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Abstract: The following work presents a multivariate statistical technique applied to the control of 

water inflows into district metering areas (DMA) of urban networks. This technique, called Principal 

Component Analysis (PCA), allows for a sensitive and quick analysis of the inflows into a DMA 

without hassling mathematical algorithms. PCA technique simplifies the original set of flow rate 

data recorded by the SCADA system, synthesizing the most significant information into a statistical 

model which is able to explain most of the behaviour of the water distribution network. PCA 

technique also allows for the establishment of control charts that help system operators in the 

identification of anomalous behaviours regarding water use, bursts or illegal connections. The 

described technique has been proved to offer high detection sensitivity to bursts or other 

unexpected consumptions. 

 

Keywords: burst detection; principal component analysis; water distribution systems, real loss 

reduction. 



 

 

INTRODUCTION 

In the last decades water industry has invested a considerable amount of financial and human 

resources to reduce water losses in water networks. Numerous international initiatives like the 

Specialist Group on Water Loss of the International Water Association (IWA) are enriching industry 

knowledge on leak detection and location methodologies, contributing to the development of 

standardized procedures that allow water utilities to improve non revenue water (NRW) indicators. 

Despite these efforts, water losses in many countries around the world can be as high as 70% of 

the water input to the system. Under these circumstances it is clear that a considerable amount of 

work still needs to be conducted and simple methodologies, easy to implement in difficult 

environments like the ones found in underdeveloped or developing countries, need to be 

formulated. 

Often, leakage problem comes as a result of many years of an inadequate investment in pipeline 

infrastructure, maintenance and replacement. As water distribution networks become older, pipes 

degrade and suffer frequent bursts and leaks which lead to unacceptable levels of water losses 

and, too frequently, to undesirable service disruptions. Other times, a deficient technical operation 

of the water network will be the reason for a poor infrastructure condition. This is the case when 

booster stations are not correctly protected against pressure surges, and the start-up and stop of 

the pumps cause significant pressure oscillations in the network. 

High levels of water losses can be lowered if a larger number of occurring bursts and leaks are 

detected and the response time between pipe failure and repair is reduced. The total volume of 

water losses in bursts events depends on three factors: the magnitude of the leaks (flow rate), the 

burst occurrence rate and the time the water utility takes to identify and fix the problem.  

Water network operators need to act upon all three factors to reduce water losses. Burst flow rate 

and incidence rate can be lowered by a proper pressure management of the network (UKWIR, 

2003). The last one, the time a burst is active, depends on the effectiveness of water control 

practices. Burst duration, calculated from the time it first occurs until it is fixed, is the accumulated 

time of detecting, locating and repairing the leak (Water Research Centre, 1994). Location time 



 

 

mainly depend on the availability, resources and qualification of the leak detection team. Quite 

often repair time has more to do with organizational issues and financial resources availability than 

with technical matters. 

The method presented in this work aims at reducing the response time by helping network 

operators in the analysis of the data recorded by the telecontrol systems. The technique presented 

provides an excellent balance between its mathematical complexity, its easiness of use and the 

amount of information that can be extracted from the original data. 

 

BACKGROUND 

At present time water utilities have started the development of more or less elaborated strategies 

for the analysis of hydraulic variables within the network. The aim of these strategies, mostly based 

on statistical techniques, is to improve operator’s response time and detection effectiveness 

against pipe failures. Such strategies have only been possible by means of real-time control and 

recording of the primary hydraulic variables using newly designed instrumentation with improved 

communication capabilities. Unfortunately, this enormous amount of recorded data has created a 

new problem. It needs to be processed, analysed and converted into useful information to allow for 

decision making activities.  

Most of these methods of analysis allow researchers to define, on the basis of different factors, 

which should be the normal (expected) behaviour of the network. Then, when the reading of a 

sensor is too far from the expected value or it has an excessively large variation with respect the 

previous recorded value an alarm can be generated (Tsang, 2003). As a result of the research 

already conducted water operators have a number of these techniques available for leak detection 

in water distribution networks. ARIMA models, for example, exploit the property by which under 

normal conditions current inflows into the network are related to earlier flow values and variability. 

This technique can be either use to detect a fault or to reconstruct a flow pattern (Quevedo et al., 

2010). Artificial neural networks (ANN) use continually updated historic data for creating a 



 

 

probabilistic model of future flow profiles. The prediction of future flows allows for the identification 

of abnormal behaviours of water demand or burst events (Mounce and Machell, 2006; Mounce et 

al. 2010). Another approach in this field was proposed by Poulakis et al. (2003), a Bayesian 

probabilistic framework applied to flow data in water distribution systems for leak detection. 

Misiunas et al. (2006) presented a technique which allowed for the detection and location of bursts 

by a continuously monitoring of the inflows and pressure levels at different points of a DMA. The 

proposed method used the modified cumulative sum (CUSUM) test to locate the burst. Other 

methods of analysis found in technical literature that can be applied to water networks real time 

control and burst detection include: time-series analysis techniques (Prescott and Ulanicki, 2001), 

Kalman filters (Piatyszek et al. 2000), parity equations (Ragot and Maquin, 2006), pattern 

recognition methods (Valentin and Denoeux, 2001). 

This paper describes a multivariate statistical technique, called Principal Component Analysis 

(PCA), for burst detection in urban water networks. It exploits the property by which the hourly 

flows can be condensed in a reduced number of variables which are calculated as a linear 

combination of those hourly flows. This method was previously applied by Palau C.V. (2005). The 

methodology creates different statistical models to simulate regular water demand establishing 

specific control charts that allow for the detection of abnormal operational conditions in the system. 

 

PRINCIPAL-COMPONENT ANALYSIS METHODOLOGY 

The PCA technique squeezes a high-dimensional data matrix (such as that conformed by the 

inflows to a DMA in a defined period of time) into a low-dimensional matrix in which the data 

variability is explained by a fewer number of variables called latent variables. Each observation (i.e. 

day of measurement) is stored in a different row of the matrix and is constituted of K 

measurements that are placed in the corresponding column of the row. An observation may be 

defined, for example, by the hourly (or any other time step) inflows into a DMA. The dimension of 

the original data matrix, denoted by Z(N,K), is defined by the number of days recorded, N, and the 



 

 

number of measurements considered each day, K. Hence, element xi,k – i,k matrix position – 

correspond to ith day and the kth inflow measurement taken that day. This data matrix can be 

depictured as a data cluster of N points in a K-dimensional space. 
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Frequently, data compression techniques may lead to a significant loss of information. Thus it is 

crucial to find a compression technique which keeps as much information as possible from the 

original inflows. PCA reduces the original K-dimensional space of the inflows into a smaller A-

dimensional subspace preserving the maximum amount of information. In other words, PCA 

transforms each measurement day, constituted by K inflow measurements, into a new simplified 

measurement day composed solely by A variables being each one a linear combination of the 

original K measurements. This new reduced space should still point up dominant patterns and 

major trends in the flow data. 

Also, since several PCA models can be built for different time periods of the day, this technique 

allows for the establishment of various control charts in order to detect, in quasi real-time, pipe 

bursts or unusual water demands in the water network. 

Before starting the transformation it should be noted that multivariate projection methods, like PCA, 

are sensitive to different numerical ranges of the variables (for example, hourly flow rates). An hour 

of measurement with a larger numerical range automatically gets more significance than an hour of 

measurement with a smaller numerical range. Therefore, the starting point when conducting a 

PCA, consists of a pre-processing step (Step 1 in Fig. 1) to transform the original inflow matrix 

Z(N,K), into the X(N,K) matrix by a transformation process called mean centering and scaling 

(Eriksson et al., 2001). For every flow rate, the average inflow at that time period is subtracted. 

Then flow rates are divided by the standard deviation of the flow rates at that particular time (Eq. 

2). 
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Once this pre-processing step of the data is completed, PCA starts by calculating the eigenvector 

of the covariance matrix from the pre-processed X(N,K) matrix (Step 2 in Fig. 1). The computed 

vectors, called principal components (PC), define a reduced A-dimensional space which 

constitutes the PCA-model. The projections of the original measurements onto these PC generate 

new variables, called latent variables or scores, denoted by t. After the transformation, each 

measurement day can be defined by A latent variables (instead of the original K measurements) 

which are calculated as a linear combination of the original K inflows. The coefficients used to 

combine the K inflows to project them onto each PC are called loads. This linear transformation, to 

obtain the scores of every observation, T(N,A), can be easily done by multiplying the inflow matrix 

X(N,K) and the loading matrix P(K,A). 

 

T(N,A)=X(N,K)·P(K,A)  (3) 

 

 

Fig 1. Methodology for PCA model building 

Because of the reduction in space dimensionality from K to A variables, for every day and 

measured inflow there is a fraction of the inflow variability that the PCA model cannot explain. This 



 

 

unexplained fraction of the data is represented by matrix, E(N,K). Thus, the original pre-processed 

data matrix XN,K is decomposed by PCA as: 

X (N,K)= T(N,A)·P(K,A)
T + E(N,K)          (4) 

Where X` is the projected inflow matrix calculated by the PCA model, E the residual matrix, P the 

loading matrix and T(N,A) the score matrix. The score matrix, T(N,A), describes the orthogonal 

projections of the primitive data on the PC space. The P matrix or loading vectors define, in the 

original space, the directions that characterize the PC space. It is constituted by a number of 

vectors equal to the dimensionality of the new reduced space, A. The A loading vectors define the 

factors that multiply each measurement day to obtain the new A variables. Matrix E(N,K) contains 

the residuals or information that is not explained by the PCA-model (Wold et al., 1987). This matrix 

is a measure of how good the model fits the data and is also used to calculate 

acceptance/rejection statistics for future measurement days. 

Another concern when building a PCA model is how to find the optimal number of principal 

components. On the one hand, reducing in excess the space dimensionality may cause a 

significant loss of information. On the other hand, extracting too many principal components leads 

to an over fitting of the model losing, its reliability and predictive capability. Therefore, it is essential 

to extract the correct number of principal components. Not too many, so data representation is not 

significantly simplified, and not too few, in which system behaviour is not satisfactorily explained by 

the PCA model. 

Malinowski (1977, 1987) proposed different tools for determining the optimal PC space dimension 

and for diagnosing the model quality (Step 3 in Fig. 1). In general, it can be stated that the 

extraction of new principal components stops when adding a new variable does not significantly 

improve the explanation of the variables behaviour. Several parameters such as explained 

variation, R2, which measures the “goodness of fit” or predicted variation, Q2, that indicates the 

predictive capability of the model, are commonly used. 

Frequently, not all the flow measurements extracted from the SCADA can be used for building the 

PCA model. For example, the days between the occurrence of a burst and its repair will distort the 

normal behaviour of the water network. The same happens when an abnormal consumption takes 



 

 

place for a few days/hours. Obviously, these days should not be considered when building the 

reference model. Otherwise, these exceptional flow measurements will cause the model to accept 

a larger variability of the inflows within the normal behaviour of the DMA. 

Therefore, building a model requires a formal procedure to detect and remove observations that 

introduce misleading flow variability. This process of identifying unwanted observations (outliers) 

that may distort the reference model is called model validation (Step 4 in Fig. 1). Outliers can be 

classified, into severe or moderate, depending on their effect on the PCA model (Jackson, 1991). 

Different statistical techniques can be used to detect each outlier type. 

Severe outliers are those observations in the PC space whose distance to the centre of gravity of 

the data cluster is considered to be too high. Severe outliers can attract towards themselves 

principal directions, those of maximum data variability, creating a fictitious component and making 

real data variability misleading (Fig. 2a). In this case, the two encircled observations exhibit a large 

distance to the centre of gravity of the data cluster. These observations deviate the direction of the 

calculated PC, P*, due to the artificial variability that they generate in the data cluster. As seen in 

Fig. 2a, this PC space does not correctly reproduce the original data variability. In contrast, when 

the outliers are removed from the model the new calculated PC, P, reproduce, significantly better, 

the data variability.  

  

Fig 2. (a) Severe outlier; (b) moderate outlier 

 



 

 

In the particular case of a PCA describing the measured inflows into a water network, a severe 

outlier appear if the flows measured are exceptionally high or low even in those cases in which the 

correlation structure of the flows is maintained. For example, a severe outlier can be caused by an 

observation in which the flow modulation curve moves in a vertical axis (all inflows increase or 

decrease by the same magnitude) and the shape of the curve is still similar to the average 

modulation curve. This will be the typical case in which a burst occurs before the analysed time 

period of the model starts. 

Severe outliers are identified by the vectorial statistic T2 Hotelling, following a F-Snedecor 

probability distribution with A, N-A degrees of freedom (Hotelling, 1947; Kourti and MacGregor, 

1995). By means of this property it is possible to define control limits, with a specified confidence 

level, that will identify severe outliers. Typically this control limit, because of its vectorial nature, is 

presented in a plane in the form of an ellipse (Fig. 3). 

Moderate outliers are those whose Euclidean distance to the model, or in other words the residual 

vector module
i

e , is exceptionally large, Fig. 2 (b). The statistical parameter used to identify this 

type of outliers is the Distance to Model (DMOD) defined by the ratio Si /So, where Si represents 

the absolute distance to the model, and So is the normalized distance to the model (Eriksson et al., 

2001). The data needed to calculate So is contained in the residual matrix E(N,K).  

The absolute distance of one observation divided by the normalized distance to the model 

squared, (Si/So)
2, approximates a F-Snedecor probability distribution with (K-A),(N-A-1)(K-A) 

degrees of freedom. By means of this property it is possible to compute the membership probability 

of each observation. 

A moderate outlier can be caused by an observation with flow values not necessarily too high or 

too low, in which the correlation structure between measured flows have been broken. Thus, 

DMOD statistic sensitively detects any change in the shape of the flow modulation curve. For 

example, an observation can be classified as a moderate outlier when a burst appears during the 

time period being analysed by the model. In such case the shape of the curve changes from the 

reference shape. 



 

 

Model validation is an iterative process. Once outliers are detected and removed from the data 

matrix, the methodology returns again to the model building stage using the debugged data matrix. 

Obviously, additional outliers will always appear in the new model. These outliers have to be 

removed until they do not significantly distort the model. The iterative process finishes when the 

number of outliers approximately represent the percentage defined by the confidence value α. 

Then the reference PCA model is calculated and prepared to be put into operation in the SCADA 

system as a routine to detect failures and unusual water demands in the water network in real time 

(Fig. 1, step 5). 

PCA leak detection principles 

When analysing an observation in which a leak, having a flow rate Qleak, is superimposed to the 

inflow, the projection of the total inflow, consumption and leak, Tleak, is displaced, in each PC 

direction, proportionally to the magnitude of the leak and the sum of the loads in that direction.  
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Therefore, T2 Hotelling statistic will detect leaks more efficiently in those directions with a greater 

sum of the loadings or when all loadings have the same sign. In case, the sum of the loadings is 

almost null, the T2 Hotelling statistic in that direction will not be able to detect efficiently any leak 

that starts before the initial time analysed by the model. In case the leak starts after that time then 

the displacement will be proportional to the sum of the loadings from the leak occurrence time until 

the latest time considered by the model. In such case the effectiveness cannot be predicted since it 

will depend on the sign of loadings, their value and the variability of the observations used to build 

the model in that direction. 

When analysing the effectiveness of the DMOD statistic things become slightly more complex. The 

residual generated by the leak will have to be added to the residual of the observation itself. 



 

 

Therefore, the effect of the leak on the DMOD parameter will not necessarily be proportional to the 

flow rate. Nonetheless, in general terms, it can be stated that the residuals of the total inflow (leak 

plus consumption) will be greater if the leak starts after the initial time analysed by the model. In 

such case, the shape of the modulation curve changes and the model cannot properly fit the data 

and, consequently, DMOD parameter increases. Contrarily, when the leak starts before the time 

period analysed, the shape is not significantly altered and the DMOD parameters suffers a 

negligible change. 

CASE STUDY 

District Metering Area Description 

In order to evaluate the effectiveness of the PCA analysis technique, a PCA model has been built 

of the inflows into a DMA belonging to a municipal water utility in the eastern coast of Spain. The 

water is supplied by gravity into the distribution network from an elevated reservoir at the top of a 

hill. The water network is divided in six independent DMAs which are monitored by a SCADA 

system. In all DMAs flows were measured by mechanical Woltmann meters, of different sizes, 

equipped all of them with pulse emitters having a resolution of 100 l. Flow data into the different 

DMAs are recorded in local controllers in five minutes intervals. The controllers send, by means of 

radio transceivers, the average flow every hour to the central server. This is the value finally 

recorded in the SCADA database. 

The city has been partly built on a hill creating large pressure differences within the water network. 

This problem is also observed in the DMA under study where large pressure variations are found. 

Unsurprisingly, pressure in areas close to the reservoir at the top of the hill is relatively low, close 

to 2 bar, while in the lower areas can become as high as 6 bar. The DMA studied in the present 

work consists of approximately 2900 residential properties with some commercial and industrial 

water users which approximately represent 15% of the water use. 

In general terms, pipe infrastructure was in poor maintenance conditions and there was frequent 

burst occurrence and a high natural rate of rise of leakage (Lambert, 2001), as shown in Fig. 4, 

which led to numerous repair interventions in the network. This characteristic of the DMA, without 



 

 

any doubt, made more challenging the establishment of valid references for the inflows. Obviously, 

a more stable DMA will allow setting stricter control limits and a better detection effectiveness of 

the method. 

Building Principal-Component Analysis Models 

For the particular case study presented a six month period of flow data, from January until June 

2007, was extracted from the SCADA system. Flows were recorded in hourly terms and expressed 

in litres per second. According to the water company the operational conditions of the DMA were 

stable during the period considered. No large pressure or water demand variations due to seasonal 

effects or population increases were recorded. Taking into account the whole period, the average 

daily inflow did not show a dependence on time, i.e. total daily inflows can be considered a 

stationary time series.  

A PCA model was built for different time periods in order to achieve a better reaction time for burst 

detection. Building different models throughout the day increases data homogeneity and reduces 

the number of principal components needed in each model, facilitating the analysis procedures and 

the use of control charts (Fig. 3). In fact, one model which considered the complete day (each 

observation was constituted by 24 hourly flows) was also built. However, the model required five 

PC components to properly describe data variability (Table 1). 

 

 



 

 

 

Fig 3. Debugged PCA model control charts: (A) T
2
 Hotelling (B) distance to model; confidence level 

95%; R
2
 (cumulative)= 95.2%; Q

2
 (cumulative) = 89.5%. 

Table 1. PCA models description 

Model 
Number 

of PC 
Eigen 
value 

R2 
(% cum.) 

Q2 
(% cum) 

Nº of  
observ. 

Night 
1 6.14 87.7 83.4 

75 
2 0.52 95.2 89.5 

Morning 
1 4.31 47.9 36.4 

68 2 2.15 71.8 51.4 
3 1.12 84.3 58.5 

Afternoon 
1 6.22 77.7 70.2 

89 
2 1.09 91.4 84.7 

24 h 

1 17.4 72.5 71.0 

69 
2 2.07 81.2 72.3 
3 1.81 88.7 80.8 
4 0.93 92.6 83.3 
5 0.66 95.3 87.8 

 

A total of 180 observations were available for building three PCA models covering the following 

time periods: from 12:00 a.m until 6:59 a.m. (night), from 7:00 a.m. until 15:59 p.m (morning) and 

from 16:00 p.m until 23:59 p.m (afternoon). The behaviour of the network was also found to be 

different between working days and weekends (Fig. 5). Again, in order to reduce unnecessary 

variability of the data which will decrease the detection effectiveness of the methodology different 

models were prepared for working days (130 days) and weekends (50 days). As seen in Fig. 5, this 

distinction is particularly important for morning and afternoon models. 



 

 

For building the models, all steps described in Fig. 1 were followed until the optimum number of PC 

was reached and all significant outliers removed. Night flow data matrix was reduced from 7 to 2 

variables, morning flow matrix from 9 to 3 and afternoon flow matrix from 8 to 2. Also, after outlier 

detection, a significant number of observations from the initial 130 working days had to be 

discarded to build the models. The explanation for this high percentage of rejected observations 

can be found in the high instability of the system, as shown in Fig. 4. 

 

Fig 4. Night flow and total inflows into the studied DMA. 

 

Fig 5. Average water flow pattern during working days and holidays. 

 

For each model, a T2 Hotelling and DMOD control charts were prepared in order to have a visual 

identification of future outliers as a consequence of bursts, exceptional water uses or any other 

anomalous behaviour in the water network. As an example, Fig. 3 shows T2 Hotelling and DMOD 

control charts resulting from the PCA model developed for night flows measured during the 



 

 

considered working days. This figure also shows the location in the chart of the observations finally 

used to build the model. 

Once the models have been built every new day of measurement corresponds to a new 

observation. For every new observation, outlier detection is mathematically carried out by 

calculating the two statistics previously presented: DMOD and T2 Hotelling. Observations which 

projections lay out of the T2 Hotelling control limits (defined by an ellipse) are considered severe 

outliers, while points out of DMOD control limit are defined as moderate outliers. Severe outliers 

typically show inflows which are either too high or too low. Moderate outliers are days in which a 

burst or an abnormal consumption has occurred during the time interval being analysed. 

Finally, it should be mentioned that PCA technique, if properly used, has the ability of classifying 

faulty observations into different groups: burst, service interruptions and abnormal consumptions. 

Each one of these abnormalities will produce a different deviation or effect on the projections onto 

the PC space. For example, as it has been seen in Eq. 6, a burst will displace the projections 

proportionally to the flow rate of the leak and the sum of the loads in each PC direction. In this 

case, the DMOD parameter will not increase significantly (depending on the occurrence time of the 

burst). A service disruption will alter the projection onto the PC space and increase the DMOD 

parameter of the observation. 

The time of occurrence of a burst or any other abnormal event can only be estimated if several 

successive models are built, and T2Hotelling and DMOD statistics are properly used. 

Principal-Component Analysis model evaluation by means of simulated consumption 

profiles 

When analysing the performance of statistical detection methods it is important to bear in mind that 

faults detection effectiveness cannot be generalized in a single figure. Their effectiveness will 

always depend on the data variability used to build the models. In this particular case study, due to 

the high instability of the network, data variability of the flows used to build the models is extremely 

high. As a result, defining a reference behaviour of the system has been a difficult task and many 

observations, that clearly distorted the model, had to be rejected. Under these circumstances, 



 

 

control limits are much less strict than in a DMA behaving in a very stable manner. A more settled 

DMA could have been chosen for the analysis, obtaining much more attractive results. However, it 

is important to show that this methodology do not only work under ideal conditions but also under 

not such favourable circumstances. In any case, in a situation like the one presented, PCA models 

(as any other statistical method) would have to be updated every now and then to adapt the 

models to the new behaviour of the network in order to achieve better detection effectiveness and 

reduce false alarms. This is where a relatively simple methodology, like the PCA, takes advantage 

over more complex techniques that will also have to be updated. 

Additionally, all statistical detection methods are subject to two different types of error: a) False 

positives, also called α or Type I errors, which produce false alarms; b) False negatives, also 

called β or Type II errors, which will lead to the acceptance of a faulty observations, for example a 

flow modulation curve with a significant leak. If control limits are set too strict, using lower 

confidence levels (for example 75%), Type II errors will be avoided at the expense of producing 

frequent Type I errors, or false alarms. On the contrary, if control limits are set too loose selecting a 

high confidence level, Type I errors rarely occur but too many observations can be accepted 

having a significant leak. Technical managers have to find equilibrium between both types of errors 

to attain the maximum benefit from the statistical methodology. 

For the analysis of the PCA model effectiveness thirty thousand random flow modulation curves 

have been generated. This approach, although constrained to the particular case study presented, 

allows for a more formal and controlled testing of the methodology than limited field surveys. 

Simulated flow curves have been generated by means of the property by which the residuals of the 

PCA model can be considered a Gaussian noise, i.e. residuals are distributed in each PC direction 

according to a Normal probability distribution having a zero mean and a standard deviation equal 

to the square root of the Eigen value in that direction (Table 1). 

Afterwards, leaks of increasing magnitudes occurring at different times are added to the randomly 

generated inflows (Palau et al., 2004). T2 Hotelling and DMOD control charts are then used to 

decide whether the resulting flow modulation curves are classified as outliers or not. The results of 

this performance analysis can be summarised in charts (Fig. 6) in which the detection 



 

 

effectiveness is plotted. These graphs represent the effectiveness of T2 Hotelling and DMOD 

control charts for the night model depending on the confidence levels selected. Two confidence 

level values, 75% and 95%, have been used for the calculation. Each line show how the 

occurrence of a leak at a specific time is detected with higher probability as it increases in flow 

(expressed as a percentage of the average flow during the time interval considered by the model). 

Several conclusions are drawn from the analysis of the DMOD parameter effectiveness charts in 

Fig. 6. In first place, as expected, this statistic is significantly less effective if the leak occurs before 

the analysis period, i.e. before or at 12:00 a.m. in the night model, before or at 7:00 a.m. in the 

morning model or 4:00 p.m. in the afternoon model. The higher effectiveness is reached when the 

burst occurs in the middle of the time interval being analysed (for example 4:00 a.m. in the night 

model). At that time the change in shape of the curve is more evident and the DMOD parameter 

easily detects the burst. Fig. 6 also shows how increasing the confidence level decreases the 

effectiveness. In other words, Type I errors, or false positives are reduced at the expense of 

leaving some burst undetected, i.e. accepting faulty observations (Type II errors). 

 

Fig 6. T
2
 Hotelling and DMOD effectiveness for night flow model. 



 

 

Similarly to the DMOD effectiveness chart the T2 Hotelling statistics exhibits a different 

performance depending on the time of occurrence and the magnitude of the burst. However, this 

parameter mainly detects changes in the total consumption registered during the time interval 

being analysed. As a result, the detection effectiveness decreases as the burst occurs later in the 

time interval considered. In other words, T2 Hotelling is more effective when the leak occurs before 

the flows are analysed or at the beginning of the time interval. 

 

Fig 7. T
2
 Hotelling and DMOD effectiveness for morning and afternoon flow models. 

Fig. 7 shows the effectiveness charts of DMOD and T2 Hotelling statistics calculated with a 75% 

confidence level for the morning and afternoon models. While the effectiveness of T2 Hotelling is 

more or less the same for the three models, the DMOD statistic does not reach the high levels of 

effectiveness achieved in the night model. 

When comparing both detection methods, is clear that bursts are better detected by studying the 

shape of the flow curves (DMOD) rather than their variability (T2 Hotelling). This statement can also 

be checked by considering the effectiveness of the three models built: night, morning and 

afternoon (Fig. 8). The detection effectiveness of a leak representing 5% of the average flow is 



 

 

always higher when using DMOD statistic. Also, the effectiveness of the night PCA model is 

significantly higher than the morning and afternoon PCA models, for which the variability of flows 

expand the control limits. 

 

Fig. 8. Detection effectiveness as a function of its time of occurrence. 

CONCLUSIONS 

The basis of the methodology presented in this paper is founded in the geometry of the original 

data cluster that in this case corresponds to the water inflows into a DMA. The PCA model defines 

statistical control limits for T2 Hotelling and DMOD, which allow for the detection of burst or 

abnormal behaviours of the system. 

The final sensitivity of the presented technique strongly depends on the quality and variability of 

the data used to build the model.  For that reason, is highly advisable to stratify daily inflows in a) 

working/weekend days; b) different hourly intervals. By doing so, data variability is considerably 

reduced and a better burst detection effectiveness is achieved. 

However, from the two statistics used to detect outliers DMOD has shown to have the best 

sensitivity against bursts or other incidences in the DMA. This parameter detects when the 

correlation structure between variables have been broken, in other words when the flow 

modulation curve changes in shape. In the tested DMA, regardless of its high instability, a burst of 



 

 

approximately 5% of the average flow could be detected with a probability between 30% and 95% 

depending on the hour of occurrence. 
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