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Abstract—Impulse noise (IN) is one of the major impairments course, if the length of IN bursts is of the same order as the
for data transmission over power lines. For power line commui-  |ength of an entire OFDM symbol, IN cancellation methods
cations (PLC) systems with bandwidths in the high kHz to MHz e 4ting on individual OFDM symbols cannot be successful.

range, IN occurs in bursts. As long as those bursts are suffiently In thi di t th lication | indiolal
short compared to a signal-processing (e.g. coding) framéhere (In this case, coding at the application layer, spanningipia

is hope to successfully mitigate IN. In this paper, we introdce OFDM symbols is an interesting alternative [12].) So our
a new IN mitigation technique that is based on the applicatia approach provides benefits if the signal bandwidth and IN

of block-based compressed sensing (CS). It makes use of null realizations are such that the sampled IN signal is in-betwe
subcarriers in PLC orthogonal frequency division multiplexing the extreme cases of i.i.d. IN [8] and long IN bursts that

(OFDM) transmission systems and the burst structure of IN to .
detect the location and the values of IN samples in the receid destroy entire OFDM symbols [12]. Our approach to take the

signal. We also devise a semi-analytical error-rate perfanance bursty nature of IN into account relies on the application of
evaluation for coded OFDM over IN channels, which allows CS for block-sparse signals [13], [14]. Furthermore, tovie

insights into how CS-based IN detection can be used forimpsed  quantitative error-rate results that indicate what buesgths
rellablll_ty _of transmission. Numerical resu_lts for typical PLC could be dealt with by a coded OFDM system and as well as
transmission settings demonstrate the efficacy of the proped - . .
application of CS for IN detection. the attalnablg performance gains by CS-based IN detection,
) o ) we also provide semi-analytical error-rate expressiomesé
Index Terms—Power line communications (PLC), impulse oy hrassions are derived from a union-bound approach and
noise, compressed sensing, orthogonal frequency divisiamul- . .
tiplexing (OFDM), error-rate analysis, coding. thus are tlght for moderately complex codlng_schemes, such
as convolutional coding. We present numerical results for
PLC OFDM transmission according to IEEE 1901 standard
[15] and sample channels from [16] that demonstrate that the
Data communication over power lines is attractive for itproposed CS-based processing is effective for IN deteatah
cost-efficient installation (no need to lay wires, no need that subsequent IN cancellation or suppression significant
purchase spectrum), high penetration of the power digtobu improves transmission reliability.
grid, and ease of use for customers (one wire to connect thenThe remainder of this paper is organized as follows. In
all). However, there are a number of serious challenges f®ection Il, we introduce the system model of OFDM transmis-
power line communications (PLC) resulting from the use afion over power line channels with additive IN. The CS-based
networks designed to carry the AC or DC mains signal processing of IN is presented in Section Ill, and the error-
One of these challenges concerns the noise scenario of Rla analysis is derived in Section IV. In Section V, we show
transmission, which is considerably richer than captusethb numerical results to highlight the effectiveness of theppised
conventional additive white Gaussian noise (AWGN) mod&S application. Finally, conclusions are given in Sectidn V
[1], [2], [3, Chapter 2.6]. In particular, the presence opinse
and narrowband noise render reliable communication difficu Il. SYSTEM DESCRIPTION
While the narrowband noise is dealt with through switching o
receiver-side notching of frequency bands, impulse ndisg ( b
is often mitigated by relatively simple clipping or clipgjrand
nulling [4], or more sophisticated parametric [5] and item
[6], [7] IN suppression schemes. More recently, Caire €igal.
proposed the application of compressed sensing (CS) [9]-[
to cancel IN for orthogonal frequency division multiplegin _
(OFDM) transmission. More specifically, it was suggested f Transmitter
exploit null subcarriers to setup an underdetermined syste At the transmitter, a binary data stredm= [by,...,br,]”
linear equations, from which IN is estimated making use @f length L, = R.R,,N is encoded into a codeword
the fact that IN realizations are “sparse” (otherwise it Wouc = [c1,...,cr.]T of length L. = R,,N, where R. and
not be “impulse” noise). R,, denote code and modulation rate, respectively. While
In this paper, we adopt the CS-based approach from [8] aady code including turbo-convolutional and low-densityitya
extend it to the case of bursty IN. That is, IN is assumed ttheck (LDPC) codes selected (optionally) in, e.g., IEEE1190
occur in bursts and corrupt blocks of received OFDM signahd ITU-T G.9960 standards could be considered, as the
samples. This assumption is very well justified considerimgoposed CS-based IN detection method is independent of
Gaussian-Markov IN models for broadband PLC [2]. Othe applied coding scheme, in this work we assume the

|. INTRODUCTION

We consider a conventional OFDM transmission system
ased on inverse discrete Fourier transform (IDFT) and DFT
operations at the transmitter and receiver, respectivigig
relevant portions of the transmitter and receiver bloclgdian

flre shown in Figure 1.



% lencoder | wlinterleaver| < mm‘;;’ z orr Y~ including the effects of CP-addition and DAC at the trangenit
and analog-to-digital conversion (ADC) and CP-removal at

r N v u _ b the receiver into the channel model. Assuming that the CP
) DET Demappe Deinterleaver Decoder . .. . .
suppressiop is sufficiently long (essentially as long as the channel ilsgpu

{62 response), the vector df received time-domain samples can
CS-based be written as

IN detection

r=Hgt+n+1, (2)

Fig. 1. Block-diagram of the OFDM transmitter (top) and meee (bottom). whereHCyC is a K x K column-circulant matrix with the first

column equal to the discrete-time channel impulse response

[17, Section 4.1] anch is a vector of independent complex

AWGN samples with variancd/y. In addition to the AWGN,

we also include the effect of additive IN, whose samples are

collected in the vectoi. With regards to the characteristics of

i we make the assumptions that

: 0 " > s ” (i) 7ism-sparse, i.e., only a number < K of its elements

Frequency in MHz are non-zero, and
, , (i) the non-zero elements are grouped together.

Fig. 2. Default broadcast tone mask (ON/OFF of OFDM subees)ifor the . . . . .

OFDM physical layer of IEEE 1901 for North America [15, Talla-39]. | hese assumptions are valid 90n5|der|ng that IN occursan th
o . ) ) . form of short bursts or pulses in PLC systems [2]. The size of

application of convolutional coding. Convolutional cogifs e pyrsts in number of samples depends on the OFDM-signal

also \{ery_popular for practical PLC transmission systemganqdwidth, which varies over about three orders of maggitud

including iAd’s DLC2000, G3-PLC, and PRIME for low- 50 kHz for low-frequency narrowband PLC 4650 MHz for

frequency narrowband PLC, and the wavelet physical laygfoadband PLC), and of course on the specific IN realization.
of IEEE 1901 (typically supported by an outer Reed-Solomaqssymptions (i) and (i) make the noise sigrablock-sparse

=ON, 0=OFF)
-

Tone mask (1:

code). . | [13], [14].
The encoder output is interleaved into the vectsr,
whose elements are then mappedNosignal pointsz = C. Receiver
T i i m . . . . .
[#1,...,2n]". The signal points are taken from tBé=-ary  ag mentioned in the previous section, the receiver employs

quadrature-amplitude modulation (QAM) constellat®nFor 5, ADC, discards the CP portion of the sampled signal, and

simplicity, we assume that the same constellation is useallfo processes the outpriin (2). The vector is used for detection

OFDM subcarriers, but we note that the proposed CS-baseddNnterference by the CS-based IN-noise detection algorithm
detection method operates irrespective of whether bitif@ad qescriped in Section 11 (see Figure 1). We investigate two

is applied. The vectar of data symbols is expanded to the  y5ssible ways of processing the IN contaminated signal

H H [ /T i i
dimensional vectox” = [z},..., #|" by introducingk =N 1y |\ suppression (ie., erasure decodinghe CS-based
zeros, wherer’ is transmitted over théth OFDM subcarrier detection unit delivers an estimaie of the supportZ

(a.k.a. OFDM .tone).. Such .null-subcarriers are useo_l to avoid ¢ i, i.e., the positions of non-zero elementsiofThe
interference with radio services, and are also a possibme elements ofr which are deemed corrupted by IN are

to enable coexistence among PLC systems. As an example, i,an erased. That is, defining thex K “erasure” matrix
Figure 2 shows the default broadcast tone mask (ON/OFF of oo o1 identity matrix but with elements; = 0 for
;=

OFDM subcarriers) for the OFDM physical layer of IEEE j € 7, the interference-processed signal is given by
1901 for North America [15, Table 13-39].

The modulated OFDM symbols are converted into the time- y=Er. 3)
domain vector . 2) IN cancellationThe CS-based detection unit delivers an
t=F"z', (1) estimatez;s of 4, which is subtracted from. That is,
where F' is the K x K DFT matrix. Finally (not included y=7r—1s. (4)

in Figure 1), a cyclic prefix (CP) is added and pulse shaping
(digital-to-analog conversion (DAC)) is applied.

Let us denote the set of data- and null-subcarrierg asd
7¢, respectively. For later use, we partition the DFT maffix
into the (K — N) x K partial DFT matrix F'; consisting of I1l. COMPRESSEDBSENSING-BASED IMPULSE NOISE
the K — N rows from F' that are at positionse 7°¢, and the DETECTION
N x K partial DFT matrixF'y consisting of the remainingy
rows from F' at positions; € 7.

The signaly = [y1,...,yx]|" is input to the DFT, followed
by the demapper, deinterleaver, and the decoder, which then
produces an estimatefor the transmitted message

In this section, we consider the estimation ©ffor IN
cancellation (4) and its suppdftfor interference suppression
(3). To this end, we exploit the null-tones of the OFDM signal
B. Channel and apply concepts from compressed sensing (CS) [9]-[11].

For our purposes, it is sufficient to consider the discret@&he basic idea is similar to [8], but different from their sahe,
time complex baseband equivalent channel that results whea make specific use of the burst structure of IN.



A. Preprocessing Following the relation between IN detection and block-

Considering the approximately Gaussian distribution ef trSParse signal recovery shown above, we represent the Iilsign
time-domain transmit signal(1) [18] and thus the component@S the block-vector

H .t of rin (2), direct detection of based orr using outlier . . . T

ye", L e . Z—[11,...725,...,2}{_5+1,...,1K] . (20)
detection methods (e.g. clipping or clipping and nulling ¢# ~— —_—
more sophisticated variants) is prone to false alarm. To rid T[] iT[p]
ourselves of the data signal, we focus on the unused OFDMe choice of the detection block-siewill be discussed in
subcarriers. That is, we generate Section V. Using this representation, and adopting [21- Sec

w=Fr tion 4] (also [8]), we apply the following detection algdmib.
5
=Fii+n, ®) 1) Solve

wheren = F1n is AWGN and the second line follows from P minzp: 1551l
x; =0forjeT". = (11)

. S.t. ||’UJ—F1’L||2 <e€
B. CS Essentials

Let us consider the problem of detectinguasparsex-
dimensional vectot from v < x noisy observations

where ¢ is adjusted such thatn|. < e with prob-
ability 0.95. Noting that|[#2[|3 ~ X3y i-€., chi-
squared with2(K — N) degrees of freedom, we have
b=®a+n, (6) e = xg(KfN)(O.QE))NO, wherexg(KfN)(O.%) is the
95th percentile of3 -

where® is ther x k measurement matrix and is AWGN. . .
2) Estimate the support afas

Estimating a from noisy measurements is an ill-posed
problem since® has a non-trivial null space, and+ v for I=1{j: 11512 > No} (12)

any vectorwv in this null space gives the same observation .

b. However, the knowledge that the solutianneeds to be 3) Letsi = |[Z| and![j] be the position ofj in the ordered
sparse enables us to resolve ambiguity. In fact, the basét te setZ, i.e, 1 < I[j] < m. Create the(K — N) x m

of CS is that under certain conditions on the measurement Selection matrixS with elementss;;;; = 1 for j € 7
matrix ®, a can be robustly recovered using polynomial time ~ and zero otherwise, and solve the conventional least-
convex programming or greedy algorithmsyifx 1 log(r /) squares (LS) problem

[9]-[11]. One popular convex programming algorithm is

min ||w — F1S%||2 (13)
min ||al|; . Lo s . .
(7 to obtain the CS-LS estimatg,. That is, lettingA =
st. ||b— ®all2 <€, F.S, we have
wheree is related to the variance of [19]-[21]. B — S(AT A ATy (14)

The CS concept has recently been extended to block-sparse
signals [13], [14]. That is, writing

. IV. PERFORMANCEANALYSIS

= ey Ol e - O] 8 . . .

@ [w’ ’ul,_“,] ®) In this section, we develop expressions for the error rate of

a™'[1] a™[p] coded OFDM affected by IN. We are interested in the error

then onlyq < p vectorsal[j] have nonzero Euclidean norm rate when decoding with and without IN suppression (3) and
Then, instead of minimizing thé;-norm of a as in (7), the cancellation (4) is applied, respectively. We first briefitlme

mixed (5 /¢, norm the methodology to estimate bit-error rate (BER) and frame-
P error rate (FER), and then focus on the details to account for
> llaljll2 (9) IN and its cancellation and suppression, respectively.
j=1

is minimized. A. BER and FER

) We apply the methodology developed in [23], [24], which is

C. CS-based Detection based on the concept of error vectors. That is, we establish a

We observe that (5) is of the same type as (6) with the pset of error vectors of maximal input-Hamming weight, .,
rameter relationgb, a,n, ®, x,v, u) — (w,é,n, F1, K, K — whose number we denote Wy.. Then, we construct the set
N,m). Furthermorej has a block-sparse structure similar tof error vectorsg, , which start at positiory, 1 < j < L.,
a in (8). That is, the nonzero elementsiodccur in bursts, but 1 < [ < L.. From those we obtain the corresponding
the beginning and the length of bursts are unknown. Finallgpmpeting codewords;; as the vectors ofN modulated
while likely recovery for problems of the type (6) is provext f symbols resulting from mapping the erroneous codewords
random measurement matrices, it turns out that good regover; = ¢ @ g1 <j<L,1<1<Le. Denoting the
results are obtained also for deterministic matrices ssdfi;a pairwise-error probability (PEP) of deciding in favour of;
in (5), e.g., [22]. if = was transmitted aBEP;, it is shown in [23], [24] that



the BER and FER for a given channel realizatibh.,. can
be tightly approximated by

L L
IS L&
BER = I E min [5, E azPEPj,z] (15)

j=1 =1
L. Le BER
A - = =FER
FER = 1 - H max [07 1 o Z PEPJJ‘| ’ (16) i % IN cancellation
j=1 =1 ﬁ O Erasure decoding |4 5 6 7
. . & O No N cancellation
whereq; is the number of bit errors for error vectar 2 g

B. Pairwise Error Probability

1) IN Cancellation: We consider the vectoy from (4).
Applying the DFT operation as in conventional OFDM, we
obtain

107

u=Fy=Hzx+n+d, 17

SNR [dB] --->

where H = FQHCyCFf is an N x N diagonal matrix of
Complex channel ga|ns for thi¥ active Subcarnerg’i — FQ'TL Fig. 3. BER and_ FER resulti versus SNR _for"code(‘:l OFDM 0\_/er”PLC
is AWGN, andd = F(i 3 ) is the residual distortion b channels. The vertical bars for “erasure decoding” and Ma&ncellation
IS ] ’ = a2l B Us A - Y indicate the spread of results as function of the locatiorthef IN block.
IN in the frequency domain. As in conventional coded OFDMg) Channel realization L = 30 IN samples, (b) Channel realization 2,
decoding is performed based on the vector m¢|tfa'c— H:B||2 m = 30 IN samples, (c) Channel realization #; = 60 IN samples, (d)
. - . . Channel realization 2n = 60 IN samples.INR = 13 dB.
using the Viterbi algorithm.
For the following, we consider the two special cases of
d = Fi, i.e., no IN cancellation, and = 0, i.e., perfect IN A. System Parameters

cancellation. We further assume thatfor j € Z is Gaussian o
distributed with variances2. Then, standard analysis shows e adopt the transmission mask of the IEEE 1901 OFDM

that the PEP is given by physical layer shown in Figure 2. Assuming a 30 MHz noise-
5 rejection filter at the receiver, we hav€ = 1224 OFDM

PEP,, = Q( [H (x — 2,03 ) (18) subcarriers in the transmission band, of which 917 would

” ILH(x — zig)|2) be active according to the tone mask. We null another 31
where Q(-) is the Gaussian-Q function andl = subcarriers, located uniformly across active subbandghato

VB (NoT s + €(Ie —E))1/2 Ff with € = o2 (no cancel- N = 886 subcarriers are active (i.e., 3% less than in IEEE

lation) and¢ — 0 (perfect cancellation), respectively, and tha901). The reason for this is to improve the LS estimatiop ste
K x K identity matrix T . (13). For the error rate results we assume 4QAM transmission

2) Erasure Decoding\We now consider the vectay from and the commonly used rate-1/2 memory-6 convolutional code
(3) and assume that the IN is completely suppressed.With generator polynomialél33s, 171g) in octal basis.

Applying the DFT operation, we obtain We use Fhe chgnnel model presented in [1.6], which _is
" _ representative of indoor PLC channels. The signal-toenois
u=Fyy=F,EH  F;x+n (19) power ratio (SNR) is defined a®, /Ny, where E,, is the
= FgEFg’H:c +n, average received energy per information bit, where avecagi

_ ) ) is done over 1000 generated channel realizations. The IN is
where nown = F,En. While decoding such thalu — 555 med as a single blockef samples, which are i.i.d. zero-

F>EF; Hz||> is maximized was optimal, we refrain frome.n Gayssian distributed with variange The IN-to-noise
considering this option as it would require joint decodirfg %Dower ratio (INR) is defined aENR — o2 /No
codewordsc, whose complexity is exponential ib... Instead, !

we assume conventional Viterbi decoding baseen Hx||» o
with complexity is linear inL.. The corresponding PEP canB- IN Mitigation and Error-rate Performance

be derived as Figure 3 shows a set of FER (dashed lines) and BER
solid lines) results obtained with the analysis presented
PEP,; = Q <%I|H<m—zj,nu%+%{wHM<w—zj,l>}}> (oIl Iines) esults obtamed wi v P
It ’

- Section IV. In particular, we consider no and perfect IN
V(1 2No|[(F2E)TH (x — zi1)|2 cancellation (Section IV-B1) and erasure decoding with- per
where M = H(FyEFY — I )H.
2

fect knowledge ofZ (Section 1V-B2). The different subplots
correspond to two different channel realizations (sulsp(a)
and (c) are for channel realization 1, subplots (b) and (d) ar
V. RESULTS AND DISCUSSION for channel realization 2) and an IN block size »f = 30
In this section, we present and discuss numerical results(subplots (a) and (b)) aneh = 60 (subplots (c) and (d))
illustrate the effect of IN on coded OFDM transmission ansamples, respectively. The location of the INR block is e@ri
the effectiveness of CS-based IN detection for IN mitigatio within the OFDM symbol, and the corresponding spread of
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Fig. 4. lllustration of CS-based IN estimation for a singh flealization.  Fig. 5. Normalized empirical residual interference-pheise variance
m = 30 IN samples,INR = 30 dB, and detection block-siz& = 12. af,//\/g versus detection block-sizé for CS-based IN suppression. “LS

bound” isc2 . /Ny from (22).m = 30 IN samples. (aJNR = 20 dB.
,genie
(b) INR = §0 dB. The three curves for each set of results correspond to the
FER and BER results is shown by vertical bars in Figure §0%, 90%, and 100% best resutisconsidered for the empirical varianm%.

The INR is chosen aBlNR = 13 dB.

Comparing the results for the two channel realizations _ ) _
(subplots (a) and (c) versus subplots (b) and (d)) we nd#em (14) for the relevz?mt range of time-domain sample index
the FER/BER performance variations due to different chanriefor an IN example withn = 30, INR = 30 dB, and block-
realizations, as well as some difference in the effect oftitsp based CS withd = 12. Also shown are the estimated IN
noise. This demonstrates the importance of a per-realizatSuPPOrtZ from (12). We observe that the IN block is well

error-rate analysis to capture the effects of channel teansidentified through CS detection. In particular, all IN-agsted
function and IN on performance of coded OFDM. samples are identified as such. Some “clean” samples are also

Considering the different IN mitigation options, we obserylabeled as corrupted, i.eZ, C 7, but as seen in the previous
that ideal erasure decoding, i.e., whén= Z, leads only section, this would not be dramatic in case of erasure dagodi
to small performance degradations compared to perfecﬁ#rth_ermore, the LS estimaig is fairly close to the true IN,
removed IN. The degradation is due to the removal of sign@lowing also effective IN cancellation. In the shown exdanp
energy when erasing IN-corrupted received samples. HawevBe residual IN energyzi — (|3 is only 3% of the IN energy

compared to the case of unprocessed IN, the performance 1hEs- . .
is fairly moderate. Note that the 'no IN cancellation’ cusve Next, we consider the reduction of IN energy due to block-

in Figure 3 would degrade further with increasing INR, whil®ased CS. To this end, we define the residual interference-
erasure decoding is insensitive to the INR. Furthermorenewlus-noise signal
with m = 60 erased symbols, the performance of erasure ; for CS
decoding is only moderately degraded. p=i+n— { A

Clearly, detection without IN cancellation suffers froma n us, for CS+LS
table performance degradation, which is roughly propogio |n case of known support, i.e., genie-aided IN detectiorh wit
to the increase in overall noise-plus-interference powereb 7 — 7, the variance o for LS estimation is given by [8]
factor (1+INR) compared to the perfect IN-cancellation case.

In summary, the exemplary results shown in this sectiggg = _ J\ﬁtrace{“_SBflsH_SBfch_CBflsH}7
suggest that besides perfect IN cancellation, which of smur pEeme K (22)
is mqst desirable, erasure decoding is a promising a.ppro%lpereB — SHFHF, S andC = FIF,S.
to mmgaf[e the effect of IN. K_ey fc.)r. erasure decoding to Figure 5 shows the normalized empirical residual noise
be effective is the successful identification of IN-coregbt variances? /A, based on 500 IN realizations as function of

(21)

received samples. the block-sized of block-based CS for the case of = 30
) and (a)INR = 20 dB and (b)INR = 30 dB. In case of “CS
C. CS-based Detection erasure”,p; = 0 for j € Z. Also included iso? ;. from

We now turn to the task of IN identification and cancel(22), labeled as “LS bound”. Let us first consider Figure 5(a)
lation using the CS-based detection procedure describedfon INR = 20 dB. It can be seen that block-based CS is
Section IlI-C. able to notably reduce the variance of residual interfezenc

Figure 4 shows the magnitude of IN samplgsthe “raw” and noise. In particular, the estimation of the IN support is
Cs estimaté‘j from (11), and the LS processed estim%‘a,gg fairly successful, which leads to a significant reduction of



interference when IN suppression (“CS erasure”) or the LS-
step (13) (“CS+LS cancel.”) are applied. Increasing thelklo
size § > 1, i.e., using block-based instead of conventional
CS, clearly helps for the considered scenario of bursty |

When erasing signal samples, of course also part of theedkesir
signal is removed. But we note that for the results shown in
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