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Abstract. Two-dimensional computations are reported for time- 
dependent laminar buoyancy-induced flows above a horizontal heated 
source immersed in an air-filled vessel. Two kinds of heated source were 
considered: a line heat source, modelled as a heat source term in the energy 
equation, and a heat-flux cylinder of small diameter. First, comparisons 
are presented for the results obtained for these two heated sources. Rather 
large discrepencies between the velocity fields appeared in the conduction 
regime due to the weak plume motion, while close agreements were found 
in the boundary layer regime. Nevertheless, same types of bifurcations 
occur with almost identical frequencies, whatever the Rayleigh number. 
It is concluded that for dimensions of the enclosures, which largely 
compared with the cylinder radius, the heat source term model is a 
promising way to study the behaviour of unsteady plumes owing to its 
simplicity, flexibility, and low computational costs. Second, transitions to 
unsteady flows were studied through direct flow simulations for various 
depths of immersion of a line heat source in the central vertical plane of 
a vessel. Different routes to chaos were shown to occur according to the 
aspect ratio of the vessel and the depth of immersion of the line source. 
Three distinct regimes were detected with different underlying physical 
mechanisms called natural swaying motion, penetrative convection and 
Rayleigh-Benard-like convection. The first bifurcations associated with 
these regimes are supercritical Hopf bifurcation, pitchfork bifurcation and 
subcritical Hopf bifurcation. Comparisons with experimental results of 
confined buoyant plumes above heated wires show very good agreement 
with laminar frequency correlations. 

Keywords. Buoyant plane plumes; line heat source; heat-flux cylinder; 
numerical plume simulations; route to chaos. 

1. Introduction 

Free laminar convection from a horizontal line heat source has received increasing 
attention during past decades due to the importance of this process, which occurs in 
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many engineering and natural systems of practical interest such as electronic packages, 
geophysical systems and nuclear reactors. Although a number of analytical and 
experimental investigations have been devoted to freely rising plumes, many experimental 
works have been conducted in confined spaces either to minimize environmental 
effects or to study the behaviour of confined plumes. On the other hand, a literature 
survey reveals that very little numerical work has been devoted to confined buoyant 
plumes; the increase in complexity caused by the strong interaction between the plume 
and its surroundings due to confinement and thermal boundary conditions, in addition 
to its oscillatory behaviour makes it difficult to perform a parametric study of the 
different routes to chaos. 

Classical self-similar solutions were widely used in early theoretical studies (Fujii 
1963; Gebhart et al 1970; Fujii et al 1973; see also Gebhart et al 1988, chap. 3). 
However, the coupled differential equations for laminar plane plumes were analytically 
solved in closed form only for specific values of the Prandtl numbers, i.e. Pr = 5/9 
(Crane 1959) and Pr = 2 (Fujii 1963; Gebhart et al 1970; Fujii et al 1973). The self- 
similar analyses were extended to second-order (Hieber & Nash 1975) and third-order 
boundary layer theories (M6rwald et al 1986). Recently, a correlation for the centreline 
temperature has been developed by Lin & Cheng (1992). This correlation equation 
is valid over the entire buoyancy regime and for any Prandtl number. 

During the same period, many experiments were conducted in air, water, silicone 
fluid and spindle oil (Brodowicz & Kierkus 1966; Lyakhov 1970; Schorr & Gebhart 
1970; Gebhart et al 1970; Fujii et al 1973; Nawoj & Hickman 1977). To explain the 
discrepancies between analytical and experimental results for centreline temperature 
and velocity distributions, the concept of virtual line source was introduced by 
Forstrom & Sparrow (1967), Lyakhov (1970), Hieber & Nash (1975) and Yosinobu 
et al (1979). In this way, it was attempted to explain the divergence of the plume flow 
from the ideal due to the finite diameter of the wire used to simulate the line source. 
However, this approach raised some controversies (Schorr & Gebhart 1970; Fujii 
et al 1973; Nawoj & Hickman 1977) and did not account for the entire 15-20~ 
difference between experimental and theoretical results; neither end-conduction effects 
nor decrease of the plume velocity near both ends of the line source could account 
for them. Yosinobu et al (1979) attributed these differences to the heat losses below 
the wire caused by fluid entrainment. Lyakhov (1970) found only a weak difference 
on bounding the space below the line source with an impermeable insulating plate; 
this is more consistent with the boundary layer theory, which did. not take into 
account convective motion below the source. M6rwald et al (1986) drew attention 
to the fact that such discrepancies did not appear from measurements in water. They 
argued that the Grashof numbers based on diameter and heat rate input of the heat 
sources were much larger than one for water only, while Gr were of the order of one 
for air, spindle oil and silicone fluids. This could be a possible explanation regarding 
the origin of the discrepancies, since at low Grashof number, the flow field around 
the wire. contradicts the basic assumptions of the boundary-layer theory, i.e. slender 
plumes. 

Forstrom & Sparrow (1967) were the first to observe a naturally swaying motion 
of a plume which was studied a short time later by Schorr & Gebhart (1970) through 
flow visualizations. Following the observations of regular swaying plumes, linear 
stability analysis of freely rising plumes based on the quasi-parallel theory was 
performed by Pera & Gebhart (1971) and later by Wakitani & Yosinobu (1984), but 
they failed to find a critical Grashof number. Haaland & Sparrow (1973) and Hieber & 
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Nash (1975) obtained lower branches of neutral curves (and then critical Grashof 
numbers) by taking some non-parallel and higher-order effects of the base flow into 
account in the linear stabilit2r analysis. This indicates that two-dimensional distur- 
bances are amplified selectively Isee also Gebhart et al 1988, chap. 11). More recently, 
Wakitani (1985) using a non-parallel theory (the WKB method) confirmed their results 
except for the amplification rate of disturbances within unstable regions. The 
experimental results of Bill & Gebhart (! 975) for a plane plume subjected to naturally 
occurring disturbances and those of Pera & Gebhart (1971), Yosinobu et al (1979) 
and Wakitani & Yosinobu (1984) for controlled disturbances confirmed the prediction 
of the linear stability analysis over a wide range of Rayleigh numbers. It has been 
demonstrated that sufficiently high frequency disturbances are stable, as they are 
convected downstream. 

The transition from a laminar to a turbulent state in a freely rising plume was 
experimentally investigated by Forstrom & Sparrow (1967), Bill & Gebhart (1975), 
Yosinobu et al (1979) and Noto (1989), and in stable-thermally stratified fluid inside 
a large enclosure by Noto ct al (1982). Forstrom & Sparrow (1967) and Bill & 
Gebhart (1975) determined the beginning of the transition to be at Rayleigh numbers 
Rax ~ 3.6 x l0 s and Rax ~ 8 x 108 respectively, while for a thermal plume in air Noto 
(1989) obtained 7 x 107~< Rax ~< 1.4 x l0 s from spectral analysis of thermocouple 
signals and change of the slope of the midplane temperature (the Rayleigh number 
being based on the vertical distance along the plume, and on the heat rate input). 
Noto (1989) related the large discrepancies found in the critical Rayleigh number to 
the different methods used in its determination. 

By a different formulation of the onset of instability in plume flow, the buckling 
theory, Kimura & Bejan (1983) and Yang (1992) demonstrated that at the laminar- 
turbulent transition the buoyant plume assumes a sinusoidal shape which is chara- 
cterized by a non-axisymmetric deformation; the sinuous mode having the highest 
growth rate. Their theoretical arguments are strongly supported by experimental 
evidence (Kimura & Bejan 1983). 

Igarashi & Kada (19771 carried out experiments in confined spaces to investigate 
the natural convective oscillatory motion of air caused by a heated wire placed 
concentrically along the axis of a horizontal isothermal cylinder. Different diameters 
of wires (from 0.29mm to 1.0mm) and outer cylinders (from 100mm to 194.5mm) 
were used. The same results were obtained regardless of the diameter of the wire. By 
performing a dimensional analysis to determine the relationship between the frequency 
of the oscillatory flow, the thermal and geometrical conditions, and the fluid properties, 
they concluded that the frequency only depends on the diameter of the outer cylinder 
and on the heat input, and not on the diameter of the wire or its temperature. Thus, 
the wall temperature of the outer cylinder was chosen as the reference temperature 
for the fluid properties rather than the film temperature. Furthermore, a modified 
Rayleigh number based on the heat flux input and on the radius of the outer cylinder 
was introduced. The relationship between the non-dimensional frequency and the 
modified Rayleigh number was found to be f = C Ra °'*. Igarashi & Kada (1977) 
also determined the initiation conditions at the onset of oscillations. For a given 
outer cylinder diameter, they found that the swaying motion did not appear when 
the heat flux input exceeded some critical values but rather occurred when the 
temperature difference between the wire and the cooled cylinder exceeded a critical 
threshold. They suggested that the onset of oscillatory motion is governed by the 
fluid state close to the wire, whereas the frequency of the oscillations is governed by 



674 Guy Lauriat and Gilles Desrayaud 

the outer boundary conditions far from the wire. Their work was extended by Igarashi 
(1978) in the case of a line heat source placed concentrically along the axis of a 
horizontal rectangular chamber. The same conclusions as for the cylinder 
configuration were arrived at and a correlation having the same power value was 
established. However, due to the additional geometrical parameter, i.e. the height of 
the cross-section of the chamber, the C-coefficient has to be a function of the aspect 
ratio of the chamber if the Rayleigh number is based on the width. Three distinct 
values of C were found corresponding to the three distinct steady flow patterns, giving 
way to different frequency regimes. Igarashi (1978) also demonstrated the existence 
of a relationship between the frequency and the middle plane vertical velocity far 
above the wire and suggested that the plume oscillations are related to the flow 
circulation rate. 

Eichhorn & Vedhanayagam (1982) determined analytically a power value of 0"3 
which correlated their experimental results for a water turbulent plume within + 10%. 
A 1/3 power value was also found both by Urakawa et al (1983) for the swaying 
frequency of a spindle oil plume with a free surface and by Wakitani & Yosinobu 
(1984) for a laminar air plume. Noto & Matsumoto (1986) and Noto (1989) found a 
swaying frequency of the thermal air plume proportional to the 0.4 or 1/3 power of 
the heat rate depending on whether the plume reaches the ceiling of the enclosure 
in a laminar or a turbulent state respectively. 

A meandering motion was also noted in experiments on confined plumes by Fujii 
et al (1973, 1982), Eichhorn & Vedhanayagan (1982) and Urakawa et al (1983); 
experiments performed in large parallelepipedic enclosures not only showed that the 
plume sways in a plane perpendicular to the wire but that it can also meander in 
the direction of the wire, i.e. across the span of the plume. However it should be 
noted that the underlying physical mechanisms are not yet clarified. Eichhorn et al 

(1974) and Incropera & Yaghoubi (1980) in experimental studies of immersed 
isothermal cylinders also observed "transition from 2 to 3-dimensional instability, 
with increased axial twisting or billowing". This transition was attributed to fluid 
entrainment effects by Incropera & Yaghoubi (1980). When a meandering motion 
exists, these two periodic motions (meandering and swaying) are not independent of 
each other: the swaying motion is stable only when the meandering waveforms along 
the heater are stable. This happens when the heater length equals integral multiples 
of a half wavelength, the meandering wave being a fairly precise sine curve (Eichhorn 
& Vedhanayagam 1982; Urakawa et al 1983). The liquid surface height (depth of 
immersion), linearly related to the meandering wavelength, and the length of the 
heater are the main parameters controlling the meandering waveform. Pera & Gebhart 
(1971), Nawoj & Hickman (1977), Yosinobu et al (1979), Noto et al (1982) and Noto 
(1989) did not find any meandering motion in their experiments. Noto related the 
meandering motion to the width of the enclosure apparently without experimental 
proof: meandering waveforms would appear only for small widths of enclosures. It 
is worth noting that meandering motions were mainly observed in free-surface fluid 
experiments with heated wires or cylinders. Fujii et al (1973) carried out experiments 
in air, water and spindle oil and meandering waves only occurred in the case of 
liquids. Only Bill & Gebhart (1975) mentioned oscillations along the wire span for 
air plume by interferogram visualizations of plume cross-section. 

Numerical and experimental work for heated wires located just below a free surface 
was recently conducted by Maquet et al (1992) and Roz6 et al (1993). Maquet et al 

(1992) carried out numerical experiments for a square pool with a free surface and 
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differentially heated sidewalls in which a wire of constant temperature was located 
below the horizontal free surface. The buoyancy and surface tension mechanisms 
were incorporated into their formulation. From steady state calculations, they 
concluded that, even if the ~emperature differences are small, the free surface 
deformation is not small with respect to the depth of immersion of the wire. For a 
20#m-diameter wire, Roz6 et al (1993) experimentally observed a steady surface 
deformation taking the shape of a trough when the wire was very close to the free 
surface and the shape of a crest when the depth of immersion was of the order of 
1 mm. These two effects were related to surface tension and buoyancy mechanisms 
respectively. By increasing the wire temperature, an oscillatory motion around the 
wire arose simultaneously with free-surface propagating waves, .these two phenomena 
having the same frequency. While this bifurcation was recognized as supercritical 
Hopf bifurcation, they remarked that some liquids (such as silicone oil) developed 
such oscillatory motions while others (such as water) were not. Moreover, secondary 
instabilities were not observed beyond the Hopf bifurcation. 

Fujii et al (1973) were the first to observe a deflection of the plume towards one 
of the walls when the temperatures of the vertical walls were slightly different. This 
deflection inhibits the swaying motion. Later on, some experimental studies were 
devoted to plume interactions (Pera & Gebhart 1975; Incropera & Yaghoubi 1980) 
or to the influence of solid or liquid interfaces on heat transfer of buoyant plumes 
(Reimann 1974). Jaluria (1982) investigated the interaction between a plume and a 
vertical unheated surface and showed that the basic mechanism of the deflection 
process is the limitation of the flow which supplies the fluid entrained downstream 
by the plume. Incropera & Yaghoubi (1980) observed various modes of plume 
interactions from an array of horizontal cylinders: interaction might occur at the 
air-water surface, before reaching the interface by forming well-ordered ascending 
and descending flows, or resulting in a highly disordered flow with many recirculating 
regions of varying sizes. However, the type of plume interaction was shown not to 
have any influence on the general nature of the temperature distribution. 

Although considerable analytical and numerical efforts have been devoted to the 
study of self-similar solutions for freely-rising plumes, the thermal plumes were 
confined inside vessels in many experimental investigations. In these cases, the 
ascending fluid is cooled at a horizontal solid or free surface, inducing a recirculating 
flow along the sidewalls and an entrainment of underlying fluid. Despite the 
contributions of the above quoted experimental studies, much remains to be learnt 
concerning the interaction of the plume motion with its surroundings, in particular 
with the top surface. To the authors' knowledge, only a few attempts have been made 
to numerically simulate thermal plumes inside rectangular vessels. Amongst them are 
the recent studies of Peyret (1990) for double diffusive convection, Xia et al (1990, 
1991) for an externally heated enclosure containing a local heat source of finite size, 
and Maquet et al (t992) who took into account Marangoni effects. Although most 
plumes occurring in the environment are turbulent, it is felt that deeper investigation 
of the behaviour of laminar plumes is justified; since many numerical codes developed 
to study laminar flows are now used for direct simulations of chaotic or weakly 
turbulent flows, it is important to ascertain how these laminar models behave. Of 
course, direct simulations are very time-consuming, even when running on powerful 
vector computers. Therefore, simplifications of the complexity in the governing 
equations or in the numerical procedure are not only helpful but necessary. Moreover, 
the restriction to two-dimensional flow simulations precludes the study of three- 
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dimensional effects along the line source. Such a limitation is imposed by the computers 
presently available. However, a two-dimensional model is of interest to provide insight 
into the occurrence of the swaying motion and also into the transition from periodicity 
to chaos in Considerable detail. Indeed, almost all the experiments highlight a swaying 
motion of the plume in the cross-section of the wire while very few detect a meandering 
motion in the spanwise direction of the wire. 

Our ultimate purpose being to develop a reliable numerical scheme which would 
be fast enough to investigate laminar-turbulent transition plume flows and 3D 
parametric study, it is shown in the present paper that the wire may be modelled as 
a local source term in the energy equation. Other strategies have been employed such 
as boundary-fitted coordinates (Himasekar & Bau 1988) or the finite elements method 
for cylindrical configurations, but at the expense of additional complexities in the 
numerical treatment of the governing equations. Hybrid c9ordinate systems have 
also been used in the vicinity of the cylinder (Fujii et al 1982; Farouk & Shayer 1985). 
Such a procedure allows better control of grid locations but has the disadvantage of 
the presence of an overlapping zone between the two different grid systems and 
requires the introduction of somewhat arbitrary conditions where the meshes meet. 
Another advantage of the local heat source term strategy is its inherent flexibility 
since it permits the heat source to be moved easily. Also, thermal interactions between 
two or more line sources inside vessels could readily be studied. 

The formulations and the numerical methods used in the present study of dynamical 
and thermal behaviour of a plume above a heat-flux wire immersed in a rectangular 
vessel are described in the two following sections (§§ 2 and 3). The first part of §4 
deals with comparisons between results obtained when modelling the wire as a source 
term in the energy equation or when considering it as a uniform heat-flux cylinder 
of small diameter. The second part focusses on the different routes to chaos found 
in square and rectangular vessels according to the depth of immersion of a wire. 
Almost all these results were presented in four published papers (Lauriat & Desrayaud 
1990; Desrayaud & Lauriat 1991, pp. 609-21, 1993; Deschamps & Desrayaud 1994). 

2. M a t h e m a t i c a l  formula t ion  

2.1 Buoyant plume around a heated cylinder 

Consider a two-dimensional fluid-filled vessel of width L and depth H enclosed by 
adiabatic vertical walls and isothermally cooled horizontal surfaces at Ta. A cylinder 
of diameter d' centred at the point (x's,y's) generating a heat flux Q per unit length 
(W/m) is immersed in the central vertical plane of the vessel (figure la). The y-axis 
points upwards. The third dimension of the vessel is taken to be sufficiently large so 
that a two-dimensional approximation of the flow could be assumed valid. 

For a Boussinesq fluid, the conservation equations for mass, momentum and energy 
are reduced in the dimensionless form to 

V.V = O, (1) 

] Prrk~- + (V.V)V = - Vp + V2V + Ra0k, (2) 

~0 
- -  + (V.V)O = V20,  (3) 
t~t 
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Figure 1. (a) Coordinate system 
for a cylinder, A = 1, Hs = 0.75; 
(b) coordinate system for a line 
heat source, A -- 1, H, -- 0.75. 

where the components of the velocity vector V are (U, V) in the (x, y) directions. The 
Prandtl and Rayleigh numbers are defined as Pr = vo/ao and Ra = g~QL3/AoVoao 
respectively. 

The dimensionless form of (1)-(3) has been obtained by scaling lengths, time and 
temperature difference ( T -  Ta) by L, L2/ao and Q/$o respectively. Here ao and Vo 
are the thermal and viscous diffusivities respectively, Ao the thermal conductivity, Po 
the fluid density, /t the coefficient of volume expansion and 0 the gravitational 
acceleration; the subscript 0 denotes thermophysical properties at the ambient 
temperature To, chosen as the reference temperature. 

As a result, the relevant hydrodynamic and thermal boundary conditions can be 
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written in the following dimensionless form 

V = 0, at all solid boundaries, (4a) 

30 
- -  = 0 ,  a t  x = 0 ,  1, ( 4 b )  
Ox 

0 = 0, at y = 0, A, (4c) 

where A = H / L  is the aspect ratio of the cross section of the vessel. 

t30 
- l/(zrd), at the cylinder boundary, (4d) 

t3n 

n being the dimensionless outward unit vector normal to the cylinder surface and d 

the dimensionless diameter of the cylinder. 

2.2 Buoyant plume around line heat source 

We now consider two-dimensional convection induced by a line heat source immersed 

at the dimensionless point (x~, Ys) in a Boussinesq fluid. The line source has been 

modelled as a local source term in the energy equation. This requires that the diameter 

of a real heat source be much smaller than the dimensions of the vessel. It is convenient 

to introduce the dimensionless stream function ~, and the vorticity D such that 

V = ( U , V ) = ( - O $ / ~ y , O $ / O x )  and D = - V 2 $ .  (5) 

Hence, the governing equations for the vorticity and the temperature are 

) + V.(~V) = V2£1 - Rat3 x, (6) 

t~0 
- -  + V . ( 0 . V )  = V : 0  + e. ( 7 )  
Ot 

The boundary conditions (4a-c) are also imposed at the walls of the vessel. 
When modelling a pipe as a line source, Beck et ai(1988) used Green's functions 

and developed a transient solution to describe heat conduction around a single buried 

steam pipe inside a semiqnfinite medium. The basic idea of modelling the wire as a 

source term in the energy equation is then to cast the source term e as follows 

e = 6 ( x ~  - x ) 6 ( y s  - y ) ,  (8) 

where 6(z) is the Dirac delta function. The integral of 6(xs - x)6(ys - y) over x and 

y equals unit, if it includes ( x ,  ys); otherwise it is zero. Peyret (1990) used a similar 

technique but with an exponential decay of the intensity of the source term so that 

it could be represented accurately with spectral decomposition. 
At steady state, the energy dissipated by the line heat source is lost at the boundaries. 

This requirement of equality leads to the non-dimensional steady state condition, 

f 6(x~ - x)6(y~ -- y )dS  = 1 = - ~n ' (9) 
D F 

where D is the problem domain and F the boundary. 
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For adiabatic vertical walls, the heat flux through any horizontal plane y, defined as 

f (oo ) ¢(Y)= o --dYY + VO dx, (lO) 

must satisfy the following conditions: 

¢ ( y - ) + ¢ ( y + ) = l ,  Vy-<ys and Vy+>ys.  (ll)  

Finally, the depth of immersion Hs = A - y~ is defined as the vertical distance of the 
line source or the centre of the cylinder with respect to the top surface of the vessel. 

3. Numerical procedure 

3.1 Numerical method for the finite-diameter cylinder 

A finite element method was used for solving the governing PDEs in the primitive 
variable formulation, (1)-(3), with the boundary conditions given by (4a-d). While 
finite elements are CPU-time consuming, modelling a cylinder inside a rectangular 
vessel is straightforward. This is why a commercial fluid dynamics analysis package 
(FIDAP 1991) was employed. 

A major difficulty in the application of the Galerkin finite element method for the 
incompressible Navier-Stokes equations is the elimination of spurious pressure 
modes. As a remedy for the checker-board pressure modes, a mixed-interpolation 
method was used, i.e. the interpolation of the pressure was a polynomial at least one 
order lower than that for the velocity. However, this method does not always provide 
accurate pressure fields, especially with bilinear interpolation for velocity and 
piecewise constant pressure (i.e., the Q1/Po finite element). The elimination of the 
pressurevia a penalty function approach not only reduces the size of the linear system 
but eliminates the spurious pressures. The combination of the mixed interpolation 
method and the penalty formulation with exact (consistent) integration for the penalty 
term is one of the basic algorithms for the treatment of the velocity-pressure coupling 
of incompressible flows in FIDAP (1991). It is worth noting that the exact integration 
is equivalent to the reduced integration technique for the Q1/Po finite element and 
results in the same penalty matrix (Engelman et al 1982). 

For the present computations, the four-node quadrilateral finite element was used 
for velocity and temperature variables with piecewise constant pressure and penalty 
function approximation. Integrals were evaluated exactly using one point Gaussian 
quadrature. At every selected Rayleigh number, the successive substitution method 
was employed for the first three iterations when solving the system of nonlinear 
equations, while the Newton-Raphson method was chosen after the third iteration. 
With these combinations, solutions converged smoothly to a 0.1~ convergence 
criterion of the relative velocity and residuals within six to seven iterations for all 
steps. The selected penalty constant was 10-a for all cases and Rayleigh numbers. 

Finite element meshes were built over a Cartesian 33 x 33 grid and cylindrical 
mesh refinement was only used near the cylinder (figure 2); mesh refinement is needed 
in the vicinity of the cylinder when decreasing its size in order to maintain the accuracy 
of the results, the four-node quadrilateral element being straight-sided. The numbers 
of four-node quadrilateral elements and nodal points used for different diameters of 
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cylinder inside a square vessel are reported in table 1. Thus, 1152 four-node elements 

were used for the 1/10 diameter cylinder while 1664 elements were used for d = 1/100. 
Another consequence of mesh refinement was that, after the three successive sub- 

stitution iterations, four Newton-Raphson  iterations were needed to reach the 

convergence criterion for d = 1/100 instead of 3 for greater diameters. Thus, the 

elapsed cPU time greatly increased for very small diameters. 

A nine-node quadrilateral Lagrangian finite element for the velocity and temperature 

associated with linear discontinuous pressures, the Q2/P1 finite element, was also 

tested (Deschamps & Saiac 1992). Some numerical tests of FIDAP have also been 
performed for some classical benchmarks by Sohn (1988) showing the efficiency of 

the Q2/P1 finite element for the treatment of velocity-pressure coupling of incom- 

pressible fluid flow. This finite element has the major advantage of not presenting 

checker-board pressure modes. The penalty function method was preferred instead 

of the integrated method (for which the pressure variables contribute an additional 
degree of freedom and are built on linear continuous interpolation functions) because 

the memory storage required for fine meshes was found prohibitive and significantly 

Table 1. Number of four-node elements according to cylinder diameter in a square vessel 
(Hs = 0"75, Ra = 105). Maxima are grid-values and the subscript I is for the point Mt (0.5, 3A/4). 

Number of Iterative 
methods 

Nodal 
Diameter points Elements ss NR ~max Vm.x Umax 0l 

1/10 1248 1152 3 3 5.34 42.04 22.86 0"133 
1/20 1376 1280 3 3 5.65 45.30 23.80 0.137 
1/50 1504 1408 3 3 5.83 46.98 24.36 0.139 
1/70 1632 1536 3 3 5.87 47.88 24-99 0-140 
1/100 1760 1664 3 4 5.90 48.25 24.58 0.140 

ss: successive substitution method; NR: Newton-Raphson method 
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Table 2. Comparisons of some characteristic values for two different finite element 
discretizations and two Rayleigh numbers in a square vessel. 

Number of Iterative 
methods 

Element Nodal 
Ra type points Elements ss NR ~/max l/max Umax 01 

4-node 1632 1536 3 3 5"87 47"88 24 -49  0-140 
l0 s 

9-node 1632 384 3 3 5"83 47'79 24"37 0"139 

4-node 1632 1536 7 46-7 4 4 6 " 6  327"6  0"057 
107 

9-node 1632 384 7 46"0 4 4 5 " 2  318"9  0-056 

d = 1/70, H s = 0"75 (at Ra = 107 a guess solution was used). 
ss: successive substitution method; NR: Newton-Raphson method 
Subscript 1 is for the point M1 (0"5, 3A/4) 

increased the cPu  time. Table 2 presents some local values in a square vessel for two 

different Rayleigh numbers. In order to avoid dramatic increases of the cPu  time, 

about the same number of nodal points were used in both cases. Nevertheless, the 

cPu  time was greater for the nine-node element, especially for the highest Rayleigh 
number (about 25~o more). Consequently, all the runs were performed with the 

four-node element, the nine-node element showing unexpectedly slight accuracy 

improvement (Huyakorn et al 1978). 
For  transient problems, the time integration was performed by the combination 

of two accurate second-order techniques: the implicit trapezoid rule for the velocity 
and an explicit Adams-Bashforth formula for the pressure. If the solution at each 

time step is reasonably close to the solution at the previous time step, a one-step 

Newton-Raphson  method can be used to solve the nonlinear system of algebraic 

equations. Typically, a value of At = 0.003 was used at Ra -- 107 in a square vessel 

for a cylinder having a diameter of 1/70. All the finite elements computations were 

performed on an superscalar workstation. 

3.2 Numerical method for the line heat source 

In the case of the local source term strategy, the vorticity and energy equations (5)-(7) 

were solved in transient form and the time integration was performed using an 

alternating directional implicit (ADI) splitting scheme. The vorticity equation was 

discretized by employing second-order central differences based on Taylor  series 

expansions for all spatial derivatives, including the convective terms. The nodal points 
were located on a standard mesh. For  the energy equation, a control-volume 

formulation with staggered grids and central differencing was retained in order to 

improve the overall energy balance. One layer of grid points outside each boundary 

was included to facilitate the application of the boundary conditions using quadratic 

extrapolations. For  both vorticity and energy equations, the Thomas algorithm was 

employed to solve the tridiagonal systems of algebraic equations. On the other hand, 

finite difference equations for the stream function equation were solved by a direct 

method which uses a block-cyclic reductiola process (Golub & Meurant  1983). F rom 
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the solution of the stream function equation, the wall vorticities were updated using 
an accurate second-order formulation based on Jensen's estimate in conjunction with 
Briley's formula (Roache 1982, p. 142). On account of the expected flow structure, 
uniform grids were used for all the computations discussed in the present paper. 
However, it should be noted that the main limitation of the direct method which 
was used is that the number of mesh points in one of the directions has to be chosen 
as a power of 2. Double precision computations were found necessary to compute 
accurately the threshold values and the characteristics of the oscillatory motions. 

The computer code was validated with the steady and oscillatory solutions of a 
benchmark problem of natural convection of low-Prandtl fluids in differentially heated 
shallow cavities (Desrayaud et al 1990). Very good agreement was found both in the 
overall (general trends of unsteady flows) and pointwise comparisons (stream function 
and velocity maxima) with other computational methods: finite volume, finite element 
and spectral (Roux et al 1990). 

Several common indicators of dynamics were employed for tracking convergence 
to an asymptotic state. Global indicators were calculated by using the discrete L 1 
or L2 norms on the flow data or on the flow change data. These are: 

- - the  relative L1 norm of the stream function change per time step 

I [ ¢ l l a  = "+1 - l; 

- - the  total kinetic energy per surface unit:KE = (1/2D)I[V[[22; 
- - the  heat flux ~b through the top wall. In some cases, upper half heat fluxes, right 

~b, and left ~b l, have been used. 
- - the  L2 norm of the temperature per surface unit:PE = (I/D)10 22. 

Since small-scale flow features can be masked by global indicators, a series of local 
variables, such as wall vorticity, velocity components or temperature were also 
recorded. 

For the problem reported here, a number of tests were performed with various 
grid sizes and time steps to ensure accuracy and stability and to avoid spurious 
aperiodic flows (Desrayaud & Lauriat 1991). It was observed that the vorticity value 
in the vertical central plane was the most sensitive indicator, not only when symmetry- 
breaking transition occurred but also when the flow underwent a Hopf bifurcation. 

Most of the computations were performod on an IBM 3090 600/VF vector computer. 
For typical cases, the vectorized performance (ratio of scalar to vectorial CPU time) 
was only slightly greater than two. The reason for this is mainly the difficulty of 
vectorizing the bloc-cyclic reduction solver. When using an ADI scheme to solve the 
Poisson equation of the stream function, the vectorized performance was over three. 
However, it is preferable not to introduce an internal iterative procedure when 
accurately transient motions are followed. 

3.3 Convergence history 

Calculations for the line heat source solution were done on three different regular 
grid structures in square vessels. Grid tests were conducted to ensure that the results 
were independent of both the grid density and the size of the source. Table 3 shows 
partial results from the tests for Rayleigh numbers below the critical value (Rac ~ 3.1 
10T). The local and overall data from tffese calculations differed by less than one 
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Table 3. Comparison of some characteristic values for different Rayleigh numbers 
in a square vessel and for a depth of immersion H, = 0.75 in the case of a line 
heat source. Subscript I is for the point M1(0"5, 3A/4). 

Ra Grid • 0 s I//ma x Vax Urea x 01 

33 × 33 0.688 0.281 6.13 49.70 24.80 0-140 
l0 s 65 × 65 0.687 0.376 6.14 50.52 25.01 0.141 

129 × 129 0 . 6 8 7  0-480 6.14 50-73 25.09 0.141 

33 x 33 0.813 0.125 18.52 157.9 97-41 0.085 
106 65 x 65 0.812 0.250 18.53 162.0 101.3 0.086 

129 × 129 0.811 0-343 18.56 163.0 101.9 0-086 

33 × 33 0-886 0 - 1 0 2  4 6 . 0 5  418.9 290.3 0.052 
107 65 × 65 0.881 0 . 1 5 7  4 6 . 4 5  438.9 316-3 0.055 

129 × 129 0.879 0.231 4 6 . 6 0  444.5 322.3 0.055 

percent for the two finest meshes. Note that maxima are grid-point values. For  all 

the cases, the data were mostly grid-dependent around the heat source; since the heat 

is introduced into one control volume only, the temperature and flowfield in the 

immediate vicinity of the heat source cannot be grid-independent. The source 

temperature must tend to infinity as the area of the control volume tends towards 

zero. The decrease in the source temperature (0~) when the Rayleigh number is 

increased is due to the choice of the dimensionless variables. It is worth noticing that 

the results are satisfactory even for the coarsest mesh (within 5%), showing that 

stationary flow could be modelled using quite coarse meshes. Furthermore, two 

different regular grid structures were used to test the grid independence in a rectangular 

vessel of aspect ratio 2 (table 4). For these cases (Hs = 1), the onset of periodic motion 

arises at low Rayleigh numbers and coarse grids thus give accurate results (within 

1%) for stationary motions. 

Extensive grid testing was also conducted for periodic motions. Test runs were 

made in square vessel at high Rayleigh numbers (table 5) and in a rectangular vessel 

at low Rayleigh numbers for various depths of immersion (table 6). It is seen that a 

strong dependency on the critical Rayleigh number is only found at high Rayleigh 

numbers, while a coarse grid gives accurate threshold and periodic motion at low 

Rayleigh numbers in the rectangular vessel whatever the depth of immersion. It 

demonstrated that, even if a weak dependence on mesh size is found for stationary 

Table 4. Comparison of some characteristic values for symmetric and asymmetric 
flows in a rectangular vessel (A = 2, Hs = 1). Subscript 2 is for the point M2(0"25, 
3A/4). 

Ra Grid ~b ~bm, , E 01 U2 I/2 

103 33 × 49 0-509 0-14 0.00 0"265 --0"152 0"258 
65 × 97 0'509 0"14 0.00 0"265 -0"152 0"259 

5 × 10 3 33 × 49 0"619 2-22 2"62 0-305 - 2"21 2-91 
65 × 97 0"619 2"21 2"62 0"306 - 2'21 2"92 

104 33 × 49 0"637 1"46 0.00 0"342 - 1"52 9"08 
65 × 97 0"637 1"47 0.00 0"343 - 1"53 9"13 



684 Guy Lauriat and Gilles Desrayaud 

Table 5. Onset of periodic motion in a square 
cavity for a line heat source (H s = 0"75). 

Ra 
Grid ( X 10 7) Frequency 

33 x 33 6.0 319.8 _+ 0.8 

65 x 65 3.2 308.2 _ 0.6 

129 x 129 3.1 307.6 + 0.6 

flows at high Rayleigh numbers (table 3), critical values and frequencies exhibit strong 

grid dependencies as soon as the flow undergoes Hopf  bifurcations (table 5). 
Furthermore, to ensure the independence of the periodic motion with regard to 

the time step, the solutions were computed for two different time steps, but only for 

the two coarsest meshes (33 x 33 and 65 x 65) in the square vessel. Frequencies were 

found to agree within one percent. Because hundreds of thousands of iterations are 
needed to reach established periodic motion through supercritical Hopf  bifurcations, 

the 129 x 129 mesh flows were computed only once; computations for such a fine 

mesh are highly cPu-time consuming. Nevertheless, characteristics of the periodic 

motion are very similar to those found for the 65 x 65 mesh, which gives us confidence 
in these results. 

However, care should be taken in choosing the time step, since spurious secondary 

bifurcations (quasi-periodic solutions) may appear during the time integration of 
periodic flows. Figure 3 presents the effects of too large a time-step (At = 10-4 instead 

of 5 x 10-5) on the transient. Starting from a steady motion at Ra = 3 107 in a square 

vessel, the flow undergoes a periodic state of frequency f = 294.6 at a reduced time 
t ~ 1.7. Therefore, using too large a time step yields at first an oscillatory solution 

with about the right frequency (table 5), but with a shortened transient motion, 

showing an amplification effect of the round-off errors. Beyond t ~ 8, this amplification 

effect produces a spurious aperiodic flow characterized by several low independent 

frequencies. This result shows the need to re-compute from time to time some 

oscillatory solutions using a sequence of time steps to check the validity of the 
oscillatory results. 

Table 6. Frequencies for two uniform grids and for different depths 
of immersion in a rectangular vessel (A = 2), line heat source model.  

Depth of 
immersion Source Frequency 
(Hs) Grid position Ra (+ 0.12) 

1"50 33 × 49 17, 13 2"5 104 2"07 
65 × 97 33, 25 2"5 104 2"07 

1'00 33 × 49 17,25 3 104 5"61 
65 × 97 33,49 3 104 5"62 

0"75 33 × 49 17,31 3 105 15"17 
65 × 97 33,61 3 l0 s 15"14 
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~ l ~  Figure 3. Time history from 
Ra = 3 x 10 7 to Ra = 3-1 x 107 of 

-51S the horizontal component of the 
velocity at point (0"5, 2A/3) in a 

| 1.7 t square vessel (65 × 65 mesh). 

In transient motion leading to asymmetric steady flows, for depths of immersion 

greater than the width of the vessel (§ 4-2d), figure 4 shows the general trends for 
A = 2 and H~ = 1.75. Starting from symmetric steady motion at Ra = 103 to Ra = 6 

103 , the global indicator on the flow change data decreases and becomes as small as 
10- t3. Then an opposite evolution occurs at t/> 8,just after the break in the symmetry 

of the flow. At t/> 25, the global indicator starts to decrease again. The time change 

is different for local indicators at the centre line of the vessel: the vorticity is equal 

to the zero machine for symmetric motion and increases continuously up to an 
asymptotic value as the time increases. Then, the flow reaches an asymmetric  steady 

state motion (see figure 11 below). 
Finally, figure 5 presents transient evolutions through a supercritical bifurcation" 

like the ones arising when the depth of immersion is smaller than the width of the 

vessel (§§4"2b and 4-2c). Although the transition is easily detected in the case of 

,subcritical Hopf  bifurcations (since the oscillations arise with a finite amplitude), the 

transition from steady to oscillatory flows occurs through soft bifurcations such as 
the one displayed in figure 5. Such transitions can be the source of erroneous 

interpretations; the global indicators on the flow change data decrease to a level of 

the order of 10-to,  while the local ones on the flow data stay at a relatively high 

level. In these cases, time integration must be pursued in order to show up a dramatic 

change. Thus, the usual indicators employed to stop the computations must only be 

used to scrutinize the transient behaviour of the flow in direct simulations of the 
route to chaos. Figures 4 and 5 show also that local indicators are more meaningful 

l 

| t 35 

Figure 4. Time histories from Ra = 103 to Ra = 6 x 
103 of the logarithm of the vorticity at point (0-5, A) 
and of the LI norm of stream function change in a 
rectangular vessel (A -- 2, Hs = 1.75, 33 x 49 mesh). 
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Figure 5. Time histories of the 
logarithm of relative L~ norm of 
stream function change for super- 
critical Hopf bifurcation, A = 2, H s = 
0"75, Ra = 3 x 105. 

than global ones, although local indicators must be chosen carefully according to 
the characteristics of the flow. 

All these tests were performed for a line heat source owing to the fairly low 
computational cost. The numerical solutions of the Navier-Stokes equations written 
in the stream function-vorticity formulation and discretized by finite volume methods 
are much less time-consuming than finite element methods for solving the (u, v,p) 
equations, especially for transient motions. 

4. Results 

4.1 Comparisons between the two approaches 

Figures 6 (a-c) show comparisons for steady state temperature and velocity profiles 
in a square vessel at Ra = 106. The depth of immersion is H~ = 0.75 and the plots 
are for two cylinder sizes, of diameters 1/20 and 1/70, and for the heat source term 
modelling with a 65 x 65 mesh. The profiles for a 1/100-diameter cylinder are not 
plotted here because no visible difference can be seen between them and those for 
the 1/70-diameter. The temperature profi leson the vertical centreplane (figure 6a) 
show that the temperatures tend towards those of a line heat source when the diameter 
of the cylinder decreases, although some differences exist below the heat source. The 
vertical velocity profile in the vertical middle plane x = 0.5 is shown in figure 6b. As 
can be seen, a non-zero velocity exists at the line source When it is modelled as a 
heat source term. However, the agreement between the velocity profiles for the two 
approaches is rather good in the ranges 0 <~ y <~ 0.2 and 0-4 ~< y ~< 1 in the case of a 
1/70-diameter cylinder. Finally, the influence of the cylinder diameter on the vertical 
velocity profile in the horizontal plane y = A - H, (i.e. the plane passing through the 
centre of the cylinder) is displayed in figure 6c. While two velocity maxima are seen 
on both sides of the cylinder, owing to the no-slip boundary conditions, and only 
one for the line heat source, the differences between the two models are small on the 
major part of the profiles. Obviously, the discrepancies in the vicinity of the cylinder 
decreases when decreasing the cylinder diameter. 

Figure 7a shows the relative differences for the maximum of the stream function, 
~kma x, and for the heat flux through the top wall, ~, as a function of the Rayleigh 
number when the cylinder diameter is increased from d = 1/100 to 1/10. The solid 
lines are for ~bma ~ while the dashed lines are for ~. These are the 1, 2 and 5% 
iso-difference curves, the reference value being the solution for a cylinder of 
1/100-diameter. For Ra <~ 10 ~, the motion is in the so-called conduction or transition 
regimes. More than 65% of the heat being transferred by conduction to the bottom 



Buoyant plane plumes from heated horizontal sources 687 

l l l l l l l l l l l l ~ l l l l l  I 

- - - source t o m  
- 1/70 cylinder b - 
........ 1/20 cylinder 

- 

+ 

0.0 0.2 0.4 0.6 0 . 8 y 1 . 0  

Figure 6. Shape of various profiles at 
Ra = lo6 for two different cylinder diameters 
and a line heat source of 1/64 x 1/64 surface. 
A = 1, H ,  = 0.75. (a) Temperature profile on 
the vertical centreplane; (b) Vertical com- 
ponent of the velocity on the vertical 
centreplane; (c) Vertical component of the 
velocity on the horizontal plane of wire. 

wall at Ra = lo4, the temperature field is not very sensitive to the size of the cylinder. 
For d = 1/60 and 1/20, the relative differences in 4 are then close to 1% and 5% 

respectively. On the contrary, larger discrepancies appear for the stream function 
because of the low velocity field. The cylinder is then an obstacle to the fluid motion, 
since the velocities are small: at Ra = lo4, the differences in the stream function for 
d = 1/60 is about 4% and reaches 17% for d = 1/20. Thus, the flow is greatly affected 

Figure 7. A = 1, H ,  = 0.75. (a) Curves of relative iso-difference for the cylinder 
model. Solid lines: stream function maximum, dashed lines: upper heat flux. 
(b) Curves of relative difference of Vmax for different mesh sizes of the source term 
model. The reference is the d = 1/100 cylinder. 
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by the size of the cylinder in the conduction and transition regimes. On the other 
hand, the discrepancies are smaller in the boundary layer regime because heat is then 
mainly convected downstream by the plume. It appears that an asymptotic value 
of the diameter is reached for a given relative difference: 1/40 for 1~o and 1/20 for 
2~o. It occurs for a Rayleigh number close to 106, i.e. at the beginning of the boundary 
layer regime. 

Figure 7b presents the evolution of the relative difference as a function of the 
Rayleigh number for the source term model and for the three meshes used: 33 x 33, 
65 x 65 and 129 x 129. The comparisons are for the maximum of the vertical 
component of the velocity, which is always on the vertical centreplane of the vessel. 
According to Ra, the location of the maximum velocity moves between y = 0"5 and 
0-7. Here again, the reference value is the maximum vertical velocity in the vertical 
plane y.= 0-5 for a cylinder of diameter d = 1/10 and the same conclusions as for 
figure 7a can be drawn. The largest discrepancies are about 30~o for Ra = 104, whatever 
the mesh size. This relative difference decreases when the Rayleigh number increases 
and remains small for the two finest meshes, even at Ra = 3 107. For the coarsest 
mesh (33 x 33), it reaches 10~. Nevertheless, it is worth noting that the curves for 
the three meshes exhibit the same trends. 

The relative differences between the maxima of the vertical velocity component in 
the vertical middle plane and in the horizontal plane passing through the cylinder 
axis are reported in table 7 for various cylinder diameters and depths of immersion. 
On account of the symmetry of the flow, only one velocity maximum needs to be 
considered in the horizontal plane while two velocity maxima have to be considered 
in the vertical middle plane: one below the heated cylinder and one above, into the 
thermal plume. For all the data reported in table 7, the reference values are the 
maximum velocities at the same planes for a cylinder with a diameter d = 1/100. The 
relative differences between the velocity maxima in the horizontal plane are denoted 
H and are reported in the left-hand columns of table 7 for the three depths of 
immersion investigated. The relative differences between the vertical velocity maxima 
are denoted VA and VB, above and below the cylinder respectively. All the 
computations were carried out for Ra = 106. At this Rayleigh number, the plume 
flow is at the beginning of the boundary layer regime. For higher Rayleigh number, 
the differences are of the same order while they are greater for lower Rayleigh number 
because the motion is weaker. 

As can be seen, the relative differences in the vertical centreplane (see VA- and 
VB-columns) depend mainly on the diameter of the cylinder and are almost 
independent of the depth of immersion, except for d = 1/10. These differences are a 
little less below the cylinder than above. However, the size of the cylinders greatly 
affects the motion, especially for d i> 1/30. On the contrary, the relative differences 
in the horizontal plane of the cylinder are not only affected by the size of the cylinder 
but also by its location. Table 7 shows that these differences increase strongly with 
the depth of immersion. 

The distances from the centre of the cylinder to the location of the three velocity 
maxima are also reported in table 7, Ax being on the horizontal plane and Ay on 
the vertical centreplane. At constant depth of immersion, these values are almost 
constant provided d < 1/20. For greater diameters, the maxima are slightly shifted 
away. This shows that the influence of the size of the cylinder on the flowfield is 
limited to the very near surroundings of the cylinder. 

For periodic flows, computations were carried out for only one cylinder diameter, 
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Table 7. Relative differences in percent between maximum of the vertical component of the 
velocity for various depths of immersion. Ra = 106 A = 1. 
Ax, Ay are the positions of the maxima from the centre of the cylinder 

H: = 0-25 H: = 0.5 H, = 0-75 

d H(%) VB(%) VA(%) Hi%) VB(%) VAt%) H(%) VB(~) VA(%) 

1/10 22.9 28.6 57.4 37.9 14.2 53-8 62.3 13.5 46.4 
Ay 0.064 0.340 0.075 0.325 0.062 0.312 

Ax 0.090 0.103 0.092 
1/20 9.4 17.6 30.5 22.2 12-9 29.9 37.8 14.5 29-1 
Ay 0.41 0-314 0.049 0-299 0-035 0.286 

Ax 0.063 0.075 0-061 
1/30 5.4 11-7 19"1 12.6 9-3 18.6 25.6 11.8 21.4 
Ay 0.041 0.314 0.026 0.299 0-025 0-275 

Ax 0.063 0.075 0-061 
1/50 2.2 5.7 8.8 5.2 4.8 8.4 10.6 6.8 10.5 
Ay 0"041 0"314 0"026 0"299 0"025 0-275 

Ax 0"063 0-075 0"048 
1/70 0"9 2"6 3"9 2"2 2"3 3"7 5"6 4-0 5-7 
Ay 0"041 0"314 0-026 0-299 0"025 0"275 

Ax 0"063 0-075 0-048 

d = 1/70, because transient simulations at high Rayleigh number  are highly cPu- t ime 

consuming when using a commercial  finite-element package. According to the finite 

element grid used, the Rayleigh number  at which instabilities occur was found to be 

very close to Ra = 7 x 10 7 and the system is then attracted to a limit cycle representing 

a periodic motion of frequency f = 357 + 38. This Rayleigh number  and frequency 

are close to those obtained with the source term formulation. 

4.2 Route to chaos of a buoyant plume in rectangular vessels 

On account of the rather good agreement between the solutions computed at high 

Rayleigh numbers by using one or the other of the two approaches,  all the results 

presented in the following were obtained through the source term formulation. 

4.2a Base flow simulations: Typical results for the streamlines and isotherms are 

shown in figures 8a-c  for various depths of immersion of line sources in the central 

vertical plane of the vessels. Maxima of the stream function are also given. All the 

simulations have been performed for air-filled vessels (Pr = 0.71). 

Table 8 gives the lower and upper bounds on the critical Rayleigh numbers. These 

bounds are for the highest value at which a steady-state mot ion was found to exist 

(Ra~) and the smallest value at which the flow was found unsteady (Ra2). The 

frequencies reported in table 8 are for the Ra2-values. The different types of bifurcation 

occurring in the configurations considered are also given. Steady-state isotherms and 

streamlines in square and rectangular vessels for Rayleigh numbers just below the 

first bifurcation point are shown in figure 8. It can be seen that a recirculation flow 

is induced in which hot fluid rises with the plume above the line source, is cooled 

downstream and then descends along both sides of the vessel. The flow fields are 
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(e) 

(b) 

(c) 

Figure 8. Steady-state isotherms (left) and streamlines (right) for various flows 
and Rayleigh numbers just below the critical values, Pr = 0.71. (a) Ra = 3 x 107, 
A = I ,  H~=0.75; (b) R a = 1 . g x 1 0 6  , A = I ,  H~=0.50; (e) R a = 5 x 1 0 3  , A = 2 ,  
H~ = 1.75. The values given refer to stream function maxima. 
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T a b l e  8. Critical Rayleigh numbers, frequencies and types of Hopf 
bifurcation at various depths of immersion for A = 1 (a) and 2 (b) and 
for various aspect ratios at Hs = 0.75 (e). 
(a) a = 1 

H s Bounds Ral & Ra2 f Type of Hopf bifurcation 

0.75 3.0-3-I × 10 7 294"2  Supercritical 
0.50 1.5-1.6 x 106 3 0 . 4  Supercritical 
0.25 3"1-3:2 × 106 3 8 . 5  Supercritical 

(b) A = 2 

Hs Bounds Ral & Ra2 f Type of Hopf bifurcation 

1"75 3-00-3"02 x 104 0"2 Subcritical 
1"50 2.1-2.2 x 104 1"7 Subcritical 
1.25 1.0-1.5 x 104 1.9 Subcritical 
1.00 2.0-2.5 x 104 5"3 Supercritical 
0.75 2.5-3.0 x l0 s 1 5 . 0  Supercritical 

(c) H s = 0.75 

A Bounds Ral & Ra2 f Type of Hopf bifurcation 

2.00 2.5-3.0 x l0 s 1 5 . 0  Supercritical 
1-75 3.0-4.0 x 105 1 7 . 2  Supercritical 
1.50 8"0-9-0 x l0 s 2 5 - 6  Supercritical 
1.25 1.0-1-5 x 106 3 3 . 2  Supercritical 
1.00 3"0-3-1 x 107 2 9 4 . 2  Supercritical 

characterized by mirror symmetry about the vertical centreline. It is seen from 

figure 8a (A = 1, Hs = 0.75) that for line sources near the bot tom wall, a strong steady 
fluid circulation occurs above the line source while a relatively stagnant layer of fluid 
is seen below. Obviously, the temperature gradients inside the bot tom region strongly 

depend on the thermal boundary conditions applied at the bot tom wall while the 

flow' and temperature fields in the upper region of the vessel are weakly affected by 

this thermal boundary condition provided the Rayleigh number is large enough 

(Lauriat & Desrayaud 1990). Similar features are seen in figure 8b for smaller depth 

of immersion, Hs = 0.5, but the bottom stagnant layer of fluid which is stably stratified 
now extends over one-third of the vessel approximately. On the other hand, for large 

depths of immersion in rectangular vessels as shown in figure 8c, the plume does not  

reach tile top wall and there is an unstably stratified layer of stagnant fluid above 

the plume. It should be noted that the fluid circulation is very weak owing to the 
low Rayleigh number. The flow is in a conductive state, as confirmed by the quasi- 
circular isotherms around the source. 

These three flow patterns give way to three different routes to chaos (Desrayaud & 

Lauriat 1993). The first scenario, studied in the next sub-section, can be found only 
if the layer of fluid below the line source is small enough and if the plume reaches 

the top of the vessel. This happens only in vessels of small aspect ratio (A ~< 1). The 

resulting periodic motion can be viewed as the natural swaying motion of confined 

plumes in the sense that the instabilities are neither driven by a stable layer of fluid 
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at rest below the source as in figure 8b nor triggered by an unstable layer of fluid 
above the plume as in figure 8c. The two other scenarios are called penetrative 
convection, since the convecting plume is bounded below by a conducting layer of 
fluid, and Rayleigh-Brnard-like convection, since the underlying mechanism of the 
onset of instabilities is the destabilization of a motionless upper layer. These two 
mechanisms are respectively studied in §§ 4.2c and 4.2d below. 

Thus, contrary to what has been found in many studies on freely-rising thermal 
plume, interactions of the plume with the top and side walls play a dominant role 
in the flow structure. 

4.2b Natural swaying motion in a square vessel: In this sub-section the numerical 
results discussed are for vessels of square cross-section, the line source being near 
the cold bottom wall (H s = 0.75) as in figure 8a. 

Periodic motion- For Rayleigh numbers lower than Rac = 3 x 10 7, the system is 
attracted to a fixed point, representing steady motion. The bifurcation leads to a 
system which is then attracted to a limit cycle indicating periodic motion. 

The onset of unsteady solutions is due to the presence of a supercritical Hopf 
bifurcation point. Indeed, for such a bifurcation, the amplitude of the perturbation 
for slightly supercritical Rayleigh numbers evolves like (Ra-Rac) °°5. This feature has 
been used to accurately determine the value of the critical point, which has been 
done from linear extrapolation of zero oscillation amplitude occurring close to the 
presumed threshold value. This gives a critical Rayleigh number very close to 3 x 107. 
A further feature of a Hopf bifurcation is the existence of a relationship between the 
dimensionless period of the oscillations and the Rayleigh number in the vicinity of 
the bifurcation point. By calculating the angular Brunt-Vais~il~i frequency associated 
with the plume for high Rayleigh numbers, it has been demonstrated that the frequency 
must be proportional to (Ra Pr) °s  and should be nearly constant near the threshold 
(Desrayaud & Lauriat 1993). This is well supported by the results of table 9 which 
shows the route to chaos, i.e. the nature of the bifurcation points and the associated 
frequencies. 

A second frequency f2 (given in parenthesis in table 9) appears at Ra = 3.4 x 107 
during the transient evolution but vanishes for a time unit greater than one, meaning 
that the frequency f2 has at least eight orders of magnitude less power; moreover, 
these two frequencies are incommensurate. 

During one period, the symmetry with respect to the vertical centre plane is 
respected. This finding was experimentally recorded by Yosinobu et al (1979) in the 
case of a buoyant plume in air. The general pattern of the mean temperature and 
stream function fields are the same as those presented in figure 8a, but with higher 
isovalues. It can be noted that the upper part of the plume has the same symmetrical 
motion, once to the left, once to the right of the cavity. Hot and cold fluctuations 
grow simultaneously on each side of the source and a circulation of alternately hot 
and cold fluctuations arises in the two halves of the vessel. The instabilities are first 
confined within the plume where they are amplified and within the horizontal 
boundary layer near the top wall, then they move downward and~ back to the heat 
source. Therefore, instead of a swaying motion with sinusoidal wavelength as for a 
freely rising plume, we observed two counter-rotating circulations of fluid with 
alternating hot and cold spots. The motion of the plume itself is rather weak and 
detached blobs arise in the upper horizontal extents of the plume and sink along the 
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Table 9. Route to chaotic motion in a square vessel with a line source at 

H s = 0.75 

693 

I0- 7 Ra Description Frequency (Ra/f) 1/2 

3 - 0 0  Supercritical Hopf bifurcation 
3.10 P1 fl = 294.2 18-93 
3.20 P1 fl  = 299.7 18.87 
3.30 P1 fl = 305.2 18.82 

3-40 Transient QP2, then P1 ) fl = 310"1 18"80 
(f2 = 94.4) 

3'50 Transient QP2, then P1 f fl  = 314"8 18'79 
(f2 = 96.1) 

3"60 Transient QP2, then P1 ~ f~ = 319.4 
(f2 = 97.7) 

3.70 P2T (weak fo) ( fl  = 323.5 

l (f2 = 99.2) 

3.80 P2T (weak fo) { f:== 328.2101.1 

3.85 Transient P2T, then I 
3"90 Transient P2T, then I 
4.00 I 

P1 periodic state; QP2 quasi-periodic state with 2 incommensurate frequencies; 
P2T periodic state on a 2-torus; I intermittent state. 

vertical adiabatic surface. Urakawa et al (1983) experimentally found identical 

behaviour in spindle oil but with a much stronger motion of the plume, especially 
just above the line source. 

Two-frequency locked state - For  3"7 x 107 ~< Ra ~< 3.8 x 107, the motion smoothly 

becomes a periodic, two-frequency locked state involving the f l  and f2 frequencies. 

The asymptotic state is then a limit cycle on a 2-torus of small cross-section. The 

phase portrait reveals that the trajectories are confined to a finite number of threads 
(figure 9a). The Poincar6 section confirms this behaviour since 13 distinct group 

points are alternately visited in turn: for 13 rotations about  its larger dimension, the 

trajectories pass four times around the smaller dimension (figure 9b). Thus, the rotation 

number (or the frequency-locking ratio) is r = 4/13 and the fundamental frequency 

equals fo  = f l ,  13 = f2/4. This is well supported by the frequency values reported in 

table 9. Indeed, f l / f 2  = 3"26 +0-03-~ 13/4. Moreover, the f2-frequency has only a 
weak influence on the whole motion, confined in the centre of the cells. It should 
also be noticed that the nonlinearities are weak since the contribution of the low- 

order mixing components (f~,f2) is small. Simulations have been carried out up to 

150,000 time-steps (t > 3), and no established quasi-periodic motion ( f l , f 2  incom- 
mensurate) has ever been found. 

Chaos-  An intermittently chaotic state arises from the previous frequency-locked 

state. At irregular times and for irregular durations, the periodic laminar motion is 

interrupted by non-periodic 'bursts'. However, the characteristic of the frequency- 

locked State with locking ratio 4/13 is maintained in the laminar windows. As a result, 
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Ra = 3.85 x 107. 

the spectrum exhibits broadband noise although relatively sharp spectral peaks still 
exist for all frequency multiples of the 4/13 locked state (Lauriat & Desrayaud 
1990). 

From their experiments, Forstrom & Sparrow (1967) reported turbulent bursts at 
the beginning of the transition between the laminar and turbulent states (Note that 
Yosinobu et al (1979) did not observe such phenomena). In the transition regime, 
Bill & Gebhart (1974) and Noto et al (1982) recorded transits from a turbulent state 
back to a laminar one, which seems like an intermittency phenomenon. 

It could be concluded that a chaotic motion arises through a type-I intermittent 
transition. This type of intermittency is characterized by bursts of equal magnitude, 
periodic windows of identical frequencies, and near the transition, the lengths of these 
windows vary in proportion to (Ra-Rac) -°'5. The sequence of instabilities leading 
to non-periodic flows is also described on table 9. The periodic two-frequency locked 
state has been abbreviated at P2T (periodic motion on a 2-torus). 

4.2c Penetrative convection: As can be seen in figure 8b, there is a stable layer of 
fluid at rest at the bottom of the vessel for small depths of immersion although the 
convective motion extends slightly below the line source. Computations have been 
carried out in square and in rectangular vessels. For a square vessel, penetrative 
convection occurs if the depth of immersion is such that Hs ~< 0.5 while for rectangular 
vessels it happens when the depth of immersion is smaller than the width of the cavity 
(i.e., H s ~< 1) (Desrayaud & Lauriat 1993). 

The bifurcation points are supercritical Hopf points with low frequency (cf table 8a, 
Hs~<0.5 and table 8c, A t> 1-25) since the amplitude increases roughly as the 
square root of the distance to the bifurcation point and the modified period is almost 
constant. The low values of the frequencies found can be explained by the fact that 
the plume has to set in motion the fluid below the source. This is illustrated in 
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figure 10 which shows a linear variation of the frequency of the critical points (given 
in table 8c) with the height of the layer below the source ( A -  H,) for a constant 
depth of immersion, H, = 0.75. Such a result clearly demonstrates that penetrative 
convection is the main phenomenon driving these instabilities. Some other cases in 
rectangular vessels and for depths of immersion Hs ~< 1 were investigated and the 
same trends were found. 

In a square vessel and for a depth of immersion H, - 0'75, a periodic motion arises 
at Rac = 6 x l0 p and is characterized by a large contribution from the two first 
harmonics. The flow then undergoes a second bifurcation into a limit cycle on a 
2-torus. A weak frequency f2, ten times smaller than the fundamental one f l ,  appears 
at Ra = 1.31 x 107  and a two-frequency locked state motion with a rotation number 
r = f2/ f l  = 1/10 is obtained. The spectra of the trajectories exhibit a large number 
of sidebands around the fundamental peak and its harmonics resulting from a strong 
nonlinear interaction between the two-locked frequencies, f~ and f2. As the Rayleigh 
number is increased, these sidebands develop further, both in number and amplitude 
and compete with one another leading to the thickening of the torus. Just after the 
onset of chaotic behaviour the sidebands grow throughout the spectrum, the 
underlying envelop being broadband, despite the sharpness of the fundamental 
frequency f l  and its two first harmonics. Thus, this results in a fast transition to a 
fully chaotic spectrum. 

4.2d Rayleioh-B~nard-like convection: For rectangular vessels and depths of 
immersion greater than the width of the vessel (H s > 1), very different bifurcations 
o c c u r .  

Pitchfork bifurcation- On increasing the Rayleigh number up to Ra ffi 6000, the 
symmetric two-cell pattern shown in figure 8c evolves towards an asymmetric one-cell 
pattern as in figure 11. The plume is deflected towards one vertical adiabatic wall, 
either left or right depending on the round-off errors generated during the 
computations. These two steady-state mirror image solutions characterize a pitchfork 
bifurcation (Desrayaud & Lauriat 1993). 

Contrary to what has been found for free laminar plumes, the destabilization of 
the two-cell flow comes from the unstably stratified layer of fluid at rest above the 
plume which appears when the plume does not reach the top of the vessel. Thus, 
Rayleigh-B~nard-like convection can arise in this upper layer when the Rayleigh 
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Figure 11. Isotherms and 
streamlines for stationary 
asymmetric flow, A = 2, H s = 
1-75, Ra = 6 x 10 a. The values 
given refer to stream function 
maxima. 

number is high enough, giving way to one-cell flow which spreads out in the vessel. 
The potential for multiplicities of steady-state mirror solutions is the result of 
nonlinearities of the governing equations. Similar behaviour has been observed by 
Hasnaoui et al (1990) for natural convection above an array of open cavities heated 
from below when the height of the'vertical adiabatic confining wails is high enough. 

Subcritical Hopfbifurcation - As the Rayleigh number is increased further, a sustained 
oscillatory convection is obtained through a subcritical Hopf bifurcation. Convenient 
variables to describe the temporal evolution of the flow are local variables on the 
centreplane of the vessel. Figure 12a presents the evolution of the horizontal velocity 
component U at point M1(1/2, 2A/3) for various Rayleigh numbers and for a depth 
of immersion H~ = 1.75. Below the pitchfork bifurcation point, which occurs at 
Ra = 6 x 10 a, its value is zero due to the flow symmetry. Above it, the velocity 
component can take two opposite values. For higher Rayleigh numbers, the motion 
undergoes a second bifurcation at Ra ~ 3.02 x 104 into a limit cycle and the value 
oscillates periodically between the two mirror values of the Pitchfork bifurcation. 
Thus, oscillation onset is with finite amplitude which defines a subcdtical Hopf 
bifurcation. On decreasing the Rayleigh number from Ra = 3.02 x 104 to 3.01 x 104 
the flow became steady again. Consequently, no hysteresis effect was found. As can 
be seen in figure 12a, the value of the horizontal component of the velocity jumps 
at the Hopf bifurcation point. The underlying phenomenon is clearly depicted in 
figure 12b which presents the time history of this variable for a Rayleigh number just 
above the onset of oscillations. Plateaus of opposite values which are those of the 
pitchfork bifurcation are periodically reached. The plume sways abruptly, briefly 
overshoots the other mirror flow solution due to its own inertia and becomes stable 
over a long period of time. At Ra = 3"02 x 104 the period is equal to about 5 
( f  ~ 0.2). This is why the frequencies are so small for H~ > 1 (table 8b). On increasing 
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Figure 12. Evolution of the amplitude of the 
horizontal component of the velocity U at point 
(1/2, 2A/3), A = 2, H s = 1"75: (a) versus Rayleigh 
numbers; (b) at Ra -- 3.02 x 104. 

the Rayleigh number, the solution continues to oscillate between two mirror solutions 
and the frequency is increased, the plateaus being shorter. 

At higher Ra, it seems that the temporal behaviour of the oscillations becomes 
chaotic. The leading Lyapounov exponent (LLE) estimate, which measures how 
unstable a given flow history is, has been calculated (Wolf et al 1985). Its sign provides 
a qualitative picture of the system's dynamics. The positive sign of the LLE implies 
the existence of chaotic behaviour at least for Ra = 8 x l0 s. However, the regime is 
difficult to map accurately owing to limitations in the numerical resolution. Indeed, 
due to the very low value of the frequency, long time integrations are needed to 
correctly observe transitions and to obtain accurate power spectra. Nevertheless, it 
does not seem that any period doubling scenario exists after the pitchfork bifurcation 
as for the classical Feigenbaum scenario. 

4.2e Comparisons with experimental results: Igarashi (1978) experimentally found 
that the swaying frequency is proportional to the 0"4 power of Rayleigh number for 
heated wires placed concentrically along the axes of horizontal rectangular chambers 
and thermal plumes reaching the ceiling of the vessel in a laminar state. Frequency 
correlations for various aspect ratios are depicted in figure 13. Three distinct groups 
of frequencies have been found as predicted experimentally by Igarashi (1978), one 
for A >t 1.8, another for 0.7 <~ A ~< 1.5 and the last for A ~< 0.6. Owing to the very high 
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Rayleigh number at which periodic motions appear for A ~< 0.6, computations have 
been made only for one aspect ratio, i.e. A = 0.6. For each numerical frequency, the 
value of f/Ra °'4 has been calculated and the constants of the three correlations shown 
in figure 13 are the arithmetic mean values of each group of data. As can be seen, 
all the data are well correlated. The maximum discrepancies are lower than 5~  except 
at A = 0.7 where the differences reach I0~. 

The 0.4 power value has been recently confirmed by Noto & Matsumoto (1986) 
and Noto (1989). The aspect ratio of their experimental set-up was A = 1.25 with a 
dimensionless depth of immersion H, = 0.75. For the same geometrical parameters, 
a numerical frequency correlation has been computed, f = 0.109 Ra °'4 with discre- 
pancies lower than 3~. 

All these results give a good degree of confidence in the present results. It must be 
noted that the thermal boundary conditions play a minor role only. Indeed, in the 
experimental apparatus of Igarashi (1978) and Noto (1989), the temperatures of the 
ceiling, the bottom and the four sidewalls were isothermally controlled while our 
numerical boundary conditions are imposed by the top and bottom temperatures 
and vertical adiabatic walls. 

Do the three correlations experimentally found by Igarashi (1978) correspond to 
the three oscillatory regimes numerically determined in the present study? To answer 
this question, all the numerical frequencies obtained in the present study are shown 
in figure 14, except those used to build the three correlations, i.e. for H, = A/2 
(figure 13). This has been done to give a legible picture, and the correlations are 
reported in figure 14 as full lines. It is readily seen that the correlationf = 0"105 Ra °'4 
is for the penetrative convection regime; all the numerical frequencies corresponding 
to this regime agreed very well with this correlation. The other correlation, f =  
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Figure 14. Comparison of the frequencies for various aspect ratios and depths 
of immersion given in figure 13. 

0.090 Ra °4, which is close to the previous one, also corresponds to the penetrative 
convection regime• In fact, it is a particular case of this regime for which there is 
competition between two modes, the Rayleigh-B6nard-like convection and the 
penetrative convection; for H= - 1 and A -~ 2, as in the cases presented in figure 13 
for this correlation, a pitchfork bifurcation arises first, due to the unstable layer of 
fluid at rest above the thermal plume. But this is followed by a resymmetrisation of 
the stationary regime, the mass of fluid below the source ( A -  H= ~ 1) being large 
enough to supply the fluid entrained downstream by the plume and restore the 
symmetry. For higher Rayleigh numbers, an oscillatory regime occurs through a 
supercritical Hopf bifurcation indicating that this regime can be classified as the 
penetrative convection regime. Such a sequence has been shown by Desrayaud & 
Lauriat (1993, figure 10) for a rectangular vessel of aspect ratio 2. The third correlation, 
f = 0.226 Ra°'4, seems to correspond to the natural swaying regime. At such high 
Rayleigh numbers very fine grids are needed and this can explain the large discrepan- 
cies found. Moreover, there are too few numerical points to extract some trends with 
confidence. Finally, owing to the geometrical parameters chosen by Igarashi (H= = A/2 
and A ~< 2), it was impossible to give prominence to the Rayleigh-B6nard-like regime 
which appears only when H, > 1. It is worth noting that this regime can be found 
in rectangular vessels of aspect ratio 2"5 (full stars in figure 14). For low and moderate 
Rayleigh numbers, the frequencies of the Rayleigh-B6nard-like regime show that it 
does not follow the same type of correlation as the one found by Igarashi. The 
evolution of the frequencies for a given geometrical configuration does not follow a 
simple power-law, a sharp increase of the frequencies arising close to the bifurcation 
point when the Rayleigh number increases. For higher Rayleigh numbers, the 
evolution of the frequencies seems to be of the type determined by Igarashi, i.e. Ra °4, 
but depends on the depth of immersion. 
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5. Conclusions 

The modelling of a heated wire as a cylinder of small diameter has been compared 
with a heat source formulation. For steady flows at low Rayleigh numbers, in the 
so-called conduction and transition regimes, fairly large discrepancies were found 
between the velocity fields because of the weak motion. However, the temperature 
field being unaffected by an obstacle, the agreement is much better for the heat 
transferred at the bottom and top cold surfaces. On the other hand, the velocity fields 
are in good agreement at high Rayleigh numbers, except just above the wire since 
the heat is then convected in a well defined plume. Only small differences in the 
isothermal patterns were found in the stagnant zone below the heat source. One of 
the most important parameters is the depth of immersion of the heat source. For 
unsteady regimes, both models show similar dynamical behaviour with very close 
frequencies for all of the types of bifurcation points investigated. Therefore, the heat 
source formulation was used to resolve the supercritical flows around a heated 
wire. 

Swaying motions of confined thermal plumes above a horizontal line heat source 
inside a vessel with adiabatic side walls, cold top and bottom walls were investigated. 
The numerical predictions of the swaying frequency of laminar plumes were found 
in very good agreement with the experimental correlations of Igarashi (1978) and 
Noto (1989). A variety of dynamic behaviours were shown according to the depth of 
immersion, aspect ratio and Rayleigh number. 

For rectangular vessels with A > 1, two destabilizing mechanisms characterized by 
low frequency motions were found: 

- for depths of immersion greater than the width of the vessel and small enough 
Rayleigh numbers, Rayleigh-B6nard-like instabilities may appear within the layer of 
fluid above the thermal plume. This results in asymmetric steady motions occurring 
through a pitchfork bifurcation, followed by a subcritical Hopf bifurcation. 

- f o r  depths of immersion smaller than the width, the mechanism driving the 
periodic motion is the penetrative convection which occurs within the layer of fluid 
at rest below the line heat source. 

For square vessels, penetrative convection appears for rather small depths of 
immersion. Otherwise, for large depths of immersion, steady symmetric flows exist 
at high Rayleigh numbers. For Ra greater than a critical value which depends on 
the depth of immersion, a swaying motion with high frequency starts. This motion 
is followed by a two-frequency locked regime, then a weakly turbulent regime arises 
via an intermittent route to chaos. 

List of  symbols  

A = H / L  

a 

d 

f 
g 

H 

H s = A -- Ys 

vertical aspect ratio; 
thermal diffusivity; 
dimensionless cylinder diameter; 
frequency of time-dependent motion; 
gravitational acceleration; 
height of the vessel; 
depth of immersion; 
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.t 

At 
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T, 
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x, y 

~5 

0 = 20( T -  T,)/Q 
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# 

V 

P 
¢ 
¢ 
D 

unit vector in the y-direction; 

width of the vessel; 

pressure; 

Prandtl  number; 
heat generated per unit length (W/m); 

Rayleigh number; 

time; 

dimensionless time step; 

temperature; 
ambient temperature; 

velocity vector of components (U, V) 
coordinates; 

volumetric thermal expansion coefficient; 

Dirac delta function; 

dimensionless temperature; 
thermal conductivity; 

fluid viscosity; 

kinematic fluid viscosity; 

fluid density; 

dimensionless heat flux through a horizontal plane y; 
dimensionless stream function; 

dimensionless vorticity. 

Subscripts 

0 

S 

for reference temperature, 

refers to line source; 

Superscripts 

dimensional quantity. 
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