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Abstract

Purpose Burns depth evaluation is a lifesaving task and very challenging that requires objective techniques to accomplish. 

While the visual assessment is the most commonly used by surgeons, its accuracy reliability ranges between 60 and 80% 

and subjective that lacks any standard guideline. Currently, the only standard adjunct to clinical evaluation of burn depth 

is Laser Doppler Imaging (LDI) which measures microcirculation within the dermal tissue, providing the burns potential 

healing time which correspond to the depth of the injury achieving up to 100% accuracy. However, the use of LDI is limited 

due to many factors including high affordability and diagnostic costs, its accuracy is affected by movement which makes 

it difficult to assess paediatric patients, high level of human expertise is required to operate the device, and 100% accuracy 

possible after 72 h. These shortfalls necessitate the need for objective and affordable technique.

Method In this study, we leverage the use of deep transfer learning technique using two pretrained models ResNet50 and 

VGG16 for the extraction of image patterns (ResFeat50 and VggFeat16) from a a burn dataset of 2080 RGB images which 

composed of healthy skin, first degree, second degree and third-degree burns evenly distributed. We then use One-versus-

One Support Vector Machines (SVM) for multi-class prediction and was trained using 10-folds cross validation to achieve 

optimum trade-off between bias and variance.

Results The proposed approach yields maximum prediction accuracy of 95.43% using ResFeat50 and 85.67% using 

VggFeat16. The average recall, precision and F1-score are 95.50%, 95.50%, 95.50% and 85.75%, 86.25%, 85.75% for both 

ResFeat50 and VggFeat16 respectively.

Conclusion The proposed pipeline achieved a state-of-the-art prediction accuracy and interestingly indicates that decision 

can be made in less than a minute whether the injury requires surgical intervention such as skin grafting or not.

Keywords Skin burns · Burn depths · Deep learning · Features · SVM · Classification

1 Introduction

Skin is the largest body organ constituting ~ 1.5–2.0  m2 for 

an average adult [1]. It serves as a defensive shield against 

foreign intruders, helps in thermoregulation, prevents loss 

of body fluid via evaporative, and helps significantly in the 

production of vitamin D. Skin is composed of three layers: 

epidermis, dermis and hypodermis. The epidermis is the out-

ermost layers that interface the external environment while 

dermis sits between epidermis and hypodermis. These skin 

layers, combined together, provide the aforementioned func-

tionalities. However, skin injuries such burns disrupt such 

barrier thereby subjecting individuals to high risk of infec-

tions and in extreme cases loss of live. Burns injuries are 

caused by several mechanisms such as thermal, electrical, 

radiation and chemical [2]. Burns that affect epidermal layer 

are referred to as superficial or first-degree burns, and the 

common example is sunburn which can heal with no medical 

intervention within seven days due to proliferation and dif-

ferentiation of keratinocytes from basal epithelial cells [1]. 

Deep burns such as second-degree and third-degree burns 

are distinguishable from epidermal burns by their charac-

teristics (pain, capillary refill and colour-red/pink, white). 
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Second-degree burn includes superficial partial-thickness 

(SPT) burns and deep partial-thickness (DPT) burns. SPT 

are characterized by pain and capillary refill and involves 

both epidermis and papillary dermis while DPT burns 

extend to reticular dermis and adnexal structures. Third-

degree burns (also referred to as full-thickness burns) affect 

all the epidermal and dermal layers and extend to subcutane-

ous adipose tissue, muscles and bones.

Patients with a second degree burn, specifically DPT, and 

third-degree burn require immediate and effective assess-

ment for early recovery. These injuries take substantial 

lengthy hospitalization and have the high risk of subjecting 

patients to hypertrophic scars (HTS). However, burn depth 

assessment has been challenging task for clinicians. Assess-

ment by experienced clinicians is highly subjective due to 

lack of standard guideline with accuracy ranging between 

60 and 80% [1, 3], which prompted the need for a better 

alternative modality.

Other objective techniques have been proposed for burns 

depth assessment. Knowing the depth of burn injury gives 

crucial information regarding the expected recovery time 

(healing time). These proposed objective methods include 

the use of Laser speckle imaging, spatial frequency domain 

imaging and laser doppler imaging [4]. Laser speckle imag-

ing (LSI) has the capability to assess the perfusion rate over 

a wide area, easy to interpret the produced perfusion map by 

clinicians. A map area that shows high perfusion rate simply 

means vasculature is undamaged and the burn area is likely 

to heal without any medical intervention while low perfusion 

rate basically means damaged tissue and may require quick 

surgical intervention [4]. However, the accuracy is time-

dependent with optimum performance at 48–72 h after burn 

occurrence while inaccurate and inconclusive before 48 h 

[5]. LDI is a non-invasive tool first used for burns examina-

tions by Niazi et al. [6] that scans tissue surface using mono-

chromatic laser beam and gets reflected by moving blood 

cells. The extent of reflection correlates with the severity 

of the damaged tissue, where high reflection corresponding 

to the high perfusion rate and indicates very shallow burns 

while deeper burn wounds are determined by low perfusion 

rate (with low reflection) because there is lesser blood circu-

lation as a result of blood vessels been damaged by the burn 

injury. LDI remains the prominent tool and widely accepted 

for burns examination today with additional advantage of 

scanning wide area of up to 50 cm by 50 cm, unfortunately 

the cost of the equipment is high with an estimated cost of 

£50,000 [7–9], it is cumbersome, it requires high expertise 

to operate, it is slow where a scan takes up to 1 or 2 min. 

Laser speckle contrast imaging (LSCI) is a recent objective 

technique for measuring microcirculation non-invasively 

that shorten the scanning time to about 200–1000 ms com-

pared to LDI [8, 10], and less sensitive to patient movement 

artifacts. Despite its performance and advantages over LDI, 

its usage has limited application on burn evaluation and 

achieve accuracy of approximately 95% from day 3 after 

injury [10–12].

Towards the end, this proposed research provides alter-

native burn depth evaluation using deep learning features 

to objectively predict those burns that that require surgical 

intervention and those that do not. In summary, the contribu-

tions of this research are outlined below:

• We introduce ResFeat50 and VggFeat16, image features 

extracted from ImageNet pretrained models, ResNet50 

and VGG16, respectively, to predict human skin burns 

healing times and Support Vector Machines as a predic-

tor.

• We provide an in-depth analysis regarding features with 

strong discriminatory patterns and made based on their 

robustness and computational time comparison between 

ResFeat50 and VggFeat16.

• We provide performance comparison of our proposed 

study with the existing published works. Our approach 

and results achieved a significant performance improve-

ment

The rest of the paper is organized as follows: in the next 

section, we briefly discuss related works and Sect. 3 presents 

methodology. In Sect. 4, we present experimental results, 

Sect. 5 presents discussion of the results and Sect. 6 con-

cludes the paper.

2  Literature

The use of Convolutional Neural Networks (CNN) for clas-

sification tasks has widely been adopted in different applica-

tion domains such as face recognition [13, 14] and disease 

detection [15]. Their adoption was due to their capability to 

capture rich generic discriminatory features at different lev-

els. It was proposed in a study by authors in [16] to discrimi-

nate whether a given human skin image is burnt or healthy. 

This was facilitated using pretrained CNN features, specifi-

cally ResNet101 model was used, due to deficient datasets. 

The datasets are all RGB images and pre-processed by 

resizing them to a standard input size of ResNet101 model. 

Thereafter, the extracted features were fed into support vec-

tor machines and trained using tenfold cross validation. This 

approach recorded a near perfect classification accuracy of 

99.5%.

Another study referenced [17] lamented a challenge if 

the deep learning model is to be trained from scratch using 

limited dataset. Alternatively, the study opted for transfer 

learning for deep feature extraction, an approach known 

as off-the-shelf feature extraction. Two pretrained residual 

network models, ResNet101 and ResNet152, were used for 
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features extraction to discriminate between burn wounds 

and pressure ulcer injuries and support vector machines 

was trained for the classification via the use of tenfold cross 

validation. ResNet152 features proved to have more strong 

discriminatory patterns from the images in which support 

vector machines recorded 99.9% accuracy.

Study referenced [18] proposed another binary classifica-

tion of burns using deep neural network features and support 

vector machinesthe. In this study, three deep CNN models 

were used; two of the models (VGG16 and VGG19) were 

training on ImageNet database to categorize 1000 different 

objects and the other model was trained to recognize human 

faces (VGGFace). In nutshell, all the three pretrained CNN 

model were used for feature extraction and then support vec-

tor machines as classifier,a. Results show that 98.75% and 

97.56% using VGG16 and VGG19 features respectively, 

while achieving 95.20% on VGGFace. Finally, the authors 

lamented that high accuracy recorded by ImageNet models 

can be attributed to the fact that the weights of those models 

were able to learn from a diverse representation of features.

Similarly, the study referenced in [19] proposed a binary 

classification of burns and healthy skin using fine-tuning 

approach. A pre-trained ImageNet deep learning model (i.e. 

ResNet50) was adopted and modified the top layers. Two 

different datasets from two ethnicities were used; Africans 

and Caucasians. The dense layers of the ResNet50 model 

were removed and replaced with new layers, these layers 

were then trained using features from the base layers of 

the ResNet50. Recognition accuracy of 97.1% on African 

images and recorded classification accuracy of 99.3% on 

Caucasian images. The authors attributed lack of good rec-

ognition accuracy for the African subjects due to poor qual-

ity of the images.

A study by [20] proposed an automated diagnostic pro-

cess to classify burn wounds. In this study, discrimination 

of burn images and injured skin (pressure ulcer and skin 

bruises) was conducted. The study invoked two transfer 

learning approaches due to insufficient datasets; fine-tuning 

which involves modifying top layers of deep learning model, 

and on the other hand training support vector machines 

using features extracted by the pre-trained deep learning 

model. Three pre-trained models, including ResNet50 with 

50 stacked convolution layers, ResNet101 contained 101 

stacked convolution layers and ResNet152 containing 152 

stacked convolution layers were employed and compared. In 

the end, Training support vector machines with ResNet152 

features recorded the best classification accuracy of 99.96% 

with area under the curve (AUC) of 99.99%. Fine-tuning 

requires considerable database size.

For burn depth recognition, few numbers of studies used 

machine learning techniques. For example, SPT, DPT and 

full-thickness burns were classified using machine learning 

in a study referenced [21]. Total of 164 images acquired, and 

all were converted into L*a*b* colour space. Prior to fea-

ture extraction, relevant regions of interest were segmented, 

discrete wavelet transforms (DWT) was used to specifically 

extract texture features and principal component analysis 

(PCA) was additionally used to reduce the dimensionality 

of the features. The best classification accuracy achieved 

was via the use of simple logistic regression which recorded 

73.2%.

Discriminating burns depth using machine learning was 

also reported in a study by [22]. The aim is to provide a 

reliable diagnostic technique to deduce whether a sustained 

burn injury requires surgical intervention or not because 

early determination of right treatment choice can shorten 

the healing time. 74 RGB images were transformed into 

L*a*b* colour space and extract certain features: hue, hog, 

chroma, kurtosis and skewness. Thereafter, support vector 

machine was trained and achieved a classification accuracy 

of 82.43%, with precision, recall and F1-score of 82%, 88% 

and 85% respectively.

In another study [23] using 450 burn images, the study 

was proposed to discriminate different categories of burn 

depths. These images were transformed into YCbCr colour 

space and resized into 120 × 120 pixels. In each category of 

burn wounds (first, second and third degrees) there are 150 

images representing each category. Thereafter, the authors 

segmented regions of interest, and used deep CNN archi-

tecture to classify the images based on their specific feature 

of interest (colour and texture) with classification accuracy 

of 79.4%.

3  Materials and Methods

In this section, data acquisition and preparation are pre-

sented. Proposed system architecture for the discrimination 

of the classes of burn injuries is quantitatively explained 

and presented.

3.1  Data Acquisition

In this study, we gathered the datasets used for the experi-

ment from both internet search and hospital. Those obtained 

from the internet are mainly first degree (1DB) burns 

(mostly sunburn images), and these are injuries that can heal 

in less than 7 days on their own without any complicated 

assessment. While the deeper wounds which include Second 

degree burns and third-degree burns were acquired ethically 

from Bradford Teaching Hospitals United Kingdom. These 

images are from different parts of the body, some from upper 

limbs, lower limbs, back, face and neck.
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3.2  Ground Truth De�nition

In order to train a machine learning algorithm, specifi-

cally in supervised approach, there is an absolute need to 

annotate the available data effectively by specialists. This 

annotation process was facilitated using LDI device to label 

the burn depth regions effectively. LDI measures disrup-

tion of the blood flow in the blood vessels and the speed of 

the blood flow indicates how deep the burn wound is. High 

reduction of dermal blood flow is observed if the wound is 

deeper due to the damaged blood vessels [24]. LDI produces 

a colour map of the wound; red/yellow areas indicating high 

perfusion rate particularly for superficial epidermal and 

superficial dermal burns, green indicating low(moderate) 

perfusion rate for deep dermal burn, and blue colour indi-

cating very low perfusion rate for full thickness burn. The 

different burn depth were labelled by experts after patients 

were assessed using the LDI device. Thereafter, regions of 

interest were extracted out corresponding to the following 

categories: second degree burns (2DB) that heals between 

14 to 21 days and third-degree burns (3DB) that heal after 

21 days. The definition of the ground truth made the spe-

cialist is displayed in Table 1 and sample of the dataset is 

depicted in Fig. 1. Note that, 2DB and 3DB images are het-

erogeneous, which means some pixels in 2DB contain 3DB 

feature and some in 3DB contain 2DB features and its very 

fiddficult, if not impossible, to crop out each patch. Doing 

so will result to a very smaller image with poor resolution. 

In order to deal with this situation, we established a simple 

criteria. This criteria states that:

• a given image is 2DB if such depth constitute not less 

than 80% of the total depth area

• a given image is 3DB if such depth constitute not less 

than 80% of the total depth area

 3.3  Data Augmentation

Deep CNN are data-hungry algorithms that require enor-

mous data to be trained and learn from. Most at times 

these data are not sufficiently available particularly in medi-

cal field due to either privacy concern or lack of experts 

for the data annotation. One of the available and the most 

applied method to overcome data deficiency is data augmen-

tation [25]. Data augmentation involves different processes 

of transforming original data to produce new instances of 

same nature with different spatial orientations. These pro-

cesses include rotation, random cropping, zooming, channel 

shifting, whitening and flipping. The size of the database 

was enlarged using two of such transformation processes 

(rotation and flipping). Rotation involves rotating the images 

with various degrees such as 45
o
,−45

o
and 75

o . Flipping 

mirrored or flipped the given image vertically or horizon-

tally. The information of the enlaged database is presented 

in Table 2.

3.4  Choice of a Feature Extractor

Deep CNN are fee-forward neural network containing mul-

tiple hidden layers interconnected with each other. Train-

ing deep CNN requires repetitive adjustment of parameters 

such as weights, biases and activations in order to produce 

a satisfying output.

Generally, CNN can be trained in three different ways 

[26]: training from scratch which requires a lot of hyper-

parameters tweaking. Hyperparameters tweaking includes 

adjusting the CNN topology, how the neurons in the net-

work are interconnected, number of network layers, number 

of neurons in each layer, the activation function to be used 

and a lot more. It is also important to note that, training a 

CNN from scratch requires enormous data which is often a 

Table 1  Defined ground truth datasets

Depth  < 7 days 14–20 days  > 21 days

1DB 163 0 0

2DB 0 450 0

3DB 0 0 130

Fig. 1  Showing dataset samples

Table 2  Augmented datasets

Depth  < 7 days 14–20 days  > 21 days

1DB 520 0 0

2DB 0 520 0

3DB 0 0 520
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very challenging task. The second way of deploying CNN 

is fine-tuning which involves transferring the weights of 

learned layers from an existing network to a new network. 

Thirdly, CNN can be used as off-the-shelf feature extractor 

so that strong discriminatory features can be extracted and 

subsequently used those features to train a different machine 

learning classifier. Due to simplicity, lack of enough data 

and computational resources to train CNN from scratch, we 

opted to use the latter approach for feature extraction. There 

are several pre-trained CNN models available for off-the-

shelf feature extraction such as AlexNet, GoogleNet, VGG-

Net and ResNet.

Therefore, two pre-trained ImageNet CNNs (VGG16 and 

ResNet50) are used for feature extraction in this study. The 

choice was inspired by the fact that CNN models trained 

on multiple data categories have strong generic information 

that can be used on the fly for image feature representation 

[18, 20, 27].

3.4.1  Image Pre-processing

Prior to feature extraction, all images must conform to stand-

ard input requirement of the feature extractor, as such we 

made sure they are resized to a standard size corresponding 

to the input specification of the feature extraction model. 

Both ResNet50 and VGG16 has same input size configura-

tion of accepting input data of size 224 × 224, and this is the 

only pre-processing performed before passing the images 

for pattern extraction.

3.4.2  Feature Extraction Using VGG16

VGG16 was developed by Visual Geometry Group research 

teams at Oxford University and was trained on ImageNet 

database in 2014 [28, 29]. VGG16 has a total of 37 layers; 13 

of them are convolution layers as illustrated in Fig. 2, and the 

remaining layers consist of mixed of pooling, activation and 

fully connected layers. VGG used smaller filter size of 3 × 3 

throughout the network and has proved to be computation-

ally efficient compared to large filter size used in AlexNet 

and is considerably deep to learn more complex patterns. 

Since CNN layers learn different types of features as the data 

propagates down through the network; the lower layers learn 

low-level features while the deeper layers learn high-level 

or more abstract features, the first fully connected layer was 

used to collect the generic features denoted as VggFeat16..

3.4.3  Feature Extraction Using ResNet50

ResNet50 is one of the Residual Network (ResNet) mod-

els by Microsoft Research Asia, the winner of ImageNet 

Large Scale Visual Recognition Challenge in 2015 [30]. The 

model is stacked with 50 convolution layers, including a 

fully connected layer with 1000 neurons. Though increasing 

the network depth to a certain limit leads to degradation of 

accuracy and overfitting problems, ResNet has overcome 

these problems via the use of identity mapping as illus-

trated in Fig. 3. Instead of learning direct mapping xtoy, y 

is reframed into y = �(f (x) + x) where σ is a non-linearity 

function, this enables it to grow deeper achieved outstanding 

performance [31]. This impressive breakthrough inspired the 

idea of using ResNet50 to pull out abstract image patterns 

denoted as ResFeat50 in this paper. ResFeat50 were col-

lected at the last year before the classification year.

3x3 Conv., 64

3x3 Conv., 64

3x3 Conv., 128

3x3 Conv., 128

3x3 Conv., 256

3x3 Conv., 256

3x3 Conv., 256

3x3 Conv., 512

3x3 Conv., 512

3x3 Conv., 512

3x3 Conv., 512

3x3 Conv., 512

3x3 Conv., 512

FC-4096

FC-4096

FC-1000

Max-Pool

Max-Pool

Max-PoolMax-Pool

Max-Pool

Input: 

224x224x3

SoftMax

Fig. 2  Illustration of VGG16 model architecture

= ++
+

Conv. layerConv. layer
ReLU

Fig. 3  Illustration of ResNet residual block
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3.5  Feature Rescaling

Most at times data are composed of attributes with varying 

scales, when such data are rescaled, machine learning algo-

rithms benefit greatly and perform remarkably well, and it is 

also useful for optimization algorithms [32]. As such, after 

the features extraction we applied rescaling process, often 

referred as normalization and the features are rescaled into 

the range of 0 and 1.

3.6  Choice of a Classi�er (Predictor)

We used linear support vector machines (SVM), a super-

vised machine learning algorithm widely used for binary 

classification [33]. When the number of observations and 

their corresponding labels are given, SVM works by finding 

a separating boundary (optimum separating hyperplane) in 

the given feature space, so that each instance is placed in a 

different semi-space and trying to maximize the distance 

separating them thereby minimizing misclassification errors 

[34, 35].

The SVM can be represented as the linear combination 

of features designated as x, multiplied by weights � as pre-

sented in Eq. (1):

where � and x є Rd , d is the size of the space, and b is 

the noise or bias. Depending on which side the samples are 

located with respect to the hyperplane, Eq. (2) and Eq. (3) 

define the scenarios for the two classes.

(1)f (x) = �
T + b = 0

(2)�
Txi + b > 0, for yi = 1, i = 1,… , n

(3)�
Txi + b < 0, for yi = −1, i = 1,… , n

Interestingly, SVM can also be tweaked to solve problem 

of more than two classes. one of the methods of classify-

ing multiple classes using SVM is One-versus-One (OVO) 

[36] classification strategy which we adopted in this study. 

Using OVO, the number of classes ( N
c
 ) are broken down 

into multiple binary classification problem. When dealing 

with multiple classes, the number of binary classifiers pro-

duced using OVO strategy is defined by Eq. (4):

Evaluating SVM performance was carried out using one 

of the most famous evaluation techniques, a cross-validation 

(CV) [37]. This technique works by splitting the whole data-

sets into K equal folds. K-1 folds are then used to train the 

SVM and the withheld fold used for testing. The process is 

repeated until each fold out of the K-folds gets chance to be 

used as testing split. At the end of the runs, the accuracy of 

the SVM is obtained by averaging the performance meas-

ures across all folds. The most commonly used values for 

K are 3,5,7, and 10, in this study we used K = 10. One of 

the benefits of training a classifier using CV is to mitigate 

overfitting problem.

4  Experimental Results

In this section, two experiments conducted to discriminate 

the four classes of images is presented. SVM is trained using 

the two deep image patterns (ResFeat50 and VggFeat16). 

Discriminating the different degree of burns here will ren-

der vital information to burn surgeons and other health 

practitioners whether there shall be a need for a patient to 

undergo surgical intervention or just wound dressing. Pre-

dicting burn image as 1DB indicates a burn that can heals 

in first seven days after injury and does not require surgery. 

Predicting burn as 2DB indicates an burn that may require 

(4)Number of binary problems =
Nc

(

Nc − 1
)

2

Fig. 4  Experimental set-up

Data augmentation 

&
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Feature 
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Pre-trained 
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2DB
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surgery and takes a bit long time to heal, normally can take 

up to 2–3 weeks, while a burn predicted to be a 3DB can 

take more than three weeks to heal and requires surgery the 

most. Note that, early assessment can help in shortening the 

healing time if the necessary intervention is provided Fig. 4 

depicts the experimental set-up.

We then used an error matrix [35], which is a multi-

dimensional table use for visualizing classifier performance. 

It shows a combination of actual values and predicted values, 

this enables to determine whether the classifier has predicted 

individual instances belonging to each class accurately or it 

has performed erroneously. Confusion matrix displayed in 

Tables 3 and 4 show the predicted outputs using ResFeat50 

and VggFeat16 respectively.

Target (actual) classes are represented as columns as 

shown in Table 3 which presents SVM’s performance using 

ResFeat50, while the rows values represent predicted classes 

by the classifer. Out of the 520 healthy skin (HS) images, 

499 were classified accurately, 6 were misclassified as 2DB, 

15 were misclassified as 3DB while none was misclassified 

as 1DB. Out of the 520 1DB images, none was misclassi-

fied as HS, 11 were misclassified as 2DB images, 6 were 

misclassified as 3DB and 503 were accurately classified as 

2DB. For the 2DB images, 5 were misclassified as HS, 27 

misclassified as 1DB, 8 misclassified as 3DB while 480 were 

accurately classified. Lastly, out of the 520 3DB images, 

503 were accurately classified, 11 misclassified as 2DB, 2 

misclassified as 1DB and 4 misclassified as HS.

Similarly, Table 4 presents the classification output of 

SVM using VggFeat16. Out of the 520 HS images, 482 were 

classified accurately, 15 were misclassified as 2DB, 5 were 

misclassified as 3DB while 18 were misclassified as 1DB. 

Out of the 520 1DB images, 15 were misclassified as HS, 

13 were misclassified as 2DB images, 29 were misclassified 

as 3DB and 468 were accurately classified. For the 2DB 

images, 11 were misclassified as HS, 32 misclassified as 

1DB, 98 were misclassified as 3DB while 379 were accu-

rately classified. Lastly, out of the 520 3DB images, 458 

were accurately classified, 46 misclassified as 2DB, 9 mis-

classified as 1DB and 7 misclassified as HS.

Comparateively, ResFeat50 contains more discriminatory 

features which led to the SVM performance more effective 

on those features. In general, 95 misclassifications by the 

classifier on ResFeat50 while on VggFeat15 there are 298 

misclassifications. About 62 out of 520 patients with 3DB 

may be subjected to unnecessary delay if VggFeat16 were 

used to assessment, and 17 out of 520 with 3DB could per-

haps be subjected to unnecessary delay if ResFeat50 was 

used for the assessment.

4.1  Performance Evaluation Metrics

In order to evaluate the performance of the prediction, there 

is need to interpret the values obtianed in the Tables 3 and 4. 

These evaluation measuresare based on the following param-

eters: True Positives (TP), True Negatives (TN), False Posi-

tives (FP) and False Negatives (FN) [38, 39]. Accuracy is 

on of those metrices that gives the general performance of 

the classification.

4.1.1  Accuracy

This determines the classifier’s correctness in predicting 

actual classes correctly as the Eq. 5 provided. This gives 

the accurate prediction of the whole classifier.

4.1.2  Recall

This measure is the ability of the classifier to predict each 

individal class correctly. Recall (or sensitivity) gives the 

accurate prediction of individual class by the classifier. 

Equation (6) provdes mathematical formula for determin-

ing recall:

In this scenario, FN can include all predictions made by 

classifier to other classes belongng to a particular class in 

question and TP stands for the correct prediction of that 

class. This can also be interpreted as

(5)Accuracy =
TP + TN

TP + TN + FP + FN

(6)Recall =
TP

TP + FN

Table 3  Predicted output using ResFeat50 

Target

Predicted HS 1DB 2DB 3DB

HS 499 0 6 15

1DB 0 503 11 6

2DB 5 27 480 8

3DB 4 2 11 503

Table 4  Prediction output using VggFeat16 

Target

Predicted HS 1DB 2DB 3DB

HS 482 18 15 5

1DB 15 463 13 29

2DB 11 32 379 98

3DB 7 9 46 458
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4.1.3  Precision

this measure determines the fractions of relevant or true 

instances predicted by the classifier, and its mathematically 

expressed in Eq. (7):

So, the above equation can simply be interpreted as

4.1.4  F1-score

This metric combines both recall and precision and presents 

the two as a single measure. It is simply a harmonic mean of 

the two metric measures (recall and precision) as provided 

in Eq. (8).

Recall =
True positives

Total actual positives

(7)Precision =
TP

TP + FP

Precision =

True positives

Total predicted positives

Table 5 ptovides the overall accuracy of the two differ-

ent experiments, SVM predicted more accuractely using 

ResFeat50 achieving 95.43% than VggFeat16 with 85.67%. 

Tables 6 and 7 provide performance evaluation values using 

both VggFeat16 and ResFeat50 respectively. SVM per-

formed better with ResFeat50 than VggFeat16. 

The results in Tables 6 and 7 are depicted in Figs. 5 and 

6 respectively for good visualization. Both Fig. 5 and Fig. 6 

show that 2DB injuries are also difficult to assess using 

machine learning techniques, but the perormance is impree-

sive and better than experienced health specialist.

5  Discussion of Results

Long hospitalization (LH) is an unpleasnt experience that 

subjects both patients and their families which can leads to 

further burn management complications such as increase in 

(8)F1 − score =

(

2

Recall
−1

+ Precision
−1

)

Table 5  Classification accuracy

Features Accuracy (%) Time(sec)

VggFeat16 85.67 147.9

ResFeat50 95.43 39.1

Table 6  Performance metrics using VggFeat16

Precision Recall F1-score

HS 0.94 0.93 0.93

1DB 0.89 0.89 0.89

2DB 0.84 0.73 0.78

3DB 0.78 0.88 0.83

Table 7  Performance metrics using ResFeat50

Precision Recall F1-score

HS 0.98 0.96 0.97

1DB 0.95 0.97 0.96

2DB 0.94 0.92 0.93

3DB 0.95 0.97 0.96
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hospital cost. LH can also be attributed to treatment delay 

due to lack of adequate objective assessment techniques 

and lack of access to proximity burn centres. Our proposed 

pipeline has successfully achieved an impressive predcition 

accuracy of those burn wounds that can heal within a week 

with no medical intervention required, within two to three 

weeks and those that can heal in more than three weeks.

We obtained impressive results using VggFeat16, the 

classifier recorded recall of 93%, 89%, 73% and 88% for 

HS, burns healing with no required hospital management 

(1DB), burns healing withi two to three weeks (2DB) and 

burns taking longer time to heal (3DB) which in extreme 

cases will require skin grafting respectively. Similarly, the 

precision achieved by the classifier on HS is 94%, 89% 

for 1DB, 84% for 2DB and 78% for 3DB while f1-score 

on each of the class precited are 93% for HS, 89% for 

1DB, 78% for 2DB and 83% for 3DB. The prediction 

was succesfully carried out in approximately 148 s (less 

than 3 min) which ultimately suggests that using machine 

learning techniques as aiding tools to evaluate burn 

wounds can facilitate decision-making as early as pos-

sible thereby minimising chances of subjecting patients 

to long hospital delay.

Similarly, using ResFeat50, the classifier’s prediction 

is more precise achieving recall of 96% for HS compared 

to 93% using VggFeat16, 97% for 1DB compared to 89% 

using VggFeat16, 92% for 2DB compared to 73% using 

VggFeat16 and 97% for 3DB compared to 88% using 

VggFeat16. Similarly, precision recorded by the classi-

fier using ResFeat50 has surpassed the precision recprded 

by the classifier using VggFeat16 as presented in Table 7. 

Moreover, F1-score using ResFeat50 are 97%, 96%, 93% 

and 96% for HS, 1DB, 2DB and 3DB respectively. In 

orderf to find out the trade-off between accuracy and 

computational time, the classifier is more accurate and 

efficient using ResFeat50 with computational time of 

approximately 39 s (less than a minute).

The VggFeat16 has 4096 feature vectors while Res-

Feat50 has 2048 feature vectors which were used in train-

ing the classifier bu the robustness of the classifier is 

more efficient using ResFeat50 than VggFeat16 despite 

the later having more feature vectors. This simply indi-

cates that ResFeat50 carries strong dicriminatory features 

than VggFeat16. It is also worth noting that ResNet50 

has perhaps contains more discriminating attributes than 

VggFeat16 due to number layers for the feature extraction. 

Figure 5 provides the F1-score performance comparison 

of the two feature set predicted by the classifier.

Studies in the literature used very deficient databases, 

the authors in [21] reported 73.2% accuracy on datasets of 

164 images and all images were in L*a*b* colour space 

with the application of PCA for dimensionality reduc-

tion on texture features. Study in [22] reported overall 

accuracy of 82.43% using 74 images in L*a*b* colour 

space, another study in [23] reported a discriminatory 

accuracy of 79.4% using colour and texture features and 

DCNN as a classifier on a database of 450 images. In this 

proposed study, we used 1560 RGB burn images along 

with 520 healthy skin images thereby achieving state-

of-the-art discriminatory accuracy of 95.43%. Though 

the comparison might not be realistic since in this study, 

a completely different database was used in this study 

because access to the databases used by studies in the 

literature was unsuccessful (Fig. 7).

6  Conclusion

This study provides an automated process for predicting 

burns healing times which by similitude refers to burn 

depths prediction using machine learning. We evaluated the 

performance of using deep off-the-shelf features via the use 

of One-versus-One SVM so solve a multi-class problem, 

specifically predicting burn depths. The useful discrimi-

natory features were extracted from the images using pre-

trained ResNet50 and VGG16 models.

Proposed approach achieved 85.67% prediction accu-

racy on VGG16 features (VggFeat16) while ResNet50 fea-

tures (ResFeat50) recorded a maximum and state-of-the-art 

prediction accuracy of 95.43%. The result indicates aiding 

burn management in hospitals using the proposed method 

has the potential of minimizing both under-estimation and 

over-estimation which is heavily associated with traditional 

approach (clinical evaluation). Our result obviously shows 

that chances of under-estimating those burn wounds that 

may require surgery or skin grafting can be minimized sig-

nificantly, while those that do not require surgery may not 

be subjected to unnecessary management thereby incurring 

additional complications and cost.
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This study has recorded some misclassifications that 

mostly ocuured between 2 and 3DB. This is attributed to 

the heterogeneity of the datasets. Most of the images con-

tain mix of superficial dermal and full-thickness wound. 

Similarly, misclassification between HS and 3DB is due to 

similarity of some instances, some 3DB images look white 

and leathery. Moreover, poor illumaination of some images 

contributed to the classification error involving 1DB.

Our result is not without limitation, it’s obvious that 

there is still room for improving the efficacy to minimise 

the classification errors further using a larger sample size 

and to specifically discriminate between the two categories 

of burns that made up of 2DB. 2DB is composed of SPT 

and DPT burns. In most cases, deep partial thickness burns 

are the actual category of dermal burn wounds that require 

surgery. Furthermore, estimating the affected body surface 

area is clinically important, such will provide a useful hint to 

determine the size of the skin needed perhaps if skin grafting 

is inevitable.
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