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Abstract—Impulse noise (IN) is one of the major impairments
for data transmission over power lines. For power line communi-
cations (PLC) systems with bandwidths in the high kHz to MHz
range, IN occurs in bursts. As long as those bursts are sufficiently
short compared to a signal-processing (e.g. coding) frame,there
is hope to successfully mitigate IN. In this paper, we introduce
a new IN mitigation technique that is based on the application
of block-based compressed sensing (CS). It makes use of null-
subcarriers in PLC orthogonal frequency division multiplexing
(OFDM) transmission systems and the burst structure of IN to
detect the location and the values of IN samples in the received
signal. We also devise a semi-analytical error-rate performance
evaluation for coded OFDM over IN channels, which allows
insights into how CS-based IN detection can be used for improved
reliability of transmission. Numerical results for typical PLC
transmission settings demonstrate the efficacy of the proposed
application of CS for IN detection.

Index Terms—Power line communications (PLC), impulse
noise, compressed sensing, orthogonal frequency divisionmul-
tiplexing (OFDM), error-rate analysis, coding.

I. I NTRODUCTION

Data communication over power lines is attractive for its
cost-efficient installation (no need to lay wires, no need to
purchase spectrum), high penetration of the power distribution
grid, and ease of use for customers (one wire to connect them
all). However, there are a number of serious challenges for
power line communications (PLC) resulting from the use of
networks designed to carry the AC or DC mains signal

One of these challenges concerns the noise scenario of PLC
transmission, which is considerably richer than captured by the
conventional additive white Gaussian noise (AWGN) model
[1], [2], [3, Chapter 2.6]. In particular, the presence of impulse
and narrowband noise render reliable communication difficult.
While the narrowband noise is dealt with through switching or
receiver-side notching of frequency bands, impulse noise (IN)
is often mitigated by relatively simple clipping or clipping and
nulling [4], or more sophisticated parametric [5] and iterative
[6], [7] IN suppression schemes. More recently, Caire et al.[8]
proposed the application of compressed sensing (CS) [9]–[11]
to cancel IN for orthogonal frequency division multiplexing
(OFDM) transmission. More specifically, it was suggested to
exploit null subcarriers to setup an underdetermined system of
linear equations, from which IN is estimated making use of
the fact that IN realizations are “sparse” (otherwise it would
not be “impulse” noise).

In this paper, we adopt the CS-based approach from [8] and
extend it to the case of bursty IN. That is, IN is assumed to
occur in bursts and corrupt blocks of received OFDM signal
samples. This assumption is very well justified considering
Gaussian-Markov IN models for broadband PLC [2]. Of

course, if the length of IN bursts is of the same order as the
length of an entire OFDM symbol, IN cancellation methods
operating on individual OFDM symbols cannot be successful.
(In this case, coding at the application layer, spanning multiple
OFDM symbols is an interesting alternative [12].) So our
approach provides benefits if the signal bandwidth and IN
realizations are such that the sampled IN signal is in-between
the extreme cases of i.i.d. IN [8] and long IN bursts that
destroy entire OFDM symbols [12]. Our approach to take the
bursty nature of IN into account relies on the application of
CS for block-sparse signals [13], [14]. Furthermore, to provide
quantitative error-rate results that indicate what burst lengths
could be dealt with by a coded OFDM system and as well as
the attainable performance gains by CS-based IN detection,
we also provide semi-analytical error-rate expressions. These
expressions are derived from a union-bound approach and
thus are tight for moderately complex coding schemes, such
as convolutional coding. We present numerical results for
PLC OFDM transmission according to IEEE 1901 standard
[15] and sample channels from [16] that demonstrate that the
proposed CS-based processing is effective for IN detectionand
that subsequent IN cancellation or suppression significantly
improves transmission reliability.

The remainder of this paper is organized as follows. In
Section II, we introduce the system model of OFDM transmis-
sion over power line channels with additive IN. The CS-based
processing of IN is presented in Section III, and the error-
rate analysis is derived in Section IV. In Section V, we show
numerical results to highlight the effectiveness of the proposed
CS application. Finally, conclusions are given in Section VI.

II. SYSTEM DESCRIPTION

We consider a conventional OFDM transmission system
based on inverse discrete Fourier transform (IDFT) and DFT
operations at the transmitter and receiver, respectively.The
relevant portions of the transmitter and receiver block diagram
are shown in Figure 1.

A. Transmitter

At the transmitter, a binary data streamb = [b1, . . . , bLb
]T

of length Lb = RcRmN is encoded into a codeword
c = [c1, . . . , cLc

]T of length Lc = RmN , where Rc and
Rm denote code and modulation rate, respectively. While
any code including turbo-convolutional and low-density parity
check (LDPC) codes selected (optionally) in, e.g., IEEE 1901
and ITU-T G.9960 standards could be considered, as the
proposed CS-based IN detection method is independent of
the applied coding scheme, in this work we assume the
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Fig. 1. Block-diagram of the OFDM transmitter (top) and receiver (bottom).

5 10 15 20 25 30
0

1

Frequency in MHz

T
on

e 
m

as
k 

(1
=

O
N

, 0
=

O
F

F
)

Fig. 2. Default broadcast tone mask (ON/OFF of OFDM subcarriers) for the
OFDM physical layer of IEEE 1901 for North America [15, Table13-39].

application of convolutional coding. Convolutional coding is
also very popular for practical PLC transmission systems,
including iAd’s DLC2000, G3-PLC, and PRIME for low-
frequency narrowband PLC, and the wavelet physical layer
of IEEE 1901 (typically supported by an outer Reed-Solomon
code).

The encoder output is interleaved into the vectorcπ,
whose elements are then mapped toN signal pointsx =
[x1, . . . , xN ]T . The signal points are taken from the2Rm-ary
quadrature-amplitude modulation (QAM) constellationX . For
simplicity, we assume that the same constellation is used for all
OFDM subcarriers, but we note that the proposed CS-based IN
detection method operates irrespective of whether bit loading
is applied. The vectorx of data symbols is expanded to theK-
dimensional vectorx′ = [x′

1, . . . , x
′

K ]T by introducingK−N
zeros, wherex′

i is transmitted over theith OFDM subcarrier
(a.k.a. OFDM tone). Such null-subcarriers are used to avoid
interference with radio services, and are also a possible means
to enable coexistence among PLC systems. As an example,
Figure 2 shows the default broadcast tone mask (ON/OFF of
OFDM subcarriers) for the OFDM physical layer of IEEE
1901 for North America [15, Table 13-39].

The modulated OFDM symbols are converted into the time-
domain vector

t = F Hx′ , (1)

where F is the K × K DFT matrix. Finally (not included
in Figure 1), a cyclic prefix (CP) is added and pulse shaping
(digital-to-analog conversion (DAC)) is applied.

Let us denote the set of data- and null-subcarriers asT and
T c, respectively. For later use, we partition the DFT matrixF

into the (K − N) × K partial DFT matrixF 1 consisting of
theK −N rows fromF that are at positionsi ∈ T c, and the
N ×K partial DFT matrixF 2 consisting of the remainingN
rows fromF at positionsi ∈ T .

B. Channel

For our purposes, it is sufficient to consider the discrete-
time complex baseband equivalent channel that results when

including the effects of CP-addition and DAC at the transmitter
and analog-to-digital conversion (ADC) and CP-removal at
the receiver into the channel model. Assuming that the CP
is sufficiently long (essentially as long as the channel impulse
response), the vector ofK received time-domain samples can
be written as

r = Hcyct + n + i , (2)

whereHcyc is aK×K column-circulant matrix with the first
column equal to the discrete-time channel impulse response
[17, Section 4.1] andn is a vector of independent complex
AWGN samples with varianceN0. In addition to the AWGN,
we also include the effect of additive IN, whose samples are
collected in the vectori. With regards to the characteristics of
i we make the assumptions that
(i) i is m-sparse, i.e., only a numberm ≪ K of its elements

are non-zero, and
(ii) the non-zero elements are grouped together.
These assumptions are valid considering that IN occurs in the
form of short bursts or pulses in PLC systems [2]. The size of
the bursts in number of samples depends on the OFDM-signal
bandwidth, which varies over about three orders of magnitude
(∼50 kHz for low-frequency narrowband PLC to∼50 MHz for
broadband PLC), and of course on the specific IN realization.
Assumptions (i) and (ii) make the noise signali block-sparse
[13], [14].

C. Receiver

As mentioned in the previous section, the receiver employs
an ADC, discards the CP portion of the sampled signal, and
processes the outputr in (2). The vectorr is used for detection
of interferencei by the CS-based IN-noise detection algorithm
described in Section III (see Figure 1). We investigate two
possible ways of processing the IN contaminated signalr.

1) IN suppression (i.e., erasure decoding):The CS-based
detection unit delivers an estimatêI of the supportI
of i, i.e., the positions of non-zero elements ofi. The
elements ofr which are deemed corrupted by IN are
then erased. That is, defining theK×K “erasure” matrix
E as an identity matrix but with elementsejj = 0 for
j ∈ Î, the interference-processed signal is given by

y = Er . (3)

2) IN cancellation:The CS-based detection unit delivers an
estimatêils of i, which is subtracted fromr. That is,

y = r − îls . (4)

The signaly = [y1, . . . , yK ]T is input to the DFT, followed
by the demapper, deinterleaver, and the decoder, which then
produces an estimatêb for the transmitted messageb.

III. C OMPRESSED-SENSING-BASED IMPULSE NOISE

DETECTION

In this section, we consider the estimation ofi for IN
cancellation (4) and its supportI for interference suppression
(3). To this end, we exploit the null-tones of the OFDM signal
and apply concepts from compressed sensing (CS) [9]–[11].
The basic idea is similar to [8], but different from their scheme,
we make specific use of the burst structure of IN.



A. Preprocessing

Considering the approximately Gaussian distribution of the
time-domain transmit signalt (1) [18] and thus the component
Hcyct of r in (2), direct detection ofi based onr using outlier
detection methods (e.g. clipping or clipping and nulling [4] or
more sophisticated variants) is prone to false alarm. To rid
ourselves of the data signal, we focus on the unused OFDM
subcarriers. That is, we generate

w = F 1r

= F 1i + ñ ,
(5)

whereñ = F 1n is AWGN and the second line follows from
xj = 0 for j ∈ T c.

B. CS Essentials

Let us consider the problem of detecting aµ-sparseκ-
dimensional vectora from ν < κ noisy observations

b = Φa + n , (6)

whereΦ is theν × κ measurement matrix andn is AWGN.
Estimating a from noisy measurementsb is an ill-posed
problem sinceΦ has a non-trivial null space, anda + v for
any vectorv in this null space gives the same observation
b. However, the knowledge that the solution̂a needs to be
sparse enables us to resolve ambiguity. In fact, the basic tenet
of CS is that under certain conditions on the measurement
matrix Φ, a can be robustly recovered using polynomial time
convex programming or greedy algorithms, ifν ∝ µ log(κ/µ)
[9]–[11]. One popular convex programming algorithm is

min ‖a‖1

s.t. ‖b − Φa‖2 ≤ ǫ ,
(7)

whereǫ is related to the variance ofn [19]–[21].
The CS concept has recently been extended to block-sparse

signals [13], [14]. That is, writing

a = [a1, . . . , aδ
︸ ︷︷ ︸

aT [1]

, . . . , aκ−δ+1, . . . , aκ
︸ ︷︷ ︸

aT [p]

]T , (8)

then onlyq ≪ p vectorsa[j] have nonzero Euclidean norm.
Then, instead of minimizing theℓ1-norm of a as in (7), the
mixed ℓ2/ℓ1 norm

p
∑

j=1

‖a[j]‖2 (9)

is minimized.

C. CS-based Detection

We observe that (5) is of the same type as (6) with the pa-
rameter relations(b, a, n,Φ, κ, ν, µ) → (w, i, ñ, F 1, K, K −
N, m). Furthermore,i has a block-sparse structure similar to
a in (8). That is, the nonzero elements ofi occur in bursts, but
the beginning and the length of bursts are unknown. Finally,
while likely recovery for problems of the type (6) is proved for
random measurement matrices, it turns out that good recovery
results are obtained also for deterministic matrices such as F 1

in (5), e.g., [22].

Following the relation between IN detection and block-
sparse signal recovery shown above, we represent the IN signal
as the block-vector

i = [i1, . . . , iδ
︸ ︷︷ ︸

iT [1]

, . . . , iK−δ+1, . . . , iK
︸ ︷︷ ︸

iT [p]

]T . (10)

The choice of the detection block-sizeδ will be discussed in
Section V. Using this representation, and adopting [21, Sec-
tion 4] (also [8]), we apply the following detection algorithm.

1) Solve

î = min

p
∑

j=1

‖i[j]‖2

s.t. ‖w − F 1i‖2 ≤ ǫ

(11)

where ǫ is adjusted such that‖ñ‖2 ≤ ǫ with prob-
ability 0.95. Noting that‖ñ‖2

2 ∼ χ2
2(K−N), i.e., chi-

squared with2(K − N) degrees of freedom, we have
ǫ2 = χ2

2(K−N)(0.95)N0, whereχ2
2(K−N)(0.95) is the

95th percentile ofχ2
2(K−N).

2) Estimate the support ofi as

Î = {j : |̂ij |2 > N0} (12)

3) Let m̂ = |Î| andl[j] be the position ofj in the ordered
set Î, i.e., 1 ≤ l[j] ≤ m. Create the(K − N) × m
selection matrixS with elementssjl[j] = 1 for j ∈ Î
and zero otherwise, and solve the conventional least-
squares (LS) problem

min ‖w − F 1Si‖2 (13)

to obtain the CS-LS estimatêils. That is, lettingA =
F 1S, we have

îls = S(AHA)−1AHw . (14)

IV. PERFORMANCEANALYSIS

In this section, we develop expressions for the error rate of
coded OFDM affected by IN. We are interested in the error
rate when decoding with and without IN suppression (3) and
cancellation (4) is applied, respectively. We first briefly outline
the methodology to estimate bit-error rate (BER) and frame-
error rate (FER), and then focus on the details to account for
IN and its cancellation and suppression, respectively.

A. BER and FER

We apply the methodology developed in [23], [24], which is
based on the concept of error vectors. That is, we establish a
set of error vectors of maximal input-Hamming weightwmax,
whose number we denote byLe. Then, we construct the set
of error vectorsqj,l which start at positionj, 1 ≤ j ≤ Lc,
1 ≤ l ≤ Le. From those we obtain the corresponding
competing codewordszj,l as the vectors ofN modulated
symbols resulting from mapping the erroneous codewords
vj,l = c ⊕ qj,l, 1 ≤ j ≤ Lc, 1 ≤ l ≤ Le. Denoting the
pairwise-error probability (PEP) of deciding in favour ofzj,l

if x was transmitted asPEPj,l, it is shown in [23], [24] that



the BER and FER for a given channel realizationHcyc can
be tightly approximated by

BER =
1

Lc

Lc∑

j=1

min

[

1

2
,

Le∑

l=1

alPEPj,l

]

(15)

FER = 1 −
Lc∏

j=1

max

[

0, 1 −
Le∑

l=1

PEPj,l

]

, (16)

whereal is the number of bit errors for error vectorl.

B. Pairwise Error Probability

1) IN Cancellation: We consider the vectory from (4).
Applying the DFT operation as in conventional OFDM, we
obtain

u = F 2y = Hx + ñ + d , (17)

where H = F 2HcycF
H
2 is an N × N diagonal matrix of

complex channel gains for theN active subcarriers,̃n = F 2n

is AWGN, andd = F 2(i − îls) is the residual distortion by
IN in the frequency domain. As in conventional coded OFDM,
decoding is performed based on the vector metric‖u−Hx‖2

using the Viterbi algorithm.
For the following, we consider the two special cases of

d = F 2i, i.e., no IN cancellation, andd = 0, i.e., perfect IN
cancellation. We further assume thatij for j ∈ I is Gaussian
distributed with varianceσ2

i . Then, standard analysis shows
that the PEP is given by

PEPj,l = Q

( ‖H(x − zj,l)‖2
2

‖LH(x − zi,l)‖2

)

, (18)

where Q(·) is the Gaussian-Q function andL =√
2 (N0IK + ξ(IK − E))1/2

F H
2 with ξ = σ2

i (no cancel-
lation) andξ = 0 (perfect cancellation), respectively, and the
K × K identity matrixIK .

2) Erasure Decoding:We now consider the vectory from
(3) and assume that the INi is completely suppressed.
Applying the DFT operation, we obtain

u = F 2y = F 2EHcycF
H
2 x + ñ

= F 2EF H
2 Hx + ñ ,

(19)

where nowñ = F 2En. While decoding such that‖u −
F 2EF H

2 Hx‖2 is maximized was optimal, we refrain from
considering this option as it would require joint decoding of
codewordsc, whose complexity is exponential inLc. Instead,
we assume conventional Viterbi decoding based on‖u−Hx‖2

with complexity is linear inLc. The corresponding PEP can
be derived as

PEPj,l = Q

(
1
2‖H(x − zj,l)‖2

2 + ℜ{xHM(x − zj,l)}}
√

(1/2N0‖(F 2E)HH(x − zi,l)‖2

)

,

(20)
whereM = HH(F 2EF H

2 − IK)H.

V. RESULTS AND DISCUSSION

In this section, we present and discuss numerical results to
illustrate the effect of IN on coded OFDM transmission and
the effectiveness of CS-based IN detection for IN mitigation.
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Fig. 3. BER and FER results versus SNR for coded OFDM over PLC
channels. The vertical bars for “erasure decoding” and “no IN cancellation”
indicate the spread of results as function of the location ofthe IN block.
(a) Channel realization 1,m = 30 IN samples, (b) Channel realization 2,
m = 30 IN samples, (c) Channel realization 1,m = 60 IN samples, (d)
Channel realization 2,m = 60 IN samples.INR = 13 dB.

A. System Parameters

We adopt the transmission mask of the IEEE 1901 OFDM
physical layer shown in Figure 2. Assuming a 30 MHz noise-
rejection filter at the receiver, we haveK = 1224 OFDM
subcarriers in the transmission band, of which 917 would
be active according to the tone mask. We null another 31
subcarriers, located uniformly across active subbands, sothat
N = 886 subcarriers are active (i.e., 3% less than in IEEE
1901). The reason for this is to improve the LS estimation step
(13). For the error rate results we assume 4QAM transmission
and the commonly used rate-1/2 memory-6 convolutional code
with generator polynomials(1338, 1718) in octal basis.

We use the channel model presented in [16], which is
representative of indoor PLC channels. The signal-to-noise
power ratio (SNR) is defined as̄Eb/N0, where Ēb is the
average received energy per information bit, where averaging
is done over 1000 generated channel realizations. The IN is
assumed as a single block ofm samples, which are i.i.d. zero-
mean Gaussian distributed with varianceσ2

i . The IN-to-noise
power ratio (INR) is defined asINR = σ2

i /N0.

B. IN Mitigation and Error-rate Performance

Figure 3 shows a set of FER (dashed lines) and BER
(solid lines) results obtained with the analysis presentedin
Section IV. In particular, we consider no and perfect IN
cancellation (Section IV-B1) and erasure decoding with per-
fect knowledge ofI (Section IV-B2). The different subplots
correspond to two different channel realizations (subplots (a)
and (c) are for channel realization 1, subplots (b) and (d) are
for channel realization 2) and an IN block size ofm = 30
(subplots (a) and (b)) andm = 60 (subplots (c) and (d))
samples, respectively. The location of the INR block is varied
within the OFDM symbol, and the corresponding spread of
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Fig. 4. Illustration of CS-based IN estimation for a single IN realization.
m = 30 IN samples,INR = 30 dB, and detection block-sizeδ = 12.

FER and BER results is shown by vertical bars in Figure 3.
The INR is chosen asINR = 13 dB.

Comparing the results for the two channel realizations
(subplots (a) and (c) versus subplots (b) and (d)) we note
the FER/BER performance variations due to different channel
realizations, as well as some difference in the effect of impulse
noise. This demonstrates the importance of a per-realization
error-rate analysis to capture the effects of channel transfer
function and IN on performance of coded OFDM.

Considering the different IN mitigation options, we observe
that ideal erasure decoding, i.e., whenÎ = I, leads only
to small performance degradations compared to perfectly
removed IN. The degradation is due to the removal of signal
energy when erasing IN-corrupted received samples. However,
compared to the case of unprocessed IN, the performance loss
is fairly moderate. Note that the ’no IN cancellation’ curves
in Figure 3 would degrade further with increasing INR, while
erasure decoding is insensitive to the INR. Furthermore, even
with m = 60 erased symbols, the performance of erasure
decoding is only moderately degraded.

Clearly, detection without IN cancellation suffers from a no-
table performance degradation, which is roughly proportional
to the increase in overall noise-plus-interference power by a
factor(1+INR) compared to the perfect IN-cancellation case.

In summary, the exemplary results shown in this section
suggest that besides perfect IN cancellation, which of course
is most desirable, erasure decoding is a promising approach
to mitigate the effect of IN. Key for erasure decoding to
be effective is the successful identification of IN-corrupted
received samples.

C. CS-based Detection

We now turn to the task of IN identification and cancel-
lation using the CS-based detection procedure described in
Section III-C.

Figure 4 shows the magnitude of IN samplesij , the “raw”
CS estimatêij from (11), and the LS processed estimateîls,j
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Fig. 5. Normalized empirical residual interference-plus-noise variance
σ2

ρ
/N0 versus detection block-sizeδ for CS-based IN suppression. “LS

bound” is σ2
ρ,genie

/N0 from (22). m = 30 IN samples. (a)INR = 20 dB.
(b) INR = 30 dB. The three curves for each set of results correspond to the
80%, 90%, and 100% best resultsρ considered for the empirical varianceσ2

ρ.

from (14) for the relevant range of time-domain sample index
j for an IN example withm = 30, INR = 30 dB, and block-
based CS withδ = 12. Also shown are the estimated IN
support Î from (12). We observe that the IN block is well
identified through CS detection. In particular, all IN-corrupted
samples are identified as such. Some “clean” samples are also
labeled as corrupted, i.e.,I ⊂ Î, but as seen in the previous
section, this would not be dramatic in case of erasure decoding.
Furthermore, the LS estimatêils is fairly close to the true INi,
allowing also effective IN cancellation. In the shown example,
the residual IN energy‖̂ils − i‖2

2 is only 3% of the IN energy
‖i‖2

2.
Next, we consider the reduction of IN energy due to block-

based CS. To this end, we define the residual interference-
plus-noise signal

ρ = i + n −
{

î, for CS
îls, for CS+LS

. (21)

In case of known support, i.e., genie-aided IN detection with
Î = I, the variance ofρ for LS estimation is given by [8]

σ2
ρ,genie =

N0

K
trace{I+SB−1SH−SB−1CH−CB−1SH} ,

(22)
whereB = SHF H

1 F 1S andC = F H
1 F 1S.

Figure 5 shows the normalized empirical residual noise
varianceσ2

ρ/N0 based on 500 IN realizations as function of
the block-sizeδ of block-based CS for the case ofm = 30
and (a)INR = 20 dB and (b)INR = 30 dB. In case of “CS
erasure”,ρj = 0 for j ∈ Î. Also included isσ2

ρ,genie from
(22), labeled as “LS bound”. Let us first consider Figure 5(a)
for INR = 20 dB. It can be seen that block-based CS is
able to notably reduce the variance of residual interference
and noise. In particular, the estimation of the IN support is
fairly successful, which leads to a significant reduction of



interference when IN suppression (“CS erasure”) or the LS-
step (13) (“CS+LS cancel.”) are applied. Increasing the block-
size δ > 1, i.e., using block-based instead of conventional
CS, clearly helps for the considered scenario of bursty IN.
When erasing signal samples, of course also part of the desired
signal is removed. But we note that for the results shown in
Figure 5(a), themaximum number of erasures observed was
|Î| = [20, 30, 38, 41, 47, 47] for δ = [1, 4, 8, 12, 18, 24] and
thus the loss in signal energy is well compensated by the gain
from suppressing IN.

The results of CS-based are even more impressive if the INR
increases; that is, when strong IN occurs. While this deterio-
rates error-rate performance for conventional detectors,this is
not so for CS-based IN detection, since a larger INR facilitates
detection of IN-corrupted samples. In Figure 5(b), for eachset
of CS results, the empirical varianceσ2

ρ is plotted considering
the 80%, 90%, and 100% (i.e., all) realizations ofρ with the
smallest magnitude‖ρ‖2. We observe a huge reduction in
residual interference and noise due to the proposed CS scheme.
Again, block-based CS improves notably over conventional
CS. The three different curves for each type of CS results are
all bunched up except for the case of LS estimation. In this
case, the empirical variance increases sharply for block-sizes
δ beyond some threshold. But we note from the divergence of
the three curves for LS that this increase in residual error is not
experienced for all IN realizations, but only for a minorityof
cases. This at first glance strange behaviour can be explained
by the fact that the matrixAHA in (14) can be ill-conditioned
depending onÎ. A remedy for this problem would be the
selection of different null-subcarriers for IN detection,which
in our example have been dictated by the transmission mask.
Finally, we again note that erasure decoding could be the
method of choice, since theI ⊆ Î for most cases. The
maximum number of erasures observed in the 500 test runs
was |Î| = [62, 61, 77, 81, 83] for δ = [4, 8, 12, 18, 24]. While
these are larger than forINR = 20 dB, the significant gains
due to IN suppression will clearly offset the loss in desired
signal energy in most cases.

VI. CONCLUSIONS

Impulse noise (IN) is a serious problem for reliable PLC
transmission. For sufficiently broadband PLC systems, IN oc-
curs in bursts. In this paper, we have proposed the application
of block-based CS to detect such bursts, making use of OFDM
null-subcarriers. This includes the recovery of the support of
the non-zero IN samples, for IN suppression, and the actual
reconstruction of IN samples, for IN cancellation. Numerical
results have shown that block-based CS can successfully find
IN bursts and provide good estimates of IN realizations.
Furthermore, by means of an error-rate analysis for coded
OFDM we have demonstrated that erasure decoding, making
use of CS-based IN suppression, is a promising approach to
mitigate the impact of IN. The block sizeδ for block-based
CS should be chosen such that the error correction code can
cope with a number of erasures about two to three times the
block size.
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