
Bus-Aware Microarchitectural Floorplanning

Dae Hyun Kim Sung Kyu Lim
School of Electrical and Computer Engineering School of Electrical and Computer Engineering

Georgia Institute of Technology Georgia Institute of Technology
daehyun@ece.gatech.edu limsk@ece.gatech.edu

Abstract— In this paper we present the first bus-aware microarchitec-
tural floorplanning. Our goal is to study the impact of bus routability
on other important floorplanning objectives including area, performance,
power, and thermal. We developed a fast performance-aware bus routing
algorithm, which is integrated into the floorplanning engine to ensure
routability while optimizing other conflicting objectives. Our related
experiments performed on high performance processors show that we
obtain 100% routability at the cost of minimal increase on area,
performance, and power objectives under thermal constraint.

I. INTRODUCTION

Microarchitectural floorplanning bridges the gap between computer
architecture and physical design to effectively address performance,
power, and thermal problems. The geometric information available
from floorplanning allows architects to efficiently tackle issues such
as interconnect delay, thermal coupling, etc. On the other hand,
the architectural simulation results can be exploited during the
floorplanning stage for more effective optimization on these metrics.

All existing works on microarchitectural floorplanning [1], [2], [3],
[4], however, fail to address the impact of buses that connect the func-
tional units. These buses typically are very wide and long, thereby
consuming significant area, delay, and power. In our architecture,
we have 51 buses with the widest one covering a functional module
almost completely. Since these buses obstruct other buses, routability
becomes an important factor to consider. Even a floorplan optimized
for other objectives may not be routable because of wide and long
buses. Moreover, the actual bus length has significant impact on IPC
(instructions per cycle) and power consumption of the underlying
architecture. In addition, if the buses are routed over hotspots, the
temperature-dependent resistance will increase the delay and reduce
performance.

Recent works on bus-aware floorplanning are targeting circuit
designs, not architectural designs. Xiang et al. [5] presented bus-
aware floorplanning so that all modules in a single bus are aligned
vertically or horizontally. This work does not allow any bend in the
buses. Law and Young [6] extended [5] by allowing bends in the
buses, but this is not suitable for microarchitecture design as it forces
the functional units to be aligned and compromise performance. Rafiq
et al. [7] integrated bus routing into floorplanning, but this algorithm
considers only two-pin buses. In addition to the restrictions on the
bus topology, these works fail to address the impact of bus routability
on performance/power/thermal issues.

In this paper, we present a simple but powerful bus-aware mi-
croarchitectural floorplanning. Our goal is to study the impact of
bus routability on other important floorplanning objectives including
area, performance and power under thermal constraint. Our thermal
analyzer models the heat dissipated by the buses as well as the
functional modules. Our related experiments performed on high
performance processors show that we obtain 100% routability at the
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Fig. 1. Overview of our microarchitectural bus model

cost of minimal increase on area, performance and power objectives
under thermal constraint.

II. ARCHITECTURAL DESIGN AND SIMULATION

Figure 1 shows the architectural modules and buses used in
our experiments. We assume that the issue width is four, and the
microarchitecture is a 64-bit machine. We have four ALUs and four
FPUs, so the total number of functional units is 20.

A. Integrated Design Flow

Our design flow consists of three steps. During the first simulation
step, we use SimpleScalar [8] to collect the access pattern for each
module and bus for the given application. We also use Wattch [9]
to collect power-related data so that the power consumption for
each functional module and bus are computed. During the second
floorplanning step, we optimize Sequence Pair [10] representation
of the floorplan using Simulated Annealing. For a given candidate
floorplanning solution, we quickly measure its routability, IPC, area,
power, and thermal metrics for evaluation (details are presented
in Section V). We use these quick estimates of the metrics since
an accurate computation would be computationally prohibitive if
repeated for many candidate floorplans. During our last validation
step, we perform architectural simulation to accurately compute the
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Fig. 2. Thermal profile of 1-bit wire (length:2000um, TR = Tline(0) =
Tline(2000um) = 100oC)

new IPC value and use HotSpot [11] for thermal analysis on the final
floorplan.

III. BUS THERMAL MODELING

A. Bus Modeling for Thermal Profile

Heat diffusion equation in single dimension bus is stated in [12]
and [13] as follows:

d2Tline(x)

dx2
= λ2Tline(x) − λ2Tref (x) − θ (1)

where

λ2 =
1

km
(

kins

tm · tins
− Irms

2 · ρ · β
w2 · tm

2
) (2)

θ =
Irms

2 · ρ
w2 · tm

2 · km
(3)

In the above equations, km is the thermal conductivity of the
interconnect material, kins is the thermal conductivity of an insulator
of thickness tins, and tm and w are thickness and width of the
interconnect, respectively. ρ is the metal electrical resistivity and β
is the temperature coefficient of resistance.

Assuming Tref (x) is constant in short distance L, the solution of
the equation (1) becomes:

Tline(x) = A · eλL + B · e−λL + (TR +
θ

λ2
) (4)

where

A =
TL · eλL − T0 − (TR + θ

λ2 )(eλL − 1)

e2λL − 1
(5)

B =
−TL · eλL + (TR + θ

λ2 )(eλL − e2λL) + T0 · e2λL

e2λL − 1
(6)

with boundary conditions T0 = Tline(0), TL = Tline(L) and TR =
Tref (x).

Figure 2 shows an example. The Tline(x) is almost constant
between x = 0 and x = L, and rapidly changes near the end-
points due to the exponential terms in the equation (4). Therefore we
approximate the temperature to the constant in the Tline(x) if the L
is sufficiently small:

Tline(x) = Tconstant = TR +
θ

λ2
(7)

Fig. 3. Illustration of bus temperature computation in our extended HotSpot

B. HotSpot Simulation

We integrate our bus thermal modeling equations into
HotSpot [11]. HotSpot partitions the floorplan into m × n grid and
computes the temperatures of each grid point. The following is our
algorithm to compute the final temperature while considering the
buses:

Algorithm Bus Thermal Analyzer
for (all grid points)

if (the grid is overlapping with any bus)
for (four directions left, right, up, and down)

compute the constant TR + θ/λ2;
pick up the maximum value for the grid;

save the new temperature;
restore the new temperatures;

For instance, let the current grid be G(1081) in Figure 3. Since
there are three adjacent grid points G(1031), G(1080) and G(1082),
we compute the thermal constants (= Equation (7)) between G(1081)
and these neighboring points. Then we pick up the maximum constant
value and use it for the temperature of G(1081). Notice that maximum
constants are used to estimate the worst cases. We save these constant
values and reuse them for computing the temperature of other grid
points. The temperature continues to increase once the new constant
values are used for the computation of other grid points. Section V-A
presents experimental results on our bus thermal modeling.

IV. BUS-AWARE FLOORPLANNING ALGORITHM

Given a set of microarchitectural modules and buses, our bus-
aware microarchitectural floorplanning problem seeks to determine
the location of each module such that (i) there is no overlap among
modules, and (ii) all buses are routed. We assume that one pair of
horizontal and vertical layers is given for bus routing. Our objective
is to maximize IPC (instructions per cycle) while minimizing the
number of bends on each bus, footprint area of the floorplan, and
power consumption to drive buses under the user-specified thermal
constraint.1

A major difference between circuit-level vs microarchitecture-
level bus routing is on how to optimize performance: circuit-level
bus routing is focused on clock period minimization, whereas the
microarchitecture-level routing is targeting IPC improvement. At
circuit-level, more details on critical paths such as types and number
of gates as well as their placement are available. This makes the
delay computation and optimization more accurate compared with
microarchitecture-level. On the other hand, microarchitecture-level
routing can exploit the statistics of the application execution available
from architectural simulation. This allows the router to target runtime
behavior of the chip more directly, resulting in higher IPC.

1We assume the interconnects are pipelined so that the clock period remains
fixed. In this case, longer interconnects incur higher latency.
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Fig. 4. Comparison between wirelength minimization and SSL(Source-to-
Sink Length) minimization

A. Factors to Consider

One of the most important factors in microarchitectural bus routing
is the length of the source-to-sink connection (= SSL). Existing works
are mostly focused on the overall bus length, but we see that SSL has
greater impact on IPC than the overall length. In Figure 4, the source-
to-sink1 bus is already routed, and we want to connect sink2 to the
bus. If we route as in case (a), the overall bus length is shorter than
case (b). However, SSL of sink2 in case (a) is longer than case (b).
This may increase the latency on source-to-sink2 bus and negatively
affect IPC.

In Figure 4, case (b) is better than case (a) with respect to SSL.
However, the number of clock cycles needed to transfer signals from
the source to the sink2 may be same in both cases. For instance,
assume that the SSL of sink2 is 80μm in case (a) and 50μm in case
(b). If the clock period is equivalent to the delay of 100μm-long
bus, case (a) is better as it takes the same number of clock cycle
but the total wirelength is shorter. However, if the clock period is
equivalent to the delay of 60μm-long bus, case (a) needs one more
clock cycle than case (b) so the IPC goes down. Thus, this latency-
aware timing slack can be traded in microarchitectural bus routing
for other objectives.

The overall length of the bus is directly proportional to the power
consumption. In addition, the switching activity of the source module
is another important factor in terms of power consumption. Thus,
power-aware bus routing needs to consider these factors. On the other
hand, if the bus routing is done on top of hotspot, the temperature-
dependent resistance will increase the delay of the bus and affect the
clock period. Thus, bus routing needs to avoid hotspots as much as
possible if it does not degrade the objectives.

B. Floorplanning Algorithm

One of the most important aspects of floorplan optimization using
Simulated Annealing is on how to evaluate a candidate floorplan.
Since the annealing process generates many candidate solutions, this
evaluation process becomes not only runtime bottleneck but also
crucial factor in determining the quality of the final solution. For
a given candidate floorplanning solution, we quickly measure its
routability, IPC, power, and thermal metrics for evaluation as follows:

• Routability: we perform bus routing to compute the routability
accurately. Our bus routing considers source-to-sink length and
thermal hotspot simultaneously while minimizing the bus area
and latency.

• IPC: we need a timing-consuming architectural simulation such
as SimpleScalar [8] if we desire an accurate IPC value. Instead,
we use the weighted wirelength as suggested in [2], where the
weights are based on the access frequency statistics collected
during the simulation step.

• Thermal: an accurate computation of temperature requires a full-
blown thermal analysis. Instead, we use power density of each

Fig. 5. Illustration of bus segments

module so that the modules with high power density values are
separated apart.

• Power: we need a timing-consuming architectural simulation
such as Wattch [9] if we desire accurate power values. Instead,
we use another kind of weighted wirelength, where the weight
this time is based on switching activity of the source module.

Our cost function used during floorplan is defined as follows:

Fcost = α1 · A + γ · R + η1 · F + μ1 · P (8)

where
F =

∑

buses

(access freq × latency) (9)

P =
∑

buses

(access freq × bus area) (10)

In the above equations, α1, γ, η1 and μ1 are weighting constants.
A is the final floorplan area, R is the number of unrouted buses for
routability objective, F is the performance metric, and P is the power
consumption of the buses. We also calculate the thermal overlap for
each floorplan and discard it if the thermal overlap is greater than
the constraint. Thermal overlap is computed as

TO =
∑

buses

(access freq ×
∑

modules

(Pdense × Aoverlap)) (11)

Pdense is the power density of a module, and Aoverlap is the
amount of overlap between a pair of module and bus. TO corresponds
to the constraint of bus area overlapping with hotspots.

C. Bus Routing Algorithm

Our bus routing algorithm is sequential, where we route each bus
one-by-one. For a given bus to be routed, we select the nearest sink to
the existing partial topology and connect it. In this case, we explore
several different topologies and choose the one that optimizes the
cost function that combines bus bend count, area, performance and
overlap with thermal hotspots. Once all sink modules are connected
to the bus, we route the next bus.

Our bus routing is based on the concept of bus segments, where
each bus segment is either horizontal or vertical segment in a bus
topology. An illustration is shown in Figure 5. Each segment has its
own area, coordinates, length, and the direction relative to the source.
Given a sink module to connect to the existing bus, there exist three
possible topologies. Case (a) and case (b) use one segment to connect
the sink module to the routed bus. Case (c) uses two segments (one
for horizontal and another for vertical). For a given sink module to
connect to the existing bus, we enumerate all possible connections
from the module to all segments existing in the bus and choose the
best one based on the following cost function:
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TABLE I
MICROARCHITECTURE CONFIGURATIONS

module size module size
ALU 4 IF -
FPU 4 BPRED 2048

L1 I-$ 32K DEC -
L1 D-$ 32K LSQ 64
ITLB 16 IRF 128
DTLB 32 RUU 128
FetchQ 16 ISSUE 4 (issue width)

Fig. 6. Before including the bus effect on the temperature

Rcost = α2 · B + μ2 · Abus + η2 · L + ζ2 · T (12)

where
T =

∑

modules

(Pdense × Aoverlap) (13)

In the above function, α2, μ2, η2 and ζ2 are weighting constants.
B is the total number of bends in the bus, Abus is the area of the
bus for power consumption minimization, L is the latency of the
bus, and T is the temperature metric. Pdense is the power density
of a module, and Aoverlap is the amount of overlap between a pair
of module and bus. The intuition behind T is that we can avoid
the hotspot by multiplying the power density of each module by the
overlapped area.

Notice that the bus ordering affects the objectives since we route
buses sequentially. Therefore we can use a specific ordering for each
objective. For example, sorting by bus widths increases routability
and decreases bus area, sorting by access frequencies increases per-
formance, and sorting by access frequency times bus width decreases
power consumption.

V. EXPERIMENTAL RESULTS

Our algorithms are implemented in C++ and experimented on
Solaris 9 installed on SUN UltraSPARC-II 400MHz machine with
4GB main memory. We used MCNC benchmark to compare our
algorithm with [7] and [6]. These are not architectural designs
but circuit modules. Thus, we only report runtime, routability and
floorplan area since other metrics require architectural simulations.
The second benchmark is SPEC 2000 tested on our microarchitecture
model shown in Section III. Table I shows our microarchitecture
configurations used in SimpleScalar. In addition, we used 720nm
pitch (wire width+spacing) global routing layers based on 65nm
technology. The bus latency value is based on 3GHz clock frequency.

Fig. 7. After including the bus effect on the temperature

TABLE II
COMPARISON WITH [7]. R DENOTES ROUTABILITY IN PERCENTAGE, AND

A DENOTES THE FLOORPLAN AREA IN mm2

[7] Ours
Blocks Buses R A R A

apte 9 36 80.9 55.46 100.00 48.77
xerox 10 98 79.8 22.2 98.78 21.54

hp 11 37 76 12.57 98.60 14.05
ami33 33 53 78.6 1.42 96.22 1.31
ami49 49 156 81.6 39.7 98.50 43.72

A. Bus Thermal Modeling

Figure 6 and 7 show the impact of bus on the temperature of the
underlying floorplan (shown in Figure 8). One can see that the buses
add non-negligible amount of heat onto the underlying floorplan (=
about 10◦C on average).

B. Comparison with Existing Works

We compare our result with [7] in Table II. Runtime is not
shown because different machines were used in the experiments. The
results show that we consistently outperform in terms of routability.
The floorplan area is comparable. Table III shows the comparison
with [6]. Benchmarks named with suffix N7 were also generated
to evaluate routing algorithms for higher connectivity, and uarch is
our own microarchitecture model. We use the same machine for this
comparison with [6]. We observe that our algorithm outperforms [6]
in terms of runtime with comparable routability and area results.
We obtained better routability even if the average and the maximum
numbers of blocks a bus connects are large. This is due to the
flexibility of our algorithm since our buses consist of multiple
segments.

C. Tradeoff Study

Table IV shows the IPC values based on various floorplan-
ning/routing objectives. These values were obtained from Sim-
pleScalar simulation, which we hacked to include bus-delay effects.
We observe that performance-driven or power-driven algorithms
obtain better IPC results than area-driven algorithm. The reason is that
performance or power objectives tend to make the bus length shorter.
Area objective has much lower IPCs, which shows that minimizing
area only is not enough for IPC optimization. The reason that IPC of
power-driven for swim and lucas is higher than that of performance-
driven might be that bottlenecks of the benchmarks are different from
others. In all of these floorplans, we obtain 100% bus routability.
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TABLE III
COMPARISON WITH [6]. T DENOTES RUNTIME IN SECONDS, R DENOTES

ROUTABILITY IN TERMS OF % (=# OF ROUTED BUSES × 100 / # OF

BUSES), AND A DENOTES THE FLOORPLAN AREA IN mm2

[6] Ours
T A R T A R

apte 77 49.73 100 13 48.14 100
apteN7 92 82.90 60 141 48.06 100
xerox 90 20.42 100 15 21.30 100

xeroxN7 143 26.47 100 145 21.36 100
hp 213 9.38 100 38 11.83 100

hpN7 264 13.18 100 95 14.68 100
ami33-1 353 1.29 100 289 1.31 100
ami33-2 529 1.33 100 220 1.28 100
ami33N7 84 2.30 83.33 1552 1.38 100
ami49-1 560 38.87 100 412 40.08 100
ami49-2 1664 38.10 100 493 40.72 100
ami49-3 1564 41.12 100 614 41.29 100
ami49N7 548 37.84 40.00 2709 47.87 93.33

uarch 6942 45.66 86.27 1583 45.05 100

TABLE IV
IPC RESULTS BASED ON VARIOUS FLOORPLANNING/ROUTING

OBJECTIVES. THE BOLDFACES SHOW THE BEST VALUE.

Performance-driven Area-driven Power-driven
gzip 1.1612 0.4357 0.9087
swim 1.2879 0.4437 1.6507
vpr 1.2292 0.4291 0.9946
art 1.1453 0.4281 1.0740
mcf 0.6001 0.3339 0.5101

equake 1.3683 0.4422 1.3556
lucas 1.2081 0.4439 1.4619
bzip2 1.3406 0.4344 1.2688
twolf 1.0568 0.4240 0.8233

Table V shows the tradeoff among performance, area, and power
objectives under thermal overlap constraint (=2.0). Under the “success
rate” metric, we report how many times we obtain 100% routability
out of 20 runs of floorplanning. We first note that performance
objective tends to increase the success rate than area/power objectives.
This is because the area/power objectives tend to minimize area and
wirelength, thereby further lowering the success rate. The area is the
best in our area-driven algorithm and the worst in our performance-
driven algorithm. This is expected since performance objective tends
to make certain modules close to each other, thereby making it hard
to compact overall floorplan. The power metric is the best in our
power-driven algorithm, which is primarily due to the bus length/area
decrease. The thermal overlap is the worst in area-driven algorithm
since it blindly packs hot modules close together. Figure 8 show a
snapshot of our floorplanning and bus routing results.

VI. CONCLUSION

In this paper, we presented the first bus-aware microarchitectural
floorplanning. We developed a fast performance-aware bus routing
algorithm, which is integrated into the floorplanning engine to ensure
routability while optimizing other conflicting objectives. Our related
experiments showed that we obtain 100% routability at the cost of
minimal increase on area, performance, and power objectives under
thermal constraint.
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