = no - E V , ~  + 0(e2)  

V, . n = 2 - c[~if + 2f] + o(e2), 

(C 5 )  

(C 6) 

and 

where no is a unit normal to the spherical surface and V, = (I - nono) . V is the 
surface gradient operator measuring variations along the spherical surface. The shape 
function f ( 6 , 4 )  in spherical polar coordinates (defined in figure 19 and calculated 
in $5.3) has the form 

cos p (1  - 3 cos2 e> (2 + 32)(16 + 19A) 

= 48(1 + A)2 

It follows that 

cos p cos @ sin 0 eg, 
(2 + 3A)(16 + 19A) 

8(1 + A)2 
V e f  = 

where ee is a unit vector in the @-direction, and 

C O S ~ ( ~ C O S * @ - ~ ) .  
(2 + 3A)(16 + 192) 

8(1 + A)2 VZf = 

To use the Reciprocal theorem we need to apply the boundary conditions (C2)-(C4) 
on a spherical surface. First we introduce the expansion for u(x) analogous to the 
expansion for U given by (5.17) (with a similar expression for T ( x ) ) :  
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We can expand u in a Taylor series in the neighbourhood of a spherical surface: 
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The O ( a / d )  problem corresponds to a spherical drop translating with velocity U(') 
given in (5.8) and thus does not appear at O(Bu2/d2) .  The continuity of velocity 
boundary condition (C2) for the O(f) terms leads to 

. [ / -nono]  at r = 1. 
3( i -  1 ) U O )  

= f  2 ( 1 + 1 )  

The O(e) contribution to the normal velocity boundary condition (C3) gives 

u(2) . *, = *(O) . V,f - fn, . - a u ( 0 )  - U'O' V,f + u@) . no 
ar 

+ U(') no at r = 1. 
U'O) . no 

=f-- 
U(O) * V,f 

1 + A  2(1 + A )  

Similarly, we expand the stress in a Taylor series: 

aT 1 ,d2T 
T(r = 1 + f f )  = TIr=l  + f f - - / r = l  + ~ ( f f )  7 J r = 1  + * .  . 

ar d r  

+...  

On the spherical surface, the O(E)  stress boundary condition (C4) becomes 

. ~ ' 2 )  - ~ n ,  . T = -f- [no . T'O) - An, . i")] + v,f . ( P I  - I T  ) 4 2 )  a A (0) 

dr 
n0 

- 3(2 + 34 [2V,f + n, (VZf + 2f)] 

+ 2(1 +A) 

2B( 1 + a) 
3(2 + 3 4  

3 U'O' =-f-. 
2(1 + A) 

3(2 + 3 4  

2B(1 + 1) 

Lf(P . no)no - (9 * no)Vefl 

U(O) no 
(5A/ + (4 - 9A)n,n,) - 15- 

2(1 + A) vef 

no  [ v 3  + 2 6 1  - 

Lf(0 n,)n, - (g . n,)V,f] at r = 1. (C 18) 
3(2 + 31) 

+ 2(1 +A) 

The boundary value problem for d2) may now be set up for a spherical geometry: 
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(C 22) 
42)  

no . fi2' - An, . T = C(n,,f)  on r = 1, 

where the vector and scalar functions A,  C and B are given in equations (C13), 
(C18) and (C15). A ,  C and B are functions of position defined on a spherical surface 
S involving the Hadamard-Rybzcynski velocity field and the first approximation to 
the drop shape f(f3,$). Using the Reciprocal theorem, as outlined in Haj-Hariri et 

al. (1990), we can determine the second-order correction to the rise speed of the 
deformed drop U(') without solving for the detailed flow field d2)(x) .  

C.2. Application of the Reciprocal theorem 

Consider the complementary flow problem for a spherical drop translating with 
velocity U', non-dimensionalized as in 5 C.l: 

(C 23) 

(C 24) 

u * ~ n , = i i ' . n , = U ' . n ,  on r = 1 ,  (C 25) 

A*  

V - T * = O ,  r > l  V . T  =0,  r < l ,  
v . u* = 0, v . p *  = o ;  

u * - B ' = O  on r = l ,  

Here t is a unit vector tangent to the spherical surface S .  
For Stokes flows, we make use of the identities 

and the divergence theorem to derive the pair of integral relations 

no * fi2) . u'dS = 

no . T . $dS = 

no * 7' . d2)dS 1 
A (2) 

1 

where integrals over bounding surfaces at large distances vanish owing to the suffi- 
ciently rapid decay of the integrands. Subtracting I I  times (C29) from (C28) gives 

where we have made use of boundary condition (C24), u* = ii' on S .  

straightforward, and is given by 
The solution to the complementary problem (C23)-(C26) for u', T' ,  ii' and i' is 

+% [:+-I U' . rr (C31) 
4(1 + A )  r3  ' 

[2r2u* - U' . r r ]  , U' - ____ 

2(1 +A) 
u ( r )  = ____ 

T * ( r )  = -pool - ___ 1 

1 

[ 3 L i ' r + r U ' + r * U /  - 15-1 U' . rrr 

A t  3 + 2 a  

2(1 + A) 

2(1 + A) 1 5  r7 

3(2 + 3 4  U' . rrr 

2(1 + 1) r5 ' 
- 
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Here po and pm are constant pressures inside and outside the drop, respectively. 
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Thus, for the second-order velocity correction we arrive at 

+3(2 + 34B(n, , f )no)  dS. (C 35)  

The detailed equations presented here differ slightly from those in Haj-Hariri et al. 
(1990) because of a different choice of reference frame. 
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