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Abstract

In multiprocessor systems, the traffic on the bus does not
solely originate from data transfers due to data dependen-
cies between tasks, but is also affected by memory trans-
fers as result of cache misses. This has a huge impact on
worst-case execution time (WCET) analysis and, in general,
on the predictability of real-time applications implemented
on such systems. As opposed to the WCET analysis per-
formed for a single processor system, where the cache miss
penalty is considered constant, in a multiprocessor system
each cache miss has a variable penalty, depending on the
bus contention. This affects the tasks’ WCET which, how-
ever, is needed in order to perform system scheduling. At
the same time, the WCET depends on the system schedule
due to the bus interference. In this paper we present an
approach to worst-case execution time analysis and system
scheduling for real-time applications implemented on mul-
tiprocessor SoC architectures. The emphasis of this paper
is on the bus scheduling policy and its optimization, which
is of huge importance for the performance of such a pre-
dictable multiprocessor application.

1 Introduction and Related Work

Real-time applications impose strict constraints not only in
terms of their logical functionality but also with concern
to timing. Classically, these are safety critical applications
such as automotive, medical or avionics systems. However,
recently, more and more applications in the multimedia and
telecommunications area have to provide guaranteed qual-
ity of service and, thus, require a high degree of worst-
case predictability [4]. Complex multiprocessor architec-
tures implemented on a single chip are increasingly used in
such embedded systems demanding performance and pre-
dictability [21].

Providing predictability, along the dimension of time,
should be based on scheduling analysis which, itself, as-
sumes as an input the worst case execution times (WCETs)
of individual tasks [8, 11]. WCET analysis has been al-
ready investigated for a long time [12]. However, one of the
basic assumptions of this research is that WCETs are deter-

mined for each task in isolation and then, in a separate step,
task scheduling analysis takes the global view of the system
[19]. This approach is valid as long as the applications are
implemented either on single processor systems or on very
particular multiprocessor architectures in which, for exam-
ple, each processor has a dedicated, private access to an ex-
clusively private memory. With advanced processor archi-
tectures being used in embedded systems, researchers have
also considered effects due to caches, pipelines, and branch
prediction, in order to determine the execution time of in-
dividual actions [9, 18, 20, 5]. However, it is still assumed
that, for WCET analysis, tasks can be considered in isola-
tion from each other and no effects produced by dependen-
cies or resource sharing have to be taken into consideration
(with the very particular exception of some research results
regarding cache effects due to task preemption on mono-
processors [17, 13]). This makes all the available results in-
applicable to modern multiprocessor systems in which, for
example, due to the shared access to sophisticated memory
architectures, the individual WCETs of tasks are depending
on the global system schedule. This is pointed out as one
major unsolved issue in [19] where the current state of the
art and future trends in timing predictability are reviewed.
The only solution for the above mentioned shortcomings is
to take out WCET analysis from its isolation and place it
into the context of system level analysis and optimization.

One of the major issues in the context of predictability
for multiprocessor systems is the shared communication in-
frastructure. The traffic on the bus does not solely originate
from data transfers due to data dependencies between tasks,
but is also affected by memory transfers as result of cache
misses. A bus access policy and bus access schedule have
to be developed which (1) guarantee predictability and (2)
provide efficiency in terms of system performance. In [1]
we have presented our overall strategy and framework for
predictable multiprocessor applications. In that paper, how-
ever, we have not addressed the issue of bus access opti-
mization, which is a key component of the framework. Bus
access optimization, the main contribution of this paper, is
crucial in achieving predictability while, at the same time,
maintaining efficiency in terms of performance.

Bus scheduling for real-time systems has been previ-
ously considered only in the context of inter-task communi-
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Figure 1. System and Task Models

cation and ignoring the problem of interference caused by
cache misses, [8, 11]. The issues addressed in this paper
add a completely new dimension to the problem, by the de-
pendency of WCETs on the bus schedule and by the much
finer granularity at which bus transfers, due to cache misses,
has to be considered.

A framework for system level task mapping and schedul-
ing for a similar type of platforms has been presented in [3].
In order to avoid the problems related to the bus contention,
they use a so called additive bus model. This assumes that
task execution times will be stretched only marginally as
an effect of bus contention for memory accesses. Conse-
quently, they simply neglect the effect of bus contention on
task execution times. The experiments performed by the
authors show that such a model can be applied with rela-
tively good approximations if the bus load is kept below
50%. There are two severe problems with such an approach:
(1) In order for the additive model to be applicable, the bus
utilization has to be kept low. (2) Even in the case of such
a low bus utilization, no guarantees of any kind regarding
worst-case behavior can be provided.

The remainder of the paper is organized as follows. Pre-
liminaries regarding the system and application model are
given in Section 2. Section 3 outlines the problem with mo-
tivational examples. Section 4 introduces the overall ap-
proach for implementation of predictable applications on
multiprocessor SoCs and creates the context for the discus-
sion in Section 5 regarding bus access optimization. Exper-
imental results are given in Section 6.

2 System and Application Model

2.1 Hardware Architecture

We consider multiprocessor systems-on-chip architectures
with a shared communication infrastructure that connects
processing elements to the memories. The processors are
equipped with instruction and data caches. Every proces-
sor is connected via the bus to a private memory. All ac-
cesses from a processor to its private memory are cached. A
shared memory is used for inter-processor communication.
The accesses to the shared memory are not cached. This is
a typical, generic, setting for new generation multiproces-
sors on chip [7]. The shared communication infrastructure

is used both for private memory accesses by the individ-
ual processors (if the processors are cached, these accesses
are performed only in the case of cache misses) and for in-
terprocessor communication (via the shared memory). An
example architecture is shown in Fig. 1(a).

2.2 Application Model

The functionality of the software applications is captured
by task graphs, G(Π,Γ). Nodes τ ∈ Π in these directed
acyclic graphs represent computational tasks, while edges
γ ∈ Γ indicate data dependencies between these tasks (ex-
plicit communications). The graphs (possibly also individ-
ual computational tasks) are annotated with deadlines dl
that have to be met at run-time. Before the execution of a
data dependent task can begin, the input data must be avail-
able. Tasks mapped to the same processor are communicat-
ing through the cached private memory. These communica-
tions are handled similarly to the memory accesses during
task execution. The communication between tasks mapped
to different processors is done by explicit communication
via the shared memory. Explicit communication is modeled
in the task graph as two communication tasks, executed by
the sending (for write) and the receiving (for read) proces-
sor, respectively as, for example, τ1w and τ2r in Fig. 1(c).
During the execution of a task, all the instructions and data
are stored in the corresponding private memory, so there
will not be any shared memory accesses. Whenever a cache
miss occurs, the data has to be fetched from the memory,
which results in memory accesses via the bus during the ex-
ecution of the tasks. We will refer to these as implicit com-
munication. This task model is illustrated in Fig. 1(b). Pre-
vious approaches that are proposing system level schedul-
ing and optimization techniques for real-time applications
only consider the explicit communication, ignoring the bus
traffic due to the implicit communication [15, 11].

2.3 Bus Access Policy

In order to obtain a predictable system, which also assumes
a predictable bus access, we consider a TDMA-based bus
sharing policy. Such a policy can be used efficiently with
the contemporary SoC buses, especially if QoS guarantees
are required, [14, 10, 4].

We introduce in the following the concept of bus sched-
ule. The bus schedule contains slots of a certain size, each
with a start time, that are allocated to a processor, as shown
in Fig. 2(a). The bus schedule is stored as a table in a mem-
ory that is directly connected to the bus arbiter. It is defined
over one application period, after which it is periodically
repeated. At run-time, the bus arbiter is enforcing the bus
schedule, such that when a processor sends a bus request
during a slot that belongs to another processor, the arbiter
will keep it waiting until the start of the next slot that was
assigned to it.
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Figure 2. Bus Schedule Table (System with Two
CPUs)

The bus schedule has a huge influence on the worst-case
execution time. Ideally, we would like to have an irregular
bus schedule, in which slot sequences and individual slot
sizes are customized according to the needs of currently ac-
tive tasks. Such a schedule table is illustrated in Fig. 2(b)
for a system with two CPUs. This bus scheduling approach,
denoted as BSA1, would offer the best task WCETs at the
expense of a very large schedule table.

Alternatively, in order to reduce the controller complex-
ity, the bus schedule is divided into segments. Each seg-
ment is an interval in which the bus schedule follows a reg-
ular pattern, in the form of TDMA rounds that are repeated
throughout the segment. A round is composed of bus slots
with a certain size, each slot allocated to a different pro-
cessor. In Fig. 2(c) we illustrate a schedule consisting of
two bus segments with a size of 9 and 8 time units, respec-
tively. In the first segment, the TDMA round is repeated
three times. The first slot in the round is assigned to CPU1

and has a size of 1, the second slot, with size 2, belongs to
CPU2. The second segment consists of two rounds. The
first slot (size 1) belongs to CPU2, the second one (size 3)
to CPU1. The bus scheduling approach illustrated above is
denoted BSA2.

The approach presented in Fig. 2(d) and denoted BSA3
further reduces the memory needs for the bus controller. As
opposed to BSA2, in this case, all slots inside a segment
have the same size.

In a final approach, BSA4, all the slots in the bus have
the same size and repeated according to a fix sequence.

3 Motivational Example

Let us assume a multiprocessor system, consisting of two
processors CPU1 and CPU2, connected via a bus. Task

τ1 runs on CPU1 and τ2 on CPU2. The imposed deadline
is 63 time units. When τ2 finishes, it updates the shared
memory during the explicit communication E1. We have
illustrated this situation in Fig. 3(a). During the execution
of the tasks τ1 and τ2, some of the memory accesses result
in cache misses and consequently the corresponding caches
must be refilled. The time interval spent due to these ac-
cesses is indicated in Fig. 3 as M1,M3,M5 for τ1 and M2,
M4 for τ2. The memory accesses are executed by the im-
plicit bus transfers I1,I2,I3,I4 and I5. If we analyze the
tasks using classical WCET analysis, we conclude that τ1
will finish at time 57 and τ2 at 24. For this example, we
have assumed that the cache miss penalty is 6 time units.
CPU2 is controlling the shared memory update carried out
by the explicit message E1 via the bus after the end of task
τ2.

A closer look at the execution pattern of the tasks reveals
that the cache misses may overlap in time. For example, the
cache miss I1 and I2 are both happening at time 0. Similar
conflicts can occur between implicit and explicit communi-
cations (for example I5 and E1). Since the bus cannot be
accessed concurrently, a bus arbiter will allow the proces-
sors to refill the cache in a certain order. An example of a
possible outcome is depicted in Fig. 3(b). The bus arbiter
allows first the cache miss I1, so after 6 time units needed
to handle the miss, task τ1 can continue its execution. After
serving I1, the arbiter grants the bus to CPU2 in order to
serve the miss I2. Once the bus is granted, it takes 6 time
units to refill the cache. However, CPU2 was waiting 6
time units to get access to the bus. Thus, handling the cache
miss I2 took 12 time units, instead of 6. Another miss I3
occurs on CPU1 at time 9. The bus is busy transferring I2
until time 12. So CPU1 will be waiting 3 time units until it
is granted the bus. Consequently, in order to refill the cache
as a result of the miss I3, task τ1 is delayed 9 time units in-
stead of 6, until time 18. At time 17, the task τ2 has a cache
miss I4 and CPU2 waits 1 time unit until time 18 when it
is granted the bus. Compared with the execution time from
Fig. 3(a), where an ideal, constant, cache miss penalty is as-
sumed, task τ2 finishes at time 31, instead of time 24. Upon
its end, τ2 starts immediately sending the explicit communi-
cation message E1, since the bus is free at that time. In the
meantime, τ1 is executing on CPU1 and has a cache miss,
I5 at time 36. The bus is granted to CPU1 only at time
43, after E1 was sent, so τ1 can continue to execute at time
49 and finishes its execution at time 67 causing a deadline
violation. The example in Fig. 3(b) shows that using worst-
case execution time analysis algorithms that consider tasks
in isolation and ignore system level conflicts leads to incor-
rect results.

In Fig. 3(b) we have assumed that the bus is arbitrated
using a simple First Come First Served (FCFS) policy. In
order to achieve worst-case predictability, however, we use
a TDMA bus scheduling approach, as outlined in Section 2.

Let us assume the bus schedule in Fig. 3(c). According
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Figure 3. Schedule with Various Bus Access Poli-
cies

to this schedule, processor CPU1 is granted the bus at time
0 for 15 time units and at time 32 for 7 time units. Thus,
the bus is available to task τ1 for each of its cache misses
(M1, M3, M5) at times 0, 9 and 33. Since these are the
arrival times of the cache misses, the execution of τ1 is not
delayed and finishes at time 57, before its deadline. Task τ2
is granted the bus at times 15 and 26 and finishes at time 39,
resulting in a longer execution time than in the ideal case
(time 24). The explicit communication E1 is started at time
39 and completes at time 51.

While the bus schedule in Fig. 3(c) is optimized accord-
ing to the requirements from task τ1, the one in Fig. 3(d)
eliminates all bus access delays for task τ2. According
to this bus schedule, while τ2 will finish earlier than in
Fig. 3(c), task τ1 will finish at time 84 and, thus, miss its
deadline.

A fine grained bus schedule, such as in Fig. 3(c) and (d),
potentially can provide good worst-case execution times at
the expense of a complex bus arbiter that requires a very
large memory for storing the schedule. We will show with
the next example that a simpler bus schedule, where the al-

01: θ=0
02: while not all tasks scheduled
03: schedule new task at t ≥ θ
04: Ψ=set of all tasks that are active at time t
05: repeat
06: select bus schedule B for the

time interval starting at t
07: determine the WCET of all tasks in Ψ
08: until termination condition
09: θ=earliest time a task in Ψ finishes
10: end while

Figure 4. Overall Approach

located slots follow a certain pattern, leads to a very good
compromise between arbiter complexity and task delays.
For example, in Fig. 3(e), the bus access is organized ac-
cording to the BSA3 approach. We divide the period into
two segments. The slots from the first segment are assigned
a size of 6 time units, while the slots in the second seg-
ment have 12 units. For this particular example, the order is
kept the same in both segments, starting with CPU1. Fol-
lowing this bus schedule τ1 finishes latest at time 60, τ2 at
31 and E1 at 60. A different BSA3-based schedule, with
the slot size of 17 in the first segment and 12 in the sec-
ond one is illustrated in Fig. 3(f). Please note, that different
BSA3-based bus schedules may lead to different worst-case
execution times. In Fig. 3(e), τ1 finishes at time 60 and τ2
at 31, while in Fig. 3(f) τ1 finishes at 58 and τ2 at 41. It is
crucial to choose, during the system scheduling a BSA3 bus
schedule that favors the tasks on the critical path.

Fig. 3(g) illustrates the BSA2 approach. The bus sched-
ule consists of two segments. The first one starts at time 0
and ends at 32. The slot sizes are 15 time units for CPU1

and 17 for CPU2. The second segment, starting at time
32 and finishing at 51 has a slot of 7 units allocated to
CPU1 and another slot of 12 units for CPU2. If we com-
pare the worst-case execution times obtained using BSA2 in
Fig. 3(g), to the ones obtained using BSA3 in 3(e) and (f),
we notice that BSA2 performs better, since it allows for a
better customization of the bus schedule according to needs
of the particular tasks.

The least flexible bus access policy, BSA4, is illustrated
in Fig. 3(h). Here, the same slot size and order is kept un-
changed over the whole period. This alternative produces
lower quality results, but it requires a controller with a very
small memory.

The examples in this section demonstrate two issues:
1) Ignoring bus conflicts due to implicit communication

can lead to gross subestimations of WCETs and, implicitly,
to incorrect schedules.

2) The organization of the bus schedule has a great im-
pact on the WCET of tasks. A good bus schedule does not
necessarily minimize the WCET of a certain task, but has to
be fixed considering also the global system deadlines.
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4 Overall Approach

4.1 Analysis, Scheduling and Optimization Flow

Let us consider a task graph mapped to a multiprocessor ar-
chitecture, as described in section 2. Traditionally, after the
mapping is done, the WCET of the tasks can be determined
and is considered to be constant and known. However, as
mentioned before, the basic problem is that memory access
times are, in principle, unpredictable in the context of the
potential bus conflicts. These conflicts (and implicitly the
WCETs), however, depend on the global system schedule.
System scheduling, on the other side, traditionally assumes
that WCETs of the tasks are fixed and given as input. In
order to solve this issue, we propose a strategy that is based
on the following basic decisions:

1) We consider a TDMA-based bus access policy as out-
lined in Section 2. The actual bus access schedule is deter-
mined at design time, as will be shown in section 5 and will
be enforced during the execution of the application.

2) The bus access schedule is taken into consideration
during WCET estimation. WCET estimation, as well as the
determination of the bus access schedule are integrated with
the system level scheduling process (Fig. 4).

We present our overall strategy using a simple example.
It consists of three tasks mapped on two processors, as in
Fig. 5.

The system level static cyclic scheduling process is
based on a list scheduling technique (outer loop in Fig. 4)
[6]. For more details, please see [1].

Let us assume that, based on traditional WCET estima-
tion (considering a given constant time for main memory
access, ignoring bus conflicts), the task execution times are
10, 4, and 8 for τ1, τ2, and τ3, respectively. Classical list
scheduling would generate the schedule in Fig. 5(b), and
conclude that a deadline of 12 can be satisfied.

In our approach, the list scheduler will choose tasks τ1
and τ2 to be scheduled on the two processors at time 0.
However, the WCET of the two tasks is not yet known, so
their worst case termination time cannot be determined. In
order to calculate the WCET of the tasks, a bus configura-
tion has to be decided on (line 06 in Fig. 4). Given a certain
bus configuration, our WCET-analysis will determine the

WCET for τ1 and τ2 (line 07). Inside an optimization loop,
several alternative configurations for the current bus seg-
ment are considered (loop between the lines 05-08). The
goal is to reduce the WCET of τ1 and τ2, having in mind
the goal of reducing the global delay of the application (see
section 5).

Let us assume that B1 is the selected bus configuration
and the WCETs are 12 for τ1 and 6 for τ2. At this moment
the following is already decided: τ1 and τ2 are scheduled at
time 0, τ2 is finishing, in the worst case, at time 6, and the
bus configuration B1 is used in the time interval between
0 and 6. Since τ2 is finishing at time 6, in the worst case,
the list scheduler will schedule task τ3 at time 6. Now, τ3
and τ1 are scheduled in parallel. Our WCET analysis tool
will determine the WCETs for τ1 and τ3. For this, it will
be considered that τ3 is executing under the configuration
B, and τ1 under configuration B1 for the time interval 0 to
6, and B for the rest. Again, an optimization is performed
in order to find an efficient bus configuration for the time
interval beyond 6. Let us assume that the bus configuration
B2 has been selected and the WCETs are 12 for τ3 and 13
for τ1. B2 is fixed for the interval from 6 to 13 and the
procedure continues with the only task left, τ3. The final
schedule is illustrated in Fig. 5.

The overall approach is outlined in Fig. 4. At each itera-
tion of the outer loop the set ψ of tasks that are active at the
current time t, is considered. In the inner optimization loop
a bus segment configuration B is fixed, as will be shown in
section 5. For each candidate configuration the WCET of
the tasks in the set ψ is determined. During the WCET esti-
mation process, the bus segment configurations determined
during the previous iterations are considered for the time in-
tervals before t, and the new configuration alternative B for
the time interval after t. Once a segment configuration B
is decided on, θ is the earliest time a task in the set ψ ter-
minates. The configuration B is fixed for the time interval
(t, θ], and the process continues from time θ, with the next
iteration.

In the above discussion, we have not addressed the ex-
plicit communication of messages on the bus, to and from
the shared memory. As shown in Section 2, a message ex-
changed via the shared memory assumes two explicit com-
munication tasks: one for writing into the shared memory
and the other for reading from the memory. A straight-
forward way to handle these communications would be to
schedule each as one compact transfer over the bus. This,
however, would be extremely harmful for the overall perfor-
mance, since it would block, for a relatively long time in-
terval, all memory access for cache misses from active pro-
cesses. Therefore, the communication tasks are considered,
during scheduling, similar to the ordinary tasks, but with the
particular feature that they are continuously requesting for
bus access (they behave like a hypothetical task that con-
tinuously generates successive cache misses such that the
total amount of memory requests is equal to the worst case
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Figure 6. Example Task WCET Calculation

message length). Such a task is considered together with
the other currently active tasks in the set Ψ. Our algorithm
will generate a bus configuration and will schedule the com-
munications such that it efficiently accommodates both the
explicit message communication as well as the memory ac-
cesses issued by the active tasks.

It is important to mention that the approach proposed in
this paper guarantees that the worst-case bounds derived by
our analysis are correct even when the tasks execute less
than their worst-case. In [2] we have formally demonstrated
this. The intuition behind the demonstration is the follow-
ing:

1) Instruction sequences terminated in shorter time than
predicted by the worst-case analysis cannot produce viola-
tions of the WCET.

2) Cache misses that occur earlier than predicted in the
worst-case will, possibly, be served by an earlier bus slot
than predicted, but never by a later one than considered dur-
ing the WCET analysis.

3) A memory access that results in a hit, although pre-
dicted as a miss during the worst-case analysis, will not
produce a WCET violation.

4) An earlier bus request issued by a processor does not
affect any other processor, due to the fact that the bus slots
are assigned exclusively to processors.

4.2 WCET Analysis

We will shortly outline the algorithm used for the computa-
tion of the worst-case execution time of a task, given a start
time and a bus schedule. Our approach builds on techniques
developed for ”traditional” WCET analysis. Consequently,
it can be adapted on top of any WCET analysis approach

that handles prediction of cache misses. Our technique is
also orthogonal to the issue of cache associativity supported
by this cache miss prediction technique. The current im-
plementation is built on top of the approach described in
[20, 16] that supports set associative and direct mapping.

In a first step, the control flow graph (CFG) is extracted
from the code of the task. The nodes in the CFG represent
basic blocks (consecutive lines of code without branches) or
control nodes (capturing conditional instructions or loops).
The edges capture the program flow. In Fig. 6(a) and (b),
we have depicted an example task containing a for loop and
the corresponding CFG. For the nodes associated to basic
blocks we have depicted the code line numbers. For exam-
ple, node 12 (id:12) captures the execution of lines 3 (i = 0)
and 4 (i < 100). A possible execution path, with the for
loop iteration executed twice, is given by the node sequence
2, 12, 4 and 13, 104, 113, 104, 16, 11. Please note that
the for loop was automatically unrolled once when the CFG
was extracted from the code (nodes 13 and 113 correspond
to the same basic block representing an iteration of the for
loop). This is useful when performing the instruction cache
analysis [1, 16].

We have depicted in Fig. 6(b) the resulting misses ob-
tained after performing instruction (marked with an ”i”) and
data (marked with a ”d”) cache analysis. For example, let
us examine the nodes 13 and 113 from the CFG. In node
13, we obtain instruction cache misses for the lines 6, 7 and
5, while in the node 113 there is no instruction cache miss.
In order to study at a larger scale the interaction between
the basic blocks, data flow analysis is used. This propagates
between consecutive nodes from the CFG the addresses that
are always in the cache, no matter which execution path is
taken. For example, the address of the instruction from line
4 is propagated from the node 12 to the nodes 13, 16 and
113.

Until this point, we have performed the same steps as the
traditional WCET analysis that ignores resource conflicts.
In the classical case, the analysis would continue with the
calculation of the execution time of each basic block. This
is done using local basic block simulations. The number of
clock cycles that are spent by the processor doing effective
computations, ignoring the time spent to access the cache
(hit time) or the memory (miss penalty) is obtained in this
way. Knowing the number of hits and misses for each basic
block and the hit and miss penalties, the worst case execu-
tion time of each CFG node is easily computed. Taking into
account the dependencies between the CFG nodes and their
execution times, an ILP formulation can be used for the task
WCET computation, [16, 13, 9].

In a realistic multiprocessor setting, however, due to the
variation of the miss penalties as result of potential bus con-
flicts, such a simple approach does not work. The main
difference is the following: in traditional WCET analysis it
is sufficient for each CFG node to have the total number of
misses. In our case, however, this is not sufficient in order to



take into consideration potential conflicts. What is needed
is, for each node, the exact sequence of misses in the worst-
case and the worst-case duration of computation sequences
between the misses. For example, in the case of node 13
in Fig. 6(b), we have three instruction sequences separated
by cache misses: (1) line 6, (2) line 7 and (3) lines 5 and
4. Once we have annotated the CFG with all the above in-
formation, we are prepared to solve the actual problem: de-
termine the worst-case execution time corresponding to the
longest path through the CFG. In order to solve this prob-
lem, we have to determine the worst-case execution time of
a node in the CFG. In the classical WCET analysis, a node’s
WCET is the result of a trivial summation. In our case, how-
ever, the WCET of a node depends on the bus schedule and
also on the node’s worst-case start time.

Let us assume that the bus schedule in Fig. 6(c) is con-
structed. The system is composed of two processors and the
task we are investigating is mapped on CPU1. There are
two bus segments, the first one starting at time 0 and the
second starting at time 32. The slot order during both seg-
ments is the same: CPU1 and then CPU2. The processors
have slots of equal size during a segment (BSA3 is used).

The start time of the task that is currently analyzed is
decided during the system level scheduling (see section 4.1)
and let us suppose that it is 0. Once the bus is granted to
a processor, let us assume that 6 time units are needed to
handle a cache miss. For simplicity, we assume that the hit
time is 0 and every instruction is executed in 1 time unit.

Using the above values and the bus schedule in Fig. 6(c),
the node 12 will start its execution at time 0 and finish at
time 39. The instruction miss (marked with ”i” in Fig. 6(b))
from line 3 arrives at time 0, and, according to the bus
schedule, it gets the bus immediately. At time 6, when the
instruction miss is solved, the execution of node 12 cannot
continue because of the data miss from line 2 (marked with
”d”). This miss has to wait until time 16 when the bus is
again allocated to CPU1 and, from time 16 to time 22 the
cache is updated. Line 3 is executed starting from time 22
until 23, when the miss generated by the line 4 requests the
bus. The bus is granted to CPU1 at time 32, so line 4 starts
to be executed at time 38 and is finished, in the worst case,
at time 39.

The algorithm that performs the WCET computation for
a certain task must find the longest path in the control flow
graph. The worst-case complexity of the WCET analysis
is exponential (this is also the case for the classical WCET
analysis). However, in practice, the approach is very effi-
cient, as experimental results presented in Section 6 show.1

The algorithm is described in more detail in [1].

1In the classical approach WCET analysis returns the worst-case time
interval between the start and the finishing of a task. In our case, what we
determine is the worst-case finishing time of the task.
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Figure 7. Estimating the Global Delay

5 Bus Schedule Optimization

In Section 2, we have introduced four bus scheduling ap-
proaches, with BSA1 being the most general and BSA4 the
most restrictive. However, these two approaches are not
suitable in practice due to the extreme and unmanageable
memory consumption of the former and the relative non-
efficiency of the latter. The other two approaches, BSA2
and BSA3, have been shown to perform close to BSA1
while keeping the memory usage on the bus arbiter low and
are thus of particular interest. Consequently, in this section
we propose heuristics for the bus optimization step, accord-
ing to these two approaches.

5.1 Cost Function

Consider the inner optimization loop of the overall approach
in Fig. 4. Given a set of active tasks τi ∈ Ψ, the goal is
now to generate a close to optimal bus segment schedule
with respect to Ψ. An optimal bus schedule, however, is a
bus schedule taking into account the global context, mini-
mizing the global delay of the application. This global de-
lay includes tasks not yet considered and for which no bus
schedule has been defined.

This requires knowledge about future tasks, not yet an-
alyzed, and, therefore, we must find ways to approximate
their influence on the global delay.

In order to estimate the global delay, we first build a
schedule Sλ of the tasks not yet analyzed, using the list
scheduling technique. When building Sλ we approximate
the WCET of each task by their respective worst-case exe-
cution times in the naive case, where no conflicts occur on
the bus and any task can access the bus at any time. From
now on we refer to this conflict-free WCET as NWCET
(Naive Worst-Case Execution Time). When optimizing the
bus schedule for the tasks τ ∈ Ψ, we need an approxima-
tion of how the WCET of one task τi ∈ Ψ affects the global
delay. Let Di be the union of the set of all tasks depend-
ing directly on τi in the process graph, and the singleton



set containing the first task in Sλ that is scheduled on the
same processor as τi. We now define the tail λi of a task τi
recursively as:

• λi = 0, if Di = ∅

• λi = max
τj∈Di

(xj + λj), otherwise.

where xj = NWCETj if τj is a computation task. For com-
munication tasks, xj is an estimation of the communication
time, depending on the length of the message. Intuitively, λi

can be seen as the length of the longest (with respect to the
NWCET) chain of tasks that are affected by the execution
time of τi. Without any loss of generality, in order to sim-
plify the presentation, only computation tasks are consid-
ered in the examples of this section. Consider Fig. 7(a), il-
lustrating a Gantt chart of tasks scheduled according to their
NWCETs. Direct data dependencies exist between tasks τ4
& τ5, τ5 & τ6, and τ5 & τ7; hence, for instance, D3 = {τ5}
and D4 = {τ5, τ7}. The tails of the tasks are: λ7 = λ6 = 0
(since D7 = D6 = ∅), λ5 = 7, λ4 = λ3 = 10, λ2 = 18
and λ1 = 14.

Since our concern when optimizing the bus schedule for
the tasks in Ψ is to minimize the global delay, a cost func-
tion taking λi into account can be formulated as follows:

CΨ,θ = max
τi∈Ψ

(θ + WCETθ
i + λi) (1)

where WCETθ
i is defined as the length of that portion of the

worst case execution path of task τi which is executed after
time θ.

5.2 The BSA2 Approach

The optimization algorithm for BSA2 is outlined as follows:

1. Calculate initial slot sizes.

2. Calculate an initial slot order.

3. Analyze the WCET of each task τ ∈ Ψ and
evaluate the result according to the cost
function.

4. Generate a new slot order candidate and
repeat from 3 until all candidates are
evaluated.

5. Generate a new slot size candidate and repeat
from 2 until the exit condition is met.

6. The best configuration according to the cost
function is then used.

Algorithm 1: The BSA2 Approach

These steps will now be explained in detail, starting
with the inner loop that decides the order of the slots. Given
a specific slot size, we search the order of slots that yields
the best cost.
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5.2.1 Choosing the Slot Order

At step 2 of Algorithm 1, a default initial order is set. When
step 4 is reached for the first time, after calculating a cost
for the current slot configuration, the task τi ∈ Ψ that is
maximizing the cost function in Equation 1 is identified.
We then construct n − 1 new bus schedule candidates, n
being the number of tasks in the set Ψ, by moving the slot
corresponding to this task τi, one position at a time, within
the TDMA round. The best configuration with respect to
the cost function is then selected. Next, we check if any
new task τj , different from τi, now has taken over the role
of maximizing the cost function. If so, the procedure is
repeated, otherwise it is terminated.

5.2.2 Determination of Initial Slot Sizes

At step 1 of Algorithm 1, the initial slot sizes are dimen-
sioned based on an estimation of how the slot size of an
individual task τi ∈ Ψ affects the global delay.

Consider λi, as defined in Section 5.1. Since it is a sum
of the NWCETs of the tasks forming the tail of τi, it will
never exceed the accumulative WCET of the same sequence
of tasks. Consequently, if we for all τi ∈ Ψ define

Λ = max
τi∈Ψ

(NWCETθ
i + λi) (2)

where NWCETθ
i is the NWCET of task τi ∈ Ψ counting

from time θ, a lower limit of the global delay can be calcu-
lated by θ + Λ. This is illustrated in Fig. 7(a), for θ = 0.
Furthermore, let us define ∆ as the amount by which the
estimated global delay increases due to the time each task
τi ∈ Ψ has to wait for the bus.

See Fig. 7(b) for an example. Contrary to Fig. 7(a), τ1
and τ2 are now considered using their real WCETs, calcu-
lated according to a particular bus schedule (Ψ = {τ1, τ2}).
The corresponding expansion ∆ is 3 time units. Now, in
order to minimize ∆, we want to express a relation be-
tween the global delay and the actual bus schedule. For
task τi ∈ Ψ we definemi as the number of remaining cache
misses on the worst case path, counting from time θ. Simi-
larly, also counting from θ, li is defined as the sum of each
code segment and can thus be seen as the length of the task
minus the time it spends using the bus or waiting for it (both



mi and li are determined by the WCET analysis). Hence, if
we define the constant k as the time it takes for the bus to
process a cache miss, we get

NWCETθ
i = li +mik (3)

As an example, consider Fig. 8(a) showing a task execution
trace, in the case where no other tasks are competing for the
bus. A black box represents the idle time, waiting for the
transfer, due to a cache miss, to complete. In this example
m1 = 4 and l1 = δ1 + δ2 + δ3 + δ4 = 115.

Let us now, with respect to the particular bus schedule,
denote the average waiting time of task τi by di. That is,
di is the average time task τi spends waiting, due to other
processors owning the bus and the actual time of the transfer
itself, every time a cache miss has to be transfered on the
bus. Then, analogous to Equation 3, the WCET of task τi,
counting from time θ, can be calculated as

WCETθ
i = li +midi (4)

The dependency between a set of average waiting times di

and a bus schedule can be modeled as follows. Consider
the distribution P, defined as the set p1, . . . , pn, where∑
pi = 1. The value of pi represents the fraction of bus

bandwidth that, according to a particular bus schedule, be-
longs to the processor running task τi ∈ Ψ. Given this
model, the average waiting times can be rewritten as

di =
1
pi
k (5)

Putting Equations 2, 4, and 5 together and noting that Λ
has been calculated as a maximum over all τi ∈ Ψ, we can
formulate the following system of inequalities:

θ + l1 +m1
1
p1
k + λ1 ≤ θ + Λ + ∆

...

θ + ln +mn
1
pn
k + λn ≤ θ + Λ + ∆

p1 + · · · + pn = 1

What we want is to find the bus bandwidth distribution P
that results in the minimum ∆ satisfying the above sys-
tem. Unfortunately, solving this system is difficult due to
its enormous solution space. However, an important ob-
servation that simplifies the process can be made, based on
the fact that the slot distribution is represented by continu-
ous variables p. Consider a configuration of p1, . . . , pn, ∆
satisfying the above system, and where at least one of the
inequalities are not satisfied by equality. We say that the
corresponding task τi is not on the critical path with respect
to the schedule, meaning that its corresponding pi can be
decreased, causing τi to expand over time without affect-

CPU1

CPU2

CPU3

(a)

(b)

(c)

Figure 9. Calculating New Slot Sizes

ing the global delay. Since the values of p must sum to 1,
decreasing pi, allows for increasing the percentage of the
bus given to the tasks τ that are on the critical path. Even
though the decrease might be infinitesimal, this makes the
critical path shorter, and thus ∆ is reduced. Consequently
the smallest ∆ that satisfies the system of inequalities is
achieved when every inequality is satisfied by equality. As
an example, consider Fig. 7(b) and note that τ5 is an ele-
ment in both sets D3 and D4 according to the definition in
Section 5.1. This means that τ5 is allowed to start first when
both τ3 and τ4 have finished executing. Secondly, observe
that τ5 is on the critical path, thus being a direct contributor
to the global delay. Therefore, to minimize the global delay,
we must make τ5 start as early as possible. In Fig. 7(b), the
start time of τ5 is defined by the finishing time of τ4, which
also is on the critical path. However, since there is a block of
slack space between τ3 and τ5, we can reduce the execution
time of τ2 and thus make τ4 finish earlier, by distributing
more bus bandwidth to the corresponding processor. This
will make the execution time of τ1 longer (since it receives
bus bandwidth), but as long as τ3 ends before τ4, the global
delay will decrease. However, if τ3 expands beyond the fin-
ishing point of τ4, the former will now be on the critical
path instead. Consequently, making task τ3 and τ4 end at
the same time, by distributing the bus bandwidth such that
the sizes of τ1 and τ2 are adjusted properly, will result in the
earliest possible start time of τ5, minimizing ∆. In this case
the inequalities corresponding to both τ1 and τ2 are satisfied
by equality. Such a distribution is illustrated in Fig. 7(c).

The resulting system consists of n+1 equations and n+1
variables (p1, . . . , pn and ∆), meaning that it has exactly
one solution, and even though it is nonlinear, it is simple
to solve. Using the resulting distribution, a corresponding
initial TDMA bus schedule is calculated by setting the slot
sizes to values proportional to P .

5.2.3 Generating New Slot Size Candidates

One of the possible problems with the slot sizes defined as
in Section 5.2.2 is the following: if one processor gets a very
small share of the bus bandwidth, the slot sizes assigned to
the other processors can become very large, possibly result-
ing in long wait times. By reducing the sizes of the larger
slots while keeping, as much as possible, their mutual pro-
portions, this problem can be avoided.

We illustrate the idea with an example. Consider a round
consisting of three slots ordered as in Fig. 9(a). The slot



sizes have been dimensioned according to a bus distribu-
tion P = {0.49, 0.33, 0.18}, calculated using the method
in Section 5.2.2. The smallest slot, belonging to CPU 3,
has been set to the minimum slot size k, and the remaining
slot sizes are dimensioned proportionally 2 as multiples of
k. Consequently, the initial slot sizes become 3k, 2k and
k. In order to generate the next set of candidate slot sizes,
we define P ′ as the actual bus distribution of the generated
round. Considering the actual slot sizes the bus distribution
becomes P ′ = {0.50, 0.33, 0.17}. Since very large slots as-
signed to a certain processor can introduce long wait times
for tasks running on other processors, we want to decrease
the size of slots, but still keeping close to the proportions
defined by the bus distribution P . Consider once again Fig.
9(a). Since, p′1 − p1 > p′2 − p2 > p′3 − p3, we conclude that
slot 1 has the maximum deviation from its supposed value.
Hence, as illustrated in Fig. 9(b), the size of slot 1 is de-
creased one unit. This slot size configuration corresponds
to a new actual distribution P ′ = {0.40, 0.40, 0.20}. Now
p′2 − p2 > p′3 − p3 > p′1 − p1, hence the size of slot 2 is de-
creased one unit and the result is shown in Fig. 9(c). Note
that in the next iteration, p′3 − p3 > p′1 − p1 > p′2 − p2,
but since slot 3 cannot be further decreased, we recalculate
both P and P ′, now excluding this slot. The resulting sets
are P = {0.60, 0.40} and P ′ = {0.67, 0.33}, and hence
slot 1 is decreased one unit. From now on, only slot 1 and 2
are considered, and the remaining procedure is carried out
in exactly the same way as before. When this procedure
is continued as above, all slot sizes will converge towards
k which, of course, is not the desired result. Hence, after
each iteration, the cost function is evaluated and the process
is continued only until no improvement is registered for a
specified number π of iterations. The best ever slot sizes
(with respect to the cost function) are, finally, selected. Ac-
cepting a number of steps without improvement makes it
possible to escape certain local minima (in our experiments
we use 8 < π < 40, depending on the number of proces-
sors).

5.2.4 Density Regions

A problem with the technique presented above is that it as-
sumes that the cache misses are evenly distributed through-
out the task. This, obviously, is not the case. A solution
to this problem is to analyze the internal cache miss struc-
ture of the actual task and, accordingly, divide the worst
case path into disjunct intervals, so called density regions.
A density region is defined as an interval of the path where
the distance between consecutive cache misses (δ in Fig. 8)
differs only by a specified percentage. In this context, if
we denote by α the average time between two consecutive
cache misses (inside a region), the density of a region is de-

2While slot sizes, in theory, do not have to be multiples of the minimum
slot size k, in practice this is preferred as it avoids introducing unnecessary
slack on the bus.

fined as 1
α+1 . A region with high density, close to 1, has

very frequent cache misses, while the opposite holds for a
low-density region.

Consequently, for each task τi ∈ Ψ, we identify the next
density region. Now, instead of constructing a bus schedule
with respect to each entire task τi ∈ Ψ, only the interval
[θ..Θi) is considered, with Θi representing the end of the
density region. We call this interval of the task a subtask
since it will be treated as a task of its own. Fig. 8(b) shows a
task τ2 with two density regions, the first one corresponding
to the subtask τ ′2. The tail of τ ′2 is calculated as λ′2 = λ′′2 +
λ2, with λ′′2 being defined as the NWCET of τ2 counting
from Θ2. Furthermore, in this particular example m′

2 = 3
and l′2 = δ1 + δ2 + δ3 = 87.

Analogous to the case where entire tasks are analyzed,
when a partial bus segment schedule has been decided, θ′

will be set to the finish time of the first subtask. Just as
before, the entire procedure is then repeated for θ = θ′.

5.3 The BSA3 Approach

The bus scheduling policy BSA3 is obviously a special
case of the BSA2 approach. However, due to the lim-
itation that all slot sizes of a round now have the same
size, our previous framework for calculating the distribu-
tion P makes little sense. Therefore, we propose a sim-
pler, but quality-wise equally efficient algorithm, tailor-
made for the BSA3 approach. The slot ordering mecha-
nisms are still the same as for BSA2, but the procedures
for calculating the slot sizes are now vastly simplified.

1. Initialize the slot sizes to the minimum
size k.

2. Calculate an initial slot order.

3. Analyze the WCET of each task τ ∈ Ψ and
evaluate the result according to the cost
function.

4. Generate a new slot order candidate and
repeat from 3 until all candidates are
evaluated.

5. Increase the slot sizes one step.

6. If no improvements were achieved during a
specified number of iterations then exit.
Otherwise repeat from 2.

7. The best configuration according to the
cost function is then used.

Algorithm 2: The BSA3 Approach

5.4 Memory Consumption

As stated before, both BSA2 and BSA3 in their standard
form do not require excessive memory on the bus arbiter.
The critical factor is the number of different segments that
has to be stored in memory. In order to calculate an upper
bound on the number of segments needed, we make the ob-
servation that a new segment is created at every time t when
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Figure 10. The Four Bus Access Policies

at least one task starts or finishes. For the case when density
regions are not used, these are also the only times when a
new segment will be created. Hence, an upper bound on the
number of segments is 2|Π|, where Π is the set of all tasks
as defined in Section 2.

When using density regions, the start and finish of ev-
ery region can result in a new segment each. Therefore,
tasks divided into very many small density regions will re-
sult in bus schedules consuming more memory. A straight-
forward solution is to limit, according to the available con-
troller memory, the minimum size of a density region. For
instance, if the minimum density region size for a task τi
is x% of the task length li as defined above, the number of
generated segments becomes at most 2|Π| 100x .

6 Experimental Results

The complete flow illustrated in Fig. 4 has been imple-
mented and used as a platform for the experiments pre-
sented in this section. They were run on a dual core Pentium
4 processor at 2.8 GHz. For the WCET analysis, it was as-
sumed that ARM7 processors are used. We have assumed
that 12 clock cycles are required for a memory access due
to a cache miss.

First, we have performed experiments using a set of
benchmarks consisting of task graphs in which the individ-
ual tasks are corresponding to CFGs extracted from various
C programs (e.g. sorting, searching, matrix multiplications,
DSP algorithms). The actual task graphs were randomly
generated with the number of tasks varying between 50 and
200.

We have explored the efficiency of the proposed ap-
proach in the context of the four bus scheduling approaches
introduced in Section 2. We have run experiments for con-
figurations consisting of 1, 2, 3, . . . , 10 processors. For
each configuration, 50 randomly generated task graphs were
used. For each task graph, the worst-case schedule length
has been determined in 5 cases: the four bus scheduling
policies BSA1 to BSA4, and a hypothetical ideal situation
in which memory accesses are never delayed. This ideal
schedule length (which in practice, is unachievable, even

by a theoretically optimal bus schedule) is considered as the
baseline for the diagrams presented in Fig. 10. The diagram
corresponding to each bus scheduling alternative indicates
how many times larger the obtained bus schedule is relative
to the ideal length. The diagrams correspond to the average
obtained for the 50 graphs considered for each configura-
tion.

A first conclusion is that BSA1 produces the shortest de-
lays. This is not unexpected, since it is based on highly
customized bus schedules. It can be noticed, however, that
the approaches BSA2 and BSA3 are producing results that
are close to those produced by BSA1, but with a much lower
cost in controller complexity. It is not surprising that BSA4,
which restricts very much the freedom for bus optimization,
produces very low quality results.

In a second set of experiments we have focused on the
comparison of the BSA2 and BSA3 policies, which are
those of practical importance. In particular, we were in-
terested in the efficiency of these policies for applications
with different cache miss patterns. For these experiments
we have considered task graphs consisting of 20 tasks run-
ning on 5 processors. A particular cache miss pattern, in this
context, is defined by its standard deviation of the interval
between the consecutive cache misses inside the task (the
average distance between cache misses was 73 clock cy-
cles). Thus, we have generated 30 task graphs with uniform
distribution of the cache misses (standard deviation is 0).
We also generated 30 task graphs with moderate irregularity
in the distribution of cache misses (standard deviation is 50)
and 30 task graphs with high irregularity (standard deviation
is 150). The results in Fig. 11 show the average normalized
schedule length obtained with the two approaches, relative
to the ideal (practically unachievable) schedule length. It
is no surprise that in case of perfect uniformity the two ap-
proaches produce identical schedule lengths. However, as
the irregularity of the cache misses increases, the potential
advantages of BSA2 become visible.

With a third set of experiments, we have explored the ef-
ficiency of the successive steps of the bus access optimiza-
tion algorithm for BSA2 presented in section 5. We have
run the experiments using the same task graphs as before,
with the same cache miss patterns. The results in Fig. 12
are illustrating the normalized schedule lengths obtained af-
ter successive steps of the algorithm: with initial slot sizes
(ISS, section 5.2.2), after slot size adjustment (SSA, sec-
tion 5.2.3), and, finally, after the application of density re-
gions (DS, section 5.2.4). The schedule lengths are, again,
normalized relative to the length of the ideal schedule. As
expected, applying density regions is not useful in the case
of uniform cache miss distributions. Its efficiency increases
with increased degree of irregularity.

The execution times for the whole flow, in the case of the
examples consisting of 100 tasks on 10 processors are 120
min. for BSA2 and 5 min. for BSA3.

In order to validate the real-world applicability of this
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Figure 12. BSA2 Optimization Steps

approach we have analyzed a smart phone. It consists of
a GSM encoder, GSM decoder and an MP3 decoder, that
were mapped on 4 ARM7 processors (the GSM encoder and
decoder are mapped each one on a processor, while the MP3
decoder is mapped on two processors). The software appli-
cations have been partitioned into 64 tasks. The size of one
task is between 1304 and 70 lines of C code in case of the
GSM codec and between 2035 and 200 lines in case of the
MP3 decoder. We have assumed a 4-way set associative in-
struction cache with a size of 4KB and a direct mapped data
cache of the same size. The results of the analysis are pre-
sented in table 1, where the deviation of the schedule length
from the ideal one is presented for each bus scheduling ap-
proach.

BSA1 BSA2 BSA3 BSA4
1.17 1.33 1.31 1.62

Table 1. Results for the Smart Phone

7 Conclusions

In this paper, we have presented an approach to the imple-
mentation of predictable RT applications on multiprocessor
SoCs, which takes into consideration potential conflicts be-
tween parallel tasks for memory access. We have primarily
focused on the issue of bus access optimization which is of
crucial importance for achieving predictability and, at the
same time, performance. Experiments have demonstrated
the efficiency of the proposed optimization heuristics.
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