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1 O v e r v i e w  

BURG is a program that  generates a fast tree parser using BURS (Bottom-Up Rewrite System) 
technology. It accepts a cost-augmented tree grammar and emits a C program that  discovers in 
linear time an optimal parse of trees in the language described by the grammar. BURG has been 
used to construct fast optimal instruction selectors for use in code generation. BURG addresses 
many of the problems addressed by TWIG [AGT89, App87], but it is somewhat less flexible and 
much faster. BURG is available via anonymous f t p  from k a e s e . c s . w i s c . e d u .  The compressed 
shar  file pub /burg ,  sha r .  Z holds the complete distribution. 

This document describes only that  fraction of the BURS model that  is required to use BURG. 
Readers interested in more detail might start with Reference [BDB90]. Other relevant documents 
include References [Kro75, HO82, HC86, Cha87, PLG88, PL87, BMW87, Hen89, FH91, Pro91]. 

2 I n p u t  

BURG accepts a tree grammar and emits a BURS tree parser. Figure 1 shows a sample grammar 
that  implements a very simple instruction selector. BURG grammars are structurally similar to 
YACC's. Comments  follow C conventions. Text between "%{" and "%}" is called the configuration 
section; there may be several such segments. All are concatenated and copied verbatim into the 
head of the generated parser, which is called BURM. Text after the second "%%", if any, is also 
copied verbatim into BURM, at the end. 

The configuration section configures BURM for the trees being parsed and the client's environ- 
ment. This section must define NODEPTR_TYPE to be a visible typedef symbol for a pointer to a 
node in the subject tree. BURM invokes 0P_LABEL(p), LEFT_CHILD(p), and RIGHT_CHILD(p) to 
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%{ 

#define NODEPTR_TYPE treepointer 

#define OP_LABEL(p) ((p)->op) 

#define LEFT_CHILD(p) 

#define RIGHT_CHILD(p) 

#define STATE_LABEL(p) 

#define PANIC printf 
%} 

%start reg 

%term Assign=l Constant=2 Fetch=3 

((p)->left) 

((p)->right) 

((p)->state_label) 

%% 

con: Constant = 1 

con: Four = 2 
addr :  con = 3 
addr :  P l u s ( c o n , r e g )  = 4 
addr :  P l u s ( c o n , M u l ( F o u r , r e g ) )  = 5 
r eg :  F e t c h ( a d d r )  = 6 
reg: Assign(addr,reg) = 7 

Four=4 Mul=5 Plus=6 

(0 ) ;  
(0 ) ;  
(0 ) ;  
(0 ) ;  
(0 ) ;  
(1); 
(1 ) ;  

Figure 1: A Sample Tree Grammar  

read the operator  and children from the node pointed to by p. It invokes PANIC when it detects an 
error. If the configuration section defines these operations as macros, they are implemented in-line; 
otherwise, they must be implemented as functions. The section on diagnostics elaborates on PANIC. 

BURM computes  and stores a single integral state in each node of the subject  tree. The config- 
uration section must define a macro STATE_LABEL(p) to access the state field of the node pointed 
to by p. A macro is required because BURG uses it as an lvalue. A C s h o r t  is usually the right 
choice; typical code generation grammars require 100-1000 distinct s tate labels. 

The tree grammar follows the configuration section. Figure 2 gives an EBNF grammar for BURG 
tree grammars. Comments,  the text between "%{" and "%}", and the text after the optional second 
"%%" are treated lexically, so the figure omits them. In the EBNF grammar,  quoted text must 
appear literally, Non te rmina l  and I n t e g e r  are self-explanatory, and Term denotes an identifier 
previously declared as a terminal. {X} denotes zero or more instances bf  X.  

Text before the first "%%" declares the start  symbol and the terminals or operators  in subject  
trees. All terminals must be declared; each line of such declarations begins with %term. Each 
terminal has fixed arity, which BURG infers from the rules using that  terminal. BURG restricts 
terminals to have at most two children. Each terminal is declared with a positive, unique, integral 
external symbol number after a "=". 0P_LABEL(p) must return the valid external symbol number  
for p. Ideally, external symbol  numbers form a dense enumeration. Non-terminals are not declared, 
but  the start  symbol  may be declared with a line that  begins with %s ta r t .  

Text after the first "%%" declares the rules. A tree grammar is like a context-free grammar: 
it has rules, non-terminals, terminals, and a special start  non-terminal. The right-hand side of a 
rule, called the pattern, is a tree. Tree pat terns  appear in prefix parenthesized form. Every non- 
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grammar: {dcl} ' ~ '  {rule} 

dcl: '~start' Nonterminal 

dcl: '~term' { Identifier '=' Integer } 

rule: Nonterminal ':' tree '=' Integer cost ';' 

c o s t :  /* empty */ 
c o s t :  ' ( '  I n t e g e r  { ' , '  I n t e g e r  } ' ) '  

tree: Term '(' tree ',' tree ')' 

tree: Term '(' tree ')' 

tree: Term 

tree: Nonterminal 

Figure 2: E B N F  Grammar  for Tree Grammars  for BURG 

terminal denotes a tree. A chain rule is a rule whose pa t te rn  is another non-terminal. If no start  
symbol is declared, BURG uses the non-terminal defined by the first rule. BURG needs a single start  
symbol; grammars for which it is natural  to use multiple start  symbols must be augmented  with 
an artificial s tar t  symbol  that  derives, with zero cost, the grammar 's  natural  s tar t  symbols. BURM 
will automatical ly select one that  costs least for any given tree. 

BURG accepts no embedded semantic actions like YACC's, because no one format suited all 
intended applications. Instead, each rule has a positive, unique, integral external rule number, 
after the pa t te rn  and preceded by a "=". Ideally, external rule numbers  form a dense enumeration.  
BUP~M uses these numbers to report  the matching rule to a user-supplied routine, which must 
implement any desired semantic action; see below. Humans may select these integers by hand, 
but  BURG is intended as a server for building BURS tree parsers. Thus some BURG clients will 
consume a richer description and translate it into BURG's simpler input. 

Rules end with a vector of non-negative, integer costs, in parentheses and separated by commas. 
If the cost vector is omit ted,  then all elements are assumed to be zero. BURG retains only the first 
four elements of the list. The cost of a derivation is the sum of the costs for all rules applied in the 
derivation. Ari thmetic  on cost vectors treats each member  of the vector independently. The tree 
parser finds the cheapest  parse of the subject  tree. It breaks ties arbitrarily. By default, BURG 
uses only the principal cost of each cost vector, which defaults to the first element, but  options 
described below provide alternatives. 

3 Output 

BUaM traverses the subject  tree twice. The first pass or labeller runs bo t tom-up  and left-to-right, 
visiting each node exactly once. Each node is labeled with a state,  a single number  that  encodes all 
full and partial optimal pa t te rn  matches viable at that  node. The second pass or reducer traverses 
the subject  tree top-down. The reducer accepts a tree node's  s tate label and a goal non-terminal 
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- -  initially the root 's  s tate label and the start  symbol  - -  which combine to determine the rule to 
be applied at that  node. By construction, the rule has the given goal non-terminal as its left-hand 
side. The rule's pat tern identifies the subject  subtrees and goal non-terminals for all recursive 
visits. Here, a "subtree" is not necessarily an immediate child of the current node. Pat terns  with 
interior operators cause the reducer to skip the corresponding subject  nodes, so the reducer may 
proceed directly to grandchildren, great-grandchildren, and so on. On the other hand, chain rules 
cause the reducer to revisit the current subject  node, with a new goal non-terminal, so x is also 
regarded as a subtree of x. 

As the reducer visits (and possibly revisits) each node, user-supplied code implements semantic 
action side effects and controls the order in which subtrees are visited. The labeller is self-contained, 
but  the reducer combines code from BURG with code from the user, so BURM does not s tand alone. 

The BURM that  is generated by BURG provides primitives for labelling and reducing trees. 
These mechanisms are a compromise between expressibility, abstraction, simplicity, flexibility and 
efficiency. Clients may combine primitives into labellers and reducers that  can traverse trees in 
arbi trary ways, and they may call semantic routines when and how they wish during traversal. Also, 
BURG generates a few higher level routines that  implement common combinations of primitives, 
and it generates mechanisms that  help debug the tree parse. 

BURG generates the labeller as a function named burro_label  with the signature 

extern int burm_labeI(NODEPTR_TYPE p); 

It labels the entire subject  tree pointed to by p and returns the root 's  s tate label. State zero labels 
unmatched trees. The trees may be corrupt or merely inconsistent with the grammar.  

The simpler burro_sta te  is burro_label  without  the code to traverse the tree and to read and 
write its fields. It may be used to integrate labelling into user-supplied traversal code. A typical 
signature is 

extern int burm_state(int op, int leftstate, ±nt rightstate); 

It accepts an external symbol number for a node and the labels for the node's left and right children. 
It returns the state label to assign to that  node. For unary operators,  the last argument is ignored; 
for leaves, the last two arguments are ignored. In general, BURG generates a burro_s ta te  that  
accepts the maximum number  of child states required by the input grammar.  For example, if the 
grammar includes no binary operators,  then burro_sta te  will have the signature 

extern int burm state(int op, int leftstate); 

This feature is included to permit  future expansion to operators  with more than two children. 
The user must write the reducer, but  BURM writes code and da ta  that  help. Pr imary  is 

extern int burm_rule(int state, int goalnt); 

which accepts a tree's s tate label and a goal non-terminal and returns the external rule number 
of a rule. The rule will have matched the tree and have the goal non-terminal on the left-hand 
side; burro_rule returns zero when the tree labelled with the given state did not match the goal 
non-terminal. For the initial, root-level call, g o a l n t  must be one, and BURM exports an array that  
identifies the values for nested calls: 
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extern short *burm_nts [] = { . . . }; 

is an array indexed by external rule numbers. Each element points to a zero-terminated vector of 
short integers, which encode the goal non-terminals for that  rule's pat tern,  left-to-right. The user 
needs only these two externals to write a complete reducer, but  a third external simplifies some 
applications: 

extern NODEPTR_TYPE *burm kids(NODEPTR_TYPE p, int eruleno, NODEPTR_TYPE kids []) ; 

accepts the address of a tree p, an external rule number,  and an empty  vector of pointers to trees. 
The procedure assumes that  p matched the given rule, and it fills in the vector with the subtrees 
(in the sense described above) of p that  nmst be reduced recursively, k i d s  is returned. It is not 
zero-terminated. 

The simple user code below labels and then fully reduces a subject  tree; the reducer prints the 
tree cover, bu rm_s t r i ng  is defined below. 

parse(NODEPTR_TYPE p) { 

burm_label(p); /* label the tree */ 

reduce(p, I, 0); /* and reduce it */ 
} 

reduce(NODEPTR_TYPE p, int goalnt, int indent) { 

int eruleno = burm_rule(STATE_LABEL(p), goalnt); /* matching rule number */ 

short *nts = burm nts[eruleno]; /* subtree goal non-terminals */ 

NODEPTR_TYPE kids[lO]; /* subtree pointers */ 

int i; 

for (i = O; i < indent; i++) 

printf("."); 

printf("~s\n", burm_string[eruleno]); 

burm_kids(p, eruleno, kids); 

for (i = O; nts[i]; i++) 

reduce(kids[i], nts[i], indent+l); 

/* print indented ... */ 

/* ... text of rule */ 

/* initialize subtree pointers */ 

/* traverse subtrees left-to-right */  
/* and print them recursively */ 

The reducer may recursively traverse subtrees in any order, and it ,nay interleave arbi t rary seman- 
tic actions with recursive traversals. Multiple reducers may be written, to implement multi-pass 
algorithms or independent  single-pass algorithms. 

For each non-terminal  x, BURG emits a preprocessor directive to equate burm_x_NT with x's 
integral encoding. It also defines a macro burm_x_rule (a) that  is equivalent to b u r m _ r u l e ( a , x ) .  
For the grammar  in Figure 1, BURG emits 

#define burm_reg_NT 1 

#define burm con NT 2 

#define burm addr NT 3 

#define burm_reg_rule(a) . . . 

#define burm_con_rule(a) ... 

#define burm_addr rule(a) ... 
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Such symbols are visible only to the code after the second "%%". If the symbols burm_x_NT are 
needed elsewhere, extract  them from the BURM source. 

The - I  option directs BURG to emit an encoding of the input that  may help the user produce 
diagnostics. The vectors 

extern char *burm_opname[] ; 

extern char burm_arity[] ; 

hold the name and number of children, respectively, for each terminal. They are indexed by the 

terminal's external symbol number. The vectors 

e x t e r n  char  * b u r m _ s t r i n g [ ] ;  
e x t e r n  s h o r t  b u r m _ c o s t [ ] [ 4 ] ;  

hold the text and cost vector for each rule. They are indexed by the external rule number. The 
zero-terminated vector 

extern char *burm_ntname[]; 

is indexed by burm_x_NT and holds the name of non-terminal x. Finally, the procedures 

extern int burm_op_iabei(NODEPTR_TYPE p); 

extern int burm_state_label(NODEPTR_TYPE p); 

extern NODEPTR TYPE burm child(NODEPTR_TYPE p, int index); 

are callable versions of the configuration macros, burm_child(p,O) implements LEFT_CHILD(p), 

and b u r m _ c h i l d ( p , 1 )  implements RIGHT_CHILD(p). A sample use is the grammar-independent  
expression burm_opname [burm_op_label  (p ) ] ,  which yields the textual  name for the operator  in 
the tree node pointed to by p. 

A complete tree parser can be assembled from just  burro_state ,  burm_rule,  and burmmts ,  
which use none of the configuration section except PANIC. The generated routines that  use the rest 
of the configuration section are compiled only if the configuration section defines STATE_LABEL, so 
they can be omit ted if the user prefers to hide the tree s tructure from BURM. This course may be 
wise if, say, the tree structure is defined in a large header file with symbols that  might collide with 
BURM's. 

BURM selects an optimal parse without  dynamic programming at compile t ime [AJ76]. Instead, 
BURG does the dynamic programming at compile-compile time, as it builds BURM. Consequently, 
BURM parses quickly. Similar labellers have taken as few as 15 instructions per node, and reducers 
as few as 35 per node visited [FH91]. 

4 Debugging  

BURM invokes PANIC when an error prevents it from proceeding. PANIC has the same signature as 
p r i n t f .  It should pass its arguments to p r i n t f  if diagnostics are desired and then either abort  (say 
via e x i t )  or recover (say via longjmp).  If it returns, BURM aborts. Some errors are not caught. 

BURG assumes a robust  preprocessor, so it omits full consistency checking and error recovery. 
BURG constructs a set; of states using a closure algorithm like that  used in LR table construc- 
tion. BURG considers all possible trees generated by the tree grammar and summarizes infinite 
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_/ 

~term Const=17 RedFetch=20 GreenFetch=21 Plus=22 

reg: GreenFetch(green reg) = 10 (0); 

reg: RedFetch(red_reg) = 11 (0); 

green_reg: Const = 20 (0); 

green reg: Plus(green_reg,green_reg) = 21 (I); 

red_reg: Const = 30 (0); 

red_reg: Plus(red_reg,red_reg) = 31 (2); 

Figure 3: A Diverging Tree Grammar  

sets of trees with finite sets. The summary  records the cost of those trees but  actually manipu- 
lates the differences in costs between viable alternatives using a dynamic programming algorithm. 
Reference [Hen89] elaborates. 

Some grammars derive trees whose optimal parses depend on arbitrarily distant data. When  
this happens, BURG and the tree grammar cost diverge, and BUR~G a t tempts  to build an infinite 
set of states; it first thrashes and ul t imately exhausts  memory  and exits. For example, the tree 
grammar in Figure 3 diverges, since non-terminals g reen_reg  and r ed_reg  derive identical infinite 
trees with different costs. If the cost of rule 31 is changed to 1, then the grammar  does not diverge. 

Practical  tree grammars describing instruction selection do not cost-diverge because infinite 
trees are derived from non-terminals that  model temporary  registers. Machines can move da ta  
between different types of registers for a small bounded cost, and the rules for these instructions 
prevent divergence. For example, if Figure 3 included rules to move da ta  between red and green 
registers, the grammar would not diverge. If a bonafide machine grammar  appears to make BURG 
loop, t ry a host with more memory. To apply BURG to problems other than instruction selection, 
be prepared to consult the l i terature on cost-divergence [PL87]. 

5 R u n n i n g  BURG 

BURG reads a tree grammar and writes a BURM in C. BURM can be compiled by itself or included 
in another file. When suitably named with the -p  option, disjoint instances of BURM should link 
together without  name conflicts. The command: 

burg  [ a r y n e n t s  ] I file ] 

invokes BURG. If a Rile is named, BURG expects its grammar there; otherwise it reads the s tandard 
input. The options include: 

-c  N Abort  if any relative cost exceeds N,  which keeps BURG from looping on diverging grammars.  
Several references [PLG88, Hen89, BDB90, Pro91] explain relative costs. 

-d  Report  a few statistics and flag unused rules and terminals. 

74 



-o file Write parser into file. Otherwise it writes to the standard output .  

-p prefix Start exported names with prefiz. The default is burro. 

- t  Generates smaller tables faster, but all goal non-terminals passed to burra_ruZe must come from 
an appropriate burmmts .  Using burm_x_IgT instead may give unpredictable results. 

- I  Emit code for burm_ari ty ,  burro_child, burro_cost, burm_ntname, burm_op_label, burm_opname, 
burm_s ta te_ labe l ,  and burm_str ing.  

-0 N Change the principal cost to N. Elements of each cost vector are numbered from zero. 

-= Compare costs lexicographically, using all costs in the given order. This option slows BURG and 
may produce a larger parser. Increases range from small to astronomical. 

6 A c k n o w l e d g e m e n t s  

The first BURG was adapted by the second author from his CODEGEN package, which was developed 
at the University of Washington with partial support from NSF Grant CCR-88-01806. It was 
unbundled from CODEGEN with the support of Tera Computer.  The current BURG was written by 
the third author with the support of NSF grant CCR-8908355. The interface, documentation,  and 
testing involved all three authors. 

Comments from a large group at the 1991 Dagstuhl Seminar on Code Generation improved 
BURG's interface. Robert Giegerich and Susan Graham organized the workshop, and the Interna- 
tional Conference and Research Center for Computer  Science, Schloss Dagstuhl, provided an ideal 
environment for such collaboration. Beta-testers included Helmut Emmelmann,  Dave Hanson, John 
Hauser, Hugh Redelmeier, and Bill Waite. 
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