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Abstract. A survey of recent research in burn-in is undertaken. The

emphasis is on mixture models, criteria for optimal burn-in and burn-in

at the component or system level.
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0. INTRODUCTION

Burn-in is a widely used engineering method to

eliminate weak items from a standard population.

The standard population usually consists of various

engineering systems composed of items or parts, or

components which are assembled together into sys-

tems. The components operate for a certain amount

of time until they fail, as do the systems composed of

these components. The systems might be electronic

systems such as circuit boards and the components

would be various types of chips and printed circuits.

A typical mechanical system is an air conditioner

and the components are condensor, fan, circuits

and so forth. Usually within any population of com-

ponents there are strong components with long

lifetimes and weak components with much shorter

lifetimes. To insure that only the strong components

reach the customer, a manufacturer will subject all

of the components to tests simulating typical or

even severe use conditions. In theory, the weak

components will fail, leaving only the strong com-

ponents. This type of testing can also be carried out

on systems after they are assembled in order to de-

termine the weak or strong systems or to uncover

defects incurred during assembly. These tests are

known as burn-in. One important issue is to deter-

mine the optimal time for burn-in. Burn-in is more

typically applied to electronic than to mechanical

systems.

We give a survey of recent burn-in research with

emphasis on mixture models (which are used to

describe populations with weak and strong compo-

nents), criteria for optimal burn-in and whether it is

better to burn in at the system or component level.

After some background, we give a brief description
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of the types of statistical distributions which model

the lifetimes of components for which burn-in is rel-

evant. The remainder of the paper is devoted to ex-

plicating recent promising developments in burn-in.

Because of the authors’s interests, most emphasis

will be placed on probability modeling for burn-in,

but some statistical topics will also be covered. We

will not review the fairly extensive engineering liter-

ature on burn-in since this has been done in several

review articles which we cite at the end of Section 1.

Section 1 contains several illustrative examples

and an introduction to some references for addi-

tional background on burn-in. The distributions

which are used to describe the lifetimes of com-

ponents which can benefit from burn-in are given

in Section 2. An important family of distributions

is one in which the failure rate functions have a

bathtub shape. In particular, distributions which

arise as mixtures are singled out for emphasis since

many bathtub-shaped failure rates arise in this

way. In Section 3, various criteria are described

which have been used to determine optimal burn-in

times. Section 3.1 considers general criteria and

Section 3.2 covers various cost structures. Sec-

tion 4 discusses two recent mixture models. The

first of these (Section 4.1) examines a typical het-

erogeneous population to which burn-in is often

applied and how this translates into renewal in-

tensity behavior. The second of these proposes a

general mixture model. A related result involves

the asymptotic failure rate of a mixture model in

terms of the asymptotic failure rates of the compo-

nents of the mixture. The question of whether it is

better to burn in at the component or the system

level is discussed in Section 5. In Section 6, we con-

sider an important tool, the TTT transform, which

is used for approximating burn-in times. Section 7

gives a brief introduction to some recent sequential

burn-in procedures involving optimal control. Sec-

tion 8 gives a discussion with an indication of some

future research directions.
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1. BACKGROUND AND SIMPLE EXAMPLES

Many manufacturers and users of electronic com-

ponents and systems, as a matter of course, subject

these systems and/or components to initial testing

for a fixed period of time under conditions which

range from typical to those which approximate a

worst-case scenario. A typical regimen is to intro-

duce for a period of time some vibration and tem-

perature elevation for a device. In a particular con-

text this is sometimes known as “shake and bake.”

At the end of this period, those components and/or

systems which do not survive this period of testing

may be discarded (scrapped), analyzed for defects

and/or repaired. Those which survive this period

may be sold, placed into service or subjected to fur-

ther testing. Although these procedures have a va-

riety of names depending on the area of application,

we use the term burn-in to describe them all. The

time period will be called the burn-in period. We il-

lustrate some of these ideas with the following three

examples.

Example 1. Rawicz (1986) considers 30-watt long-

life lamps manufactured by the Pacific Lamp Cor-

poration (Vancouver, Canada) which were designed

“for 5,000 hours of constant work in severe envi-

ronmental conditions at 120 V.” These are installed

on billboards where it is difficult and expensive

to replace them. It turns out that a certain small

percentage of these lamps tend not to last the

requisite 5,000 hours but fail relatively early. Ob-

viously it would be beneficial if this subpopulation

of lamps could be identified and eliminated before

being placed on a billboard. The procedure rec-

ommended involves stressing all of the lamps at

a high voltage (240 V) for a short period of time,

which causes the weak lamps to fail rather quickly

while the stronger lamps do not fail during this

period. The lamps which do not fail are the lamps

potentially capable of surviving the 5,000 hours

of constant work. Often the burn-in weakens the

surviving devices. In this particular application,

however, the surprising result is that the surviving

lamps are actually improved. This was thought to

occur since the high thermal treatment seemed to

relax structural stresses caused by the fabrication

process.

Example 2. In the AT&T Reliability Manual

(Klinger, Nakada and Menendez, 1990) an elec-

tronics switching system (the 5ESS Switch) is

discussed. Immediately after manufacture this sys-

tem is operated at room temperature (25◦C) for

12 hours, during which “volume-call” testing is

performed; that is, 1,000 calls are simulated and

passed through each of the five to eight modules

of the switch. The system is then subjected for up

to 48 hours to the high temperature (50◦C) which

can occur within the switch if the air conditioning

should fail. The first part of this procedure is to

find and eliminate early system failures, and the

second part simulates use in an extreme case which

might occur. The objective of the second part is to

accelerate aging, so that weak systems fail. It also

provides data which can be used to see how this

equipment compares to certain standards set for it.

Example 3. Jensen and Petersen (1982) consider

a piece of measuring equipment made up of approx-

imately 4,000 components. They focus on several

critical types of these components. One of these,

called an IC-memory circuit, accounts for 35 of the

4,000 components. The bimodal Weibull distribution

(i.e., a mixture of two Weibulls) is used to model this

type of component and has the following survival

function:

F̄�t� = p exp�−�t/n1�
β1� + �1 − p� exp�−�t/n2�

β2�:

From the data, the values p = 0:015, β1 = 0:25,

n1 = 30, β2 = 1 and n2 = 10 have been determined,

but an explicit method is not given.

We illustrate the results of Block, Mi and Savits

(1993) (which is discussed in Section 4.2) to obtain

the optimal burn-in time for a reasonable cost func-

tion (we use CF1 of Section 3.2 in this example).

Assume that we would like to plan a burn-in for

components of this type so that those surviving

burn-in should function for a mission time of τ = 60

units. If a circuit fails before the end of burn-in a

cost c0 = q0C, where 0 < q0 < 1, is incurred. If it

fails after burn-in but before the mission time is

over, a cost of C is incurred. If an item survives

burn-in and the mission time, a gain of K = kC

is obtained. For illustrative purposes, we choose

q0 = 0:5 and k = 0:05.

We apply Theorem 2.1 of Block, Mi and Savits

(1993). Let f be the density of the bimodal Weibull

given above. It is not hard to show that g�t� =
f�t + τ�/f�t� is increasing in t (either directly or

by standard results) and goes from 0 (as t → 0) to 1

(as t → ∞). By the cited results an optimal burn-in

time 0 < b∗ < ∞ exists and satisfies

g�b∗� =
C− c0

C+K
:

For the values above we obtain the equation g�b∗� =
0:476, and solving graphically yields b∗ = 102:9.
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Even though we present Example 2 as an ex-

ample of burn-in, in the AT&T Reliability Manual

(Klinger, Nakada and Menendez, 1990), Example

2 is called a system reliability audit. Other terms

which are often used are “screen” and “environ-

mental stress screening” (ESS). The AT&T Manual

(Klinger, Nakada and Menendez, 1990, page 52) de-

fines a screen to be an application of some stress

to 100% of the product to remove (or reduce the

number of) defective or potentially defective units.

Fuqua (1987, pages 11 and 44) concurs with the

100% but states that this may be an inspection

and stress is not required. Fuqua (1987, page 11)

describes ESS as a series of tests conducted un-

der environmental stresses to disclose latent part

and workmanship defects. Nelson (1990, page 39)

is more specific and describes ESS as involving ac-

celerated testing under a combination of random

vibration and thermal cycling and shock.

Burn-in is described by the AT&T Manual

(Klinger, Nakada and Menendez, 1990, page 52) as

one effective method of screening (implying 100%)

using two types of stress (temperature and elec-

tric field). Nelson (1990, page 43) describes burn-in

as running units under design or accelerated con-

ditions for a suitable length of time. Tobias and

Trindade (1995, page 297) restrict burn-in to high

stress only and require that it be done prior to

shipment. Bergman (1985, page 15) defines burn-in

in a more general way as a pre-usage operation of

components performed in order to screen out the

substandard components, often in a severe envi-

ronment. Jensen and Petersen (1982) have more or

less the same definition as Bergman.

For the purposes of this paper we use the term

burn-in in a general way, similar to the usage of

Jensen and Petersen (1982) and of Bergman (1985).

We think of it as some pre-usage operation which

involves usage under normal or stressed conditions.

It can involve either 100% of the product or some

smaller subgroup (especially in the case of complex

systems as in Example 2) and it is not limited to

eliminating weak components.

Many of the traditional engineering ideas con-

cerning burn-in are discussed in the handbook of

Jensen and Petersen (1982). This book is intended

as a handbook for small or moderate-size electronics

firms in order to develop a burn-in program. Conse-

quently the book should be viewed in this spirit. Em-

phasis is on easy-to-apply methods and on graphi-

cal techniques. One important contribution of the

book is to popularize the idea that components and

systems to which burn-in is applied have lifetimes

which can be modeled as mixtures of statistical dis-

tributions. Specifically components either come from

“freak” or “main” populations and their lifetimes can

be modeled as mixtures of Weibull distributions.

Systems are assumed to inherit this dichotomous

behavior, but the weaker population is called an “in-

fant mortality” population. This population arises

partly because of defects introduced by the manu-

facturing process.

Most reliabilty books familiar to the statistics

community do not discuss burn-in. We mention

three applied reliability books which discuss this

topic. The first of these is the book by Tobias and

Trindade (1995), which has a section on burn-in cov-

ering some basics. An engineering reliability book

by Fuqua (1987) delineates the uses of burn-in (see

Section 2.4 and Chapter 14) for electronic systems

at the component, module (intermediate between

component and system) and system level. Most

useful is the AT&T Reliability Manual (Klinger,

Nakada and Menendez, 1990), which discusses a

particular burn-in distribution used at AT&T along

with a variety of burn-in procedures and several

examples of burn-in. Two papers which review the

engineering literature on burn-in are Kuo and Kuo

(1983) and Leemis and Beneke (1990).

2. BURN-IN DISTRIBUTIONS

For which components or systems is burn-in ef-

fective? Another way of posing this question is by

asking, “For which distributions (which model the

lifetimes of components or systems) is burn-in effec-

tive?” First, it seems reasonable to rule out classes of

distributions which model wearout. The reason for

this is that objects which become more prone to fail-

ure throughout their life will not benefit from burn-

in since burn-in stochastically weakens the residual

lifetime. Consequently, distributions which have in-

creasing failure rate or other similar aging proper-

ties are generally not candidates for burn-in.

For burn-in to be effective, lifetimes should have

high failure rates initially and then improve. Since

those items which survive burn-in have the same

failure rate as the original, but shifted to the

left, burn-in, in effect, eliminates that part of the

lifetime where there is a high initial chance of fail-

ure. The class of lifetimes having bathtub-shaped

failure rates has this property. For this type of dis-

tribution the failure rate starts high (the infancy

period), then decreases to approximately a constant

(the middle life) and then increases as it wears

out (old age). As suggested by the parenthetical

remarks, this distribution is thought to describe

human life and other biological lifetimes. Certain

other mechanical and electronic lifetimes also can

be approximated by these distributions. This type
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Fig. 1. Burn-in improvement example �K = 1;000 hours; PPM/K = parts per million per 1;000 hours�.

of distribution would seem to be appropriate for

burn-in, since burn-in eliminates the high-failure

infancy period, leaving a lifetime which begins near

its former middle life (see Figure 1).

It turns out that there are reasons why many sys-

tems and components have bathtub-shaped failure

rates. As described by Jensen and Petersen (1982),

many industrial populations are heterogeneous and

there are only a small number of different subpopu-

lations. Although members of these subpopulations

do not strictly speaking have bathtub-shaped fail-

ure rates, sampling from them produces a mixture

of these subpopulations and these mixtures often

have bathtub-shaped failure rates. For a simple ex-

ample, assume that there are two subpopulations of

components each of which is exponential, one with

a small mean and one with a large mean. Sam-

pling produces a distribution with decreasing failure

rate which is a special case of the bathtub failure

rate. An intuitive explanation of why this occurs is

easy to give. Initially the higher failure rate of the

weaker subpopulation dominates until this subpop-

ulation dies out. After that, the lower failure rate

of the stronger subpopulation takes over so that the

failure rate decreases from the higher to the lower

level. This type of idea, about the eventual domina-

tion of the strongest subpopulation, carries through

for very general mixtures. See Block, Mi and Savits

(1993, Section 4). A subjectivist explanation of the

fact that mixing exponentials produces a decreasing

failure rate distribution was given by Barlow (1985),

who argued that even though a model may be expo-

nential, information may change our opinion about

the failure rate.

The mixture of two exponentials mentioned above

produces a special case of the bathtub failure rate

where no wearout is evident. Models of this type

with no wearout are thought to be sufficient for mod-

eling the lifetimes of certain electronic components,

since these components tend to become obsolete be-

fore they wear out. Mixing two distributions which

are more complex than exponentials yields distri-

butions with more typical bathtub-shaped failure

rates, as can be seen in the following example. A

typical bathtub curve is given in Figure 8.2 of To-

bias and Trindade (1995, page 238) which we repro-

duce in Figure 1.

This distribution is realized as a mixture of a log-

normal and a Weibull distribution (both of which are

used to model defectives) and another distribution

(which models the population of normal devices),

F�t� = 0:0028

(
ln�t/2;700�

0:8

)

+ 0:001

(
1 − exp

[
−

(
t

400

)0:5])

+ 0:997

(
1 − exp �−10−7t�

·

[
1 −8

(
ln�t/975;000�

0:8

)])
;

where 8 is the standard normal cdf. Notice that

the left tail of the distribution is very steep. This

tail represents the period where many failures oc-
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cur. Burn-in is utilized in order to remove this part

of the tail. The dotted line represents the result-

ing distribution after a burn-in of several hours at

an accelerated temperature. The point at which the

curve flattens out and stops decreasing is at about

20K. This is called the first change point.

Many papers have appeared in the statisti-

cal literature providing models and formulas for

bathtub-shaped failure rates. See Rajarshi and Ra-

jarshi (1988) for a review of this topic and many

references. One easy way of obtaining some of these

is by mixing standard life distributions such as the

exponential, gamma and Weibull. See Vaupel and

Yashin (1985) for some illustrations of various dis-

tributions or Mi (1991) for an example of a simple

mixture of gammas which has a bathtub-shaped

failure rate. The AT&T Reliability Manual (Klinger,

Nakada and Menendez, 1990) gives another model

(called the AT&T model) for the failure rate of an

electronics component. The early part of the fail-

ure rate is modeled by a Weibull with decreasing

failure rate, and the latter part is modeled by an

exponential (i.e., constant). It does not have a part

describing wearout since the manual claims that

the AT&T electronic equipment tends not to wear

out before it is replaced. The AT&T model has been

used extensively by Kuo and various co-authors

(e.g., see Chien and Kuo, 1992) to study optimal

burn-in for integrated circuit systems. This model

is also called the Weibull–exponential model in the

statistical literature (e.g., see Boukai, 1987).

Since mixtures are emphasized in this review we

point out one apparent anomoly mentioned by Gur-

land and Sethuraman (1994). In that paper it is ob-

served that when even strongly increasing failure

rate distributions are mixed with certain other dis-

tributions, their failure rate tends to decrease after

a certain point. This is not surprising in the light

of the previously mentioned result of Block, Mi and

Savits (1993), which gives that asymptotically the

failure rate of a mixture tends to the asymptotic fail-

ure rate of the strongest component of the mixture.

Since the failure rate of the strongest component is

the smallest, the failure rate of the mixture is often

eventually decreasing to this smallest value.

Most definitions of bathtub-shaped failure rates

assume the failure rate decreases to some change

point �t1�, then remains constant to a second change

point �t2�, then increases. The case t1 = t2 (i.e., no

constant portion) is often adequate as an assump-

tion in some theoretical results. We give the defini-

tion below.

Definition 1. A random lifetime X with distribu-

tion function F�t�, survival function F̄�t� = 1−F�t�,

density f�t� and failure rate r�t� = f�t�/F̄�t� is said

to have a bathtub-shaped failure rate if there exist

points 0 ≤ t1 ≤ t2 ≤ ∞, called change points, such

that

r�t� is





decreasing for 0 ≤ t < t1;

constant for t1 ≤ t < t2;

increasing for t2 ≤ t < ∞:

We have restricted the above definition to continu-

ous lifetimes, but discrete lifetimes can be handled

similarly (see Mi, 1993, 1994c). Further we often

shorten the phrase bathtub-shaped failure rate to

bathtub failure rate or even bathtub distribution. A

bathtub curve is called degenerate if either the de-

creasing or increasing part is not present (i.e., it is

either always increasing or always decreasing).

3. OPTIMAL BURN-IN

In this section we consider some basic criteria for

determining the optimal burn-in time for a lifetime.

In general, we consider lifetimes with a bathtub-

shaped failure rate having change points t1 and t2

(see Definition 1). As exemplified in Figure 1, burn-

in often takes place at or before the first change

point t1. In fact, in the following, various optimality

criteria lead to such a burn-in time. In Section 3.1

we focus on performance based criteria. The more

realistic situation involving cost structures is con-

sidered in Section 3.2 and these are based in part

on the criteria of Section 3.1.

3.1 Performance-Based Criteria

In this section we consider the problem of

performance-based criteria in which the more

general assumption of a cost structure is not made.

Many of these criteria are basic concepts which

can and should be incorporated into a general

cost structure. Cost structures are considered in

Section 3.2.

The paper of Watson and Wells (1961) was one

of the first statistical papers to study the question

of burn-in. These authors were interested in con-

ditions under which the mean residual life (after

burn-in) was larger than the original mean lifetime.

Maximizing the mean residual life is one of the cri-

teria we examine in this section. We now list sev-

eral criteria for determining burn-in. Criteria C1,

C2 and C4 deal with only one component. Crite-

rion C3 deals with components which are replaced

at failure with other identical components.

C1. Let τ be a fixed mission time and let F̄ be the

survival function of a lifetime. Find b which

maximizes F̄�b + τ�/F̄�b�, that is, find b such
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that, given survival to time b, the probability of

completing the mission is as large as possible.

C2. Let X be a lifetime. Find the burn-in time b

which maximizes E�X− b�X > b�, that is, find

the burn-in time which gives the largest mean

residual life.

C3. Let �Nb�t�; t ≥ 0� be a renewal process of

lifetimes which are burned in for b units of

time (i.e., where F is the original lifetime dis-

tribution and the interarrival distribution has

survival function F̄b�t� = F̄�b + t�/F̄�b��. For

fixed mission time τ, find b which minimizes

E�Nb�τ��, which is the mean number of burned-

in components which fail during the mission

time τ.

The next criterion involves the α-percentile resid-

ual life function. The α-percentile residual life is

defined by

qα�b� = F−1
b �α� = inf�x ≥ 0x F̄b�x� ≤ 1 − α�

(see Joe and Proschan, 1984, for further details).

C4. For a fixed α, 0 < α < 1, find the burn-in time

b which maximizes τ = qα�b�, that is, find the

burn-in time which gives the maximal warranty

period τ for which at most α% of items will fail.

Criterion C2 has been studied by several authors.

The first of these, Watson and Wells (1961), ex-

amined various parametric distributions. Lawrence

(1966) obtained bounds on the mean residual life.

Park (1985) gave some results on the mean residual

life for a bathtub distribution. One result was that

the optimal burn-in time b∗ occurs before the first

change point t1. Mi (1994b) obtained the same re-

sult for criteria C1 and C3, that is, b∗ ≤ t1. Launer

(1993) introduced criterion C4 and also showed that

the optimal b∗ occurs before t1. This type of result

is important since it provides an upper bound for

burn-in.

The fact that optimal burn-in for a bathtub dis-

tribution takes place before the first change point

is not unusual. In fact, it is intuitive that burn-in

should occur before this change point since this is

where the failure rate of such a lifetime stops im-

proving. We shall see in Section 3.2 that the result

also holds true for many cost structures.

In another direction, Mi (1994b) compared opti-

mal burn-in times for two mission times τ1 ≤ τ2

for criterion C1. He showed the intuitive result that

b∗2 ≤ b∗1. An extension to random mission times was

also considered.

In criterion C3, a burned-in unit that failed dur-

ing field use was replaced with another burned-in

unit. If instead of replacing this unit, a minimal re-

pair is performed (see Barlow and Proschan, 1965),

then the total number of minimal repairs is a non-

homogeneous Poisson process with mean function

− ln�F̄�b + τ�/F̄�b��. Thus if we want to minimize

the expected number of minimal repairs in the in-

terval �0; τ�, it suffices to maximize the quantity

F̄�b+ τ�/F̄�b�. But this is just criterion C1.

3.2 Cost Functions and Burn-in

Several cost functions have been proposed to deal

with burn-in. A discussion of many of these is given

in the review papers of Kuo and Kuo (1983) and

Leemis and Beneke (1990). Also see Nguyen and

Murthy (1982). In this section we discuss a few of

the recent models involving cost functions for burn-

in. In all cases we are interested in finding the burn-

in time which minimizes the cost. Cost functions

CF1 and CF4 are used in subsequent sections. In

general these cost functions build upon and elabo-

rate the criteria of Section 3.1. Cost function CF1

is basic, while CF2 and CF4 incorporate C2; CF3

uses C1.

CF1. A component or system with lifetime X is

burned-in for time b. If it fails to survive b

units of time a cost c0 is incurred. If it sur-

vives b units of time, then it incurs a second

cost C, C > c0, if it does not survive past an

additional mission time τ or it incurs a gain

of K if it does survive τ. Consequently, if F is

the distribution function of the component or

system the expected cost as a function of b is

c1�b� = c0F�b�+C�F�b+τ�−F�b��−KF̄�b+τ�:

CF2. If instead of a mission time after the burn-in

we consider a gain proportional to the mean

residual life (with proportionality constant

K), the expected cost becomes

c2�b� = c0F�b� −K

∫∞

b
F̄�t�dt

F̄�b�
:

The next criteria involve costs for in-shop repair.

If a device fails burn-in, it is scrapped at a cost

cs > 0 and another unit is burned-in. This process

is continued until a unit survives burn-in time b. A

device which survives burn-in is then put into field

use. The cost for burn-in is assumed to be propor-

tional to the time it takes to obtain a unit which

survives burn-in with proportionality constant c0.

Mi (1994a) derives the expression for the expected

cost as

k�b� = c0

∫ b

0
F̄�t�dt

F̄�b�
+

csF�b�

F̄�b�
:

The complete cost also includes additive field costs,

and this is reflected in the following cost functions.
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CF3. In this case, after a burned-in item is ob-

tained, a cost of C is incurred if the burned-in

device does not survive the mission time τ

and a gain of K if it survives the mission.

Thus the total cost function is given by

c3�b� = k�b� +C
F�b+ τ� −F�b�

F̄�b�

−K
F̄�b+ τ�

F̄�b�
;

where k�b� is as above.

CF4. If instead of a mission time, a gain is taken

proportional to the mean residual time, the

cost function in CF3 is modified to

c4�b� = k�b� −K

∫∞

b
F̄�t�dt

F̄�b�
:

The cost function CF1 was introduced by Clarotti

and Spizzichino (1990). These authors obtained con-

ditions for an optimal burn-in time b∗ and applied

their results to a mixed exponential model. See also

Section 4.2, where an extension of the mixed ex-

ponential model to a general mixture model is dis-

cussed. The cost function CF2 is a variant of CF1.

The cost functions CF3 and CF4 are discussed in

Mi (1991, 1995). As in Section 3.1, the respective

authors show that the optimal burn-in time b∗ sat-

isfies b∗ ≤ t1 for cost functions CF2–CF4, where t1

is the first change point for the assumed bathtub

distribution.

4. MIXTURE MODELS

In this section we consider recent mixture mod-

els. This is the typical model described in Section

2 to which burn-in is applicable. In both Arjas,

Hansen and Thyregod (1991) and Block, Mi and

Savits (1993) an underlying mixture distribution

is used to model the life of components. The latter

paper discusses burn-in applications although the

former paper does not.

The paper of Arjas, Hansen and Thyregod (1991)

discussed in Section 4.1 is an interesting mix of

modeling and estimation and uses ideas and tech-

niques from the reliability theory, life testing (engi-

neering reliability) and survival analysis literature.

The methods developed are applied to an example

involving printed circuit boards. In Section 4.2 we

discuss results of Block, Mi and Savits (1993). A

more general mixture model than in Arjas, Hansen

and Tyregod (1991) is examined. A recent paper of

Spizzichino (1995) discusses another model for mix-

tures in heterogeneous populations.

4.1 A Reliability Growth Model

Arjas, Hansen and Thyregod (1991) consider a re-

newal process approach to reliability growth where

heterogeneity of the underlying part structure is

shown to translate into renewal intensity behavior.

Although burn-in per se is not discussed in this pa-

per, the lifetimes discussed are of the type to which

burn-in is typically applied. This section also pro-

vides a background for Section 4.2, which considers

mixed lifetimes.

The basic process involves the lifetimes of parts

placed in two or more sockets where, upon failure,

a failed part is replaced by a new part of the same

type. The first and subsequent lifetimes for one

socket are designated by X1;X2; : : : : These life-

times are assumed independent. The lifetimes are

also assumed to come from a heterogeneous popu-

lation. It is natural to model these lifetimes using

a random hazard rate so that the distribution of

the lifetime can be written as a mixed exponential,

that is,

P�Xk > x� =
∫ ∞

0
e−λx dφ�λ�;

where φ is the distribution of the random hazards.

The aim of the paper is to study the renewal process

of one socket or the superimposed renewal process

of several. As is well known, this mixed distribution

has a decreasing failure rate.

If N�t� is the renewal process for one socket, it

can be shown that V�t� = EN�t� is concave and

the rate of occurrence of failures for the renewal

process, v�t� = �d/dt� V�t�, is decreasing. Various

results for this type of renewal process can be ob-

tained, and comparisons can be made with processes

where sockets are minimally repaired rather than

replaced. For minimal repair, the associated pro-

cess is the nonhomogeneous Poisson process. (See

Block and Savits, 1995, for many comparisons of

this type.)

Parametric estimation is considered by these au-

thors for the bimodal (i.e., mixture of two) expo-

nential case. The bimodal Weibulls (and exponen-

tials) are the principal examples of the Jensen and

Petersen (1982) monograph on burn-in. The distri-

bution for the life length of the part is the three-

parameter mixture of two exponential distributions

with distribution function

F�x� = π �1 − exp�−λ0x��

+ �1 − π� �1 − exp�−λ1x��; x > 0:

It is assumed that inferior parts cannot be distin-

guished from a standard part. Two cases are con-

sidered: (a) the case where sockets are observed in-

dividually and (b) the case where sockets are only
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Fig. 2. Comparing two estimates; the step curve comes from V̂N−A�t� and the smooth curve comes from V̄�t�.

observed as aggregated data. In case (a), the maxi-

mum likelihood estimation is straightforward. Right

censoring is permitted and the likelihood or log-

likelihood function is standard. In case (b), times

between failures are not independent and so either

(1) an approximation by a corresponding nonhomo-

geneous Poisson process is used or (2) it is assumed,

in the case when the number of failures is less than

the number of sockets, that each socket has experi-

enced at most one failure and so the techniques of

(a) apply.

An example is given where the system is a printed

circuit board consisting of 560 parts (sockets) and

there are 3,481 systems from which data was col-

lected for five years. Maximum likelihood estimates

were obtained computationally for the three pa-

rameters and were used to estimate the cumulative

number of occurrence of failures V̄�t� = EN̄�t�,
where N̄�t� is the superimposed renewal process.

The model can be assessed graphically by calcu-

lating N̄0�t�, the counting process obtained as the

sum of the individual system processes, and then

using the Nelson–Aalen estimate

V̂N−A�t� =
∑
s≤t

1N̄0�s�

R�s�
;

where 0 < T0
1 < T0

2 < · · · < T0
N̄0�t�

< t are all

of the failure times, 1N̄0�s� is 1 for each T0
i and

R�s� denotes the number of active systems older

than s. This yields Figure 2, which compares these

two estimates. The step curve comes from V̂N−A�t�
and the smooth curve comes from V̄�t�. Confidence

bounds are also obtained in this paper using several

methods.

4.2 A General Mixture Model

As mentioned in Section 1, one explanation for a

bathtub-shaped failure rate that is often given by

engineers is that it is due to mixtures of popula-

tions, some weak and some strong. In Block, Mi and

Savits (1993), a general mixture model was investi-

gated. A goal of that paper was to determine opti-

mal burn-in for the cost function CF1 of Clarotti and

Spizzichino (1990). Some results of independent in-

terest, however, were also obtained. They are sum-

marized below.

For the general mixture model, it is assumed that

each member of the subpopulation, indexed by λ ∈
S, has a positive density f�t; λ� on �0;∞�. The den-

sity of the resulting mixed population is then given

by

�4:1� f�t� =
∫

S
f�t; λ�P�dλ�;

where P is the mixing distribution.

The first results concern the monotonicity of the

ratio g�t� = f�t + τ�/f�t� for a fixed mission time
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τ > 0. This is a new type of aging property that

seems appropriate for burn-in since it is related to a

notion of beneficial aging. More specifically, if we re-

quire the ratio f�t+τ�/f�t� to be increasing in t > 0

for each τ > 0, then f must be log-convex and hence

belongs to the class of distributions which have a

decreasing failure rate. Furthermore, certain bath-

tub failure rates which can be realized as mixtures

have this monotonicity property.

Before we can state this result, we recall the def-

inition of reverse regular of order 2 �RR2�. A non-

negative function k�x;y� on A×B is said to be RR2

if

k�x1; y1�k�x2; y2� ≤ k�x1; y2�k�x2; y1�

whenever x1 < x2 in A and y1 < y2 in B. Alterna-

tively, we require that the ratio

k�x+ 1;y�

k�x;y�

be decreasing in y ∈ B for each x ∈ A and 1 > 0.

The following is a preservation result for a mono-

tonicity property with a fixed mission time τ. Let

the family of positive densities �f�t; λ�x λ ∈ S� be

RR2 on �0;∞� × S and let τ > 0 be a fixed mission

time. Suppose the ratio

g�t; λ� =
f�t+ τ; λ�

f�t; λ�

is increasing in t > 0 for each λ ∈ S. Then, for the

mixture density f given in (4.1), the ratio

g�t� =
f�t+ τ�

f�t�
=

∫
S
f�t+ τ; λ� P�dλ�∫
S
f�t; λ� P�dλ�

is increasing in t > 0. A more general result that

does not require the RR2 condition is given in Block,

Mi and Savits (1993, Theorem 3.1).

A second result of interest in the paper of Block,

Mi and Savits (1993) pertains to the limiting be-

havior of the failure rate for the mixed population.

Heuristically, it states that the failure rate of the

mixture tends to the strongest subpopulation. Un-

der certain technical conditions it is shown that the

failure rate of the mixed population converges to a

constant α as t → ∞. Here α = inf�a�λ�x λ ∈ S�
and a�λ� = limt→∞ r�t; λ� with r�t; λ� the failure

rate of the λ-subpopulation. (The discrete version is

considered in Mi, 1994c.)

Clarotti and Spizzichino (1990) also show for the

mixture of exponentials model that if one mixing

distribution P1 is less than P2 in the sense of likeli-

hood ratio ordering, then the optimal burn-in times

b∗i for the cost function CF1 are ordered as b∗1 ≤ b∗2.

The same result also holds for the general mixture

model. See Block, Mi and Savits (1993) for details.

5. COMPONENT VERSUS SYSTEM BURN-IN

In this section we deal with the important issue

of at which stage burn-in is most effective. Consider

a system composed of individual components. Is it

better to burn in all the components or is it bet-

ter to assemble the components and burn in the

system? If there are modules and subassembly sys-

tems similar questions can be asked. The component

level is usually the least expensive stage at which to

consider burn-in. Assembly of even burned-in com-

ponents usually introduces defects, so burn-in at

higher levels would seem to have some value. In this

section we consider some preliminary work in which

this question is considered, but under the simplify-

ing assumption that no defects are introduced upon

assembly. By a system here we mean a coherent

system in the sense of Barlow and Proschan (1981,

page 6).

There are three possible actions we want to

consider which constitute different methods for

burning-in the system:

(i) Burn in component i for a time βi, i = 1; : : : ; n,

and then assemble the system with the burned-

in components.

(ii) Burn in component i for a time βi, i = 1; : : : ; n,

assemble the system with the burned-in compo-

nents and then perform an additional burn-in

of the system for a time b.

(iii) Assemble the system with new components and

then burn in the system for a time period b.

Since (i) and (iii) are special subcases of (ii), we can

do no better than (ii). However, is it possible that

we can do just as well with one of the other two

actions?

In Block, Mi and Savits (1994, 1995), this question

was considered for three different criteria: (1) max-

imizing the probability that the system will sur-

vive a fixed mission time (or warranty period) τ;

(2) maximizing the system mean residual life; and

(3) maximizing the α-percentile (system) residual

life τ = qα�b� for a fixed α, 0 < α < 1. In each case

it was shown that one can do as well with burn-in

at the component level only.

This result can be extended to criteria which have

a type of monotonicity property. More specifically,

the result can be shown to hold for any criterion de-

termined by a functional φ defined on the class of

life distributions which is monotone in stochastic or-

der, that is, in the case of maximizing (minimizing)

the objective function φ, we require that φ�F� ≤
�≥� φ�G� whenever F ≤st G [i.e., F̄�t� ≤ Ḡ�t� for

all t ≥ 0]. Thus, for such criterion, burn-in at the
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system level is precluded by effective burn-in at the

component level.

It should be noted that this result does not apply

to the cost function criteria considered in Section

3.2 since they are not monotone in stochastic order.

Also, if the act of assembling the components de-

grades the system, an additional burn-in at the sys-

tem level might be required. Whitbeck and Leemis

(1989) have considered a model for dealing with this

problem.

6. TOTAL TIME ON TEST (TTT)

In this section we describe a primarily graphical

technique which has been useful in burn-in. One

consequence of this technique is in obtaining ap-

proximate burn-in times.

In a life test, failure times are observed until all or

some portion of the items fail. A way to summarize

the behavior is through the total time on test (TTT)

statistics. Let 0 = x�0� < x�1� < x�2� < · · · < x�n�

be an ordered sample from a continuous lifetime

distribution with finite mean. In this section, to

avoid technical problems, we assume the distribu-

tion function F is strictly increasing on �0;∞�. The

TTT statistics are defined by

Ti =
i∑

j=1

�n− j+ 1��x�j� − x�j−1��

and

ui =
Ti

n
for i = 1; : : : ; n:

Notice that un = x̄n. Moreover, if Fn is the empirical

distribution function and F−1
n �x� = inf�t � Fn�t� ≥

x�, then F−1
n �i/n� = x�i� for i = 1; : : : ; n. Conse-

quently,

∫ F−1
n �i/n�

0
F̄n�x�dx = ui; i = 1; : : : ; n:

This suggests a distributional analog called the TTT

transform, traditionally denoted by H−1
F . It is de-

fined by

H−1
F �t� =

∫ F−1�t�

0
F̄�u�du:

The scaled TTT transform is given by

φF�t� =
H−1

F �t�

H−1
F �1�

=
H−1

F �t�

µ
;

where µ is the mean of F. Although these con-

cepts were discussed earlier, one of the first sys-

tematic expositions was given in Barlow and Campo

(1975).

One of the principle uses of the TTT concept has

been in obtaining approximate optimal solutions for

age replacement and also in obtaining approximate

optimal burn-in times. We briefly describe the pro-

cedure for burn-in and note that the procedure for

age replacement is similar.

We consider the cost function CF4 of Section 3 as

an example and describe how an optimal burn-in

time b∗ can be obtained using the TTT transform.

This example is taken from Mi (1991). The cost func-

tion can be written as

c4�b� = −cs +
c0

∫ b

0
F̄�t�dt+ cs −K

∫∞

b
F̄�t�dt

F̄�b�
:

The optimal burn-in is obtained by minimizing this

function. Letting u = F�b�, minimizing the above is

equivalent to maximizing

MF�u� =
α−φF�u�

1 − u
;

where α = �−cs+Kµ�/�c0 +K�µ and µ is the mean

of F. The function MF�u� is the slope of the line seg-

ment connecting the points �1; α� and �u;φF�u��.
Consequently we need only find the point on the

graph of φF, the scaled TTT transform, for which

the above slope is largest.

If n items with lifetime X are put on test, a

TTT plot (i.e., the graph of φFn
) can be obtained.

Since the TTT transform is the asymptotic version

of the TTT plot, an estimate of the optimal burn-

in can be obtained. If the point �i/n;Ti/Tn� maxi-

mizes MFn
�u�, then x�i� = F−1

n �i/n� is the ordered

value giving an estimate of the optimal burn-in. We

illustrate this in Figure 3. Other similar burn-in

applications can be found in Bergman and Klef-

sjo (1985). See also the review article by Bergman

(1985), which gives other applications of the TTT

transform.

7. SEQUENTIAL BURN-IN AND

OPTIMAL CONTROL

A theory of sequential burn-in has been proposed

in Spizzichino (1991), and some extensions of this

have been initiated by the same author and some

of his colleagues. This extends the previous ma-

terial which deals with mainly one component or

system, or components which are independent and

identically distributed. The more general situation

where the components are not assumed indepen-

dent is treated by Spizzichino and colleagues, who

assume components are exchangeable. A mixture

model for strong and weak exchangeable compo-

nents has been proposed by Spizzichino (1995). We

give a brief introduction to this work. Several rep-

resentative papers are contained in Barlow, Clarotti

and Spizzichino (1993).
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Fig. 3. Estimate of the optimal burn-in.

As background we mention a paper of Marcus

and Blumenthal (1974), who considered a sequential

burn-in procedure. The stopping rule they suggested

is as follows: observe failure times and stop when

the time between failures exceeds a fixed value. This

is reasonable for a lifetime which has a high initial

failure rate that becomes smaller. Properties of this

rule are studied and tables for its use are given.

In Spizzichino (1991), failure times of n compo-

nents which are assumed to be exchangeable are

observed. One burn-in time is chosen initially and

if all components survive it, they are put into field

operation. If there is a failure before this time, a

new additional burn-in time is chosen (which may

depend on the first failure) and the procedure re-

peats. A cost structure based on the one in Clarotti

and Spizzichino (1990), that is, CF1 from Section

3, is given. A sequential burn-in strategy is defined

and this is shown to be optimal. A particular case is

mentioned where the exchangeable distribution is

a mixture of exponentials. This case is further ex-

plored in Costantini and Spizzichino (1991), where a

strategy is proposed for reducing this to an optimal

stopping problem for a two-dimensional Markov

process. Further details are given in Costantini

and Spizzichino (1990) and in Caramellino and

Spizzichino (1996).

A related approach for optimal screening (a

type of burn-in) is given in Iovino and Spizzichino

(1993). A general unifying model is proposed by

Spizzichino (1993). Some very recent research on

optimal burn-in of software is given in Barlow,

Clarotti and Spizzichino (1994).

8. DISCUSSION AND AREAS

FOR DEVELOPMENT

In this review of recent developments in burn-in

we have discussed a variety of problems. We reca-

pitulate some of these ideas in this section along

with some future research directions.

A basic assumption on a lifetime for which burn-in

is appropriate is that it has a bathtub-shaped fail-

ure rate. This type of lifetime often arises because a

population consists of a mixture of weak and strong

subpopulations. One question for which a satisfac-

tory answer has not been determined is for which

mixtures does the failure rate have a bathtub shape.

As described in Section 3, the intuitive result that

burn-in should occur before the first change point of

a bathtub failure rate has been demonstrated for a

wide variety of criteria and cost functions, but in an

ad-hoc way. The authors are currently working on a

unified result for an even broader class of objective

functions.

The handbook of Jensen and Petersen (1982)

presents a wide array of graphical and heuristic

statistical techniques for burn-in. Many of these are

applied to mixtures which model weak and strong

components. At the time the book was written,
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statistical techniques and procedures for mixtures

were less well understood than they are at the

present time. It would be useful if many of the intu-

itively plausible and useful techniques given in this

handbook were updated and put on a firmer statis-

tical foundation. One example of this is the paper

of Arjas, Hansen and Tyregod (1991) (see Section

4.1), who develop estimation techniques for renewal

processes where the underlying distribution is a

mixture of exponentials.

The material of Section 7 on sequential burn-in

and optimal control appears to be a fruitful area of

research. It seems evident that this direction should

be expanded and further investigated.

The development of new ideas on burn-in goes

hand-in-hand with developments in accelerated life

testing. In fact, burn-in is most often accomplished

in an accelerated environment. A related topic is

degradation, in which instead of the lifetime of a

component the emphasis is on a measure of the

quality of the component as it wears out. If the

environment is accelerated, the question of burn-in

in conjunction with this accelerated degradation be-

comes of interest. For recent developments on accel-

erated degradation, see Nelson (1990) and Meeker

and Escobar (1993).

An area of reliability where burn-in techniques

might be applicable and vice-versa is the topic of

software reliability modeling. In this area one prob-

lem involves removing errors (bugs) from the soft-

ware. An assumption which is made is that when

bugs are detected and removed no new bugs are in-

troduced. In this case the software is improved since

the number of bugs remaining is decreased. Conse-

quently, the rate at which bugs are discovered is

decreased. This rate is analogous to the left tail of

a failure rate with infant mortality present. Since

the time at which the testing should stop is of inter-

est, and this is analogous to the burn-in period for

a lifetime of the type discussed in this paper, there

should be some transfer between the ideas of both

of these fields. To date there have been a few appli-

cations of burn-in ideas to finding the time at which

to stop testing the software. The paper of Barlow,

Clarotti and Spizzichino has been mentioned. See

also Section 6 of Singpurwalla and Wilson (1994),

who review the optimal testing of software.
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Comment: “Burn-In” Makes Us Feel Good
Nicholas J. Lynn and Nozer D. Singpurwalla

1. PREAMBLE

Block and Savits, henceforth BS, have made many

contributions to the mathematics of burn-in and are

eminently qualified to put together a review arti-

cle on this topic. Indeed, what they provide here is

an authoritative survey of the technical aspects of
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the subject. All those who work in reliability should

thank them for this and their other writings in this

arena. Our intent here is not to challenge BS on

the mathematics of burn-in, which undoubtedly is

their territory. Rather, we take exception to their

interpretation and their view of burn-in. Our main

concern is that BS view burn-in as a mathemati-

cal rather than as an engineering problem. The au-

thors are not to be faulted for this because their

perspective of burn-in is, regrettably, guided by en-

gineers who do reliability rather than by engineers

who do engineering! Consequently, this survey does

a good job of reporting that which is known and
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written on the topic; unfortunately, that which is

known is subject to debate. The result is that BS

have adopted a limited view of burn-in and have

refrained from a discussion of its foundational is-

sues. Our commentary—actually an article—is writ-

ten with the hope of filling these gaps and providing

an alternative perspective on burn-in; in the sequel

we provide some new results on mixtures of distri-

butions that are germane to burn-in.

“Burn-in” is commonly used in engineering relia-

bility, statistical simulation and medical sensitivity

testing. In this article we discuss the philosophical

underpinnings of burn-in, and make three claims.

Our first claim is that the main purpose served

by burn-in is psychological, that is, relating to be-

lief. Our second claim is that burn-in is dictated by

the interaction between predictive failure rates and

utilities. Consequently, burn-in may be performed

even if the predictive failure rate is increasing and

the utility of the time on test decreasing. An ex-

ample is the burn-in phase of statistical simulation,

which mirrors burn-in testing of engineering compo-

nents. Our third claim is that the famous “bathtub”

curve of reliability and biometry rarely has a physi-

cal reality. Rather, as shown in Theorem 2, it is the

manifestation of one’s uncertainty.

2. INTRODUCTION AND OVERVIEW

2.1 Background

What is “burn-in”? The answer depends on whom

you ask: an engineer, a simulator or a survivor (bio-

statistician). Each explains burn-in differently. Our

goal is to argue, using a minimum of mathematics,

that there is a unifying theme underlying burn-in

and, therefore, there must be a single answer to the

question that is posed.

First, let us see how engineers view burn-in. To

an engineer, burn-in is a procedure for eliminating

“weak” items from a population (cf. Block, Mi and

Savits, 1993). The population is assumed to con-

sist of two homogenous subpopulations: “weak” and

“strong.” Burn-in is achieved by testing each item in

the population for the burn-in period, and commis-

sioning to service those items that survive the test.

The items that fail the test are judged weak.

To a simulator, burn-in is the time phase during

which an algorithm, such as a “Gibbs sampler,” at-

tains its theoretical convergence (usually the weak

convergence of distributions); see, for example,

Besag, Green, Higdon and Mengersen (1995). Bio-

statisticians do not use the term burn-in, but the

notion of “sensitivity testing” a new drug for a short

period of time parallels the thinking of engineers.

2.2 Misconceptions about Burn-in

There appear to be at least two misconceptions

about the engineer’s view of burn-in. The first is

that items that are judged to have exponential life

distributions (or distributions that have an increas-

ing failure rate) should not be subjected to a burn-in

(cf. Clarotti and Spizzichino, 1990). The second mis-

conception is that the sole purpose of burn-in is the

elimination of weak items from a population.

The causes of the first misconception are a fail-

ure to appreciate the role of utility in burn-in and a

failure to distinguish between what Barlow (1985)

refers to as the “model failure rate” and the “predic-

tive failure rate.” Burn-in decisions should be based

on the predictive failure rate, not the model failure

rate. In fact, if the predictive life distribution is a

mixture of exponential distributions, then burn-in

must be contemplated; it should be performed if the

costs of testing compensate for the avoidance of risk

of in-service failures.

The cause of the second misconception is a failure

to appreciate the fact that, fundamentally, there are

two reasons for performing a burn-in test: psycho-

logical (i.e., those pertaining to belief) and physical

(i.e., those pertaining to a change in the physical or

the chemical composition of an item).

2.3 Objectives

The aim of this article is to argue that the two

reasons given above cover the entire spectrum of

burn-in, be it in engineering reliability, in simula-

tion or in sensitivity testing. Also, fundamentally,

since the concepts of physics, chemistry and biology

influence belief (or psychology), there is only one

reason for burn-in, namely, psychological. In what

follows (see Section 4), we will attempt to justify

our point of view. We will also point out that in

one’s day-to-day life, the psychology of burn-in is

routinely practiced. In Section 5 we give examples of

circumstances which provide a physical motivation

for burn-in. Section 6 explores the role of utility in

burn-in, and Section 7, entitled “An anatomy of fail-

ure rates with decreasing segments,” leads us to a

discussion of optimal burn-in times. A consequence

of the material of Section 7 is our claim (Theorem

2) that the famous “bathtub curve” of reliability is

rarely a physical reality; rather, it is often the man-

ifestation of one’s subjective belief. This may come

as a surprise to many.

3. NOTATION AND TERMINOLOGY

Suppose that T, the time to failure of an item,

has a distribution function F�t� = P�T ≤ t� and

a survival function F�t� = 1 − F�t�. Assume that
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f�·�, the probability density function of F�·�, ex-

ists. If F�·� is indexed by a parameter u so that

P�T ≤ t�u� = F�t�u�, then h�t�u�, the model failure

rate function of F�·�, is defined as

h�t�u� =
f�t�u�

F�t�u�
; t ≥ 0:(1)

The function F is said to have an increasing (de-

creasing) model failure rate if h�t�u� is monoton-

ically increasing (decreasing) in t, where we use

increasing (decreasing) in place of nondecreasing

(nonincreasing) throughout. The function F is said

to have a constant model failure rate if h�t�u� is

constant in t. It is well known that h�t�u� is con-

stant in t if and only if F�t�u� = e−θt, an exponential

distribution.

In keeping with our claim to use a minimum of

mathematics, we will call h�t�θ� a bathtub curve if

it satisfies the following definition.

A function g�t� is said to be a bathtub curve if

there exists a point u > 0 such that g�t� is strictly

decreasing for t<u and strictly increasing for

t>u.

In the context of burn-in, which is de facto a lim-

ited life test, F having an increasing (decreasing)

model failure rate implies that burn-in results in a

depletion (enhancement) of useful life. When F has

a constant model failure rate, burn-in results in nei-

ther a depletion nor an enhancement of useful life.

Since the parameter u is always unknown, we

need to specify a distribution for it; let the density

of this distribution be denoted π�u�. Then h�t�, the

predictive failure rate function of F, is given as

h�t� =

∫
f�t�u�π�u�du

∫
F�t�u�π�u�du

=
∫
h�t�u�

(
π�u�F�t�u�∫
F�t�u�π�u�du

)
du:

(2)

Thus

h�t� =
∫
h�t�u�π�u�t�du;(3)

where π�u�t� denotes the density of the distribution

of u given that T ≥ t.

Note that, contrary to what many believe,

h�t� 6=
∫
h�t�u�π�u�du; also, if π�u� is degener-

ate, the model and predictive failure rates agree.

We conclude this section with a statement of the

following important closure (under mixtures) theo-

rem.

Theorem 1 [Barlow and Proschan (1975) page

103]. If the model failure rate h�t�u� is decreasing

in t; then the predictive failure rate h�t� is decreas-

ing in t; for any π�u�.

A consequence of this theorem is the result that if∫
F�t�u�π�u�du, the predictive life distribution, is a

mixture of exponential distributions, then the pre-

dictive failure rate will be strictly decreasing.

4. THE PSYCHOLOGICAL ASPECT OF BURN-IN

In this section, we argue that burn-in is a process

of learning, where by learning we mean a reduc-

tion of uncertainty. The optimal burn-in time is the

time at which the amount of information that is

gleaned from the test balances the costs of the test,

where costs include the depletion of useful life. We

are prompted to make this claim as a consequence

of observing that engineers subject every item that

they use to a short life test prior to commissioning.

This is true even of items that have an increasing

model failure rate. For such items, burn-in would

deplete useful life. When asked why every item is

subjected to a burn-in, the answer has been that

burn-in gives a “warm feeling” or “confidence” about

an item’s survivability. Thus engineering practice is

contrary to the statistical literature, which seems

to imply that only items having a strictly decreas-

ing model failure rate should be subjected to a

burn-in.

How can one explain engineers’s actions which

are contrary to the literature? Our explanation is

that, with burn-in, we are learning by observing, so

burn-in must be contemplated whenever we have

uncertainty about the model failure rate, be it in-

creasing, constant or decreasing. The depletion of

useful life which occurs is the price that we pay for

additional knowledge about the failure rate. The op-

timal burn-in time represents the optimal trade-off

between knowledge and cost, and it may be greater

than zero if the predictive failure rate is decreasing

or has a decreasing segment.

5. THE PHYSICAL ASPECT OF BURN-IN

Is uncertainty about the model failure rate the

only circumstance under which a burn-in should be

contemplated? The answer is no, because burn-in

may also be done in those situations wherein the act

of using the item physically enhances its survivabil-

ity. Examples include the work hardening of ductile

materials and the self-sharpening of drill bits. Un-

der such circumstances the model failure rate is de-

creasing, and one would contemplate a burn-in, even

if the model failure rate were known with certainty.

The predictive failure rate is of course decreasing

by Theorem 1.

To summarize, burn-in should be contemplated

for all items whose predictive failure rate is either
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monotonically decreasing or has a decreasing seg-

ment. Burn-in should be performed if the costs of

testing compensate for the avoidance of risk, either

because of our added knowledge or the physical en-

hancement of survivability, both of which make us

feel good; hence the title of this paper.

6. THE ROLE OF UTILITY IN BURN-IN

Implicit in everything we have said above is the

assumption that the event of interest is failure and

that there is a positive utility associated with sur-

vival. Thus, neglecting costs associated with testing,

a reduction in the predictive failure rate corre-

sponds to an increase in the expected life and,

therefore, the expected utility. Thus burn-in is

only considered when the predictive failure rate is

decreasing or has a decreasing segment.

However, the term “failure rate” is misleading,

since we never stipulate that T is the time to

failure. Indeed, T may represent the time to any

event of interest, and the utility associated with

the time before that event’s occurrence may be neg-

ative. One example arises in statistical simulation,

where an algorithm, such as the Gibbs sampler,

is subjected to a burn-in to ensure its (weak) con-

vergence. The idea here is that the algorithm

experiences a phenomenon that is akin to work

hardening, in the sense that each run is a stepping

stone toward convergence. However, in this exam-

ple, we define T to be the time until a specified

convergence criterion is met; the utility associ-

ated with this time is negative. Furthermore, the

model failure rate is increasing, since convergence

becomes increasingly likely with each step of the

algorithm.

Should we perform burn-in in this case? The an-

swer to this question comes from a consideration of

the costs. We conclude that burn-in should be con-

templated whenever the predictive failure rate has

an increasing segment; when the predictive failure

rate is increasing, we will burn in indefinitely (i.e.,

until convergence is achieved). Burn-in will not be

performed when the predictive failure rate is de-

creasing. These conclusions are opposite to those of

Sections 4 and 5. Indeed, the simulation problem

may be thought of as the dual (or “mirror image”)

of the usual engineering problem.

This scenario raises two important issues: (i) that,

in essence, burn-in is a decision problem and cannot

be answered without consideration of utility; and

(ii) that the material of this paper is not restricted

to the analysis of failure—rather, it applies to any

situation where we have uncertainty surrounding

the time of an event’s occurrence.

7. AN ANATOMY OF FAILURE RATES WITH

DECREASING SEGMENTS

7.1 Decreasing Failure Rates

We start off by asking the question, “What causes

F to have a monotonically decreasing predictive fail-

ure rate?” Three reasons come to mind. These are

(i) the physics of failure of an item, (ii) the physical

mixing of several items, each having a decreasing

but known model failure rate and (iii) the subjective

(or psychological) mixing of a decreasing but un-

known model failure rate. One may claim that (ii)

above is a special case of (iii); however, it is helpful

to distinguish between the two. We first elaborate

on each of these and then address the question of a

bathtub failure rate.

7.2 The Physics of Failure

The best examples of items whose time-to-failure

distribution F has a monotonically decreasing

model failure rate are those which experience work

hardening. Examples include the curing of concrete

slabs and the self-sharpening of drill bits. In all

the above cases, the chemical bonds which hold

together the atoms of a material strengthen over

time or with use, making their failure increasingly

unlikely over time.

In Figure 1 we illustrate several forms of decreas-

ing model failure rates for an item and the resulting

predictive failure rate, which by the closure under

mixture theorem (Theorem 1), must also be decreas-

ing. If π�u∗� was degenerate at u
∗, then there would

be only one model failure rate (corresponding to u
∗)

and the corresponding predictive failure rate would

be u
∗:

Fig. 1. Monotonically decreasing model and predictive failure

rates.
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7.2.1 Physical mixing. By “physical mixing” we

mean the act of physically putting together several

probabilistically heterogenous items that are oth-

erwise indistinguishable, and inquiring about the

stochastic behavior of an item picked (at random)

from the mixture. For example, suppose that a bin

contains n items, with the ith item having model

failure rate h�t�ui�, i = 1;2; : : : ; n, where ui is as-

sumed known. Suppose that the n items are oth-

erwise indistinguishable, so that the model failure

rate of an item picked at random from the bin is un-

known. However, if the ui’s have a probability mass

function P�ui�, then the predictive failure rate of

the item picked at random is given by the discrete

mixture

h�t� =
n∑

i=1

h�t�ui�P�ui�t�;(4)

where P�ui�t� is the probability mass of ui given

that T ≥ t.

Suppose now that each h�t�ui� is decreasing in t.

Then, by the closure under mixtures theorem (The-

orem 1), h�t� is also decreasing in t. In Figure 2 we

illustrate this phenomenon via model failure rates

that are constant. In fact, the closure under mix-

tures theorem was motivated by the physical mixing

of constant model failure rates.

7.2.2. Subjective �or psychological� mixing. The

notion of what we refer to as “subjective mixing”

parallels that of physical mixing, except that now

one does not conceptualize a mixing process that

is prompted by physically putting together several

heterogenous items. Rather, one acts as a subjec-

tivist (in the sense of de Finetti and Savage), and

Fig. 2. Monotonically decreasing predictive failure rate under

physical mixing.

Fig. 3. Monotonically decreasing predictive failure rate under

subjective mixing over the Weibull shape parameter θ.

mixes over the different model failure rates that are

suggested by an unknown u, via a prior π�u� over u:

Specifically, suppose that an item has a model fail-

ure rate h�t�u� with u unknown. Let π�u� reflect

one’s subjective opinion about the different values

of u; that is, π�u� is the prior on u. Suppose that

h�t�u� is decreasing in t for all values of u. Then,

by the closure under mixtures theorem, the predic-

tive failure rate of the item h�t� will also decrease

in t. For example, suppose that u = θ and that

F�t�θ� = exp�−tθ�, θ ≥ 0, t > 0, a Weibull distri-

bution with shape parameter θ. If θ = 1, h�t�θ� = 1,

a constant, whereas if θ < 1, h�t�θ� decreases in t.

Thus if π�θ� has support �0;1�, then h�t� decreases

in t; see Figure 3.

Thus in the two scenarios of physical and subjec-

tive mixing, the predictive failure rate is decreas-

ing in t, suggesting that burn-in should be contem-

plated.

7.3 Bathtub Failure Rates

We now ask the question, “What causes F to have

a decreasing and then increasing failure rate?” It is

difficult to think of an example from the physical sci-

ences for which one could come up with a convincing

argument about the changing behavior of chemical

bonds. That is, the bonds must initially strengthen

with use and then weaken. In the biological context,

it has been conjectured that the immune system ini-

tially improves with age but then gets worse, and so

a use of the bathtub curve in human mortality ta-

bles has a biological justification. However, the most

convincing argument—at least to us—is that of mix-

ing, either due to physical or, more likely, subjective
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Fig. 4. Subjective mixing of increasing model failure rates re-

sulting in bathtub-shaped predictive failure rate.

causes. As an example of the above suppose that F

is a Rayleigh distribution, truncated at the left at

zero, so that h�t�θ� = 2t + θ, with θ unknown. Let

π�θ� have support �0;∞�. Then it can be shown (see

Theorem 2 below) that the predictive failure rate of

F initially decreases and then increases, like a bath-

tub curve (see Figure 4). Gurland and Sethuraman

(1994, 1995), discuss other cases wherein the mix-

ture of increasing model failure rates could result

in decreasing predictive failure rates. Their results

suggest that in the presence of uncertainty, it is un-

usual for the predictive failure rate to be increasing.

The example depicted in Figure 4 suggests the

following theorem, which is a generalization of the

situation discussed.

Theorem 2. Suppose that h�t�θ� = α�t�+θ; where

θ ≥ 0 is unknown and α�·� is convex. Let π�θ� de-

scribe our uncertainty about θ; and let V�θ�t� denote

the variance of θ given T > t. Then h�t� has a bath-

tub shape if

Var�θ�0� >
d

dt
α�0�;

in which case the minimum occurs when Var�θ�t� =
�d/dt�α�t�.

This result follows from the fact that h�t� = α�t�+
E�θ�t�, where E�θ�t� is a decreasing, convex function

of t. The above theorem, as well as the example,

show that the popular bathtub curve of reliability

is not necessarily physically realistic. Rather, it is

a consequence of belief produced by the process of

subjectively mixing increasing model failure rates

having certain properties. Note how the shape of

the predictive failure rate is directly linked to our

uncertainty, via the prior variance.

8. THE OPTIMAL BURN-IN TIME

The question, “When should we burn-in?”, leads

us naturally to the issue of an optimal burn-in

time. To address this issue, let us first put into

perspective the circumstances under which the pre-

dictive failure rate has a decreasing segment. These

are (i) mixing due to uncertainty about constant,

increasing or decreasing model failure rates and

(ii) model failure rates which are strictly decreasing

because of physical circumstances, but about which

we are certain.

Under (i) above, burn-in can be viewed as a pro-

cess of learning, that is, a reduction of uncertainty

about T. To see this, suppose that the optimal burn-

in time is τ ≥ 0. When the burn-in test shows that

T > τ, our predictive ability about T sharpens (via

added knowledge about u). If the burn-in test shows

that T ≤ τ, then F is degenerate at some t ∈ �0; τ�,
and the item tested is declared a weak one. Thus

for predictive failure rates given by mixtures, be

they decreasing or bathtub, burn-in gives us added

knowledge. The price we pay for this knowledge is

the cost of testing and the depletion of useful life if

the model failure rate is increasing in t. The optimal

τ is a trade-off between the costs and the utility of

reduced uncertainty (see Theorem 3, below). Clearly,

burn-in should not be done if (i) the predictive fail-

ure rate h�t� is increasing in t or (ii) our trade-off

calculations show that τ = 0; see Theorem 2.

8.1 The Scenario of Indefinite Burn-in:

Eternal Happiness

A situation of interest is that of h�t�u� strictly

decreasing in t, with π�u� being degenerate. If the

costs of burn-in are zero, then τ → ∞, because burn-

in enhances useful life. This implies that indefinite

burn-in leads to eternal happiness! However, since u

is an abstraction (just a Greek symbol to de Finetti),

a degenerate π�u� is not realistic, and thus eter-

nal happiness is a myth. If the costs of burn-in are

greater than zero, then τ is the time at which the

costs of burn-in and the utility of enhanced life due

to burn-in balance out.

The above matters are summarized and quanti-

fied via the following theorem due to Clarotti and

Spizzichino (1990)—extended further by Block, Mi

and Savits (1993).

Suppose that F has a density f, and suppose that

g�t� ≡ f�t+ s�/f�t� increases in t for all s > 0. Let

c1 denote the cost if T < τ, let C be the cost if
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τ ≤ T ≤ τ+ s (where s can be viewed as the mission

time) and let −K be the reward if T > τ + s. Then:

Theorem 3 [Clarotti and Spizzichino (1990)].

(i) Burn in indefinitely, iff

lim
t→∞

g�t� <
C− c1

C+K
= v:

(ii) Do not burn in, iff g�0� ≥ v.

(iii) Burn in for time τ > 0, iff g�τ� ≡ v.

Note that the indefinite burn-in of (i) above is dif-

ferent from the indefinite burn-in of eternal happi-

ness discussed above. The former is based on costs

of testing and in-service failure; the latter assumes

that the costs of burn-in are zero.

9. CONCLUDING COMMENTS

Let us return to the original question: “What is

burn-in”? We argue that it is primarily a mechanism

for learning.

The model failure rate describes the physical pro-

cess of aging. The predictive failure rate describes

our changing beliefs about an item as we observe it

surviving. Since burn-in is performed for a psycho-

logical purpose, it is only natural to base burn-in cal-

culations upon the predictive failure rate. The mod-

eland predictive failure rates may have very differ-

ent forms. Indeed, while the famous bathtub curve

rarely has a physical motivation, it arises quite nat-

urally in our minds.
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