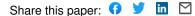


Open access · Posted Content · DOI:10.1101/2020.12.12.20248105

Burden of intestinal parasitic infections in children and its association with hand washing practice in Ethiopia: a systematic review and meta-analysis — Source link []


Fasil Wagnew, Aster Tadesse, Amanuel Alemu Abajobir

Institutions: College of Health Sciences, Bahrain

Published on: 14 Dec 2020 - medRxiv (Cold Spring Harbor Laboratory Press)

Related papers:

- Male and undernourished children were at high risk of anemia in Ethiopia: a systematic review and meta-analysis.
- A systematic review and meta-analysis of the prevalence and predictors of anemia among children in Ethiopia.
- A meta-analysis of inpatient treatment outcomes of severe acute malnutrition and predictors of mortality among underfive children in Ethiopia.
- Acute respiratory infections among under-five children from households using biomass fuel in Ethiopia: systematic review and meta-analysis.
- Mortality and its association with CD4 cell count and hemoglobin level among children on antiretroviral therapy in Ethiopia: a systematic review and meta-analysis

It is made available under a CC-BY-NC-ND 4.0 International license .

- 1 Burden of intestinal parasitic infections in children and its association with hand
- 2 washing practice in Ethiopia: a systematic review and meta-analysis
- 3 Fasil Wagnew^{1*}, Aster Tadesse¹, Amanuel Abajobir²
- ⁴ ¹College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
- 5 2Maternal and Child Wellbeing, African Population and Health Research Center, Nairobi,
- 6 Kenya
- 7 *corresponding author: Fasil Wagnew
- 8 Email addresses
- 9 FW: <u>fasilw.n@gmail.com</u>
- 10 AT: <u>astutadesse84@gmail.com</u>
- 11 AA: <u>amanuel.abajobir@uq.net.au</u>
- 12
- 13
- 14
- 15

16

- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 24
- 25
- 26

It is made available under a CC-BY-NC-ND 4.0 International license .

27 Abstract

Background: Intestinal parasitic infections (IPIs) are a major public health challenges in developing countries including Ethiopia, although few studies previously estimated the magnitude of IPIs and associated factors in the country. Reports from these scarce studies were also widely varied and remained inconsistent. This study thus aimed to synthesize the pooled magnitude of IPIs and factors affecting it.

33 Methods: Internationally broad based medical database including MEDLINE/PubMed, 34 EMBASE, PsychINFO and Web of Science, and Google Scholar for grey literature were 35 exhaustively searched using a priori set criteria to identify studies estimating the prevalence 36 of IPIs among children from 2000-2018. PRISMA guideline was used to systematically 37 review and meta-analyze these studies. Details of study characteristics including sample size, 38 magnitude of effect sizes (including odds ratios (ORs)) and standard errors were extracted. Random-effects model was used to calculate pooled estimates in Stata/se version-14. I² and 39 40 meta-bias statistics assessed heterogeneity and Egger's test for publication bias. Sub-group 41 analyses were also carried out based on age of children and regions.

Results: Forty-three studies were included in the final analysis (N = 20,008 children). The overall prevalence of IPIs, with one or more species, was 48.2% (95% CI: 40.1, 56.3) in Ethiopian children. Based on sub-group analyses, the highest prevalence of IPIs was observed among school-age children (52.4% (95% CI, 41.3, 63.5)) and in Amhara regional state (52.1% (95% CI, 37.3-66.8)). The odds of having IPIs was nearly six times higher in children who were not practicing hand washing as compared to their counterparts (pooled OR = 5.6 (95% CI: 3.4,9.3). Funnel plot analysis and Egger's test detected no publication bias.

49 **Conclusion**: On aggregate, the pooled prevalence of IPIs among Ethiopian children is 50 significantly high. Not hand washing before eating was a risk factor for IPIs. The 51 establishment of applicable sanitation services and health education will help reduce the 52 magnitude of IPIs and promote a healthier childhood.

53

55

56

⁵⁴ **Keywords**: Intestinal parasitic infections, systematic review and meta-analysis, Ethiopia

It is made available under a CC-BY-NC-ND 4.0 International license .

57 Background

58 Intestinal parasitic infections (IPIs) are serious public health challenges globally [1] whereby 59 one-third of the total population is infected with intestinal parasites (IP), and an estimated 4.5 60 billion people are at risk of infection with one of the three common IPIs - ascaris 61 lumbricoides (800–1000 million), hookworm (700-900 million) and trichuris trichiura (500 62 million) [2-4] contributing for significant illnesses and disability-adjusted life year lost [5]. 63 Sadly, around 12% of global burden of disease caused by IPIs occur among school-age 64 children in developing countries [7] especially in sub-Saharan African countries ranging from 65 27.7% to 95% [8-12], and attributable to major causes of morbidity and mortality among 66 these children [1].

67 Multifactorial causes contribute to the escalation of IPIs in children including overcrowding, 68 lack of safe water, poor personal hygiene, poor hand washing and nutritional disorders [20, 69 21]. Indeed, IPIs can be consequences of poor socio-economic status and also contribute to a substantial economic burden [6]. That is, IPIs are closely interrelated with poor 70 socioeconomic status of the family, lack of sanitation, inadequate access to pure water and 71 72 waste disposal especially in low- and middle-income countries [13-15]. In particular, under-73 five and school-aged children in these settings are categorized as high-risk population for IPIs 74 [16]. Furthermore, these infections are causes and consequences for anemia and other 75 comorbidities as well as physical and cognitive developmental delays [17, 18] resulting in 76 suboptimal child survival, poor growth and development as well as meager educational 77 performance [8, 10, 18]. In addition, chronic forms of IPIs are associated with the 78 transmission and severity of other infections and/or diseases such as leprosy and human 79 immune-deficiency virus (HIV) [19].

Interestingly, these infections have recently been receiving a high priority from global community. Cognizant to this, the World Health Organization (WHO) has permitted preventive chemoprophylaxis as worldwide mainstay strategy to control the communicability of these infections [22]. In this strategy, scheduled administration of safe and efficacious deworming drugs for risk groups is recommended, setting a minimum target at 75%, and maximum 100% for success rate [22-24]. In fact, general cleanliness or sanitation are imperative indicators to achieve these standards at a community level [25].

Numerous studies have studied the magnitude of IPIs in preschool and school-age children in
Ethiopia. However, there is a significant variability in the reports and an aggregate figure is
implicated to know the 'real' burden of IPIs. We thus carried out a systematic review and

It is made available under a CC-BY-NC-ND 4.0 International license .

90 meta-analysis on the prevalence of IPIs and its association with common indicators including 91 hand washing practice in children. These analyses were carried out in the context of in-depth 92 methodological application and rigorous statistical analyses that could be helpful for 93 estimating national level burden of IPIs as previous studies are characterized by high spatial 94 variation.

95 Methods

96 Study design and search strategy

Using broad-based computerized international databases, we employed systematic searches to 97 98 find all published studies on the prevalence of IPIs in Ethiopian children from 2000-2020. 99 Databases included MEDLINE/PubMed, EMBASE, Psych INFO and Web of Science, and 100 Google Scholar for grey literature. Reference lists of eligible articles, hand searches for grey 101 literature and relevant scientific conference websites were also appraised to enhance 102 electronic searches. Observational studies conducted on the prevalence of IPIs among 103 children in Ethiopia were selected for this systematic review and meta-analysis. Search protocol was developed by using such keywords as "prevalence" OR "Epidemiology" AND 104 "intestinal parasite," "intestinal helminthes", "intestinal protozoa", "soil-transmitted 105 106 helminthes" AND "associated factors" OR "predictors" AND "Ethiopia". To make a certain 107 scientific rigor, we strictly adhered to the Preferred Reporting of Systematic Reviews and 108 Meta-Analysis (PRISMA) guideline [26].

109 Inclusion criteria

110 All studies written in English, estimating the prevalence of IPIs in Ethiopian children and of

111 high-quality scores were entered into the final meta-analysis.

112 Exclusion Criteria

- 113 Studies that did not estimate the prevalence of IPIs, articles without definite sample size or
- 114 full-text, those that did not achieve the minimum quality scores, case reports, case series, and
- 115 experimental studies were excluded from the meta-analysis.

116 **Data Extraction**

117 Two reviewers (FW and AT) screened the downloaded titles and abstracts using the 118 eligibility criteria. Discussions and mutual consensus were in place when possible arguments 119 raised between the reviewers. Two reviewers (FW and AT) then assessed full-texts of 120 potentially eligible papers. We made some efforts to communicate the authors whenever 121 further information was needed. Numerator and denominator data and beta coefficients and

It is made available under a CC-BY-NC-ND 4.0 International license .

their standard errors (if given) were used to calculate ORs, where ORs with 95% CI were not

available. The data extraction format included first author, study year, region of study, study

- 124 design and sample size, and prevalence of IPIs.
- 125

126 Quality Appraisal

127 Articles were assessed for quality, with only high-quality studies included in the analysis. 128 Two authors (FW, AT) independently evaluated the quality of each relevant article. The 129 reviewer's cross-checked their quality appraisal scores and resolved any disparity before 130 calculating the final appraisal score. Moreover, Kappa statistic was used to measure 131 agreement between reviewers to determine uniformity of amongst eligible full-text articles 132 using guidelines proposed by Landis and Koch [31]: < 0.20 = slight agreement; 0.21-0.40 =133 fair agreement; 0.41-0.60 = moderate agreement; 0.61-0.80 = substantial agreement; and > 134 0.80 = almost perfect agreement. Finally, AA reviewed overall quality of extracted data and 135 edited the manuscript. Newcastle-Ottawa Scale adapted for prevalence studies 136 methodological quality assessment tool was also used [27]. The tool has three components in 137 general-the first component graded as five stars gives a due emphasis on the methodological 138 quality of each original study. The second component of the tool explores the comparability 139 of the study. The third component focuses on the outcome and statistical analysis of studies. 140 Articles with a score of ≥ 6 out of 10 were considered as high-quality. Accordingly, all 141 eligible studies had high quality scores.

142 Data analysis

143 Information about study designs, study sample and country were summarized using Microsoft 144 Excel and then exported to STATA/se version-14 for analysis. Meta-analysis of the 145 magnitude of IPIs was carried out using a random-effects model, generating a pooled 146 prevalence with 95% CIs. Heterogeneity among included studies was assessed using Cochran's Q and I^2 statistic [28]. I^2 statistic estimates the percentage of heterogeneity across 147 148 studies. Forest plots were also used to estimate the pool effect sizes and weight of overall and 149 each included study with respective CI to offer a graphic summary of the data. Publication 150 bias was determined based on the symmetry of funnel plots [29], and Egger's test [30]. Sub-151 group analysis was carried out, based on age of participants and regional states, because of 152 the presence of significant heterogeneity across the included studies.

It is made available under a CC-BY-NC-ND 4.0 International license .

153 **Results**

Our search yielded 2,896 articles; of these, 442 duplications and 2,411 unrelated articles were excluded. Kappa coefficient revealed that agreement rate between the two reviewers for the included articles was 0.81. Fifteen full-text articles [32-46] were excluded due to unmet outcome of interest or location. Finally, 43 eligible studies representing 20,008 participants met the inclusion criteria for this review that determine the burden of IPIs (**Figure 1**).

159 Descriptive characteristics of the included studies

160 Descriptive characteristics for the included epidemiological studies is presented in Table 1.

- 161 Of these, 42 studies were cross-sectional in design and only one study was case-control [47].
- 162 Children were classified based on presence versus absence of an IPI for any species. The

163 largest sample size was reported by the study conducted by Grimes J et al [50] and smallest

164 for the study done by Mulatu G [16]. Similarly, the prevalence of IPI was highest for the

- study conducted by Worku L et al [48] and lowest for the study conducted by Zemene T [49]
- 166 (**Table 1**).

167 **Prevalence of IPIs in children**

The overall prevalence of IPIs with one or more species was 48.2% (95% CI: 40.1, 56.3%) in Ethiopian children (**Figure 2**). We performed subgroup analyses based on regional states and age of participants as there was significant hetrogeniety across included studies. For instance, the prevalence of IPIs was 52.4% (95% CI: 41.3, 63.5) in school-age children and 52.1% (95% CI: 37.3, 66.8) of children with IPIs lived in Amhara regional state (**Table 2**). Overall Egger's test revealed no statistically significant publication bias, p-value = 0.62 (**Additional file 1**).

175 Association of residence and hand washing practice with IPIs

Five studies were included to determine the association of hand washing before eating on IPIs (**Table 3**). Children without hand washing before eating experienced six times more likely the occurrence of IPIs (OR: 5.6 (95% CI: 3.4, 9.3)) as compared to hand washing before eating (**Figure 3**). However, the association between residence (urban versus rural) showed a non-significant association with IPIs (OR: 1.1 (95% CI: 0.5, 2.1) (**Figure 4**).

It is made available under a CC-BY-NC-ND 4.0 International license .

181 **Discussions**

182 This study estimated the pooled prevalence of IPIs with one or more species in Ethiopian 183 children and its association with residence and hand washing practice, using the documented 184 data from systematic literature review, which was assembled from different regions of the 185 country. After diligent search through scientific databases, scientific reports and grey 186 literature, 43 studies were included in the final analysis. Accordingly, the overall pooled 187 prevalence of IPIs among Ethiopian children was 48.2%. This finding was in line with 188 previous studies that revealed 42.5% IPIs in Syria [51], 47.6% in Afghanistan [52] and 38% in Iran [53]. In contrast, the prevalence of IPIs observed in current study is higher compared 189 190 to studies in Thailand that reported 38.8% [54], in Shush country (5.14%) [55], in Turkey 191 (17%) [56] and in Korea (10.5%) [57]. This observed variation could be due to socio-192 economic status, poor hygienic practice and sanitary facilities, inadequate safe drinking water 193 and environmental factors as well as different methods used for the diagnosis of IPIs.

194 We performed sub-group analysis based on the age of participants and regional states of the 195 country. Accordingly, the evidence revealed that the prevalence of IPIs among school-age 196 children was two-fold higher than that in under five-children. The difference observed 197 between under-five and school-age children might be because of the following reasons-first, 198 close contact between students and unhygienic conditions in the school compound; second, 199 variation in sanitation and human development indices; and finally, due to implementation of 200 continuing deworming programme for under-five children by ministry of health. Likewise, 201 the highest prevalence of IPIs were observed in Amhara regional states and the lowest 202 prevalence was in Tigray state. This regional discrepancy might be because of cultural habits 203 (sanitary status) among the regions, variations in methodology and sample size. The 204 advancement of public health measures and policy implementation could also vary across 205 regions that might attribute for the difference.

In an effort to examine the association between residence and hand washing before eating and IPIs, hand washing before eating was associated with a significant reduction in the occurrence of IPIs. Indeed, IPIs is frequently caused by *hookworms*, *ascaris lumbricoides* and *trichuris trichiura* and affected over one billion individuals globally [58]. This could be due to probable to be hand contaminated with cysts of *giardia*, *cryptosporidium* and other species. The meager association between residence and IPIs in this meta-analysis is supported

It is made available under a CC-BY-NC-ND 4.0 International license .

by previous studies [$\underline{60}$, $\underline{61}$]. This might be because of variations among studies, although Egger's test for publication bias showed no statistically significant evidence, p-value = 0.06.

214 The findings of this study may have both clinical and public health implications towards 215 scaling up effective and efficient management of IPIs by informing decision makers and 216 practitioners. In other words, understanding the magnitude and distribution of IPIs is an 217 important precondition for planning and evaluating intervention programs. For instance, safe 218 water and personal hygiene as a basic human right will indisputably result in major health 219 improvements and prevention of different diseases including parasitic infections [59]. That is, 220 since almost all of IPIs are feco-oral communicable infections, delivery of tape water and 221 latrines, health education on personal hygiene and environmental sanitation are crucial to 222 control and reduce IPIs in the country.

223 However, these findings need to be considered in the context of some important limitations; 224 these include: (i) significant heterogeneity across studies might have contributed for meager 225 association between residence and IPIs, although presumably children in urban areas have 226 better access to personal and environmental hygiene; (ii) this study did not determine other 227 possible risk factors contributing to the occurrence of IPIs; (iii) the gold standard diagnosis of 228 Pinworm infection is Gram staining, though several studies had employed only wet smear; 229 and (iv) stool samples were taken at once but standard diagnosis usually take at least 3 230 samples.

231 Conclusion

This meta-analysis summarized a high pooled prevalence of IPIs in Ethiopian children especially among school-age children. Establishment of applicable sanitation services and health education for hand washing will help make a healthier childhood.

235 List of abbreviations

manuel Abajobir
manuel Abajo

- AT Aster Tadesse
- FW Fasil Wagnew
- IPIs Intestinal Parasitic Infections
- OR Odds Ratio

It is made available under a CC-BY-NC-ND 4.0 International license .

237 **Declarations**

- 238 Ethics approval and consent to participate
- 239 Not applicable
- 240 Consent to publication
- 241 Not applicable

242 Availability of data and material

- -The datasets used and/or analyzed during the current study are available from the
- 244 corresponding author on reasonable request.
- 245 -PRISMA checklist

246 **Competing interests**

247 The authors declare that they have no competing interests.

248 Funding

249 Not applicable

250 Authors' contribution

- 251 FW involved in the conception of research idea; (FW, AT, AA) undertook data extraction,
- analysis, interpretation, and manuscript write-up. All authors read and approved the final
- 253 manuscript.

254 Acknowledgements

The authors would like to acknowledge the Debre Markos University library for providing us with a wide range of available online databases.

257 **References**

- Mehraj V, Hatcher J, Akhtar S, Rafique G, Beg MA: Prevalence and factors associated
 with intestinal parasitic infection among children in an urban slum of Karachi. *PloS one* 2008, 3(11):e3680.
- 261 2. Horton J: Human gastrointestinal helminth infections: are they now neglected diseases?
 262 *Trends in parasitology* 2003, **19**(11):527-531.
- Utzinger J, Keiser J: Schistosomiasis and soil-transmitted helminthiasis: common drugs
 for treatment and control. *Expert opinion on pharmacotherapy* 2004, 5(2):263-285.
- Organization WH: Prevention and control of intestinal parasitic infections: report of a
 WHO Expert Committee [meeting held in Geneva from 3 to 7 March 1986]. 1987.
- 267 5. Okyay P, Ertug S, Gultekin B, Onen O, Beser E: Intestinal parasites prevalence and
 268 related factors in school children, a western city sample-Turkey. *BMC public health* 2004,
 269 4(1):64.
- Chan MS: The global burden of intestinal nematode infections—fifty years on. *Parasitology today* 1997, 13(11):438-443.

272	7.	Hailegebriel T: Prevalence of intestinal parasitic infections and associated risk factors
273		among students at Dona Berber primary school, Bahir Dar, Ethiopia. BMC infectious
274		<i>diseases</i> 2017, 17 (1):362.
275	8.	Abdel-Aziz MA, Afifi AA, Malik EM, Adam I: Intestinal protozoa and intestinal
276		helminthic infections among schoolchildren in Central Sudan. Asian Pacific Journal of
277		<i>Tropical Medicine</i> 2010, 3 (4):292-293.
278	9.	Ayalew A, Debebe T, Worku A: Prevalence and risk factors of intestinal parasites among
279		Delgi school children, North Gondar, Ethiopia. Journal of Parasitology and Vector
280		<i>Biology</i> 2011, 3 (5):75-81.
281	10.	Emile N, Bosco NJ, Karine B: Prevalence of intestinal parasitic infections and associated
282		risk factors among Kigali Institute of Education students in Kigali, Rwanda. Tropical
283		<i>biomedicine</i> 2013, 30 (4):718-726.
284	11.	Erismann S, Diagbouga S, Odermatt P, Knoblauch AM, Gerold J, Shrestha A, Grissoum T,
285		Kaboré A, Schindler C, Utzinger J: Prevalence of intestinal parasitic infections and
286		associated risk factors among schoolchildren in the Plateau Central and Centre-Ouest
287		regions of Burkina Faso. Parasites & vectors 2016, 9(1):554.
288	12.	Speich B, Marti H, Ame SM, Ali SM, Bogoch II, Utzinger J, Albonico M, Keiser J:
289	12.	Prevalence of intestinal protozoa infection among school-aged children on Pemba
290		Island, Tanzania, and effect of single-dose albendazole, nitazoxanide and albendazole-
291		nitazoxanide. Parasites & vectors 2013, 6(1):3.
292	13.	Brooker S: Estimating the global distribution and disease burden of intestinal nematode
293	15.	infections: adding up the numbers–a review. International journal for parasitology 2010,
293		40 (10):1137-1144.
294	14.	Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J: Helminth infections:
295	14.	the great neglected tropical diseases. The Journal of clinical investigation 2008,
296 297		118 (4):1311-1321.
297	15.	Utzinger J, Bergquist R, Olveda R, Zhou X-N: Important helminth infections in Southeast
	15.	
299		Asia: diversity, potential for control and prospects for elimination. In: Advances in
300	16	parasitology. Volume 72, edn.: Elsevier; 2010: 1-30.
301	16.	Mulatu G, Zeynudin A, Zemene E, Debalke S, Beyene G: Intestinal parasitic infections
302		among children under five years of age presenting with diarrhoeal diseases to two public
303	17	health facilities in Hawassa, South Ethiopia. Infectious diseases of poverty 2015, 4(1):49.
304	17.	Brooker S, Clements AC, Bundy DA: Global epidemiology, ecology and control of soil
305	10	transmitted helminth infections. Advances in parasitology 2006, 62 :221-261.
306	18.	King CH, Bertino A-M: Asymmetries of poverty: why global burden of disease valuations
307		underestimate the burden of neglected tropical diseases. <i>PLoS Neglected Tropical</i>
308	10	Diseases 2008, 2 (3):e209.
309	19.	Gelaw A, Anagaw B, Nigussie B, Silesh B, Yirga A, Alem M, Endris M, Gelaw B:
310		Prevalence of intestinal parasitic infections and risk factors among schoolchildren at the
311		University of Gondar Community School, Northwest Ethiopia: a cross-sectional study.
312	•	<i>BMC public health</i> 2013, 13 (1):304.
313	20.	Alum A, Rubino JR, Ijaz MK: The global war against intestinal parasites—should we use
314	21	a holistic approach? International Journal of Infectious Diseases 2010, 14(9):e732-e738.
315	21.	Tiwari BR, Chaudhary R, Adhikari N, Jayaswal S, Poudel T, Rijal K: Prevalence of
316		intestinal parasitic infections among school children of Dadeldhura District. Nepal JHAS
317	•	2013, 3 (1):14-16.
318	22.	Organization WH: Prevention and control of schistosomiasis and soil-transmitted
319	•	helminthiasis: report of a WHO expert committee. 2002.
320	23.	Hotez PJ, Molyneux DH, Fenwick A, Kumaresan J, Sachs SE, Sachs JD, Savioli L: Control
321	a :	of neglected tropical diseases. New England Journal of Medicine 2007, 357(10):1018-1027.
322	24.	Ismail M: Preventive chemotherapy in human helminthiasis, Coordinating use of
323		anthelminthic drugs in control interventions: A manual for health professionals and
324		programme managers. Indian Journal of Medical Research 2007, 126 (3):235.

325	25.	Phiri K, Whitty C, Graham S, Ssembatya-Lule G: Urban/rural differences in prevalence
326		and risk factors for intestinal helminth infection in southern Malawi. Annals of Tropical
327		Medicine & Parasitology 2000, 94 (4):381-387.
328	26.	Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M,
329		Devereaux PJ, Kleijnen J, Moher D: The PRISMA statement for reporting systematic
330		reviews and meta-analyses of studies that evaluate health care interventions:
331	07	explanation and elaboration. J Clin Epidemiol 2009, 62(10):e1-34.
332	27.	Newcastle-Ottawa Scale customized for cross-sectional studies. In. available from
333 334	28.	https://static-content.springer.com/esm//12889_2012_5111. Higgins JP, Thompson SG, Deeks JJ, Altman DG: Measuring inconsistency in meta-
335 335	20.	analyses. BMJ 2003, 327(7414):557-560.
336	29.	Borenstein M, Hedges LV, Higgins J, Rothstein HR: A basic introduction to fixed []effect
337	27.	and random 🗆 effects models for meta 🗆 analysis. Research Synthesis Methods 2010,
338		1(2):97-111.
339	30.	Begg CB, Mazumdar M: Operating characteristics of a rank correlation test for
340	201	publication bias. Biometrics 1994:1088-1101.
341	31.	Landis JR, Koch GG: The measurement of observer agreement for categorical data.
342		biometrics 1977:159-174.
343	32.	Akinbo FO, Okaka C, Omoregie R: Prevalence of intestinal parasitic infections among
344		HIV patients in Benin City, Nigeria. Libyan Journal of Medicine 2010, 5(1):5506.
345	33.	Awole M, Gebre-Selassie S, Kassa T, Kibru G: Prevalence of intestinal parasites in HIV-
346		infected adult patients in Southwestern Ethiopia. Ethiopian Journal of Health
347		Development 2003, 17 (1):71-78.
348	34.	Chan M, Medley G, Jamison D, Bundy D: The evaluation of potential global morbidity
349		attributable to intestinal nematode infections. Parasitology 1994, 109(3):373-387.
350	35.	Ericsson CD, Steffen R, Siddiqui AA, Berk SL: Diagnosis of Strongyloides stercoralis
351		infection. Clinical Infectious Diseases 2001, 33 (7):1040-1047.
352	36.	Harhay MO, Horton J, Olliaro PL: Epidemiology and control of human gastrointestinal
353	27	parasites in children. Expert review of anti-infective therapy 2010, 8(2):219-234.
354	37.	Kassu A, Mengistu G, Ayele B, Diro E, Mekonnen F, Ketema D, Moges F, Mesfin T,
355		Getachew A, Ergicho B: HIV and intestinal parasites in adult TB patients in a teaching
356 357	38.	hospital in Northwest Ethiopia. <i>Tropical doctor</i> 2007, 37 (4):222-224. Kassu A, Tsegaye A, Wolday D, Petros B, Aklilu M, Sanders E, Fontanet A, Van Baarle D,
358	56.	Hamann D, De Wit TR: Role of incidental and/or cured intestinal parasitic infections on
359		profile of CD4+ and CD8+ T cell subsets and activation status in HIV \Box 1 infected and
360		uninfected adult Ethiopians. Clinical & Experimental Immunology 2003, 132(1):113-119.
361	39.	Legesse M, Erko B: Zoonotic intestinal parasites in Papio anubis (baboon) and
362	57.	Cercopithecus aethiops (vervet) from four localities in Ethiopia. Acta Tropica 2004,
363		90 (3):231-236.
364	40.	Mengistu A, Gebre-Selassie S, Kassa T: Prevalence of intestinal parasitic infections among
365		urban dwellers in southwest Ethiopia. Ethiopian Journal of Health Development 2007,
366		21 (1):12-17.
367	41.	Scrivener S, Yemaneberhan H, Zebenigus M, Tilahun D, Girma S, Ali S, McElroy P,
368		Custovic A, Woodcock A, Pritchard D: Independent effects of intestinal parasite infection
369		and domestic allergen exposure on risk of wheeze in Ethiopia: a nested case-control
370		study. The Lancet 2001, 358(9292):1493-1499.
371	42.	Sissay MM, Uggla A, Waller PJ: Epidemiology and seasonal dynamics of gastrointestinal
372		nematode infections of sheep in a semi-arid region of eastern Ethiopia. Veterinary
373		<i>Parasitology</i> 2007, 143 (3-4):311-321.
374	43.	Sissay MM, Uggla A, Waller PJ: Prevalence and seasonal incidence of larval and adult
375		cestode infections of sheep and goats in eastern Ethiopia . <i>Tropical Animal Health and</i>
376 277	11	Production 2008, 40(6):387-394.
377 378	44.	Aiemjoy K, Gebresillasie S, Stoller NE, Shiferaw A, Tadesse Z, Chanyalew M, Aragie S, Callahan K, Keenan JD: Epidemiology of soil-transmitted helminth and intestinal
5/0		Cananan K, Keenan JD. Epidemology of son-transmitted hemmin and miestillar

379		Protozoan infections in preschool-aged children in the amhara region of Ethiopia. The
380		American journal of tropical medicine and hygiene 2017, 96 (4):866-872.
381	45.	Maru DS: Prevalence of intestinal parasitic infections and associated risk factors among
382		school children in Adigrat town, northern Ethiopia. Int J Emerg Trends in Sci Technol
383		2015, 4 (1):4943-4948.
384	46.	Sayyari A, Imanzadeh F, Bagheri Yazdi S, Karami H, Yaghoobi M: Prevalence of intestinal
385		parasitic infections in the Islamic Republic of Iran. 2005.
386	47.	Firdu T, Abunna F, Girma M: Intestinal protozoal parasites in diarrheal children and
387		associated risk factors at Yirgalem Hospital, Ethiopia: A case-control study.
388		International scholarly research notices 2014, 2014.
389	48.	Worku L, Damte D, Endris M, Tesfa H, Aemero M: Schistosoma mansoni infection and
390		associated determinant factors among school children in Sanja Town, Northwest
391		Ethiopia. Journal of parasitology research 2014, 2014.
392	49.	Zemene T, Shiferaw MB: Prevalence of intestinal parasitic infections in children under
393		the age of 5 years attending the Debre Birhan referral hospital, North Shoa, Ethiopia.
394		<i>BMC research notes</i> 2018, 11 (1):58.
395	50.	Grimes JE, Tadesse G, Gardiner IA, Yard E, Wuletaw Y, Templeton MR, Harrison WE,
396		Drake LJ: Sanitation, hookworm, anemia, stunting, and wasting in primary school
397		children in southern Ethiopia: Baseline results from a study in 30 schools. PLoS
398		neglected tropical diseases 2017, 11 (10):e0005948.
399	51.	Al-kafri A, Harba A: Intestinal parasites in basic education pupils in urban and rural
400		Idlb. Syrian Clinical Laboratory Revues 2009, 5(2):2-5.
401	52.	Gabrielli A, Ramsan M, Naumann C, Tsogzolmaa D, Bojang B, Khoshal M, Connolly M,
402		Stothard J, Montresor A, Savioli L: Soil-transmitted helminths and haemoglobin status
403		among Afghan children in World Food Programme assisted schools. Journal of
404		helminthology 2005, 79 (4):381-384.
405	53.	Daryani A, Hosseini-Teshnizi S, Hosseini S-A, Ahmadpour E, Sarvi S, Amouei A, Mizani A,
406		Gholami S, Sharif M: Intestinal parasitic infections in Iranian preschool and school
407		children: A systematic review and meta-analysis. Acta tropica 2017, 169:69-83.
408	54.	Nithikathkul C, Changsap B, Wannapinyosheep S, Poister C, Boontan P: The prevalence of
409		Enterobius vermicularis among primary school students in Samut Prakan Province,
410		Thailand . Southeast Asian journal of tropical medicine and public health 2001, 32 :133-137.
411	55.	Fallahizadeh S, Feiz-Haddad MH, Kazemi F, Afrisham R: Prevalence of Intestinal Parasitic
412		Infections in Shush County, Southwest of Iran during 2014-2016. International Journal of
413		Infection 2017, 4 (3).
414	56.	Çeliksöz A, Güler N, Güler G, Öztop AY, Degerli S: Prevalence of intestinal parasites in
415		three socioeconomically-different regions of Sivas, Turkey. Journal of Health, Population
416		and Nutrition 2005:184-191.
417	57.	Lee S-E, Lee J-H, Ju J-W, Lee W-J, Cho S-H: Prevalence of Enterobius vermicularis
418		among preschool children in Gimhae-si, Gyeongsangnam-do, Korea. The Korean journal
419		of parasitology 2011, 49 (2):183.
420	58.	Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, Hotez PJ: Soil-
421		transmitted helminth infections: ascariasis, trichuriasis, and hookworm. The Lancet
422		2006, 367 (9521):1521-1532.
423	59.	Bartram J, Cairncross S: Hygiene, sanitation, and water: forgotten foundations of health.
424		<i>PLoS medicine</i> 2010, 7 (11):e1000367.
425	60.	Strunz EC, Addiss DG, Stocks ME, Ogden S, Utzinger J, Freeman MC: Water, sanitation,
426		hygiene, and soil-transmitted helminth infection: a systematic review and meta-analysis.
427		<i>PLoS medicine</i> 2014, 11 (3):e1001620.
428	61.	Ziegelbauer K, Speich B, Mäusezahl D, Bos R, Keiser J, Utzinger J: Effect of sanitation on
429		soil-transmitted helminth infection: systematic review and meta-analysis. PLoS medicine
430		2012, 9 (1):e1001162.
431	62.	Ameya G, Tsalla T, Getu F, Getu E: Antimicrobial susceptibility pattern, and associated
432		factors of Salmonella and Shigella infections among under five children in Arba Minch,
433		South Ethiopia. Annals of clinical microbiology and antimicrobials 2018, 17(1):1.

434	63.	Tadesse G: The prevalence of intestinal helminthic infections and associated risk factors
435		among school children in Babile town, eastern Ethiopia. Ethiopian Journal of Health
436		Development 2005, 19 (2):140-147.
437	64.	de Lucio A, Amor-Aramendía A, Bailo B, Saugar JM, Anegagrie M, Arroyo A, López-
438		Quintana B, Zewdie D, Ayehubizu Z, Yizengaw E: Prevalence and genetic diversity of
439		Giardia duodenalis and Cryptosporidium spp. among school children in a rural area of
440		the Amhara Region, North-West Ethiopia. <i>PloS one</i> 2016, 11 (7):e0159992.
441	65.	Abossie A, Seid M: Assessment of the prevalence of intestinal parasitosis and associated
442	05.	risk factors among primary school children in Chencha town, Southern Ethiopia. BMC
443	((Public Health 2014, 14 (1):166.
444	66.	Alemu A, Tegegne Y, Damte D, Melku M: Schistosoma mansoni and soil-transmitted
445		helminths among preschool-aged children in Chuahit, Dembia district, Northwest
446		Ethiopia: prevalence, intensity of infection and associated risk factors. BMC Public
447		<i>Health</i> 2016, 16 (1):422.
448	67.	Mathewos B, Alemu A, Woldeyohannes D, Alemu A, Addis Z, Tiruneh M, Aimero M, Kassu
449		A: Current status of soil transmitted helminths and Schistosoma mansoni infection
450		among children in two primary schools in North Gondar, Northwest Ethiopia: a cross
451		sectional study. BMC Research Notes 2014, 7(1):88.
452	68.	Tadege B, Shimelis T: Infections with Schistosoma mansoni and geohelminths among
453		school children dwelling along the shore of the Lake Hawassa, southern Ethiopia. PloS
454		one 2017, 12 (7):e0181547.
455	69.	Beyene G, Tasew H: Prevalence of intestinal parasite, Shigella and Salmonella species
456	07.	among diarrheal children in Jimma health center, Jimma southwest Ethiopia: a cross
457		sectional study. Annals of clinical microbiology and antimicrobials 2014, 13 (1):10.
458	70.	Hailu T, Alemu M, Abera B, Mulu W, Yizengaw E, Genanew A, Bereded F: Multivariate
459	70.	analysis of factors associated with Schistosoma mansoni and hookworm infection among
459		primary school children in rural Bahir Dar, Northwest Ethiopia. Tropical diseases, travel
461	71	medicine and vaccines 2018, 4 (1):4.
462	71.	Reji P, Belay G, Erko B, Legesse M, Belay M: Intestinal parasitic infections and
463		malnutrition amongst first-cycle primary schoolchildren in Adama, Ethiopia. African
464		journal of primary health care & family medicine 2011, 3 (1).
465	72.	Tefera E, Belay T, Mekonnen SK, Zeynudin A, Belachew T: Prevalence and intensity of
466		soil transmitted helminths among school children of Mendera Elementary School,
467		Jimma, Southwest Ethiopia. The Pan African medical journal 2017, 27.
468	73.	Alemayehu B, Tomass Z: Prevalence of intestinal Helminthiasis and associated risk
469		factors among school children in Dawro zone, southern Ethiopia. J Biol Agr Heal Care
470		2015, 5 :76-82.
471	74.	Degarege A, Erko B: Prevalence of intestinal parasitic infections among children under
472		five years of age with emphasis on Schistosoma mansoni in Wonji Shoa Sugar Estate,
473		Ethiopia. <i>PloS one</i> 2014, 9 (10):e109793.
474	75.	Begna T, Solomon T, Yohannes ZENEBE EA: Intestinal parasitic infections and
475		nutritional status among primary school children in Delo-mena district, South Eastern
476		Ethiopia. Iranian journal of parasitology 2016, 11 (4):549.
477	76.	Feleke DG, Arega S, Tekleweini M, Kindie K, Gedefie A: Schistosoma mansoni and other
478	70.	helminthes infections at Haike primary school children, North-East, Ethiopia: a cross-
478		sectional study. BMC research notes 2017, 10 (1):609.
	77	•
480	77.	Anuar TS, Salleh FM, Moktar N: Soil-transmitted helminth infections and associated risk
481	70	factors in three Orang Asli tribes in Peninsular Malaysia. Scientific reports 2014, 4:4101.
482	78.	Yami A, Mamo Y, Kebede S: Prevalence and predictors of intestinal helminthiasis among
483		school children in Jimma zone; a cross-sectional study. Ethiopian journal of health
484		sciences 2011, 21 (3).
485	79.	Alemu A, Atnafu A, Addis Z, Shiferaw Y, Teklu T, Mathewos B, Birhan W, Gebretsadik S,
486		Gelaw B: Soil transmitted helminths and Schistosoma mansoni infections among school
487		children in Zarima town, northwest Ethiopia. BMC infectious diseases 2011, 11(1):189.

It is made available under a CC-BY-NC-ND 4.0 International license .

488 489	80.	Amare B, Ali J, Moges B, Yismaw G, Belyhun Y, Gebretsadik S, Woldeyohannes D, Tafess K, Abate E, Endris M: Nutritional status, intestinal parasite infection and allergy among
489 490		school children in Northwest Ethiopia. <i>BMC pediatrics</i> 2013, 13 (1):7.
491	81.	Dejene T: Impact of irrigation on the prevalence of intestinal parasite infections with
492	01.	emphasis on schistosomiasis in Hintallo-Wejerat, North Ethiopia. Ethiopian Journal of
493		Health Sciences 2008, 18 (2).
494	82.	Derso A, Nibret E, Munshea A: Prevalence of intestinal parasitic infections and associated
495		risk factors among pregnant women attending antenatal care center at Felege Hiwot
496		Referral Hospital, northwest Ethiopia . BMC infectious diseases 2016, 16 (1):530.
497	83.	Legesse M, Erko B: Prevalence of intestinal parasites among schoolchildren in a rural
498		area close to the southeast of Lake Langano, Ethiopia. The Ethiopian Journal of Health
499		Development (EJHD) 2017, 18 (2).
500	84.	Abera A, Nibret E: Prevalence of gastrointestinal helminthic infections and associated
501		risk factors among schoolchildren in Tilili town, northwest Ethiopia. Asian Pacific
502		journal of tropical medicine 2014, 7(7):525-530.
503	85.	Tulu B, Taye S, Amsalu E: Prevalence and its associated risk factors of intestinal
504		parasitic infections among Yadot primary school children of South Eastern Ethiopia: a
505		cross-sectional study. BMC research notes 2014, 7(1):848.
506	86.	Feleke H, Medhin G, Abebe A, Beyene B, Kloos H, Asrat D: Enteric pathogens and
507		associated risk factors among under-five children with and without diarrhea in Wegera
508		District, Northwestern Ethiopia. The Pan African Medical Journal 2018, 29.
509	87.	Wegayehu T, Adamu H, Petros B: Prevalence of Giardia duodenalis and Cryptosporidium
510		species infections among children and cattle in North Shewa Zone, Ethiopia. BMC
511		infectious diseases 2013, 13 (1):419.
512	88.	Amor A, Rodriguez E, Saugar JM, Arroyo A, López-Quintana B, Abera B, Yimer M,
513		Yizengaw E, Zewdie D, Ayehubizu Z: High prevalence of Strongyloides stercoralis in
514		school-aged children in a rural highland of north-western Ethiopia: the role of intensive
515		diagnostic work-up. Parasites & vectors 2016, 9(1):617.
516	89.	Bitew AA, Abera B, Seyoum W, Endale B, Kiber T, Goshu G, Admass A: Soil-transmitted
517		helminths and Schistosoma mansoni infections in Ethiopian Orthodox Church students
518		around lake tana, northwest Ethiopia. PloS one 2016, 11(5):e0155915.
519	90.	Abate A, Kibret B, Bekalu E, Abera S, Teklu T, Yalew A, Endris M, Worku L, Tekeste Z:
520		Cross-sectional study on the prevalence of intestinal parasites and associated risk factors
521	01	in Teda Health Centre, Northwest Ethiopia. ISRN parasitology 2013, 2013.
522	91.	Shumbej T, Belay T, Mekonnen Z, Tefera T, Zemene E: Soil-transmitted helminths and
523		associated factors among pre-school children in Butajira Town, South-Central Ethiopia:
524	00	A community-based cross-sectional study. <i>PloS one</i> 2015, 10 (8):e0136342.
525	92.	Ayalew D, Boelee E, Endeshaw T, Petros B: Cryptosporidium and Giardia infection and
526		drinking water sources among children in Lege Dini, Ethiopia. Tropical Medicine &
527	02	International Health 2008, 13 (4):472-475.
528	93.	Nyantekyi LA, Legesse M, Belay M, Tadesse K, Manaye K, Macias C, Erko B: Intestinal
529 530		parasitic infections among under-five children and maternal awareness about the infections in Shesha Kakala, Wanda Canat, Sautharn Ethiopia, Ethiopia, Jaurugl of
		infections in Shesha Kekele, Wondo Genet, Southern Ethiopia. Ethiopian Journal of Health Development 2010. 24(2)
531 532	94.	<i>Health Development</i> 2010, 24 (3). Gizaw Z, Adane T, Azanaw J, Addisu A, Haile D: Childhood intestinal parasitic infection
532 533	74.	and sanitation predictors in rural Dembiya, northwest Ethiopia. Environmental Health
535 534		and Samation predictors in rula Demotya, northwest Ethopia. Environmental Health and Preventive Medicine 2018, 23(1):26.
535 535	95.	Eshetu T, Sibhatu G, Megiso M, Abere A, Baynes HW, Biadgo B, Zeleke AJ: Intestinal
536	<i>J</i> J.	Parasitosis and Their Associated Factors among People Living with HIV at University
537		of Gondar Hospital, Northwest-Ethiopia. Ethiopian journal of health sciences 2017,
538		27 (4):411-420.
539		

540 Figure legends

- 541 Figure 1:- Flowchart diagram describing selection of studies for the burden of IPIs and
- 542 association with residence and hand washing practice in Ethiopian children, 2018
- Figure 2:- Forest Plot of the 31 studies that quantitatively assessed the pooled prevalence of IPIs, 2018.
- 545 Figure 3: Forest Plot of the 6 studies that quantitatively assessed the effect of hand
- washing before eating on the occurrences of IPIs, 2018
- Figure 4:- Forest Plot of the 6 studies that quantitatively assessed the effect of residence
 on the occurrences of IPIs, 2018.
- 549 Additional Files
- 550 Additional file 1:- Funnel plot of the included studies for checking publication bias.
- 551
- 552 Table 1: Descriptive summary of 31 included studies on the prevalence of intestinal
- 553 parasitic infections and association with residence and hand washing in Ethiopian
- 554 children.

Authors name	year	Region	Design	Age of subjects	Sample size	No of people with outcome	Prevalence (%)	Quality score
Gemechu et al[<u>62</u>]	2017	SNNP	CS	<5yr	167	29	17.45	7
Girum Tadesse [63]	2001	SNNP	CS	school age	415	113	27.2	9
AidadeLucio et al[<u>64]</u>	2016	Amhara	CS	school age	393	234	59.6	7
Tamirat Hailegebri el[<u>7</u>]	2016	Amhara	CS	school age	359	235	65.5	7
Abossie A et al[65]	2012	SNNP	CS	school age	400	324	81	8
Zemene T et al[49]	2014	Amhara	CS	<5yr	217	38	17.4	7
Agesew A et al[66]	2015	Amhara	CS	<5yr	401	141	35.2	8
Mathewos B et al[<u>67]</u>	2012	Amhara	CS	school age	261	174	66.7	8
Gelaw A et al[19]	2012	Amhara	CS	school age	304	104	34.2	8
Tadege B et al[68]	2015	SNNP	CS	school age	374	254	67.9	8

	2011	CDDD	66		150	12	26.6	
Mulatu G[<u>16</u>]	2011	SNNP	CS	<5yr	158	42	26.6	7
Beyene G et al	2012	Oromia	CS	school age	260	129	49.6	6
Hailu T et al[<u>70</u>]	2017	Amhara	CS	school age	409	193	47.2	7
Reji P et al[<u>71</u>]	2008	Oromia	CS	school age	358	127	35.5	8
Teferae E et al[72]	2010	Oromia	CS	school age	715	346	48.4	7
Alemayehu B et al[<u>73</u>]	2015	SNNP	CS	school age	503	363	72.2	6
Yirgalem G et al[74]	2013	Oromia	CS	<5yr	374	91	24.3	7
Firdu T et al[<u>47</u>]	2011	SNNP	Case- control	school age	230	84	36.52	8
Worku L et al[48]	2013	Amhara	CS	school age	385	372	96.6	9
Begna T et al[75]	2013	SNNP	CS	school age	492	131	26.6	9
Grimes J et al[50]	2017	SNNP	CS	school age	3729	874	23	7
Daniel G et al[76]	2017	Oromia	CS	school age	279	85	30.5	7
Tilahun A et al[77]	2010	Amhara	CS	school age	384	211	54.9	7
Yami A et al[<u>78</u>]	2008	Oromia	CS	school age	855	403	47.1	9
Abebe Alemu et al[<u>79</u>]	2009	Amhara	CS	school age	319	263	82.4	7
Amare B[80]	2008	Amhara	CS	school age	405	92	22.7	8
Tadesse D[<u>81</u>]	2000	Tigray	CS	school age	800	285	35.6	8
Derso A[<u>82</u>]	2012	Amhara	CS	school age	385	170	44.2	8
Ayalew A et al[9]	2010	Amhara	CS	school age	704	562	79.8	6
Legesse M et al[<u>83]</u>	2003	Oromia	CS	school age	259	217	83.8	6
Alamneh Aet al[<u>84]</u>	2014	Amhara	CS	school age	380	170	44.2	7
Tulu et al. [85]	2014	Amhara	CS	School age	340	89	26.2	8
Feleke et al. [86]	2018	Amhara	CS	<5	225	49	21.8	6

It is made available under a CC-BY-NC-ND 4.0 International license .

Wegayehu et al.	2011	Amhara	CS	school age	284	81	28.5	7
[<u>87</u>]						-		
Aranzazu A et al[<u>88]</u>	2016	Amhara	CS	School age	396	306	77.5	6
Bitew et al. [<u>89</u>]	2016	Amhara	CS	School age	384	251	65.6	7
Mulusew A	2014	Amhara	CS	School age	357	245	68.4	7
Abate et al [<u>90</u>]	2013	Amhara	CS	School age	410	255	62.3	7
Aida de Lucio [64]	2016	Amhara	CS	School age	393	216	55	8
Teha Shumbej [91]	2015	SNNP	CS	<5	377	88	23.3	6
Ayalew et al. [92]	2008	Dire- Dawa	CS	School age	655	311	47.5	7
Liza A.[<u>93]</u>	2010	SNNP	CS	<5	288	245	85	8
Gizaw et al.[<u>94</u>]	2018	Amhara	CS	<5	225	58	25.8	6

555 CS=Cross-Sectional, SNNP=_Southern Nations, Nationalities, and Peoples

Table 2: Subgroup analysis based on regions and age of participants among diabetes patients

558

Variables	Characteristics	Estimates with 95% CI	P-value
Age of participant	Under-five children	24.23(17.44-31.02)	<0.001
	School-age children	52.43(41.37-63.5)	
Region	Amhara	52.1(37.3-66.8)	<0.001
	Oromia	45.1(30.9-59.3)	
	SNNP	43.9(24.9-62.9)	
	Tigray	35.6(32.2-38.9)	

559 SNNP=_Southern Nations, Nationalities, and Peoples

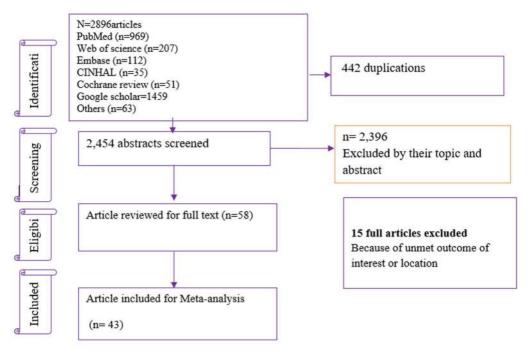
It is made available under a CC-BY-NC-ND 4.0 International license .

560 Table 3 the effect of hand washing before eating on intestinal parasitic infections in

561 Ethiopian children.

Authors and year	Region	Hand washing	Intestinal parasites		OR(with 95% CI)
		Before eating	Positive	negative	
Gemechu A et al,2017[<u>62</u>]	Southern	Yes	7	83	1
al,2017[02]		NO	22	25	4.70(1.88-11.75)
Ayalew A et al,2010[9]	Amhara	Yes	261	110	1
		No	301	32	3.96(2.58-6)
Abera A et	Amhara	Yes	135	191	1
al,2014[<u>84]</u>		No	35	24	2.06(1.17-3.62)
Tadege B et	SNNP	Yes	57	156	1
al,2015[<u>68]</u>		No	140	21	14.02(8-24.3)
Alemu A et	Amhara	Yes	6	96	1
al,2015[<u>66</u>]		No	86	213	6.46(2.73-15.3)
Hailu et al,	Amhara	Yes	128	227	1
2017[70]		No	40	14	2.90(1.52-5.53)
Teha et al. 2015[91]	SNNP	Yes	67	186	1
		No	21	191	4.4(2.6-7.6)
Gizew et al. 2018[94]	Amhara	Yes	10	92	1
		No	48	75	5.8(2.7-12.4)
Tegegne E. et al. 2017[95]	Amhara	Yes	22	148	1
		No	43	10	28.9(12.7-65.7)

562

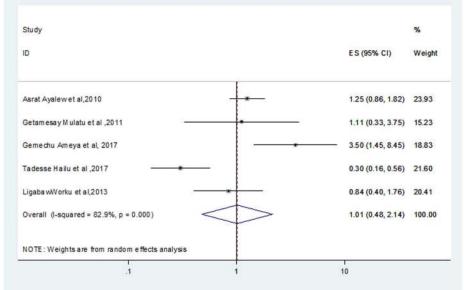

SNNP=_Southern Nations, Nationalities, and Peoples

563

564

565

566



Study ID	ES (95% CI)	% Weigh
Gemechu Ameya et al (2017)	17.45 (11.69, 23.3	1) 2.32
Girum Tadesse (2001)	✤ 27.20 (22.92, 31.4)	8) 2.33
AidadeLucio et al (2016)	59.60 (54.75, 64.4	5) 2.32
Tamirat Hailegebriel (2016)	- 65.50 (60.58, 70.4	2) 2.32
Ashenafi abossie et al (2012)	* 81.00 (77.16, 84.0	4) 2.33
Telanesh Zemene et al (2014)	+ 17.40 (12.38, 22.4	4) 2.32
Agesew Alemu et al (2015)	- 35.20 (30.53, 39.0	7) 2.33
Biniam Mathewos et al (2012)	66.70 (60.98, 72.4	2) 2.32
Aschalew Gelaw et al (2012)	- 34.20 (28.87, 39.5	3) 2.32
Bamlaku Tadege et al (2015)	- 67.90 (63.17, 72.6	3) 2.33
Getamesay Mulatu et al (2011)	28.60 (19.71, 33.4	9) 2.30
Getnet Beyene et al (2012)	49.60 (43.52, 55.6	8) 2.31
Tadesse Hailu et al (2017)	47.20 (42.38, 52.0	4) 2.32
Pawlos Reji et al (2008)	35.50 (30.54, 40.4	6) 2.32
Ephrem Teferae et al (2010)	+ 48.40 (44.74, 52.0	
Bereket Alemayehu et al (2015)	★ 72.20 (68.28, 76.)	2) 2.33
Yirgalem G/hiwot et al (2013)	24.30 (19.95, 28.0	5) 2.33
Teshome Firdu et al (2011)	38.52 (30.30, 42.7	4) 2.31
LigabawWorku et al (2013)	96.60 (94.79, 98.4	1) 2.34
Begna Tulu et al (2013)	÷ 28.60 (22.70, 30.5	0) 2.33
Jack E. T. Grimes et al (2017)	23.00 (21.65, 24.3	5) 2.34
Daniel Getacher Feleke et al (2017)	30.50 (25.10, 35.5	0) 2.32
Tilahun Alelign et al (2010)	54.90 (49.92, 59.8	
A Yam (2008)	47.10 (43.75, 50.4	5) 2.33
Abebe Alemu et al (2009)	* 82.40 (78.22, 86.5	
Bernnet Amare (2008)	22.70 (18.62, 26.7	8) 2.33
Tadesse Dejene (2000)	- 35.60 (32.28, 38.5	2) 2.33
Endalkachew Nibret (2012)	44.20 (39.24, 49.1	6) 2.32
Asrat Ayalew et al (2010)		
Mengistu Legesse et al (2003)	* 83.80 (79.31, 88.2	(9) 2.33
Alamneh Abera et al (2014)	44.20 (39.21, 49.1	9) 2.32
Tulu et al. (2014)	- 26.20 (21.53, 30.1	7) 2.33
Feleke et al. (2018)	21.80 (16.41, 27.1	9) 2.32
Wegavehu et al. (2011)		
Aranzazu Amor et al (2018)	➡ 77.50 (73.39, 81.6	1) 2.33
Bitew et al. (2018)	- 65.60 (60.85, 70.3	5) 2.33
Mulusew Andualem (2014)	+ 68.40 (63.58, 73.2	2) 2.32
Abate et al (2013)	62.30 (57.61, 66.5)	9) 2.33
Aida de Lucio (2016)		
Teha Shumbei, factor (2015)	23.30 (19.03, 27.5	
Ayalew et al. (2008)	47.50 (43.68, 51.3	
Liza A. (2010)	* 85.00 (80.88, 89,	
Gizaw et al. (2018)	25.80 (20.08, 31.5	
Overall (1-squared = 99.5%, p = 0.000)	48.18 (40.06, 56.3	
NOTE: Weights are from random effects analysis	T	vaciose(03

.0 10

%

Gemechu A et al,2017		4.70 (1.80, 12.28)	9.29
Ayalew A et al,2010		3.90 (2.54, 5.98)	12.65
Abera A et al,2014		2.00 (1.14, 3.52)	11.86
Tadege B et al,2015		14.00 (8.08, 24.26)	11.95
Alemu A et al.2015		6.40 (2.70, 15.15)	9.93
Hailu et al, 2017		2.90 (1.52, 5.53)	11.35
Teha et al. 2015		4.40 (2.59, 7.48)	12.07
Gizew et al 2018	-+	5.80 (2.75, 12.23)	10.69
Tegegne E. et al 2017		28.90 (12.72, 65.68)	10.20
Overall (I-squared = 82.5%, p = 0.000)	\diamond	5.63 (3.39, 9.37)	100.00
NOTE: Weights are from random effects analysis			
.1	1 10		

