
B U R G - - Fast Optimal Instruction Selection and Tree Parsing

Chr i s topher W. Fraser
A T & T Bell Labora tor ies

600 Moun ta in Avenue 2C-464
Murray Hill, NJ 07974-0636

cwf@research, att. com

Rober t R. Henry
Tera C o m p u t e r C o m p a n y
400 N. 34th St., Suite 300

Seattle, WA 98103-8600
r r h @ t e r a , com

T o d d A. P roebs t ing
Dept . of C o m p u t e r Sciences

Universi ty of Wisconsin
Madison, WI 53706
todd@cs, wisc. edu

December 1991

1 O v e r v i e w

BURG is a program that generates a fast tree parser using BURS (Bottom-Up Rewrite System)
technology. It accepts a cost-augmented tree grammar and emits a C program that discovers in
linear time an optimal parse of trees in the language described by the grammar. BURG has been
used to construct fast optimal instruction selectors for use in code generation. BURG addresses
many of the problems addressed by TWIG [AGT89, App87], but it is somewhat less flexible and
much faster. BURG is available via anonymous f t p from k a e s e . c s . w i s c . e d u . The compressed
shar file pub /burg , sha r . Z holds the complete distribution.

This document describes only that fraction of the BURS model that is required to use BURG.
Readers interested in more detail might start with Reference [BDB90]. Other relevant documents
include References [Kro75, HO82, HC86, Cha87, PLG88, PL87, BMW87, Hen89, FH91, Pro91].

2 I n p u t

BURG accepts a tree grammar and emits a BURS tree parser. Figure 1 shows a sample grammar
that implements a very simple instruction selector. BURG grammars are structurally similar to
YACC's. Comments follow C conventions. Text between "%{" and "%}" is called the configuration
section; there may be several such segments. All are concatenated and copied verbatim into the
head of the generated parser, which is called BURM. Text after the second "%%", if any, is also
copied verbatim into BURM, at the end.

The configuration section configures BURM for the trees being parsed and the client's environ-
ment. This section must define NODEPTR_TYPE to be a visible typedef symbol for a pointer to a
node in the subject tree. BURM invokes 0P_LABEL(p), LEFT_CHILD(p), and RIGHT_CHILD(p) to

68 ACM SIGPLAN Notices, Volume 27, No. 4, April 1992

%{

#define NODEPTR_TYPE treepointer

#define OP_LABEL(p) ((p)->op)

#define LEFT_CHILD(p)

#define RIGHT_CHILD(p)

#define STATE_LABEL(p)

#define PANIC printf
%}

%start reg

%term Assign=l Constant=2 Fetch=3

((p)->left)

((p)->right)

((p)->state_label)

%%

con: Constant = 1

con: Four = 2
addr : con = 3
addr : P l u s (c o n , r e g) = 4
addr : P l u s (c o n , M u l (F o u r , r e g)) = 5
r eg : F e t c h (a d d r) = 6
reg: Assign(addr,reg) = 7

Four=4 Mul=5 Plus=6

(0) ;
(0) ;
(0) ;
(0) ;
(0) ;
(1);
(1) ;

Figure 1: A Sample Tree Grammar

read the operator and children from the node pointed to by p. It invokes PANIC when it detects an
error. If the configuration section defines these operations as macros, they are implemented in-line;
otherwise, they must be implemented as functions. The section on diagnostics elaborates on PANIC.

BURM computes and stores a single integral state in each node of the subject tree. The config-
uration section must define a macro STATE_LABEL(p) to access the state field of the node pointed
to by p. A macro is required because BURG uses it as an lvalue. A C s h o r t is usually the right
choice; typical code generation grammars require 100-1000 distinct s tate labels.

The tree grammar follows the configuration section. Figure 2 gives an EBNF grammar for BURG
tree grammars. Comments, the text between "%{" and "%}", and the text after the optional second
"%%" are treated lexically, so the figure omits them. In the EBNF grammar, quoted text must
appear literally, Non te rmina l and I n t e g e r are self-explanatory, and Term denotes an identifier
previously declared as a terminal. {X} denotes zero or more instances bf X.

Text before the first "%%" declares the start symbol and the terminals or operators in subject
trees. All terminals must be declared; each line of such declarations begins with %term. Each
terminal has fixed arity, which BURG infers from the rules using that terminal. BURG restricts
terminals to have at most two children. Each terminal is declared with a positive, unique, integral
external symbol number after a "=". 0P_LABEL(p) must return the valid external symbol number
for p. Ideally, external symbol numbers form a dense enumeration. Non-terminals are not declared,
but the start symbol may be declared with a line that begins with %s ta r t .

Text after the first "%%" declares the rules. A tree grammar is like a context-free grammar:
it has rules, non-terminals, terminals, and a special start non-terminal. The right-hand side of a
rule, called the pattern, is a tree. Tree pat terns appear in prefix parenthesized form. Every non-

69

grammar: {dcl} ' ~ ' {rule}

dcl: '~start' Nonterminal

dcl: '~term' { Identifier '=' Integer }

rule: Nonterminal ':' tree '=' Integer cost ';'

c o s t : /* empty */
c o s t : ' (' I n t e g e r { ' , ' I n t e g e r } ') '

tree: Term '(' tree ',' tree ')'

tree: Term '(' tree ')'

tree: Term

tree: Nonterminal

Figure 2: E B N F Grammar for Tree Grammars for BURG

terminal denotes a tree. A chain rule is a rule whose pa t te rn is another non-terminal. If no start
symbol is declared, BURG uses the non-terminal defined by the first rule. BURG needs a single start
symbol; grammars for which it is natural to use multiple start symbols must be augmented with
an artificial s tar t symbol that derives, with zero cost, the grammar 's natural s tar t symbols. BURM
will automatical ly select one that costs least for any given tree.

BURG accepts no embedded semantic actions like YACC's, because no one format suited all
intended applications. Instead, each rule has a positive, unique, integral external rule number,
after the pa t te rn and preceded by a "=". Ideally, external rule numbers form a dense enumeration.
BUP~M uses these numbers to report the matching rule to a user-supplied routine, which must
implement any desired semantic action; see below. Humans may select these integers by hand,
but BURG is intended as a server for building BURS tree parsers. Thus some BURG clients will
consume a richer description and translate it into BURG's simpler input.

Rules end with a vector of non-negative, integer costs, in parentheses and separated by commas.
If the cost vector is omit ted, then all elements are assumed to be zero. BURG retains only the first
four elements of the list. The cost of a derivation is the sum of the costs for all rules applied in the
derivation. Ari thmetic on cost vectors treats each member of the vector independently. The tree
parser finds the cheapest parse of the subject tree. It breaks ties arbitrarily. By default, BURG
uses only the principal cost of each cost vector, which defaults to the first element, but options
described below provide alternatives.

3 Output

BUaM traverses the subject tree twice. The first pass or labeller runs bo t tom-up and left-to-right,
visiting each node exactly once. Each node is labeled with a state, a single number that encodes all
full and partial optimal pa t te rn matches viable at that node. The second pass or reducer traverses
the subject tree top-down. The reducer accepts a tree node's s tate label and a goal non-terminal

70

- - initially the root 's s tate label and the start symbol - - which combine to determine the rule to
be applied at that node. By construction, the rule has the given goal non-terminal as its left-hand
side. The rule's pat tern identifies the subject subtrees and goal non-terminals for all recursive
visits. Here, a "subtree" is not necessarily an immediate child of the current node. Pat terns with
interior operators cause the reducer to skip the corresponding subject nodes, so the reducer may
proceed directly to grandchildren, great-grandchildren, and so on. On the other hand, chain rules
cause the reducer to revisit the current subject node, with a new goal non-terminal, so x is also
regarded as a subtree of x.

As the reducer visits (and possibly revisits) each node, user-supplied code implements semantic
action side effects and controls the order in which subtrees are visited. The labeller is self-contained,
but the reducer combines code from BURG with code from the user, so BURM does not s tand alone.

The BURM that is generated by BURG provides primitives for labelling and reducing trees.
These mechanisms are a compromise between expressibility, abstraction, simplicity, flexibility and
efficiency. Clients may combine primitives into labellers and reducers that can traverse trees in
arbi trary ways, and they may call semantic routines when and how they wish during traversal. Also,
BURG generates a few higher level routines that implement common combinations of primitives,
and it generates mechanisms that help debug the tree parse.

BURG generates the labeller as a function named burro_label with the signature

extern int burm_labeI(NODEPTR_TYPE p);

It labels the entire subject tree pointed to by p and returns the root 's s tate label. State zero labels
unmatched trees. The trees may be corrupt or merely inconsistent with the grammar.

The simpler burro_sta te is burro_label without the code to traverse the tree and to read and
write its fields. It may be used to integrate labelling into user-supplied traversal code. A typical
signature is

extern int burm_state(int op, int leftstate, ±nt rightstate);

It accepts an external symbol number for a node and the labels for the node's left and right children.
It returns the state label to assign to that node. For unary operators, the last argument is ignored;
for leaves, the last two arguments are ignored. In general, BURG generates a burro_s ta te that
accepts the maximum number of child states required by the input grammar. For example, if the
grammar includes no binary operators, then burro_sta te will have the signature

extern int burm state(int op, int leftstate);

This feature is included to permit future expansion to operators with more than two children.
The user must write the reducer, but BURM writes code and da ta that help. Pr imary is

extern int burm_rule(int state, int goalnt);

which accepts a tree's s tate label and a goal non-terminal and returns the external rule number
of a rule. The rule will have matched the tree and have the goal non-terminal on the left-hand
side; burro_rule returns zero when the tree labelled with the given state did not match the goal
non-terminal. For the initial, root-level call, g o a l n t must be one, and BURM exports an array that
identifies the values for nested calls:

71

extern short *burm_nts [] = { . . . };

is an array indexed by external rule numbers. Each element points to a zero-terminated vector of
short integers, which encode the goal non-terminals for that rule's pat tern, left-to-right. The user
needs only these two externals to write a complete reducer, but a third external simplifies some
applications:

extern NODEPTR_TYPE *burm kids(NODEPTR_TYPE p, int eruleno, NODEPTR_TYPE kids []) ;

accepts the address of a tree p, an external rule number, and an empty vector of pointers to trees.
The procedure assumes that p matched the given rule, and it fills in the vector with the subtrees
(in the sense described above) of p that nmst be reduced recursively, k i d s is returned. It is not
zero-terminated.

The simple user code below labels and then fully reduces a subject tree; the reducer prints the
tree cover, bu rm_s t r i ng is defined below.

parse(NODEPTR_TYPE p) {

burm_label(p); /* label the tree */

reduce(p, I, 0); /* and reduce it */
}

reduce(NODEPTR_TYPE p, int goalnt, int indent) {

int eruleno = burm_rule(STATE_LABEL(p), goalnt); /* matching rule number */

short *nts = burm nts[eruleno]; /* subtree goal non-terminals */

NODEPTR_TYPE kids[lO]; /* subtree pointers */

int i;

for (i = O; i < indent; i++)

printf(".");

printf("~s\n", burm_string[eruleno]);

burm_kids(p, eruleno, kids);

for (i = O; nts[i]; i++)

reduce(kids[i], nts[i], indent+l);

/* print indented ... */

/* ... text of rule */

/* initialize subtree pointers */

/* traverse subtrees left-to-right */
/* and print them recursively */

The reducer may recursively traverse subtrees in any order, and it ,nay interleave arbi t rary seman-
tic actions with recursive traversals. Multiple reducers may be written, to implement multi-pass
algorithms or independent single-pass algorithms.

For each non-terminal x, BURG emits a preprocessor directive to equate burm_x_NT with x's
integral encoding. It also defines a macro burm_x_rule (a) that is equivalent to b u r m _ r u l e (a , x) .
For the grammar in Figure 1, BURG emits

#define burm_reg_NT 1

#define burm con NT 2

#define burm addr NT 3

#define burm_reg_rule(a) . . .

#define burm_con_rule(a) ...

#define burm_addr rule(a) ...

72

Such symbols are visible only to the code after the second "%%". If the symbols burm_x_NT are
needed elsewhere, extract them from the BURM source.

The - I option directs BURG to emit an encoding of the input that may help the user produce
diagnostics. The vectors

extern char *burm_opname[] ;

extern char burm_arity[] ;

hold the name and number of children, respectively, for each terminal. They are indexed by the

terminal's external symbol number. The vectors

e x t e r n char * b u r m _ s t r i n g [] ;
e x t e r n s h o r t b u r m _ c o s t [] [4] ;

hold the text and cost vector for each rule. They are indexed by the external rule number. The
zero-terminated vector

extern char *burm_ntname[];

is indexed by burm_x_NT and holds the name of non-terminal x. Finally, the procedures

extern int burm_op_iabei(NODEPTR_TYPE p);

extern int burm_state_label(NODEPTR_TYPE p);

extern NODEPTR TYPE burm child(NODEPTR_TYPE p, int index);

are callable versions of the configuration macros, burm_child(p,O) implements LEFT_CHILD(p),

and b u r m _ c h i l d (p , 1) implements RIGHT_CHILD(p). A sample use is the grammar-independent
expression burm_opname [burm_op_label (p)] , which yields the textual name for the operator in
the tree node pointed to by p.

A complete tree parser can be assembled from just burro_state , burm_rule, and burmmts ,
which use none of the configuration section except PANIC. The generated routines that use the rest
of the configuration section are compiled only if the configuration section defines STATE_LABEL, so
they can be omit ted if the user prefers to hide the tree s tructure from BURM. This course may be
wise if, say, the tree structure is defined in a large header file with symbols that might collide with
BURM's.

BURM selects an optimal parse without dynamic programming at compile t ime [AJ76]. Instead,
BURG does the dynamic programming at compile-compile time, as it builds BURM. Consequently,
BURM parses quickly. Similar labellers have taken as few as 15 instructions per node, and reducers
as few as 35 per node visited [FH91].

4 Debugging

BURM invokes PANIC when an error prevents it from proceeding. PANIC has the same signature as
p r i n t f . It should pass its arguments to p r i n t f if diagnostics are desired and then either abort (say
via e x i t) or recover (say via longjmp). If it returns, BURM aborts. Some errors are not caught.

BURG assumes a robust preprocessor, so it omits full consistency checking and error recovery.
BURG constructs a set; of states using a closure algorithm like that used in LR table construc-
tion. BURG considers all possible trees generated by the tree grammar and summarizes infinite

73

_/

~term Const=17 RedFetch=20 GreenFetch=21 Plus=22

reg: GreenFetch(green reg) = 10 (0);

reg: RedFetch(red_reg) = 11 (0);

green_reg: Const = 20 (0);

green reg: Plus(green_reg,green_reg) = 21 (I);

red_reg: Const = 30 (0);

red_reg: Plus(red_reg,red_reg) = 31 (2);

Figure 3: A Diverging Tree Grammar

sets of trees with finite sets. The summary records the cost of those trees but actually manipu-
lates the differences in costs between viable alternatives using a dynamic programming algorithm.
Reference [Hen89] elaborates.

Some grammars derive trees whose optimal parses depend on arbitrarily distant data. When
this happens, BURG and the tree grammar cost diverge, and BUR~G a t tempts to build an infinite
set of states; it first thrashes and ul t imately exhausts memory and exits. For example, the tree
grammar in Figure 3 diverges, since non-terminals g reen_reg and r ed_reg derive identical infinite
trees with different costs. If the cost of rule 31 is changed to 1, then the grammar does not diverge.

Practical tree grammars describing instruction selection do not cost-diverge because infinite
trees are derived from non-terminals that model temporary registers. Machines can move da ta
between different types of registers for a small bounded cost, and the rules for these instructions
prevent divergence. For example, if Figure 3 included rules to move da ta between red and green
registers, the grammar would not diverge. If a bonafide machine grammar appears to make BURG
loop, t ry a host with more memory. To apply BURG to problems other than instruction selection,
be prepared to consult the l i terature on cost-divergence [PL87].

5 R u n n i n g BURG

BURG reads a tree grammar and writes a BURM in C. BURM can be compiled by itself or included
in another file. When suitably named with the -p option, disjoint instances of BURM should link
together without name conflicts. The command:

burg [a r y n e n t s] I file]

invokes BURG. If a Rile is named, BURG expects its grammar there; otherwise it reads the s tandard
input. The options include:

-c N Abort if any relative cost exceeds N, which keeps BURG from looping on diverging grammars.
Several references [PLG88, Hen89, BDB90, Pro91] explain relative costs.

-d Report a few statistics and flag unused rules and terminals.

74

-o file Write parser into file. Otherwise it writes to the standard output .

-p prefix Start exported names with prefiz. The default is burro.

- t Generates smaller tables faster, but all goal non-terminals passed to burra_ruZe must come from
an appropriate burmmts . Using burm_x_IgT instead may give unpredictable results.

- I Emit code for burm_ari ty , burro_child, burro_cost, burm_ntname, burm_op_label, burm_opname,
burm_s ta te_ labe l , and burm_str ing.

-0 N Change the principal cost to N. Elements of each cost vector are numbered from zero.

-= Compare costs lexicographically, using all costs in the given order. This option slows BURG and
may produce a larger parser. Increases range from small to astronomical.

6 A c k n o w l e d g e m e n t s

The first BURG was adapted by the second author from his CODEGEN package, which was developed
at the University of Washington with partial support from NSF Grant CCR-88-01806. It was
unbundled from CODEGEN with the support of Tera Computer. The current BURG was written by
the third author with the support of NSF grant CCR-8908355. The interface, documentation, and
testing involved all three authors.

Comments from a large group at the 1991 Dagstuhl Seminar on Code Generation improved
BURG's interface. Robert Giegerich and Susan Graham organized the workshop, and the Interna-
tional Conference and Research Center for Computer Science, Schloss Dagstuhl, provided an ideal
environment for such collaboration. Beta-testers included Helmut Emmelmann, Dave Hanson, John
Hauser, Hugh Redelmeier, and Bill Waite.

References

[ACFRg!

[AJ76]

lApp87]

[BDB90]

Alfred V. Aho, Mahadevan Ganapathi, and Steven W. K. Tjiang. Code generation
using tree matching and dynamic programming. ACM Transactions on Programming
Languages and Systems, 11(4):491-516, October 1989.

Alfred V. Aho and Steven C. Johnson. Optimal code generation for expression trees.
Journal of the ACM, 23(3):458-501, July 1976.

Andrew W. Appel. Concise specification of locally optimal code generators. Technical
report CS-TR-080-87, Princeton University, 1987.

A. Balachandran, D. M. Dhamdhere, and S. Biswas. Efficient retargetable code gen-
eration using bottom-up tree pat tern matching. Computer Languages, 15(3):127-140,
1990.

[BMW87] Jiirgen BSrstler, Ulrich M6nche, and Reinhard Wilhelm. Table compression for tree
automata. Technical Report Aachener Informatik-Berichte No. 87-12, RWTH Aachen,
Fachgruppe Informatik, Aachen, Fed. Rep. of Germany, 1987.

75

[ChaS7]

[FH91]

[HC86]

[Hen89]

[H082]

[Kro75]

[PL87]

[PLG88]

[Pro91]

David R. Chase. An improvement to bottom up tree pattern matching. Fourteenth An-
nual A CM Symposium on Principles of Programming Languages, pages 168-177, January
1987.

Christopher W. Fraser and Robert R. Henry. Hard-coding bottom-up code generation
tables to save time and space. Software--Practice~Experience, 21(1):1-12, January
1991.

Philip J. Hatcher and Thomas W. Christopher. High-quality code generation via bottom-
up tree pattern matching. Thirteenth Annual A CM Symposium on Principles of Pro-
gramming Languages, pages 119-130, January 1986.

Robert R. Henry. Encoding optimal pattern selection in a table-driven bottom-up tree-
pattern matcher. Technical Report 89-02-04, University of Washington Computer Sci-
ence Department, Seattle, WA, February 1989.

Christoph Hoffmann and Michael J. O'Donnell. Pattern matching in trees. Journal of
the ACM, 29(1):68-95, January 1982.

H. H. Kron. Tree Templates and Subtree Transformational Grammars. PhD thesis, UC
Santa Cruz, December 1975.

Eduardo Pelegri-Llopart. Tree Transformations in Compiler Systems. PhD thesis, UC
Berkeley, December 1987.

Eduardo Pelegri-Llopart and Susan L. Graham. Optimal code generation for expression
trees: An application of BURS theory. Fifteenth Annual A CM Symposium on Principles
of Programming Languages, pages 294-308, January 1988.

Todd A. Proebsting. Simple and efficient BURS table generation. Technical report,
Department of Computer Sciences, University of Wisconsin, 1991.

76

