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Burst of virus infection and a possibly largest epidemic threshold of non-Markovian
susceptible-infected-susceptible processes on networks

Qiang Liu* and Piet Van Mieghem†

Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands

(Received 30 November 2017; published 20 February 2018)

Since a real epidemic process is not necessarily Markovian, the epidemic threshold obtained under the
Markovian assumption may be not realistic. To understand general non-Markovian epidemic processes on
networks, we study the Weibullian susceptible-infected-susceptible (SIS) process in which the infection process
is a renewal process with a Weibull time distribution. We find that, if the infection rate exceeds 1/ ln(λ1 + 1),
where λ1 is the largest eigenvalue of the network’s adjacency matrix, then the infection will persist on the network
under the mean-field approximation. Thus, 1/ ln(λ1 + 1) is possibly the largest epidemic threshold for a general
non-Markovian SIS process with a Poisson curing process under the mean-field approximation. Furthermore,
non-Markovian SIS processes may result in a multimodal prevalence. As a byproduct, we show that a limiting
Weibullian SIS process has the potential to model bursts of a synchronized infection.

DOI: 10.1103/PhysRevE.97.022309

I. INTRODUCTION

The susceptible-infected-susceptible (SIS) epidemic pro-
cess is a basic model for virus spreading on networks [1]. We
consider a graph G where N nodes are connected by L links,
specified by an adjacency matrix A. In the SIS model, a node
j of the network can be in either of two states: susceptible
Xj (t) = 0 or infected Xj (t) = 1, for j = 1, . . . ,N . A suscep-
tible node can be infected by an infected neighbor with rate β,
while an infected node can be cured with rate δ. By tuning the
effective infection rate τ � β/δ, the SIS process experiences
a phase transition at the epidemic threshold τc. For τ > τc,
the infection can persist on the network for a very long time
[2], and for τ < τc the process quickly enters the all-healthy
state. For simplicity, most research (implicitly) assumes that
the process is Markovian, which means that both the infection
and curing process are Poisson processes. The length of the
time interval between two adjacent events (infection or curing
in the SIS process) is exponentially distributed in the Poisson
process. With Poisson infection and curing processes, the SIS
process is thus a Markov process with 2N states [3]. Under
the Markovian assumption, the epidemic threshold τc can be
approximately obtained by mean-field approximations, such
as the Heterogeneous Mean-Field approximation [4] and the
N -Intertwined Mean-Field Approximation (NIMFA) [5]. The
NIMFA threshold is a lower bound of the exact threshold [6].
However, an epidemic process is not necessarily Markovian,
and the infection attempts do not happen uniformly with time
t as in a Poisson process. For example, the infection time of
online information spread is found to be log-normal distributed
[7]. To model general non-Markovian epidemic processes,
we consider a renewal infection process [8]. In the renewal
infection process, the distribution of the infection time T ,

*Q.L.Liu@tudelft.nl
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which is the time interval between two adjacent infection
attempts of an infected node, is replaced by a more general
distribution. We adopt the Weibull distribution as in [6,9]:

fT (x) = α

b

(x

b

)α−1
e−(x/b)α (1)

for x � 0, with the expectation

E[T ] = b�

(
1 + 1

α

)
where α is a shape parameter, �(x) is the Gamma function, and
b = [β�(1 + 1

α
)]−1 because the average infection time E[T ] is

fixed to the inverse of the infection rate 1/β in order to compare
different α regimes. Furthermore, the distribution function is

FT (x) = Pr[T � x] = 1 − e−(x/b)α (2)

for x � 0. We refer to this model as a Weibullian SIS process.
In the Weibullian SIS process, the shape parameter α controls
the infection process. The Weibull distribution is heavy-tailed
when α < 1, exponential when α = 1 and hence Markovian,
and Gaussian-like when α > 1. Furthermore, tuning the shape
parameter α dramatically shifts the epidemic threshold, and the
epidemic threshold increases with the distribution changing
from heavy-tailed to Gaussian-like [6,9].

The Weibullian SIS process is capable of modeling various
kinds of non-Markovian epidemic processes by choosing a
suitable shape parameter α. For example, the Weibullian SIS
process with a heavy-tailed infection time (α < 1) predicts
a smaller epidemic threshold τc, compared to a Markovian
SIS process, which agrees with the fact that a heavy-tailed
interaction time leads to a longer persistence of infection in
reality [10]. However, the shape parameter α is generally
not known for a real-life epidemic process, which raises two
questions: (1) How small should the effective infection rate
τ be to ensure that there is no epidemic on the network? and
(2) how large should the effective infection rate τ be to ensure
a persistence of infection on the network? Obviously, since
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the Markovian SIS process is a special case (α = 1) of the
Weibullian SIS process, neither of the answers to those two
questions is the NIMFA epidemic threshold 1/λ1, where λ1 is
the largest eigenvalue of the adjacency matrix A of the network.
In this paper, we make a first step to understand those questions.
Under the mean-field approximation, we find that the largest
epidemic threshold of the Weibullian SIS process is 1

ln(λ1+1) ,
which is obtained when α → ∞. Since the Weibullian SIS
process is able to model a general epidemic process, we argue
that the infection can persist on the network when the effective
infection rate τ > 1

ln(λ1+1) for any infection process. Simulation
results in Fig. 3 seem to support our claim.

Another motivation of our paper is that an infinite shape
parameter α leads to a model for synchronized spreading
phenomena. For the Weibullian SIS process with a finite α,
the prevalence and the epidemic threshold can be calculated
approximately by the renewal theory under the assumption that
the number of infection events equals the number of curing
events in the steady state [9]. Thus, the Markovian and non-
Markovian process can be treated within a same framework [9].
When α → ∞, the distribution of the infection time becomes
a Dirac delta function at the average infection time 1/β. The
infection attempts happen periodically, and the constant steady
or metastable prevalence vanishes. This extreme nonuniform
distribution of the infection attempts leads to a failure of the
method proposed in [9]. The Weibullian SIS process with
α → ∞ has the potential to be applied to some realistic
situations. For example, a computer virus can be controlled to
infect computers periodically, and it is also technically possible
for a virus to burst at the same time point. Many computer
viruses burst periodically because the developers of a virus
spend time on improving the virus before each burst. Thus,
the virus development life cycle and the underlying network
collectively determine whether the infection can persist or not.
Another example is the seasonal influenza H3N2 where the
infection emerges at each influenza season and the prevalence
is at a low level between seasons [11]. In those situations, either
the infection is synchronized or the infection time interval is
sharply Gaussian-like distributed. The Weibullian SIS process
with α → ∞ can be applied to approximate those resurgent
epidemic processes. Currently, the Weibullian SIS model with
α → ∞ has not been researched, and we present here some
initial results.

In the following part of this paper, we first study the
Weibullian SIS process with α → 0 to show that the epidemic
threshold can be very small, and then we study the process
with α → ∞ under the mean-field approximation. Numerical
and simulation results are also presented.

II. THE WEIBULLIAN SIS PROCESS WITH α → 0 AND ∞
In the Weibullian SIS process, the distribution of the

infection time between two adjacent infection attempts of an
infected node is a Weibull distribution with an expectation 1/β,
and the distribution of the infected time duration is exponential
with an expectation 1/δ. If α = 1, then the Weibullian SIS
process reduces to the Markovian SIS process. If the proba-
bility of the occurrence of an infection attempt decreases with
time, then the process can be modeled by the process with a
suitable shape parameter α < 1. Otherwise, the infection can
be modeled by α > 1.
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FIG. 1. The prevalence of the Weibullian SIS process on an
Erdős-Rényi (ER) network G0.15(50) obtained by averaging over 105

realizations. The effective infection rate τ = 1 is around 8.5 times
the NIMFA threshold (1/λ1 = 0.1173). The minimum prevalence
decreases with the shape parameter α. For α < 1, the prevalence
is a trivial single-peak function with time. For small α > 1, the
prevalence oscillates but eventually becomes approximately constant.
When α → ∞, the metastable state prevalence is no longer constant.

When α → 0, the Weibullian SIS epidemic threshold is
zero, and for an arbitrary small α the mean-field epidemic
threshold given in [9] tends to zero (see Appendix A).

If α → ∞, then the distribution function (2) of the infection
time for T �= 1/β tends to

lim
α→∞ FT (x) = lim

α→∞ 1 − e−[βx�(1+1/α)]α =
{

1 for x > 1
β

0 for x < 1
β

.

(3)

The distribution function is right-continuous, and then
FT (1/β) = lim

x→(1/β)+
FT (x) = 1 at the discontinuity x = 1

β
.

Thus, the probability distribution of the time interval between
two adjacent infection events is Pr[T = 1/β] = 1 and Pr[T �=
1/β] = 0.

Figure 1 shows the time-dependent prevalence y(t) �
1
N

∑N
i=1 E[Xi(t)], which is the average fraction of the infected

nodes in the Weibullian SIS process. Initially, all nodes
are infected. For α � 1, the prevalence y(t) monotonically
decreases to the metastable state, and for α > 1 the prevalence
y(t) fluctuates with a decaying amplitude. When α → ∞,
the prevalence y(t) is no longer steady, but periodically
changes. There is a huge gap between the maximum and the
minimum prevalence. With the increase of α, the amplitude
increases, but the minimum prevalence decreases as shown
in Fig. 1. The persistence of the infection needs a higher
effective infection rate τ for a larger α. Figure 1 reveals that
a non-Markovian infection process may lead to a multimodal
prevalence, a function with multiple local maxima over time.
The multimodal prevalence represents the resurgence of the
epidemic. Previously, the resurgent phenomenon was found in
the susceptible-infected and the susceptible-infected-recover
model [12,13].
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As mentioned above, the infected nodes infect their neigh-
bors precisely every 1/β time unit when α → ∞, and then
it is hard to study the process with only one time parameter
t as done in the Markovian SIS process. To investigate this
process analytically, we divide the time t into time intervals of
length 1/β with index n = 0,1, . . .. The infection state of node
j is Xj (t∗ + n/β) at time t∗ of the n-th time interval, where
n � 0 and t∗ ∈ [0,1/β). At t = 0, the initially infected nodes
are seeded, and the first infection attempt of each infected node
happens at the start of the second time interval t = 1/β. Thus,
the infection attempts always happen at the start of each time
interval (t∗ = 0). If a healthy node has an infected neighbor
when t∗ → 1/β, then the healthy node will be infected at the
start of the next time interval. The probability that node j is
healthy at the end of the nth time interval and has at least one
infected neighbor is

lim
t∗→1/β

Pr

⎡
⎣Xj

(
t∗ + n

β

)
= 0,

∑
i∈Nj

Xi

(
t∗ + n

β

)
� 1

⎤
⎦ (4)

where Nj is the set of the neighbors of node j , while the
probability that node j is infected at the end of the nth time
interval is

lim
t∗→1/β

E

[
Xj

(
t∗ + n

β

)]
. (5)

The probability that node j is infected at the start of the (n +
1)th time interval E{Xj [(n + 1)/β]} is thus the sum of (4) and
(5), and we obtain Eq. (6):

E

[
Xj

(
n + 1

β

)]
= lim

t∗→1/β

⎧⎨
⎩ Pr

⎡
⎣Xj

(
t∗ + n

β

)

= 0,
∑
i∈Nj

Xi

(
t∗ + n

β

)
� 1

⎤
⎦

+E

[
Xj

(
t∗ + n

β

)]⎫⎬
⎭. (6)

Equation (6) is not analytically solvable. Here, we ap-
ply a mean-field approximation to solve (6), similar as in
NIMFA for the Markovian SIS process. We assume that
the infection state between neighbors is independent at the
end of each time interval, i.e., lim

t∗→1/β
E[Xi(t∗ + n/β)Xj (t∗ +

n/β)] = lim
t∗→1/β

E[Xi(t∗ + n/β)]E[Xj (t∗ + n/β)]. Under this

assumption, we denote the approximate value of E[Xj (t)] by
vj (t), and the infection probabilities by a column vector v(t) �
[v1(t), . . . ,vN (t)]T . Thus, the mean-field infection probability
at t∗ = 0 of the (n + 1)th time interval follows (7):

vj

(
n + 1

β

)
= lim

t∗→1/β

⎛
⎝[

1−vj

(
t∗ + n

β

)]⎧⎨
⎩1

−
∏
i∈Nj

[
1−vi

(
t∗+ n

β

)]⎫⎬
⎭+vj

(
t∗+ n

β

)⎞
⎠.

(7)

In each time interval, an infected node can be cured at any time
point with a equal probability during t∗ ∈ [0,1/β), because the
curing process is Poissonian. The governing equation of the
infection probability of node j for j = 1, . . . ,N is

dvj (t∗ + n/β)

dt∗
= −δvj

(
t∗ + n

β

)
for t∗ ∈ [0,1/β). Given the initial condition vj (n/β), the
solution of the equation above is

vj

(
t∗ + n

β

)
= vj

(
n

β

)
e−δt∗ (8)

for t∗ ∈ [0,1/β).
Substituting (8) evaluated at t∗ → 1/β of the nth time

interval, thus lim
t∗→1/β

vj (t∗ + n
β

) = vj (n/β)e−1/τ into (7), we

obtain a recursion of the infection probability at t∗ = 0 of each
time interval (9):

vj

(
n + 1

β

)
=

[
1 − vj

(
n

β

)
e−1/τ

]⎧⎨
⎩1

−
∏
i∈Nj

[
1−vi

(
n

β

)
e−1/τ

]⎫⎬
⎭+vj

(
n

β

)
e−1/τ .

(9)

Equation (9) has a similar form as the discrete-time SIS
process, which has been studied in [14]. In the metastable
state n → ∞, the infection probability vj (n/β) at the start of
each time interval t∗ = 0 is constant. We can check whether
the infection probability lim

n→∞ vj (n/β) is zero or not, to

obtain the epidemic threshold. Consequently, we arrive at the
following result.

Theorem 1. The mean-field epidemic threshold of the
Weibullian SIS process on a connected network with α → ∞
obtained by (8) and (9) is

τ (1)
c = 1

ln(1 + λ1)
. (10)

If the effective infection rate τ > τ (1)
c , then infection can persist

on the network with a nonzero steady periodic infection prob-
ability v∞(t∗) � lim

n→∞ v(t∗ + n/β), and v∞(t∗) = v∞(0)e−δt∗

for t∗ ∈ (0,1/β]. If τ < τ (1)
c , then the epidemic process enters

the all-healthy state in the long run lim
t→∞ v(t) = 0.

The proof of Theorem 1 is in Appendix B. The superscript
(1) in τ (1)

c refers to a first-order mean-field approximation.
The epidemic threshold (10) has a similar form as the NIMFA
epidemic threshold [3] and the discrete-time SIS [15] threshold
1/λ1, but with a logarithmic relation to the largest eigenvalue
λ1 of the adjacency matrix A of the network. Furthermore,
the term 1 + λ1 in the logarithmic function ensures that the
epidemic threshold (10) is positive for λ1 > 0 in any finite-size
connected network. The threshold (10) of a scale-free network
with a finite average degree [16,17] converges to zero in the
thermodynamic limit N → ∞.

When the effective infection rate τ < τ (1)
c , the infection

probability vj (t) of each node decreases to zero in the long
run. We represent xi � yi and xi < yi for all i by the vector re-
lationship [x1, · · · ,xn]T � [y1, · · · ,yn]T and [x1, · · · ,xn]T ≺
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FIG. 2. Steady maximum prevalence and minimum prevalence
of three different networks under the mean-field approximation
and simulation. The prevalence is obtained by averaging over 105

realizations of simulation with all nodes infected initially to prevent
the inaccuracy caused by the early die-out [18]. The simulation runs
for a long enough time (50 time units with δ = 1), and the maximum
and minimum prevalence are plotted, which are selected from the last
complete time period. The networks are (a) the ER network G0.15(50)
corresponding to Fig. 1; (b) a Barabási-Albert scale-free network with
size N = 500, and number of links L = 1491; and (c) a rectangular
grid with size N = 484, L = 924.

[y1, · · · ,yn]T , respectively. If τ < τ (1)
c , then the infection prob-

ability v(t) is upper bounded by an exponentially decreasing
function with time t , which is

v(t) ≺ (e−δ(λ1 + 1)β)tz

where z is a constant vector of which every element is
positive (see Appendix C). Furthermore, the mean-field preva-
lence y(1)(t) � 1

N

∑N
i=1 vi(t) is upper bounded by y(1)(t) <

[e−δ(λ1 + 1)β]t c, where c is a positive value.
When τ > τ (1)

c , the steady infection probability reaches a
maximum v∞(0) at the start of each time interval t∗ = 0, and
a minimum v∞(0−) � lim

t∗→1/β
v∞(t∗) at the end of each time

interval t∗ → 1/β. The steady maximum infection probability
v∞(0) can be obtained by solving (9) numerically. Since
v∞(0) = v∞(0−)e1/τ , the ratio between the maximum and
minimum steady infection probability is

v∞(0)

v∞(0−)
= e1/τ < λ1 + 1. (11)

The last inequality holds because the effective infection rate τ

is above the mean-field threshold τ > τ (1)
c . The inequality (11)

indicates that the burst of the infection in the steady state is
restricted by the underlying network, specifically, the largest
eigenvalue λ1 of the adjacency matrix A.

III. NUMERICAL AND SIMULATION RESULTS

We evaluate the mean-field method by comparing the
approximation with the simulation of the exact Weibullian
SIS process. The simulation is performed on an Erdős Rényi
network, a scale-free network, and a rectangular grid network.

Figure 2 presents the prevalence of the Weibullian SIS
process with α → ∞ in the long run, together with the NIMFA
and the Markovian prevalence. The numerical solution of
Eqs. (8) and (9) approximates the simulation results well, and
the phase transition of the simulated process happens around
the mean-field threshold τ (1)

c . Among all the three different
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FIG. 3. The epidemic threshold vs the Weibull shape parameter
α. The thresholds are obtained by simulation of 105 realizations. The
simulation setup is the same as that in Fig. 2. The threshold is chosen as
the value of the effective infection rate τ which leads to the maximum
prevalence being around 0.001 at the last period.
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networks, the accuracy of the mean-field approximation is
worst in the rectangular grid network with a minimum largest
eigenvalue λ1 = 3.9627, and best in the scale-free network
with a largest λ1 = 11.9944. The simulations in Fig. 2 also
show that the mean-field threshold 1

ln(1+λ1) is, just as for
NIMFA, a lower bound.

Figure 3 shows the epidemic threshold of the Weibullian
SIS process with different shape parameter α. As mentioned
above, the epidemic threshold can be approximately zero,
which agrees with the simulation results. With the increase of
α, the epidemic threshold τc converges approximately to τ (1)

c .

IV. CONCLUSION

As a general model, the Weibullian SIS process can model
a general non-Markovian SIS process by choosing a suitable
shape parameter α. We study the process in the extreme situa-
tion α → 0 and ∞ to obtain an understanding of the influence
of the underlying network on a general epidemic process. For
an SIS process with an unknown infection process, our results
reveal that the certainty about the extinction of infection is not
possible even if the effective infection rate τ is small, but the in-
fection can always persist on the network if the effective infec-
tion rate τ > 1/ ln(λ1 + 1). Additionally, we obtain the proper-
ties of the synchronized epidemic process, i.e., the Weibullian
SIS process with α → ∞, by the mean-field method.
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APPENDIX A: WHEN THE SHAPE PARAMETER α → 0

We consider the Weibullian SIS process with an infection
rate β > 0. When α → 0, the distribution function of the
infection time T is

lim
α→0

FT (x) = lim
α→0

1 − e−[βx�(1+1/α)]α

= 1 − e
− lim

α→0
�(1+1/α)α

. (A1)

Since �(1 + 1/α)α = eα ln �(1+1/α), we invoke [19, (6.1.40)]
the asymptotic formula ln �(z) ∼ (z − 1

2 ) ln z + O(z), and
then we obtain

α ln �

(
1 + 1

α

)
= α

(
1

α
+ 1

2

)
ln

(
1

a
+ 1

)
+ O(1)

= − ln α − α

2
ln α + O(1).

Thus,

lim
α→0

�

(
1 + 1

α

)α

= exp

[
lim
α→0

(
− ln α − α

2
ln α

)]
= ∞.

From the calculation above, lim
α→0

FT (x) = 1 for x > 0, i.e.,

lim
α→0

Pr[T = 0] = 1. Thus, when α → 0 and β > 0, an infected

node asymptotically almost surely infects its neighbor consis-
tently and all nodes will be infected. By a similar method, we
can verify that the mean-field threshold 1

�(1+1/α)[�(α+1)]1/αλ
1/α

1

given in [9] tends to zero for an arbitrary small α.

APPENDIX B: PROOF OF THEOREM 1

Proof. We denote Eq. (9) by a function � : [0,1]N →
[0,1]N that v(n/β) = �{v[(n − 1)/β]} and vj (n/β) =
�j {v[(n − 1)/β]}. We may verify that

∂�j (x)

∂xi

∣∣∣
x=0

=
{
e−1/τ if aji = 1 or j = i

0 if aji = 0
,

which is the element of the Jacobian matrix J�(0) of the
function � at 0 in the j th row and ith column. Thus, the
Jacobian matrix is J�(0) = e−1/τ (A + I ), and we assume that
λmax is the largest eigenvalue of the Jacobian J�(0) in absolute
value.

Since the network is connected, the matrix J�(0) is irre-
ducible. Thus, λmax is the largest eigenvalue of J�(0) by the
Perron-Frobenius theorem [20], and then

λmax = e−1/τ (λ1 + 1).

For the dynamical system x(n) = �[x(n − 1)] in the form of
(9), Ahn and Hassibi [14, Theorem 5.1] have indicated that 0
is globally stable and that lim

n→∞ x(n) = 0 for any x(0) ∈ [0,1]N

whenλmax < 1, while ifλmax > 1 then there exists one and only
one nonzero globally stable point such that 0 ≺ lim

n→∞ x(n) for

any x(0) ∈ [0,1]N and x(0) �= 0. Thus, the maximum infection
probability v(n/β) of each time interval governed by Eq. (9)
converges to 0 when λmax < 1, and v(n/β) converges to the
unique nonzero constant infection probability v∞(0) when
λmax > 1 and v(0) �= 0. Thus, λmax = 1 is the critical point
at which the phase transition happens. Let λmax = 1, and we
obtain

τ = 1

ln(λ1 + 1)
,

which is the epidemic threshold of the Weibullian SIS process
with α → ∞. In each time interval in the steady state, the
infection probability is v∞(t∗) = v∞(0)e−δt∗ , which follows
from (8).

APPENDIX C: WHEN THE EFFECTIVE INFECTION
RATE IS SMALL, τ < τ (1)

c

From (9), the infection probability at t∗ = 0 of the nth time
interval is upper bounded by (C1):

vj

(
n

β

)
� vj

(
n − 1

β

)
e−1/τ +

[
N∑

i=1

ajivi

(
n − 1

β

)
e−1/τ

]
.

(C1)

From the inequality above, we have

v
(

n

β

)
� e−1/τ (A + I )v

(
n − 1

β

)

� [e−1/τ (A + I )]nv(0)

=
N∑

i=1

[e−1/τ (λi + 1)]nuiuT
i v(0)

where λ1 � · · · � λi � · · · � λN are the eigenvalues of the
matrix e−1/τ (A + I ), and ui is the corresponding eigenvector
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of λi . Thus, there exists a constant vector z where every element is positive, such that

v
(

n

β

)
� [e−1/τ (λ1 + 1)]nz. (C2)

We consider the inequality above for general t = n/β + t∗. Since v(t∗ + n/β) = v(n/β)e−δt∗ and n = β(t − t∗), we have

v(t) = v
(

n

β

)
e−δt∗ � [e−1/τ (λ1 + 1)]β(t−t∗)e−δt∗z = [e−δ(λ1 + 1)β]t−t∗ (e−δ)t

∗
z ≺ [e−δ(λ1 + 1)β]tz.

If the effective infection rate τ is below the mean-field epidemic threshold τ (1)
c , then e−δ(λ1 + 1)β < 1, and [e−δ(λ1 + 1)β]tz

is exponentially decreasing with time t .
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