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Abstract

In digital communication systems, different clock frequencies of transmitter and receiver usually are translated into

cycle slips. Receivers and transmitters may experience different sampling frequencies due to manufacturing

imperfection, Doppler effect introduced by channel or having error in estimation of symbol rate. Timing

synchronization in presence of cycle slip for a burst sequence of received information leads to severe degradation in

system’s performance. Therefore, the necessity of prior detection and elimination of cycle slip is obvious. Accordingly,

the main idea introduced in this paper is to employ the Gardner detector (GaD) not only to recover a fixed timing

offset, but also its output is processed such that timing drifts can be estimated and corrected. By deriving a two-step

algorithm, first the cycle slips arising from symbol rate offset is eliminated, and then symbol’s timing offset is

synchronized in an iterative manner. GaD structure is used in a feedforward structure with the additional benefit that

convergence and stability problems, which are typical challenges of the systems with feedback, are avoided. The

proposed algorithm is able to compensate considerable symbol rate offsets at the receiver side. Results in terms of

BER confirm the algorithm’s proficiency.
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1 Introduction
Timing recovery as a process of sampling at the right

time are critical in digital communication receivers. The

problem is formulated throughmaximum likelihood (ML)

[1]. In direct application of ML method, message sym-

bols and timing offset are estimated jointly. However,

this solution conveys the exhaustive search methods that

imposes a lot of computations and it makes the solution

impractical. To avoid the complexity due to the exhaustive

search in ML problem, iterative solutions are introduced

[2–4]. The general idea of iterative timing recovery

scheme is to improve the timing estimation accuracy by

multiple exploiting the timing information provided by a

set of samples and application of this estimation to regen-

erate a new set of samples that iteratively approaches

to the local maximum of the likelihood function. ML-

based timing recovery methods usually ignore the time
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varying timing offsets and proceed under the assump-

tion of fixed synchronization parameter estimation

[5–7]. However in practice, the timing offset may vary

with time, due to the different clock frequencies in trans-

mitter and receiver, caused by fractional error in baud rate

estimation, manufacturing imperfection, and etc [8].

Different clock frequencies in transmitter and receiver

lead to linear increasing/decreasing of timing offset from

symbol to symbol. While timing offset changes linearly

for successive symbols, synchronizers may fail to track

this time-varying delay. Getting far away from true value

makes the estimator fall into the adjacent stable operating

point and synchronizer starts to keep tracking this new

stable operating point. Consequently, one symbol inserted

into or erased from the sequence. This is called cycle slip-

ping (CS). There is also another source of CS which is

the large phase variance of voltage-controlled oscillators

(VCOs) caused by low signal to noise ratio (SNR) that is

not subjected in this paper. As long as cycle slips occur,

system’s performance decreases dramatically due to the
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relative loss of synchronization caused by symbol inser-

tion or omission in the sequence. In order to alleviate

the adverse effect of CS, it has to be eliminated before

applying timing synchronization.

Although, several studies have considered the analysis

of cycle slipping in synchronizers [9–11], few authors have

proposed the solution [12–14]. Error tracking synchroniz-

ers, which are based on closed feedback loop, are more

popular in low SNRs. While the good tracking perfor-

mance of feedback schemes is not deniable, they require,

in counterpart, relatively long acquisition time that makes

them unsuitable for burst transmission schemes. In this

sense, a feedforward structure based on extracting timing

delay estimation from the statistics of received samples,

and then adjusting the time by interpolation is more suit-

able. In this work, in order to utilize the bandwidth effi-

ciency of non-data-aided (NDA) estimators and effective

flexibility of interpolation, Gardner TED [15] and Farrow

filter [1] are used in a feedforward structure.

In accordance with the above statements, this work is

motivated by the objective of deriving a novel algorithm

which employs GaD in a non-conventional manner so

that not only the fixed timing offset is recovered, but also

GaD’s output is processed in a way such that a consider-

able symbol rate offset can be estimated and corrected,

which is not addressed in the literatures. At the first step

of the proposed algorithm, CS is estimated and elimi-

nated and then the remaining fixed timing offset is esti-

mated and compensated. Simulation results shows that

the performance of the proposed algorithm is very close

to the theoretical lower bound (which is derived with the

assumption of the perfect synchronization) even when

there is a considerable symbol rate offset.

The general structure of this paper is as follows: in the

next section, the problem of timing offset and CS are for-

mulated, also the proposed algorithm to eliminate CS is

derived in this section. Then Section 3 illustrates an iter-

ative scheme for fixed timing offset synchronization after

CS elimination. In Section 4, the BER performance of the

proposed algorithm is derived using Monte-Carlo simu-

lation and it is compared with alternative algorithms and

theoretical lower bound. The final section is about the

conclusion of the introduced algorithm.

2 Problem formulation
2.1 Signal model

Assume a traditional communication system, where the

transmitted signal is corrupted by passing through

AWGN channel which also imposes a timing delay, carrier

frequency, and phase offset to the received signal, r(t), as

follows:

r (t) = ej(2π�ft+θ)
N−1
∑

n=0

anh (t − nT − τ) + n (t) (1)

Where an denotes the zero mean unit variance, inde-

pendently and identically distributed (i.i.d) symbols that

might be taken from any linear modulation scheme. θ

and �f are phase and carrier frequency offset, respec-

tively. h (t) is a pulse-shaping filter, n (t) is a complex

zero-mean additive white Gaussian noise with two-sided

power spectral density of N0/2. Moreover τ , T, and N are

unknown timing delay, symbol duration, and the number

of transmitted symbols, respectively.

At the receiver side, the signal in (1) should be matched

filtered and the transmitted symbols should be regener-

ated by sampling r (t) at kT − τ̂ time instants, where τ̂

is timing delay estimation provided by synchronizer. In

software-defined radio (SDR) scheme, matched filtering

(MF) is also implemented in digital domain. In order to

implement MF in digital mode, the received signal, r(t), is

sampled at a very high rate than the symbol rate. It means

that the samples per symbol parameter is very higher than

one. Then, the output of MF is resampled to generate

one or two samples per symbol. At the output of MF,

one sample per symbol is enough for symbol detection,

but two samples per symbol are necessary for the calcula-

tion of Gardner timing error as will be discussed in next

paragraphs.

Even if receiver has exact information about symbol

rate, there still exist some fractional difference between

transmitter and receiver clock frequencies due to the

implementation imperfection. However, blind receivers

have to estimate symbol rate that always conveys some

estimation error. In this case, the regenerated symbols are

located in kT ′ − τ̂ time instants, where

T ′ = T + ε (2)

and ε is the difference between transmitter and receiver

symbol duration and can be either positive value or neg-

ative one. In Gardner-based error recovery algorithms,

the match-filtered signal must be sampled with sampling

rate twice the symbol rate. Therefore, the samples are

generated every T ′/2 s.

r (k)=ej(2π�fkT ′/2+θ)
N−1
∑

n=0

(an+wn) g
(

kT ′/2−τ̂ −nT+τ
)

= ej(2π�fkT ′/2+θ)
N−1
∑

n=0

Ang (kT/2−nT + (μ + kε/2))

(3)

where g (t) = h (t) ∗ h∗ (−t) =
∞
∫

−∞
h (λ) h∗ (λ − t) dλ is

the convolution of the pulse shape, h (t), with the matched

filter with impulse response of h∗ (−t), wn is an i.i.d. zero

mean Gaussian distributed variable with variance σ 2, An

is the nth noisy symbol, and μ stands for τ − τ̂ .
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Obviously, timing delay takes different values for dif-

ferent symbols of a received burst caused by the vari-

able timing delay part which is increased linearly by k.

Traditional approaches assume this variation is slow in

comparison to the burst interval, and they approximate

average timing delay over a number of symbol periods

which it means that synchronization parameter can be

considered as quasi-constant [16], however, ignoring this

variation would degrade the performance as it will be well

illustrated in simulation results.

2.2 Cycle slip in synchronization

Typically, Gardner’s timing error detection (TED) pro-

vides timing estimation to synchronize the received sym-

bols using the samples at twice rate of the symbol rate,

according to the following equation [15]:

u (k) = ℜ
{

r∗(2k + 1) [r(2k + 2) − r(2k)]
}

(4)

Here, u (k) is the timing error of the kth symbol,ℜ is the

real part, and * denotes complex conjugation. Plugging (3)

into (4) results:

u(k) = ℜ

{

e−j
(

2π�f
(

k+ 1
2

)

T+θ
)

N−1
∑

n=0

An
∗g∗

((k + 1/2)T − nT + (μ + (k + 1/2)ε))

×

[

ej(2π�f (k+1)T+θ)
N−1
∑

n′=0

An′g
(

(k + 1)T − n′T

+ (μ + (k + 1)ε))

−ej(2π�fkT+θ)
N−1
∑

n′′=0

An′′g
(

kT−n′′T +(μ + kε)
)

]}

(5)

The obvious fact is that the phase offset does not play an

influential role in Gardner’s timing delay estimation. Like-

wise, the impression of carrier frequency offset on timing

delay estimation is negligible, considering an assumption

that �fT ≪ 1. Therefore, carrier and phase offset can

be omitted as far as
�f
BW ≪ 1 and timing offset can

be synchronized regardless of prior carrier and phase

synchronization.

As long asμ+kε < |T/2|, TED is capable of tracking the

timing delay. For any special value of k that μ+kε exceeds

from this interval, the synchronizer starts to relate the

timing delay to the adjacent symbol and CS happens. This

non-uniform delay detection results in a quasi-periodic

behavior of u (k), which is wrapped for particular coef-

ficients of K that K |ε| = T . This fact, which leads to

the periodic function of u (k), is proved in the following

Lemma.

Lemma 1 u (k) is a periodic function with the period

of T/ε.

Proof for the sake of simplicity, transmitted signal sup-

posed to be a burst sequence that alternatively changes

between −1 and +1 and g(t) is time limited with no excess

double-sided time extension of T. Also, delay offset for

three successive samples involving in GaD estimation in

(5) is assumed to be fixed and equals μ + kε. Doing

some manipulation in order to discard ineffective terms

in (5), a simplified version of (5) is obtained. As long as

|μ + kε| ≤ T
2 , let u1 (k) represents the timing offset esti-

mation of the kth symbol. For any arbitrary positive value

of δ that 0 < δ < T
2 andμ+kε = T

2 −δ,u1 (k) is generated

as follows:

u1(k) =
[

Ak
∗g∗(T − δ) + Ak+1

∗g∗(−δ)
]

×

[

(

Ak+1−Ak

)

g

(

T

2
−δ

)

+
(

Ak+2 − Ak+1

)

g

(

−
T

2
− δ

)]

(6)

or

u1 (k) =
[

Ak
∗g∗ (T − δ) + Ak+1

∗g∗ (−δ)
]

×

[

Ak+1

(

g

(

T

2
− δ

)

− g

(

−
T

2
− δ

))

+

(

Ak+2g

(

−
T

2
− δ

)

− Akg

(

T

2
− δ

))]

(7)

Evidently in typical pulse shapes such as raised cosine,

g(t) is an even function and the maximum value of g(t)

occurs at t = 0. Thus,

g (T − δ) ≤ g (δ) , g

(

−
T

2
− δ

)

≤ g

(

T

2
− δ

)

The term
(

Ak+2g
(

−T
2 − δ

)

− Akg
(

T
2 − δ

))

can be

ignored in (7), considering the fact that Ak+2 and Ak are

either +1 or −1, and consequently:

sign (u1 (k)) =
∣

∣sign
(

Ak+1

)
∣

∣

2
(8)

Which is always positive irrespective to what Ak and

Ak+1 are, and it confirms that when the timing of the sam-

ples is late and less than T/2, then the Gardner error is

positive.

Suppose that for all symbols with index k such that

μ + kε >

∣

∣

∣

T
2

∣

∣

∣
, u2 (k) represents the relevant timing off-

set estimation. Similarly, assume δ is a positive value, 0 <

δ < T
2 , that makes the delay exceeds from T/2, such that

μ + kε = T
2 + δ. Similarly, u2 (k) can be achieved using

the following equation

u2 (k) =
[

Ak+1
∗g∗ (δ) + Ak+2

∗g∗ (δ − T)
]

×

[

(

Ak+1 − Ak

)

g

(

δ +
T

2

)

+
(

Ak+2 − Ak+1

)

g

(

δ −
T

2

)]

(9)
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Regenerating ofu1 (k) forμ+kε = −T
2 +δ corresponds to

u1 (k) =
[

Ak
∗g∗ (δ) + Ak+1

∗g∗ (δ − T)
]

×

[

(

Ak − Ak−1

)

g

(

δ +
T

2

)

+
(

Ak+1 − Ak

)

g

(

δ −
T

2

)]

(10)

It is concluded from (9) and (10) that

u1 (k + 1) = u2 (k) (11)

Or equivalently as long as timing delay is increasing,

caused by kε, varies in [−T/2,T/2], synchronizer is able

to track and detect the relative delay. Once timing delay

exceeds from this span, TED will assign the error to the

adjacent symbol periodically, so that delay values greater

than T/2 would not be estimated correctly and conse-

quently CS happens alternatively. This is shown in Fig. 1.

Evidently, CS repeats every K symbols, where K = T/ |ε|

and u (k) are wrapped functions. Conventionally, vari-

able timing delay offset is assumed to be negligible by

restricting the number of k such that k ≪ K . However,

this contribution is concerned about the problem that at

least one cycle slip takes place during the received burst

sequence which is the case of either long burst with small

value of ε or short burst with significant value of ε.

2.3 Cycle slip detection and correction

Let Rs and R̂s denote the symbol rate of the transmit-

ted signal and respective estimation of symbol rate at the

receiver, where

R̂s = Rs + ηRs (12)

and η ∈ (−1, 1), is the normalized symbol rate offset

(NSRO). Equivalently, the estimated symbol duration, T ′,

can be

T ′ = T −
η

1 + η
T (13)

Considering (2), it is obvious that ε = −η
1+η

T . Suppose

K is the maximum number of symbols that synchronizer

can track without cycle slipping. By a little manipulation,

the following equation can be obtained:

K = T/ |ε| =

∣

∣

∣

∣

1 + η

η

∣

∣

∣

∣

(14)

K can be interpreted as a period of u (k). Figure 2 rep-

resents a realization of u (k), plotted for a received burst

signal with the length of 500 symbols, where η = 0.1.

As it is demonstrated, although the mathematical expres-

sion of alternate cycle slip is straight forward, u (k) is a

noisy version of a periodic signal. This is mainly due to

the Gardner’s TED self-noise arising from data random-

ness [17] and the additive noise impairment of channel.

Once the periodic term of u (k) is extracted, it can be uti-

lized in order to detect and correct cycle slip. CS existence

is determined by using discrete Fourier transform (DFT).

Suppose u = [u (0) ,u (1) , . . .u (k) , . . .u (N − 1)] repre-

sents a vector of GaD errors for all symbols of a burst

and U =
[

U (0) ,U (1) , . . .U
(

n′
)

, . . .U
(

N ′ − 1
)]

, where

U = F {u} and F {} stand for N ′ point discrete Fourier

transform and defined by U
(

n′
)

=
N−1
∑

k=0

u (k) e−j2πkn′/N ′
.

The index q is defined as the index of the element in vector

U with maximum value:

q = argmaxn′=0,...,N ′−1U
(

n′
)

(15)

Figure 3 shows the DFT of depicted signal in Fig. 2.

Clearly, the periodic term of u(k) which is an indication

of CS happening, results in a dominant component at the

frequency of 1/K . While, constant timing delay without

CS, yields a prominent DC component at DFT of u(k). In

other words,

Fig. 1 Illustration of cycle slip in synchronizer
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Fig. 2 u(k) for a burst length of 500 symbols, modulation type = BPSK, η = 0.1, SNR = 10 dB. CS leads to burst of error occurrence due to the symbol

insertion

q =

{

zero (no cycle slip)

nonzero (cycle slip)

However, in some cases it might be more practical to

compare q with small threshold instead of absolute zero

due to the noise existence. This threshold can be defined

experimentally. Also, it is noteworthy that since Gardner

error works based on the sign alternation of the adjacent

symbols, replacing sign(r(2k + 2)) − sign(r(2k)) instead

of r(2k + 2) − r(2k) in (4) improves the GaD algorithm’s

efficiency in CS detection. Obviously, when CS is recog-

nized, DFT can be used to extract K by

K =
N ′

q
(16)

In (16), K is approximated byN ′-point DFT whereN ′ >

N and N is the length of u(k). It means that the vector u is

zero padded byN ′−N zeros and DFT is applied to achieve

U. N ′ can be assumed to be a power of 2, such that DFT

operation can be done with low complexity fast Fourier

transform (FFT). Finally, the index in which the absolute

value of DFT is maximized, yields an approximation of K.

Once K was determined, new samples must be gener-

ated based on the new updated symbol rate, R̂new
s . This

is done in SRC block by the fractional interpolation of

the samples. It is noteworthy that in the above mentioned

algorithm K is a positive parameter, but η can be either

positive or negative. Although there are some methods to

determine the sign of η based on the phase of the U(q),

it is simpler and more practical to test the positive and

negative values of η.

Suppose the hypothesis of η > 0, after determination

of K, using (12) and (14), CS would be eliminated by

correction the estimation of symbol rate at the receiver,

according to the following equation:

R̂new
s =

(

1 −
1

K

)

R̂s (17)

The estimated R̂new
s based on (17) is used to generate

new samples. The new samples are exploited to calculate

q(ρ+1) where q(ρ) is the dominant frequency of U in the

ρth iteration. Obviously, q(ρ+1) < q(ρ) resembles that K,

the period of CS, has been increased or in other words the

Rs estimation error has been decreased. If hypothesis of

Fig. 3 4096 points DFT of u(k), burst length = 500 symbols, modulation type = BPSK, η = 0.1, SNR = 10 dB. CS is represented as a frequency in NSRO
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Fig. 4 4096 points DFT of u(k) after CS correction, burst length = 500 symbols, modulation type = BPSK, SNR = 10 dB. Constant timing delay is

represented as DC component

η > 0 leads to q(ρ+1) > q(ρ), the procedure is repeated

under the new assumption of η < 0 and Rs is modified

based on the following equation

R̂new
s =

(

1 +
1

K

)

R̂s (18)

Modification of the symbol rate estimation leads to CS

correction and the periodic term removal in u. The block

diagram of the CS correction algorithm has been shown

in Fig. 5. As shown in this figure, the samples of the burst

signal is buffered after thematched filtering. A sample rate

conversion (SRC) is used to resample the buffered sam-

ples. This block is simply a fractional interpolator which

will be discussed in next section. Using the SRC, the sam-

ples are regenerated using the corrected symbol rate of

(17) or (18). The processes of CS estimation, Rs correc-

tion, and resampling are performed iteratively. When the

Rs correction converges to a proper value near the real

one, such that CS does not happen anymore, the index

q in (15) goes to zero, Thus the stopping criteria can be

Fig. 5 Block diagram of CS correction proposed timing recovery algorithm for burst signal
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assumed to be |q| < thr, where thr is a threshold that can

be determined experimentally. Figure 4 shows the DFT of

u, U = F {u}, after CS correction.

CS elimination is not sufficient for timing recovery,

since it is not able to recover the constant timing delay μ,

which is represented as a DC component after CS elimi-

nation. As shown in Fig. 5, after CS compensation when

the stopping criteria, |q| < thr, is satisfied, a new loop is

started to estimate the constant timing delay of μ. In the

next section, this algorithm is discussed.

3 Iterative timing recovery
In [18], an iterative timing recovery derivation from the

maximum likelihood principle is proposed, where the

timing information, extracted from Gardner’s TED, has

been used iteratively to adjust sampling time. Here, this

method is used in cooperation with digital filtering by

interpolation in order to improve the sampling instants.

Suppose U(0) is the DC component of U

U (0) =

N−1
∑

k=0

u (k) (19)

and μ would be approximated as the following:

μ =
1

N
U (0) (20)

In the other words, averaging the evaluated timing error

by Gardner’s TED over all the symbols of a burst provides

an estimation of the constant timing delay. This can be

used for timing adjustment in interpolator.

In the cases that the fractional delay is sufficient to

control the interpolator’s structure and there is no com-

putational need to update the filter’s coefficients, Farrow

structure of polynomial interpolation is preferred due to

the implementation efficiency. The detailed explanation

of Farrow structure can be found in [19]. Different poly-

nomial orders can be considered to generate the outputs,

however, applying Lagrange polynomial in Farrow struc-

ture when the polynomial order is assumed to be 3 results

in the following equation for interpolation’s output.

x(k) = μ3

(

−
1

6
r−1 +

1

2
r0 −

1

2
r1 +

1

6
r2

)

+ μ2

(

−
1

2
r−1 + 2r0 −

5

2
r1 + r2

)

(21)

+ μ

(

−
1

3
r−1 +

3

2
r0 − 3r1 +

11

6
r2

)

+ r2

Where x(k) is the interpolated sample, r−1, r0, r1, r2 are

shown in Fig. 6 and μ is the fractional delay. Note that

in order to exploit the timing information by GaD, two

samples are generated for each symbol’s timing interval.

Once the new samples are obtained by interpolation, they

are used to evaluate u(k), then applying (19) and (20)

results in a new approximation of μ. If μ ∼= 0, the gen-

erated samples are decimated by the factor of 2 and the

selected samples are used to determine the final sym-

bols, otherwise the timing delay is modified using (19)

and this procedure is repeated. Iterative application of this

algorithm leads to the timing recovery, and it adjusts the

samples at the right timing positions.

4 Results and discussion
To verify the efficiency of the proposed algorithm, sim-

ulation results are presented in this section. Simulations

are carried out with BPSK- and QPSK-modulated signals

which are shaped by a square root raised cosine filter

with roll-off factor of 0.5 in transmitter, and they are

passed through AWGN channel. In order to implement

the matched filtering in digital domain, the received sig-

nal is sampled with the rate of 10 samples per symbol

and a sample rate conversion (SRC) is used at the output

of matched filter for conversion of the sample rate to 2

samples per symbol. The interpolation filter order in the

timing recovery block is two. It means that a simple linear

interpolation is used in SRC block. It is noteworthy that

the higher interpolation filter order leads to more accu-

rate results and compensates the lower sample per symbol

ratio in ADC. However, in the following simulations, since

sample per symbol ratio is set to 10, increasing the order of

the filter does not make a considerable difference. There-

fore, linear interpolation is used to avoid the complexity.

After SRC block 2N samples are zero padded by 4096−2N

zeros and a 4096 points DFT is used to estimate the period

of CS based on (15).

In Fig. 7, system’s performance is evaluated in terms of

BER for a BPSK signal. The proposed algorithm is referred

as “CS corrected” while timing recovery without CS cor-

rection is referred as “CS uncorrected.” The burst length

of the received signal is 300 symbols, and the NSRO, η,

is set to 0.1. In the case that the CS is not corrected,

traditional timing recovery is used in which the Gardner

error is directly used to compensate the timing drifts. the

Fig. 6 Illustration of interpolation
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Fig. 7 BER performance of demodulation of BPSK modulated burst signal, N = 300, N′ = 4096, η = 0.1

Fig. 8 BER performance of typical approach and introduced algorithm for η = 0.05 and η = 0.005, N′ = 4096, N = 300, modulation type = BPSK

Fig. 9 BER performance of typical approach and introduced algorithm for η = 0.05 and η = 0.005, N′ = 4096, N = 300, modulation type=QPSK
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Fig. 10 BER performance for different burst lengths N′ = 4096, η = 0.1

output of TED block is averaged to calculate μ in each

iteration, and then the SRC block recalculates the samples

based on the estimated timing offset. As can be seen from

Fig. 7, in this scenario, ignoring NSRO and using tradi-

tional timing recovery loop does not work and the BER

tends to 1/2 regardless of SNR value. Unlike traditional

timing recovery, the performance of our proposed algo-

rithm is very close to the theoretical lower bound. The

lower bound has been plotted with the assumption of per-

fect synchronization based on the well-known equations

of BER = Q(2Eb/N0).

The main reason that the traditional timing recovery

method does not work in the above mentioned scenario is

the occurrence of the cycle slip. One approach that is usu-

ally used to overcome this problem is the segmentation of

a long bust signal into some shorter segments with length

L such that Lη < 1. Then timing recovery is used inde-

pendently in each segment. The timing delay is assumed

to be piecewise constant in each segment interval and its

variation can be ignored. This approach is called “segment

by segment timing recovery.” Figure 8 compares the per-

formance of the proposed algorithm with the segment by

segment timing recovery approach for BPSK modulated

signal with N = 300 symbols. As can be seen from this

figure, performance of the segment by segment timing

recovery method has a considerable degradation in com-

parison to the proposed algorithm and theoretical bound.

It is noteworthy that for η = 0.05 the length of the seg-

ments has been chosen to be L = 5 symbols to satisfy the

condition Lη < 1. It means that in each segment Gard-

ner error of only 5 symbols are averaged and is fedback for

timing recovery. Averaging over this few number of sym-

bols is not a good approximation for the expectation of

the Gardner error over a segment. It is noteworthy that

Gardner output estimates timing drift based on the vari-

ation of the sign of the consecutive symbols. When the

length of the segments is low, there is not enough number

of consecutive symbols with opposite signs. When NSRO

Fig. 11 BER performance for η = −0.05 and η = 0.05, N = 300, modulation type = QPSK
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is 0.005 the length of the segment is chosen as L = 50.

In this case, the performance of the segment by seg-

ment algorithm becomes better in comparison to the case

with NSRO = 0.05. Unlike segment by segment recovery

method, performance of our proposed algorithm becomes

better when NSRO increases. The reason is that when the

number of burst symbols is fixed, the number of CS occur-

rences is increased by increasing of NSRO and the CS

period can be estimated more precisely. It is noteworthy

that the performance of the proposedmethod is very close

to the theoretical lower bound. Simulations showed that

the CS recovery loop converges after only two or three

iterations.

Figure 9 shows the results of similar simulations for the

QPSK modulated burst signal. As can be seen, the pro-

posed algorithm has better performance in comparison to

the segment by segment timing recovery method and very

close to the theoretical lower bound.

Figure 10 displays BER of BPSK signal for different burst

lengths where NSRO is set to 0.1. It is predictable that

as the burst length increases the better result is achieved,

since the longer bursts result in a better DFT resolu-

tion and more precise symbol rate modification in CS

correction block.

Figure 11 generates the BER results for NSRO = −0.05

in comparison to NSRO = 0.05 for QPSKmodulation type

with length of 300 symbols. As it is shown, the system’s

performance is degraded. This is interpreted through

overshoot probability in Rs estimation when NSRO is neg-

ative. Actually, negative NSRO is translated as symbols

deletion in a whole burst, this leads to assigning q to

the greater value than its real value in DFT block, con-

sequently the second estimation of Rs which is based on

q, conveys additive NSRO in contrast to its primer value.

The algorithm is capable to distinguish positive and neg-

ative NSROs via the method introduced in CS detection

and correction section.

5 Conclusions
A new algorithm for timing recovery by prior elimination

of cycle slip is proposed. The GaD is used for sym-

bol timing recovery in a non-conventional manner. This

non-conventional use is as follows:

• The GaD is not only employed to recover a fixed

timing offset, but also its output is processed in a way

such that timing drifts can be estimated and

corrected.
• Normally, GaD is used symbol by symbol in a

feedback loop, whereas in this contribution it is

suggested to apply it to a feedforward structure with

the additional benefit that convergence and stability

problems are avoided, as they are typical for feedback

schemes.

It is shown that linearly increased timing delay causes

alternate cycle slips in synchronizer. A burst sequence of

timing error provided by GaD is used to indicate and elim-

inate CS. After CS correction, iterative timing recovery is

applied to the sequence of burst samples. The satisfactory

simulation results, evaluated in terms of BER and com-

pared with theoretical and other approaches, confirm the

performance of the proposed algorithm.
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