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PHYSICAL REVIEW E VOLUME 60, NUMBER 4 OCTOBER 1999 

Burnett description for plane Poiseuille flow 

F. J. Uribe 
Physics Department, Universidad Autónoma Metropolitana Iztapalapa, P.O. Box 55-534, 09340 México D.F., Mexico 

Alejandro L. Garcia* 
Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720 

(Received 30 March 1999) 

Two recent works have shown that at small Knudsen number (K) the pressure and temperature profiles in 
plane Poiseuille flow exhibit a different qualitative behavior from the profiles obtained by the Navier-Stokes 
equations. Tij and Santos [J. Stat. Phys. 76, 1399 (1994)] used the Bhatnagar-Gross-Kook model to show that 
the temperature profile is bimodal and the pressure profile is nonconstant. Malek-Mansour, Baras, and Garcia 
[Physica A 240, 255 (1997)] qualitatively confirmed these predictions in computer experiments using the direct 
simulation Monte Carlo method (DSMC). In this paper we compare the DSMC measurements of hydrody
namic variables and non-equilibrium fluxes with numerical solutions of the Burnett equations. Given that they 
are in better agreement with molecular-dynamics simulations [E. Salomons and M. Mareschal, Phys. Rev. Lett. 
69, 269 (1992)] of strong shock waves than Navier-Stokes [F. J. Uribe, R. M. Velasco, and L. S. Garcı́a-Colı́ n, 
Phys. Rev. Lett. 81, 2044 (1998)], and that they are second order in Knudsen number suggests that the Burnett 
equations may provide a better description for large K. We find that for plane Poiseuille flow the Burnett 
equations do not predict the bimodal temperature profile but do recover many of the other anomalous features 
(e.g., nonconstant pressure and nonzero parallel heat flux). [S1063-651X(99)02410-1] 

PACS number(s): 05.20.Dd, 05.60.-k, 02.70.Ns, 47.45.-n 

I. INTRODUCTION 

The Navier-Stokes equations provide a sound and robust 
theoretical method to study flows at the macroscopic level 
which have innumerable applications. The complexity of the 
equations is due to the fact that they are nonlinear except for 
simple cases where, due mainly to the symmetries involved, 
they reduce to linear equations that can be solved in a closed 
form. The Navier-Stokes equations can be derived from 
strictly macroscopic arguments or from a kinetic model, such 
as the Boltzmann equation for dilute gases; however, their 
derivation assumes both local equilibrium hypotheses and 
the small gradient approximation, which allows one to for
mulate the constitutive equations needed to close the conser
vation equations. In situations where large gradients exist, as 
in a shock wave or in a boundary layer, these equations are 
expected to fail, as has been pointed out in the past. Further
more, being a macroscopic theory their validity is also re
stricted to situations in which the Knudsen number (K) is 
small and a crucial point is to know, for a given problem, the 
range of Knudsen numbers where they remain valid. Another 
important parameter is the Reynolds number ( Re) , which in 
some cases determines when the solutions cease to be lami
nar and the flow becomes turbulent. 

The Navier-Stokes equations can, in principle, be solved 
as an initial value problem. Usually stick boundary condi
tions are used, but when the Knudsen number is not small 
(K>10-2) the slip at the boundaries must be taken into 
account [1]. There exist simple examples in which the solu
tions to the stationary Navier-Stokes equations are infinite 

*Permanent address: Physics Dept., San Jose State University, 
San Jose, CA 95192. 

(countable) even for a fixed Reynolds number [2], so even 
when only one solution exists, as in plane Poiseuille flow 
with stick boundary conditions, one needs to perform a sta
bility analysis of the solutions [3]. 

Recently Tij and Santos [4] showed that a perturbative 
solution to the Bhatnagar-Gross-Kook (BGK) model pre
dicted qualitatively different temperature and pressure pro
files from those predicted by the Navier-Stokes equations. 
Malek et al. [5] confirmed this result using the direct simu
lation Monte Carlo (DSMC) method to model plane Poi
seuille flow of a dilute hard sphere gas for Re=10 and K 
=1/10. Malek et al. also solved the Navier-Stokes equations 
numerically and showed that slip corrections could not ex
plain the discrepancy. The results obtained by Tij and Santos 
are in better quantitative agreement with the DSMC data if 
the Chapman-Cowling expressions for the transport coeffi
cients are used instead of the those derived from the BGK 
model, which give an incorrect Euken factor. While the Eu
ken factor is in contradiction with the results from both the 
Chapman-Enskog method and experiment, it should be 
pointed out that the BGK model is able to reproduce quali
tative features in situations far from equilibrium where the 
Chapman-Enskog method is not applicable, and so the model 
is useful as a guide in such situations. 

To the authors’ knowledge, Poiseuille flow is the first 
scenario in which the Navier-Stokes equations have been 
shown to be susceptible to significant improvement for a 
flow with relatively small gradients. Since Uribe et al. [6] 
showed that the Burnett equations can provide an accurate 
description for strong shock waves, it is then a natural step to 
compare the Burnett equations with DSMC simulations of 
Poiseuille flow, and that is what we do here. The next four 
sections present the theoretical development of the conserva
tion equations, the Navier-Stokes equations, the Burnett 
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equations, and the Burnett fluxes. The DSMC algorithm is 
outlined briefly in Sec. VI; simulation results are presented 
and discussed in Secs. VII and VIII. Section IX contains final 
remarks and a discussion of future work. 

II. CONSERVATION EQUATIONS 

We consider the flow between two infinite and stationary 
plane parallel walls located a y=±L/2. The hydrodynamic 
velocity c0 is assumed to have only an x component so that 
c0=u=u(r) i in the laminar, stationary case (unless stated 
otherwise, we adopt the notation used by Chapman and 
Cowling [7]). Following Landau and Lifshitz [8] we assume 
that all the relevant quantities can only depend on the y co
ordinate, in particular c0 =u(y) i. Noting that, for any func
tion, f (y), ( c0• ) f (y)=0 , it follows that the conservation 
equations reduce to 

0= •„p(y )u(y )i…, (1) 

0=-
1 

p(y ) 

dPyx 

dy 
+a (2) 

0=-
1 

p(y ) 

dPyy  

dy 
, (3) 

0=-
1 

p(y ) 

dPyz 

dy 
, (4) 

du(y ) dqy(y )
0=Pyx + , (5)

dy dy 

where p(y) is the mass density, P(y) the pressure tensor, 
q(y) the heat flux, and a the acceleration from a constant, 
external body force (e.g., gravity) acting in the x direction. 
Equation (1) is the mass conservation equation, which is au
tomatically satisfied. Equations (2), (3), and (4) are the com
ponents of Newton’s second law (momentum conservation), 
and Eq. (5) is the energy conservation equation. Notice that 
we can conclude that the components Pyy  and Pyz of the 
pressure tensor are constant, a result that does not depend on 
the constitutive relations. 

For the discussion that follows it is important to keep in 
mind that the results of this section depend on the three 
conditions: (1) uy =0. (2) uz =0. (3) All the physical quanti
ties depend only on y. The last condition will be referred to 
as Landau’s symmetry argument. 

In a dilute gas the pressure p(y) and temperature T(y) are 
related by the ideal gas equation of state p=pkT/m , where 
m is the particle mass and k is Boltzmann’s constant. To 
have a closed system in the variables u(y), p(y) , and T(y), 
one needs to introduce constitutive relations. Since the con
tributions up to second order in the Knudsen number for the 
pressure tensor and heat flux include the Navier-Stokes terms 
(first order in the Knudsen number), these terms are devel
oped in Sec. III. 

0 

PNS =pI- 2f c0, (6) 

qNS =-A T , (7) 

where f is the shear viscosity, A the thermal conductivity, 
and I is the unit tensor. The double overbar denotes the sym
metric tensor, and the circle means the corresponding trace
less tensor. For stationary, plane Poiseuille flow, these con
stitutive relations simplify to 

NS du(y )
Pyx =-f ,

dy 

NSPyy  =p(y ), 
(8) 

NSPyz =0, 

dT(y ) 
qNS =-A ,y dy 

For a dilute gas of rigid spheres, the transport coefficients 
are [7] 

k3T(y ) 1/25cf mkT(y ) 1/2 75cA
f= ( ) , A= ( ) . (9)

16c2 7 64c2 7m 

where c is the particle diameter. While often the transport 
coefficients are approximated by the first Sonine expansion 
(cf =cA =1 ) , for rigid spheres more precise values ( cf 
=1.016034 and cA =1.02513) are known [7]. 

Substitution of Eqs. (8) and (9) into Eqs. (1)–(5) leads 
us to 

d2u dT du 
10cfk2T(y )2 

dy2 =-5cfk2T(y )
dy dy 

-32pc2a(7mkT(y ))1/2, 

d2T du 2 dT 2 

30cAk3T(y ) =-8mcfk2T(y )( ) -15cAk3 ( ) .
dy2 dy dy 

(10) 

Note that in the Navier-Stokes regime the pressure is con
stant, so we have two second order nonlinear equations for u 
and T. The boundary conditions for these equations are dis
cussed in Sec. IV. 

III. NAVIER-STOKES REGIME IV. BURNETT REGIME 

The Navier-Stokes expressions for the pressure tensor The second order Knudsen number corrections for the 
(PNS) and the heat flow ( qNS) are given by stress tensor ( P(2)) and the heat flux ( q(2)) are given by [7] 
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c0 

0 this result, we are led to solve the following reduced second 

P( 2 ) =w1 
f2 

p
f2 f2D0 order system of ordinary differential equations:  e+w2 Dt e

f2 

0-2 T+w3 pTp

f2 0
 0
 f2 

, 

•e

+w4 p T+w5 T T+w6ppT 

0 

pT e•e

f2 f2 f2D0
  T+e2  T- c0• T +e3 

0 
0 

0
d2u* 1 dT* du* b0p*( s )pT2 

=- + ,
ds2 2T*( s ) ds ds T*3/2( s )(11) 

p•e0(2)=e1q
pT pT Dt pT 

2 2d2T* 8cf du* 1 dT* 

ds2 =-
15cA 

( ds ) -
2T*( s ) ( ds )+e4 

f2 

p
 
•e+e5 

0 3f2 

pT 
T•e, 0 , (14) 

where the numerical values for the w’s and e’s are given 
below and [7] 

d2 2p* b1p*2( s ) b2p*2( s ) b1p*3( s ) 1 dp* 
= + - + ( )

e= c0,  = •c0 , ds2 
T*2( s ) T*2( s ) T*2( s ) p*( s ) ds 

2D0 2 1 dp* dT* 2p*( s ) du* 
( T ) =- ( T •c0) -( c0• T ) , (12) - - ( )

Dt 3 T*( s ) ds ds T*( s ) ds 

2 28w3 p*( s ) cf du* p*( s ) w3 dT* 
-

15w2T*( s ) cA 
( ds ) -

2w2T*2( s ) ( ds )0
 
0
 

1 
p( a-

p )D0 
•( e

For plane Poiseuille flow, we are led to 

0) c0 c0= - . 
w4 dp* dT* w5p*( s ) dT* 

+ + ( )w2T*( s ) ds ds w2T*2( s ) ds 

2Dt 

(2) (2)Pyx =0, Pyz =0, 

(2) 2 w2f
2 dp dp 2 w2f

2 d2p 2 w2f
2 

Pyy  = -
3 p( y ) p( y ) dy dy 3 p( y ) p( y ) dy2 - 3 p( y ) 

2du 2 w3f
2 d2T 2 w4f

2 

X( ) +
dy 3 T( y ) p( y ) dy2 +3 p( y ) T( y ) p( y ) 

2 2dp dT 2 w5f
2 dT 1 w6f

2 du 
X + + ,

dy dy 3 p( y ) T( y ) 2 ( dy ) 12 p( y ) ( dy ) 
(13) 

(2) 1 e3f
2 dp du 1 e4f

2 d2u 3 e5f
2 

q = x 2 p( y ) p( y ) dy dy 
+

2 p( y ) dy2 +2 p( y ) T( y ) 

dT du (2) (2)X , q =0, q =0.
dy dy y z 

Note that there is a heat flow along the x direction, but it 
does not make a contribution to the conservation equations, 
the reason being that in the energy conservation equation one 
has to evaluate the divergence of the heat flow, and only the 
y component of the heat flux can contribute. 

The x component in the momentum conservation is the 
(2)same as the Navier-Stokes result because P =0 . Similarly yx 

the z component of momentum conservation is not altered, 
so only the y component of momentum conservation is al
tered in the Burnett regime. Since this component must be a 
constant, we see from previous equations that the result is a 
second order ordinary differential equation for p. In the pre
vious equation for Pyy  there appears a second derivative for 
the temperature, which can be obtained from Eq. (10). Using 

2w6p*( s ) du* 
+ ( ) , (15)

4w2T*( s ) ds 

where s=y /L , p*(s)=p(y)/p(0), T*(s)=T(y)/TR , with 
TR the temperature of the walls and u*(y)=u(y)/ 
(2kTR /m)1/2. The coefficients are 

L2 2 L28 a 27p( 0 ) mc 384 p( 0 ) 27c4 

b0=- , b1=- ,2 2 k25 cfk2TR w2cf25 2 TR 

d2p
L2 ( 0 ) T( 0 ) 2 

dy2 
b2= 2 . (16)

p( 0 ) TR 

for symmetric profiles. Though the physical system is geo
metrically symmetry about the x axis, this does not guarantee 
a symmetric profile since spontaneous symmetry breaking 
may occur [2]. However, the profiles measured in our DSMC 
computer experiments are in good agreement with this as
sumed symmetry. 

In terms of the variables; Y1(s)=u*(s), Y2(s)=T*(s), 
Y3(s)=p*(s), Y4(s)=du/ds , Y5(s)=(dT*/ds)(s) , and 
Y6(s)=(dp*/ds)(s) , the previous system of three second 
order differential equations can be expressed as a system of 

six coupled first order differential equations, Ẏ =F(Y), 
where the dot denotes the derivative with respect to s. The 
vector field F is given by 

0
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F1( Y) =Y4 , F2( Y) =Y5 , F3( Y) =Y6 , 

1 Y4Y5 Y3
F4( Y) =- +b0 3/2 

,
2 Y2 Y2 

28cf 1 Y52F5( Y) =- Y4 - ,
15cA 2 Y2 

(17)
2 2 3 2 2Y3 Y3 Y3 Y6 Y6Y5 Y3Y4

F6( Y) =b1 +b2 -b1 + - -2
2 2 2 Y3 Y2 Y2Y2 Y2 Y2 

2 28cfw3 Y3Y4 w3 Y3Y5 w4 Y6Y5 
- - +215cA w2 Y2 2w2 Y2 w2 Y2 

2 2 w5 Y3Y5 w6 Y3Y4 
+ + . 
w2 

2 4w2 Y2Y2 

where for simplicity an explicit s dependence is omitted. 
To have a well posed problem requires the specification 

of initial or boundary conditions. For the Burnett equations, 
several issues regarding boundary conditions are still unre
solved. Rather than looking at this point in a general setting, 
it is important to know first if the Burnett equations can 
indeed reproduce the features observed in problems for 
which the Navier-Stokes equations are susceptible to im
provement, and this is what we would like to test here for 
plane Poiseuille flow. 

To avoid the difficulty of specifying boundary conditions 
at y=±L/2 ( s=±1/2) , we use the centerline ( s=0 ) pro
file values measured in the DSMC simulations as the initial 
values for the previous first order system [Eq. (17)]. The 
explicit initial conditions used are 

u*( 0 ) =u0 , T*( 0 ) =T0 , p*( 0 ) =1, (18) 

with the derivatives at s=0 equal to zero and the values u0 , 
p(0), and T0 taken from the DSMC data. The dynamical 
system [Eq. (17)], is given in terms of quotients of differen
tiable functions, so that it is differentiable in U= RXR+ 

XR+XR3 , R being the real numbers and R+ the positive 
real numbers. In particular, it is locally Lipshitz in that set 
[9], so that the usual local existence and uniqueness theorem 
holds for the initial values used as long as they are elements 
of U [9,10]. We would like to emphasize that the Burnett 
equations will be solved with initial conditions provided by 
the DSMC data; in this way the question of slip at the bound
aries is bypassed, but the calculated profiles at the bound
aries allow us to compare the predicted slip with the DSMC 
data. 

Finally, the values of the coefficients are 

4 7 1 
w1=1.014X ( - ) , w2=2X1.014,

3 2 2 

Notice that e’s are not needed for solving the differential 
equations, but are used to evaluate the heat flux; also e1 and 
e2 do not appear in the expressions for the fluxes given by 
Eqs. (13). The Navier-Stokes equations result from taking 
F3=0 and F6=0 in Eqs. (17). 

V. BURNETT DESCRIPTION FOR THE FLUXES 

In Sec. IV we saw that, unlike the Navier-Stokes equa
tions, the Burnett description predicts a heat flow along the x 
direction that has no effect on the temperature profile. Since 
the computer experiments can measure momentum and heat 
flux, it is useful to evaluate the Burnett expressions explicitly 
for the various components of these fluxes. 

First consider the expression of the x component of the 
heat flux; from Eqs. (13), we have 

1 dp du 1 u 3(2) e3f
2 e4f

2 d2 e5f
2 

xq = 
2 p( y ) p( y ) dy dy 

+
2 p( y ) dy2 +2 p( y ) T( y ) 

dT du 
X . (20)

dy dy 

The second derivative of the velocity can be evaluated from 
the Navier-Stokes results and the mass density can be elimi
nated from the equation of state, giving 

2 k2T( y ) 2 2 k2T( y )25 e3cf dp du 25 e4cf(2) 
xq = 

512 7c4p( y ) 2 dy dy 
-

1024 7c4p( y ) 2 

dT du 5 e4cfa( mkT( y ))  1/2 

X -
dy dy 32 7c4 

2 k2T( y ) 275 e5cf dT du 
+ . (21)

512 7c4p( y ) dy dy 

In terms of the notation used for the dynamical system, 
the reduced form of the x component of the heat flow reads 

(2)qx d1Y 2 
2Y 4Y 6 d2Y 2Y 4Y 5(2)*=q = +x 2

2( kTR /m ) 
3/22 Y 3 Y 3 

c3/m 

d4Y 2Y 4Y 5 
+d3 Y 2+ 2 , (22)

Y 3 

where 

2 225 kTRe3cf 25 kTRe4cf
d1= d2=-

1024 c7p( 0 ) L2 , 2048 c7p( 0 ) L2 , 

3 5 c 2e4cfam 75 kTRe5cf 
w3=3X0.806, w4=0.681, w5= X0.806-0.99, d3 =- , d4=+2 128 kTR 7 1024 c7p( 0 ) L2 . 

(19) 

Since according to Eq. (7) there is no x component of the w6=8X0.928, e3=-3.09, e4=2.418, 
heat flux at the Navier-Stokes regime, we conclude that the x 

e5=8.3855. component of the total heat flux ( qT) , meaning the Navierx 

2 

http:X0.806-0.99
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Stokes plus the Burnett contributions, is given by qT =qNS 
x x 

+q(2)=q(2) . Similarly we obtain that x x 

Tqy 
qT

y *= =d5 Y 2Y 5 , 
2( kTR /m ) 

3/22 

c3/m 
(23) 

qT*=0,z 

where 

75 cA c 2 
d5 =- . (24)

256 L 7 

Several components of the pressure tensor can be treated 
in a similar way to obtain 

NS (2) NS (2)P +P P +Pzx zx zy zy
PT*= =0, PT*= =0,zx zyp( 0 ) p( 0 ) 

NS (2) NS (2)P +P P +Pyx yx yy  yy
PT*= =d6 Y 2Y 4 , PT*= =d7 ,yx yyp( 0 ) p( 0 ) 

(25) 
NS (2)P +P 3 1 d9Y 2 2xx xx

PT*= = Y 3- +d8+ Y 4 ,xx p( 0 ) 2 2 Y 3 

NS (2)P +Pzz zz
PT*= =3Y 3 -d7 -PT* ,zz xxp( 0 ) 

where 

2 k25 2cfkTR w2cf25 2 b2TR 
d6=- , d7=1-

16 7c2Lp( 0 ) 384 L2p( 0 ) 27c4 , 

(26) 
2 b2TR 

2 k2 2 k2TR

d8 = d9 =
 

25 w2cf 25 cf 
2 w6w2 

768 L2p( 0 ) 27c4 , 1024 7c4 p( 0 ) 2L2 , 

and b2 is given by eq. (16). 

VI. DIRECT SIMULATION MONTE CARLO METHOD 

The DSMC method is a well-established algorithm for 
computing gas dynamics at the level of kinetic theory. For 
completeness, this section presents a brief summary of the 
method; it is described in detail in Ref. [11]; see Ref. [12] for 
a tutorial, and Refs. [13,14] for reviews. Wagner [15] proved 
that the DSMC method is equivalent to a stochastic evalua
tion of the Boltzmann equation. 

In the DSMC method, the state of the system is given by 
the positions and velocities of particles, { r i ,vi} . First, the 
particles are moved as if they did not interact; that is, their 
positions are updated to r i+vi t+ 2 

1 a t2, where t is the 
time step. A particle that strikes the thermal walls at 
y=±L/2 has its velocity replaced with a random value gen
erated from the biased Maxwell-Boltzmann distribution; the 

system is periodic in the x and z directions. Second, after all 
particles have moved, a given number are randomly selected 
for collisions. This splitting of the evolution between stream
ing and collisions is accurate if the time step, t�r , where r 
is the mean collision time for a particle. 

The concept of ‘‘collision’’ implies that the interaction 
potential between particles is short ranged. In the simulations 
presented here the particles are taken to be rigid spheres of 
diameter c , so  r=m/p7c2( vr) where ( vr) is the average 
relative speed among the particles. The number of collisions 
among N particles during a time step is M= 2 

1 N t/r . We use  
Bird’s ‘‘no time counter’’ method [11] for determining M, 
since it avoids the explicit evaluation of ( vr) . 

Particles are randomly selected as collision partners with 
the restriction that their mean separation be a fraction of a 
mean free path l=( v) r [16]. This restriction is typically en
forced by sorting the particles into cells whose dimensions 
are smaller than a mean free path. For hard spheres, the 
probability of selecting a given pair is proportional to the 
relative speed between the particles. DSMC evaluates indi
vidual collisions stochastically, conserving momentum and 
energy and selecting the post-collision angles from their ki
netic theory distributions. For hard spheres, the center of 
mass velocity and relative speed are conserved in the colli
sion with the direction of the relative velocity uniformly dis
tributed in the unit sphere. This Markov approximation of 
the collision process is statistically accurate so long as the 
number of particles in a collision cell is sufficiently large, 
typically over 20 [17,18]. 

We define the average density of f (v) as  

Nt 

( f ( v) ) y = 
1 
� 

1 
� f „vi( t ) …, (27)

Nt t Vc iEc 

where vi is the velocity of particle i, and Nt is the number of 
time steps over which samples are taken. The inner sum is 
over all particles within cell c, which has volume Vc and is 
centered at position y. The hydrodynamic variables are de
fined as 

p( y ) =( m) y , (28) 

u( y ) =( mv) y /p , (29) 

2m 1 1 
2T( y ) = ( ( mv2) y - pu ) , (30)

3kp 2 2 

and p=pkT/m . The fluxes are defined as 

Pa ( y ) =( m( va -ua) ( v -u ) ) y =( mvav ) y -puau , 
(31) 

qa( y ) = 2 
1 ( m( va -ua) lv-ul2) y 

1 2 1 = 2 ( mvav2) y -( mvavy) yuy+puau - 2 ua( mv2) y , 

(32) 
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where a, , and y are x, y, or  z with implied summation 
over y. 

VII. SIMULATION RESULTS 

To simplify comparison with the DSMC data in Ref. [5], 
for all the simulations m=c=TR =1 and k= 2 

1 . The sound 
speed at equilibrium is 5kTR/3m=1.29. The equilibrium 
density is p0=1.21X10-3, giving a mean free path of l0 
=186. 

A. Ten mean free path case 

To simplify comparison with the DSMC data in Ref. [5], 
3the pressure is normalized by ( 7.13394X10-4)2kTR /c to 

make p*(0)=1 . The simulations were done for an accelera
tion of a=1.6X10-42kTR /mc and a system size of L 
=1860c=10l0. Using these values, we obtain 

b0=-6.235007643, b1=-162.3309911, 

d1 =-0.50220358X10-5 , 

d2=-0.1964932454X10-5 , 

d3 =-0.2450273776X10-4 , 
(33) 

d4=+0.408857099X10-4 , 

d5=-0.1288339708X10-3 , 

d6 =-0.09546098954, 

d9=0.008456678889. 

The coefficient b2 was determined in such a way that the 
solution to the differential equations reproduced the qualita
tive behavior for the DSMC pressure profiles. The explicit 
value used is 

b2=0.75, (34) 

from which we obtain 

d7 =0.9953798101, d8 =0.002310094933. (35) 

Finally the initial conditions used are 

u*(0 )=0.90287, T*( 0 )=1.2052, p*( 0 )=1.0, 
(36) 

with the derivatives at the center of the channel equal to zero. 
The simulation contained 2.5X104 particles, and evaluated 
2.5X108 collisions with statistical samples taken during the 
latter 1.2X108 collisions. The results for the profiles of the 
normal variables and some moments are given in Figs. 1 – 14. 

B. 20 mean free path case 

For comparison with the DSMC data in Ref. [5], the pres
3sure is normalized by ( 6.727X10-4)X2kTR/c to make 

p*(0)=1 . The simulations were done for an acceleration of 
a=4.0X10-5X2kTR/mc and a system size of L=3720 
Xc=20l0. Using these values, we obtain 

FIG. 1. Reduced velocity profile for the x component of the 
velocity vector u* vs s for the L=10l0 system. Circles: DSMC; x 

the error bars are smaller than the size of the symbols. Solid line: 
Burnett. 

b0=-5.879345273, b1=-577.3582581, 

d1=-0.1331459123X10-5 , 

d2 =-0.5209495406X10-6 , 

d3 =-0.6125684441X10-5 , 
(37) 

d4=+0.1083975775X10-4 , 

d5 =-0.6441653536X10-4 , 

d6=-0.05061788107, 

d9=0.002377693652. 

FIG. 2. Reduced velocity profile for the y component of the 
velocity vector u* vs s for the L=10l0 system. Circles: DSMC. y 

Solid line: assumption for plane Poiseuille flow. 

http:kTR/3m=1.29
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FIG. 3. Reduced velocity profile for the z component of the 
velocity vector u* vs s for the L=10l0 system. Circles: DSMC. z 

Solid line: assumption for plane Poiseuille flow. 

The coefficient b2 was determined in such a way that the 
solution to the differential equations reproduced the qualita
tive behavior for the DSMC pressure profiles. The explicit 
value used is 

b2=0.2047, (38) 

from which we obtain, 

d7=0.9996454541, d8=0.0001772729471. (39) 

Finally the initial conditions used are: 

u*(0 )=0.7575, T*(0 )=1.1293, p*(0 )=1.0, 
(40) 

FIG. 5. Reduced pressure profile p* vs s for the L=10l0 sys
tem. Circles: DSMC; the error bars are of approximately the same 
size as the symbols. Solid line: Burnett. 

with the derivatives at the center of the channel equal to zero. 
The simulation contained 5.0X104 particles and evaluated 
5.0X108 collisions with statistical samples taken during 
the latter 2.5X108 collisions. The results for the profiles of 
the normal variables and some moments are given in Figs. 
15-25. 

C. 40 mean free path case 

For comparison with the DSMC data in Ref. [5], the pres
3sure is normalized by ( 6.555X10-4)X2kTRc to make 

p*(0)=1 . The simulations were done for an acceleration of 
a=1.0X10-5X2kTR/mc and a system size of L=7440 
Xc=40l0. Using these values, we obtain 

FIG. 4. Reduced temperature profile T* vs s for the L=10l0 

system. Circles: DSMC; the error bars are of approximately the 
same size as the symbols. Solid line: Burnett. 

FIG. 6. Reduced x component of the heat flux, q* , vs  s for the x 

L=10l0 system. Circles: DSMC. Solid line: the error bars are ap
proximately three-fourths of the size of the symbols. (Burnett) Long 
dashed line: Navier-Stokes. 
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FIG. 7. Reduced y component of the heat flux, q* , vs  s for the y 

L=10l0 system. Circles: DSMC; the error bars are approximately 
half of the size of the symbols. Solid line: Burnett. FIG. 9. Reduced yy  component of the pressure tensor, P* , vs  syy 

for the L=10l0 system. Circles: DSMC. Solid line: Burnett. 

b0 =-5.729018622, b1 =-2192.8448741,
 

d1 =-0.3415989901X10-6 ,
 

d2=-0.1336547505X10-6 ,
 

d3=-0.153142111X10-5 ,
 
(41) 

d4=+0.2781046924X10-5 ,
 

d5=-0.00003220826771,
 

d6=-0.02597303478,
 

d9=0.000626027441.
 

The coefficient b2 was determined in such a way that the
 

solution to the differential equations reproduced the qualita
tive behavior for the DSMC pressure profiles. The explicit 
value used is 

b2=+0.051335336, (42) 

from which we obtain 

d7 =0.9999765896, d8 =0.00001170519095. (43) 

Finally the initial conditions used are 

u*( 0 )=0.689452, T*(0 )=1.09814, p*(0 )=1.0, 
(44) 

with the derivatives at the center of the channel equal to zero. 
The simulation contained 6.0X104 particles and evaluated 
9.0X108 collisions with statistical samples taken during the 

FIG. 8. Reduced z component of the heat flux, q* , vs  s for the z 

L=10l0 system. Circles: DSMC. Solid line: Burnett and Navier-
Stokes. 

FIG. 10. Reduced xx component of the pressure tensor, P* , vs  
s for the L=10l0 system. Circles: DSMC; the error bars are of 
approximately the same size as the symbols. Solid line: Burnett. 

xx 
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FIG. 11. Reduced zz component of the pressure tensor, P* , vs  zz 

s for the L=10l0 system. Circles: DSMC. Solid line: Burnett. 
FIG. 13. Reduced yz component of the pressure tensor, P* , vs  yz 

s for the L=10l0 system. Circles: DSMC. Solid line: Burnett and 
Navier-Stokes. 

latter 3.0X108 collisions. The results for the profiles of the 
normal variables and some moments are given in Figs. 26 – 
36. 

VIII. ANALYSIS OF THE RESULTS 

This section discusses the general features observed in the 
above DSMC data and the comparison with the continuum 
equations. In some cases the effects are subtle, which is the 
reason we provide numerous graphs where the reader can 
obtain a more detailed picture. In several cases (e.g., ux , T, 
Pyx , and qy) the profiles obtained from the Navier-Stokes 
equations and Burnett equations are practically indistinguish
able so only the latter are shown. 

From Figs. 1, 15, and 26, we conclude that the profile for 
the x component of the velocity is in reasonable agreement 
with the Burnett equations. The largest difference is ob
served at the highest Knudsen number, K=l0 /L=1/10, 
where the discrepancy in the slip at the boundary is the most 

significant, in agreement with previous DSMC and 
molecular-dynamics (MD) results [19]. The ux profiles pre
dicted by the Burnett and Navier-Stokes equations are nearly 
identical, so the latter are omitted in Figs. 1, 15, and 26. 

For plane Poiseuille flow we assumed that the other com
ponents of the hydrodynamic velocity to be zero, and the 
measured profiles for uy and uz are shown in Figs. 2, 3, 16, 
17, 27, and 28. For the velocity component perpendicular to 
the walls the DSMC data are consistent with the assumption 
that uy =0 . For the parallel component uz , there is notice
able variation, especially in the L=40l0 system (Fig. 28), 
because the long wavelength fluctuations in the periodic di
rections are very long lived. A similar effect is expected in 
ux , but is masked by the mean flow, which is nearly four 
orders of magnitude larger. Though it is possible that the 

FIG. 12. Reduced zx component of the pressure tensor, P* , vs  zx 

s for the L=10l0 system. Circles: DSMC. Solid line: Burnett. 

FIG. 14. Reduced yx component of the pressure tensor, P* , vs  yx 

s for the L=10l0 system. Circles: DSMC; the error bars are a small 
fraction of the size of the symbols. Solid line: Burnett. 
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FIG. 15. Reduced velocity profile for the x component of the 
velocity vector, u* , vs  s for the L=20l0 system. Circles: DSMC; x 

the error bars are a small fraction of the size of the symbols. Solid 
line: Burnett. 

stationary situation has not been established, this explanation 
seems unlikely since the DSMC data are assembled from a 
sequence of simulation runs, discarding any runs exhibiting 
remnants of the initial transient. 

The most striking feature in the DSMC temperature pro
files (Figs. 4, 18, and 29) is the appearance of two local 
maxima, which is quite noticeable for the ten mean free path 
case. The Burnett and Navier-Stokes equations give nearly 
identical predictions (the latter is omitted from Figs. 4, 18 
and 29), and fail to capture this bimodal behavior. However, 
the maximum difference between the DSMC data and the 
Burnett prediction is about 1% for the ten mean free path 
case and the agreement improves with decreasing Knudsen 
number. This bimodal behavior is predicted in analyses using 

FIG. 17. Reduced velocity profile for the z component of the 
velocity vector, u* , vs  s for the L=20l0 system. Circles: DSMC. z 

Solid line: assumption for plane Poiseuille flow. 

the BGK model [4] and Grad’s expansion [26]. The central 
minimum in the temperature profile is well accounted for in 
a 19-moment-equations approximation to the Boltzman 
equation as presented by Hess and Malek Mansour [44]. 

The pressure profiles (Figs. 5, 19, and 30), all show good 
agreement between the DSMC data and the Burnett equa
tions. This agreement, however, is constructed because in 
lieu of determining the initial conditions the coefficient b2 is 
selected so as to fit the data. This coefficient depends on the 
second derivative of p at s=0 but the DSMC data are not 
sufficiently accurate to extract its value. It turns out that the 
pressure profile obtained with the Burnett equations is sensi
tive to the value of b2 but the velocity and temperature pro
files are not affected. The Navier-Stokes equations predict 
that p*(s)=1. 

Next we examine the components of the heat flux and the 

FIG. 16. Reduced velocity profile for the y component of the 
velocity vector, u* , vs  s for the L=20l0 system. Circles: DSMC. y 

Solid line: assumption for plane Poiseulle flow. 

FIG. 18. Reduced temperature profile T* vs s for the L=20l0 

system. Circles: DSMC. Solid line: the error bars are about the third 
part of the symbols (Burnett). 
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FIG. 19. Reduced pressure profile p* vs s for the L=20l0 sys
tem. Circles: DSMC. Solid line: Burnett. 

FIG. 21. Reduced y component of the heat flux, q* , vs  s for the y 

L=20l0 system. Circles: DSMC; the error bars are approximatly 
one fourth of the size of the symbols. Solid line: Burnett. 

complete pressure tensor. One goal is to infer, if possible, the 
origin of the bimodal temperature profile. From the general 
assumptions for plane Poiseuille flow ( uy =uz =0 and Land
au’s symmetry argument) the velocity, temperature, and 
pressure profiles can depend only on qy , Pyx , and Pyy  . 
However, to have a better understanding of the problem it is 
useful to examine all the components of q and P to obtain 
the leading moments of the distribution function. Further
more, the three assumptions given in Sec. II need to be 
tested. 

The x component of the heat flux is zero according to the 
Navier-Stokes equations, but is different from zero according 
to Burnett. Figures 6, 20, and 31 compare the Burnett pre
diction with the results from the DSMC method. The quali
tative behavior of qx is very similar, in particular the change 
in sign of the heat flux, and the agreement between Burnett 
and the DSMC method is better at a lower Knudsen number. 

The discrepancy is greatest at the boundaries where larger 
gradients are present. Notice that even at the lowest Knudsen 
number the DSMC data clearly indicate that qx*0. A non
zero parallel heat flux is also predicted in the BGK model [4] 
and Grad’s expansion [26]. 

Figures 7, 21, and 32 show that y component of the heat 
flux, as predicted by Burnett and Navier-Stokes, is in good 
agreement with the DSMC data, the differences being great
est at large Knudsen numbers and near the boundaries where 
larger gradients are present. However, near the center of the 
system, where the bimodal behavior of the temperature is 
observed, the heat flow given by the DSMC method and 
Burnett are in good agreement, which indicates that the dis
crepancy in the temperature profiles probably cannot be ex
plained in terms of the differences for qy . The DSMC results 
confirm that the z component of the heat flux is zero; results 
from the ten mean free path system are shown in Fig. 8 and 

FIG. 20. Reduced x component of the heat flux, q* , vs  s for the x 

L=20l0 system. Circles: DSMC; the error bars are of the same size 
as the symbols. Solid line: Burnett. Long-dashed line: Navier-
Stokes. 

FIG. 22. Reduced yy  component of the pressure tensor, P* , vs  yy  

s for the L=20l0 system. Circles: DSMC. Solid line: Burnett. 
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FIG. 23. Reduced xx component of the pressure tensor, P* , vs  xx 

s for the L=20l0 system. Circles: DSMC. Solid line: Burnett. FIG. 25. Reduced yx component of the pressure tensor, P* , vs  yx 

s for the L=20l0 system. Circles: DSMC; the error bars are ap
proximately one-fifth of the size of the symbols. Solid line: Burnett. 

the data from the other cases is similar. 
From Landau’s symmetry argument and given that uy 

=uz =0 it follows from the conservation equations that Pyy  
must be a constant. Figure 9 shows that the DSMC data for 
the L=10l0 system exhibit a weak nonconstant behavior, 
and are about 0.2% below the Burnett prediction. This could 
be an explanation for the discrepancy for the temperature 
profile, though for L=20l0 the DSMC temperature profile 
exhibits a bimodal behavior while Pyy  is, within statistical 
error, a constant function (see Figs. 22 and 33). A possible 
explanation for Pyy  not being exactly constant in the L 
=10l0 system is that while, on average, uy =uz =0 , these 
components of velocity fluctuate and these non-equilibrium 
fluctuations have long-range spatial correlations [20]. The 
other diagonal components of the pressure tensor are not 
zero; the DSMC data and Burnett predictions for Pxx (Figs. 
10, 23, and 34) and Pzz (Figs. 11, 24, and 35) are in qualita
tive agreement. 

Finally, we turn our attention to the off-diagonal elements 
of P. The DSMC data confirm the Burnett and Navier-Stokes 
predictions that the components Pxz and Pyz are zero, as seen 
in Figs. 12 and 13 for the L=10l0 system with similar results 
for the other cases. From Figs. 14, 25, and 36, we see that 
Pyx is basically a linear function of s for both the DSMC data 
and the Burnett equations. The slopes differ slightly, and 
while we do not expect that this explains the bimodal tem
perature profile and a more detailed analysis is needed. 

IX. FINAL REMARKS 

From our results we conclude that the bimodal tempera
ture profile observed by the DSMC method cannot be ex
plained with the Burnett equations, but that the nonconstant 

FIG. 24. Reduced zz component of the pressure tensor, P* , vs  zz 

s for the L=20l0 system. Circles: DSMC. Solid line: Burnett. 

FIG. 26. Reduced velocity profile for the x component of the 
velocity vector, u* , vs  s for the L=40l0 system. Circles: DSMC; x 

the error bars are a small fraction of the size of the symbols. Solid 
line: Burnett. 
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FIG. 27. Reduced velocity profile for the y component of the 
velocity vector u* y , vs  s for the L=40l0 system. Circles: DSMC. 
Solid line: assumption for plane Poiseulle flow. 

pressure profile is a second order Knudsen effect. This con
clusion is consistent with the fact that as the Knudsen num
ber is lowered the bimodality in the temperature profile be
comes unobservable, while a significant nonconstant 
pressure is still measured by the DSMC method [5]. The 
bimodal character of the temperature profiles is perhaps a 
super-Burnett effect; however, it should be pointed out that 
the higher order Chapman-Cowling [7] gradient expansions 
are very complicated. While some work has been done with 
the super-Burnett equations [21], this work is restricted to 
linearized corrections to the fluxes. For these reasons it 
seems more promising to look for alternatives such as the 
regularization given by Rosenau [22] or the partial summa
tion to the Chapman-Enskog method given by Gorban and 
Karlin [23]. These methods, however, have some restric
tions, such as the use of a linearized collision operator. 

Tij et al. [24] investigated the present problem using mo-

FIG. 29. Reduced temperature profile T* vs s for the L=40l0 

system. Circles: DSMC; the error bars are about a third of the size 
of the symbols. Solid line: Burnett. 

ment methods for Maxwellian molecules, and obtained the 
bimodal behavior for the temperature profiles. Unfortunately 
simulations of Poiseuille flow using Maxwellian molecules 
are still lacking, so it is not known whether their prediction is 
quantitative. For the model used by Tij et al., Ikenberry and 
Truesdell [25] evaluated a broad set of kinetic quantities that 
allow one to compute many moments, but a similar analysis 
has not been performed for other potentials, such as rigid 
spheres. Tij et al. predicted a heat flux in the x direction, in 
qualitative agreement with the DSMC data and the Burnett 
results presented here. As we pointed out, this heat flux has 
no effect on the conservation equations, which are used to 
obtain the profiles. Recently Risso and Cordero [26] used 
MD simulations and Grad’s expansion method to reach some 
of the same conclusions as in this work. There exist 
molecular-dynamics calculations for dense systems in which 
the inadequacy of the Navier-Stokes equations has also been 

FIG. 28. Reduced velocity profile for the z component of the 
velocity vector, u* , vs  s for the L=40l0 system. Circles: DSMC. z 

Solid line: assumption for plane Poiseuille flow. 
FIG. 30. Reduced pressure profile p* vs s for the L=40l0 sys

tem. Circles: DSMC. Solid line: Burnett. 
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FIG. 31. Reduced x component of the heat flux, q* , vs  s for the x 

L=40l0 system. Circles: DSMC; the error bars are about the size of 
the symbols. Solid line: Burnett. Long-dashed line: Navier-Stokes. 

FIG. 33. Reduced yy  component of the pressure tensor, P* , vs  yy  

s for the L=40l0 system. Circles: DSMC. Solid line: Burnett. 

pointed out [27], in particular for plane Poiseuille flow [28]. 
Although these works are somewhat inapplicable to the 
present research for dilute gases, they support the conclusion 
that there exist simple flows for which the Navier-Stokes 
method is capable of improvement. 

While moment methods recover many of the qualitative 
features observed in Poiseiulle flow, their robustness has 
been criticized not only for the closure problem but also in 
evaluating shock waves. As Weiss [29] stated (we have con
sistently changed the numbering of the references), ‘‘the 
shock structure in monatomic gases is not satisfactorily de
scribed by the Navier-Stokes-Fourier theory, e.g., see Ref. 
[30]. But Grad’s 13-moment theory is even worse; indeed, 
Grad [31,32] himself found that no continuous shock struc
ture exists beyond Mach 1.65, which is the maximum speed 
of propagation of the 13-moment theory.’’ Holway [33] 
showed that no matter how many moments are taken into 

account there is no continuous continuous shock structure 
beyond Mach 1.85, though this result has been challenged by 
Weiss himself [34]. In contrast, Gilbarg and Paolucci [30] 
remarked that, ‘‘while the evidence from kinetic theory and 
the theory of nonlinear viscosity indicate that the Navier-
Stokes equations yield values of the shock thickness that are 
perhaps smaller than the actual one, there is nothing in the 
evidence to suggest that the classical theory is far wrong.’’ 
For shock waves there is indeed substantial evidence that the 
Navier-Stokes theory is susceptible to improvement 
[11,13,35,36]. However, the evidence provided by Fiscko 
and Chapman [37] that the Burnett equations give better pre
dictions than the Navier-Stokes equations, which was quoted 
in Refs. [13,36], was flawed; an explanation of the errors and 
further extension of this important work can be find in the 
paper by Zhong et al. [38]. Two classical accounts of the 
Burnett equations applied to shock waves are the works by 

FIG. 32. Reduced y component of the heat flux, q* , vs  s for the y 

L=40l0 system. Circles: DSMC; the error bars are about one-fourth 
of the size of the symbols. Solid line: Burnett. 

FIG. 34. Reduced xx component of the pressure tensor, P* , vs  
s for the L=40l0 system. Circles: DSMC. Solid line: Burnett. 

xx 
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FIG. 35. Reduced zz component of the pressure tensor, P* , vs  zz 

s for the L=40l0 system. Circles: DSMC. Solid line: Burnett. 
FIG. 36. Reduced yx component of the pressure tensor, P* , vs  yx 

s for the L=40l0 system. Circles: DSMC; the error bars are about 
one fifth the size of the symbols. Solid line: Burnett. 

Wang-Chang and Uhlenbeck [21] and Foch [39]. The DSMC 
calculations for the shock wave problem were done a long 
time ago (see Ref. [11] for references), but the MD calcula
tions are more recent [40] and in particular the first MD 
calculations for a dilute gas of rigid spheres were made in 
1992 by Salomons and Mareschal [41]. Salomons and Mare
schal [41] provided strong evidence that the Burnett equa
tions can indeed provide a sustantial improvement over the 
Navier-Stokes equations at high Mach numbers, but curi
ously enough a few months later a communication by these 
authors and Holian’s group was published [42] leaving aside 
the previous claim about the Burnett regime. Uribe et al. [6] 
followed Salomons and Mareschal’s remark, and found in
deed that Burnett equations provided an accurate description 
for strong shock waves; however, in their qualitative analysis 
of the Burnett dynamical system they found a ‘‘Hopf-like 
bifurcation’’ at the upstream critical point, suggesting that 
there may not be a heteroclinic trajectory for Mach numbers 
greater than about 2.69. Rather than continuing to list all 
points of view on this topic, let us conclude by stating that a 
vigorous debate exists and that further experiments and 
simulations are needed to resolve these arguments. 
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López de Haro for bringing to our attention the works by D. 
R. Chapman and collaborators. This work was supported in 
part by CONACyT through a grant from the Fluid and Par
ticle Processes program at the National Science Foundation, 
and by a grant from the European Commision DGIZ (PSS* 
1045). F. J. Uribe wants to thank the Physics Department of 
the University of Newcastle-upon-Tyne where this work was 
finished. 

[9] L. Loomis and S. Stenberg, Advanced Calculus (Addison-
Wesley, Reading, MA, 1968). 

[10] Y. Choquet-Bruhat, C. DeWitt-Morete and M. Dillard-Bleick, 
Analysis, Manifolds and Physics (North-Holland, Amsterdam, 
1987). 

[11] G. A. Bird, Molecular Gas Dynamics and the Direct Simula
tion of Gas Flows (Clarendon, Oxford, 1994). 

[12] F. Alexander and A. Garcia, Comput. Phys. 11, 588 (1997). 
[13] E. P. Muntz, Annu. Rev. Fluid Mech. 21, 387 (1989). 
[14] E. S. Oran, C. K. Oh, and B. Z. Cybyk, Annu. Rev. Fluid 

Mech. 30, 403 (1998). 
[15] W. Wagner, J. Stat. Phys. 66, 1011 (1992). 
[16] F. J. Alexander, A. L. Garcia, and B. J. Alder, Phys. Fluids 10, 

1540 (1998). 



4078 F. J. URIBE AND ALEJANDRO L. GARCIA PRE 60 

[17] M. Fallavollita, D. Baganoff, and J. McDonald, J. Comput. 
Phys. 109, 30  (1993). 

[18] G. Chen and I. Boyd, J. Comput. Phys. 126, 434 (1996). 
[19] D. Morris, L. Hannon, and A. L. Garcia, Phys. Rev. A 46, 

5279 (1992). 
[20] A. Garcia, M. Malek Mansour, G. Lie, and E. Clementi, Phys. 

Rev. A 36, 4348 (1987). 
[21] C. S. Wang-Chang and G. E. Uhlenbeck, in Studies in Statis

tical Mechanics, edited by J. de Boer and G. E. Ulenbech 
(North-Holland, Amsterdam, 1970), p. 1; C. S. Wang-Chang, 
ibid, p. 27.  

[22] P. Rosenau, Phys. Rev. A 40, 7193 (1989). 
[23] A. N. Gorban and I. V. Karlin, Phys. Rev. Lett. 77, 282 (1996). 
[24] M. Tij, M. Sabbane, and A. Santos, Phys. Fluids 10, 1021 

(1998). 
[25] C. Truesdell and G. Muncaster, Fundamentals of Maxwell’s 

Kinetic Theory of a Simple Monatomic Gas (Academic Press, 
New York, 1980). 

[26] D. Risso and P. Cordero, Phys. Rev. E 58, 546 (1998). 
[27] A. Baranyai, D. J. Evans, and P. J. Davis, Phys. Rev. A 46, 

7593 (1992). 
[28] B. D. Todd and D. J. Evans, Phys. Rev. E 55, 2800 (1997). 
[29] W. Weiss, Phys. Rev. E 52, R5760 (1996). 
[30] D. Gilbarg and D. Paolucci, J. Rat. Mech. Anal. 2, 617 (1953). 
[31] H. Grad, Commun. Pure Appl. Math. 5, 257 (1952). 

[32] H. Grad, in Thermodynamics of Gases edited by S Flugge, 
Handbuch der Physik Vol. 12 (Springer-Verlag, Berlin, 1958), 
p. 205. 

[33] L. H. Holway, Phys. Fluids 7, 911 (1964). 
[34] W. Weiss, Phys. Fluids 8, 1689 (1996). 
[35] H. Alsmeyer, J. Fluid Mech. 74, 497 (1976). 
[36] G. C. Pham-Van-Diep, D. A. Erwin, and E. P. Muntz, J. Fluid 

Mech. 232, 403 (1991). 
[37] K. A. Fiscko and D. R. Chapman, in Rarefied Gas Dynamics, 

edited by E. P. Muntz, D. P. Weaver, and D. H. Campell, 
(AIAA, Washington D.C., 1989), p. 374. 

[38] X. Zhong, R. W. MacCormack, and D. R. Chapman, AIAA J. 
31, 1036 (1993). 

[39] J. D. Foch, in The Boltzmann Equation; Theory and Applica
tions, edited by E. G. D. Cohen and W. Thirring (Springer-
Verlag, Wien, 1973), p. 123. 

[40] B. L. Holian, W. L. Hoover, B. Moran, and G. K. Straub, Phys. 
Rev. A 22, 2798 (1980). 

[41] E. Salomons and M. Mareschal, Phys. Rev. Lett. 69, 269 
(1992). 

[42] B. L. Holian, C. W. Patterson, M. Mareschal, and E. 
Salomons, Phys. Rev. E 47, R24 (1993). 

[43] G. C. Pham-Van-Diep, D. A. Erwin, and E. P. Muntz, Science 
245, 624 (1989). 

[44] S. Hess and M. Malek Mansour, Physica A (to be published). 

http:ibid,p.27

	Burnett Description for Plane Poiseuille Flow
	Recommended Citation

	USING STANDARD SYSTE

