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Abstract—This paper aims to present a probabilistic assessment, 

via a two-stage stochastic optimization, of the potential benefits 

from cost optimizing the interaction of thermal and electrical 

systems of an aggregation of buildings, through the use of 

domestic electric heat pumps. As more and more intermittent 

generation is integrated into the grid, while capacity margins are 

shrinking, not only might prices drop on average but they could 

also become much more volatile than at present. Potential future 

day-ahead price scenarios are therefore analyzed in this paper, 

by using specific price evolution stochastic models developed to 

take into account different levels of average prices and volatility. 

Results suggest that lower average values of day-ahead prices 

combined with very high volatility can lead to noticeable 

economic benefits from managing EHP aggregation to exploit 

potential arbitrage opportunities.  

Index Terms-- Business cases, electric heat pumps, markets, 

stochastic price models, uncertainty. 

I. NOMENCLATURE 

𝑠 scenario index, from 1 to 𝑁𝑠 

𝑖 settlement period index, from 0 to 𝑁𝑖 

𝑝𝑠  scenario probability 

𝜆𝑖 day-ahead price, £/kWh 

𝜇𝑠,𝑖
−  negative imbalance price, £/kWh 

𝜇𝑠,𝑖
+  positive imbalance price, £/kWh 

𝜒𝑠,𝑖
−  physical import price, £/kWh 

𝐷𝑖  day-ahead purchase, kWh 

𝐼𝑠,𝑖
−  negative imbalance volume, kWh 

𝐼𝑠,𝑖
+  positive imbalance volume, kWh 

𝐸𝑠,𝑖
−  physical import volume, kWh 

𝑦𝑡  price data at time 𝑡 

𝐴𝑝 auto-regressive parameter with order 𝑝 

𝑀𝑞 moving-average parameter with order 𝑞 

𝜀𝑡 white noise process 

𝑐 constant term 

II. INTRODUCTION 

Concerns of climate change, energy security and 
affordability are increasingly encouraging interest in 
improving efficiency of energy systems. One method for 
achieving this is to optimize the interaction between thermal 
and electrical systems. In particular, electric heat pumps 
(EHP) can improve operational flexibility (for both system 
and network purposes [1]) by exploiting the storage potential 
of different building fabrics and thermal energy stores [2]. 
Such flexibility can create attractive business cases for EHP 
owners and relevant aggregators as this provides them with 
incentives to adjust consumption for system balancing. The 
financial benefits of such business cases have been studied in 
previous works, such as in [3] for EHP, [4] for air-
conditioning (AC) units, [5] for heating, ventilation and AC 
(HVAC) and electric vehicles, [6] for various appliances, [7] 
for demand response (DR) in general, and [8] for EHP and 
combined heat and power units. However in these works only 
current market prices have been considered. Yet, the impact of 
higher wind variability and tighter capacity margins may 
change future market prices, causing greater volatility [9], 
[10], possibly associated to overall lower average prices [11]. 
As a result, this paper systematically investigates the effect of 
likely future changes in electricity prices on DR business cases 
based on exploiting the flexibility available in aggregating 
EHP. 

III. PHYSICAL HEATING SYSTEM MODEL 

A.  Stochastic optimisation model overview 

The basis of the employed stochastic optimization model is 
a physical heating system model (displayed in Fig. 1) 
incorporating the heating unit, thermal energy store (TES), 
building, and domestic hot water (DHW) demand. As 
described in detail in the previous work [3], the building and 
its TES are modeled as a pair of lumped systems, each 
characterized by a pair of thermal resistance and capacitance 
values. The heating unit is characterized by its coefficient of 
performance (COP) and operating limits. The DHW demand 
is set according to a user-defined profile. 
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The building’s space heating demand is a function of the 
building’s characteristics, the outdoor temperature and the 
indoor set temperature. The problem considered in this work is 
that of a retailer-aggregator who is responsible for providing 
thermal comfort to required standards, as well as non-heating 
electricity and DHW, to a number of dwellings connected to 
the wider grid through a common grid connection point, thus 
forming a micro-grid. The retailer-aggregator is assumed to be 
balancing-responsible, as well as being responsible for paying 
third party charges (i.e., grid fees). In other words, the retailer-
aggregator first buys electricity on the wholesale day-ahead 
(DA) market and then must settle any imbalances between 
contracted and used electricity according to the imbalance 
settlement process (ISP). However, although DA prices are 
known at the DA stage, imbalance prices are not; these are 
only known after delivery. As a result, the model needs to 
consider uncertainty in imbalance prices. Furthermore, a 
number of parameters are unknown at the DA stage. These 
unknown parameters include the heat demand determinants 
(outdoor temperature, DHW demand and dwelling active 
occupancy), as well as the non-heating electricity profiles. All 
this makes the problem stochastic, where the objective is to 
minimize the expected total costs of a retailer-aggregator 
subject to uncertainty.  

The objective function, given in equation (1), states that 
for each scenario 𝑠, with probability 𝑝𝑠 of occurring, the DA 
energy costs, imbalance (negative and positive) costs and the 
physical import costs are determined and summed over each 
settlement period 𝑖. The import costs include all costs related 
to electricity consumption: transmission costs, distribution 
costs, balancing services costs, environmental and social 
obligations (ESO) and value-added-tax (VAT). Note that the 
retailer operating costs are not included, as these costs are not 
directly attributable to consumption, and thus do not produce 
relevant price signals. 

Min {∑ ∑ (𝑝𝑠(𝜆𝑖𝐷𝑖 + 𝜇𝑠,𝑖
− 𝐼𝑠,𝑖

− − 𝜇𝑠,𝑖
+ 𝐼𝑠,𝑖

+ + 𝜒𝑠,𝑖
− 𝐸𝑠,𝑖

− ))

𝑁𝑖

𝑖=1

𝑁𝑠

𝑠=1

} (1) 

As described in [3] and [8], to model the effect of the 
uncertain parameters on the decision-making process, a two-
stage stochastic optimization approach is required [12]. In the 
first stage, the retailer-aggregator decides how much 
electricity to buy in the DA market, while the second stage 
corresponds to the settlement periods in which the electricity 
is delivered. The EHP and the TES set points, the building 
temperature and the imbalance purchases are all determined in 

the second stage. To estimate the cost of energy for a whole 
year, the model is run for seven representative days (summer 
weekday & weekend, spring/autumn weekday & weekend, 
winter weekday & weekend, and a “peak” day). The 
representative days are selected by using a version of the 
scenario reduction technique described in [3], to find the most 
representative DA price profile for each season. 

B. Consumer price components 

A development compared to the model presented in [3] 
is in the treatment of the retail prices. Whereas previously, all 
non-energy costs (i.e., grid fees, taxes, environmental and 
social obligations) were added to the electricity import price at 
a flat rate, each price component is now itemized. This enables 
time varying grid fees, as well as energy market prices to be 
considered, making the analysis more realistic. This treatment 
of prices in fact allows measuring the impact of the 
optimization on different price components, which will be of 
particular interest to the parties in receipt of revenues related 
to those prices. 

IV. PRICE MODELLING 

Future price scenarios are modeled using a custom price 
process employing an auto-regressive moving average 
ARMA(p,q) model with seasonal lags and orders p, q [13]. 
This model, written in equation (2), is composed of an auto-
regressive parameter 𝐴𝑝 with order 𝑝, a moving average 

parameter 𝑀𝑞 with order 𝑞, a constant 𝑐 and an error term 𝜀𝑡. 

This error term is modelled as a set of random variables (white 
noise process), which are assumed to be independent and 
identically distributed samples drawn from a Pareto 
distribution with mean 𝛼 and standard deviation 𝜎. The model 
hence creates a new random price process at each simulation.  

 𝐴𝑝𝑦𝑡 = 𝑐 + 𝑀𝑞𝜀𝑡 (2) 

Prices are fitted on a non-linear model to daily prices 
recorded in the Elexon portal of market index prices in the 
United Kingdom (UK) from January 2009 to May 2014 [14]. 
The price series is modeled as a sum of two components, a 
deterministic non-linear function that explains the seasonal or 
expected prices for a given hour in a given year, and a 
stochastic component that explains deviations of actual prices 
from average prices. 

The deterministic component is modeled with a sum of 
sine functions to model the observed daily peaks and troughs 
in the data. The difference between actual values and modeled 
ones are considered residuals and present strong seasonal 
correlation since above (below) average prices usually follow 
above (below) average prices. In order to remove any serial 
correlation, a regression is performed on the stochastic price 
component using a matrix of significant lags determined by 
the autocorrelation and partial autocorrelation functions of the 
residuals. This creates an auto-regressive model with seasonal 
lags whereby the serial correlation in the residuals is removed, 
allowing the residuals to be modeled as independent random 
draws from a suitable distribution. By plotting the cumulative 
distribution function of the price data, a Pareto distribution 
provides the best fit since the price data presents very fat tails 
at each end of the distribution, caused by sudden price spikes. 

 

Fig. 1. The heating system model 



The price model can then be simulated to create a new 
stochastic price process using the actual mean price, the 
sinusoidal model (deterministic), the regression parameters, 
the autocorrelation lags and the residual probability 
distribution (stochastic). Each simulation creates a new 
stochastic price process with the same mean and volatility as 
the actual price data but with different values. To simulate a 
new price process with a different mean value, the mean price 
is altered. On the other hand, to create a new price process 
with a different level of volatility, the statistical parameter of 
the distribution, its standard deviation, is altered accordingly.  

V. CASE STUDIES 

To exemplify the effect of the variation on mean DA price 
levels and DA price volatility, an aggregation of fifty flats, 
insulated to a high standard, is defined. The parameters which 
describe the aggregation, as well as the relevant environmental 
and demand parameters, and the price components, are 
described below. 

A. Resource parameters 

The thermal resistance and capacitance values for the flats 
defined in this case study were taken from detailed modeling 
of UK building stock undertaken using the DesignBuilder 
software [15], [16]. Each flat was assigned a 145 liter TES, 
with resistance and capacitance values derived from [17]. The 
TES minimum and maximum temperatures were set at 40°C 
and 55°C. EHP COP values vary according to the outside 
temperature, as described in [3]. The maximum power of each 
EHP is set to be able to maintain a set temperature of 21°C at 
an external temperature of -4°C, whilst supplying the 
maximum possible DHW demand. 

B. Environmental parameters 

The relevant environmental parameters, like the outdoor 
temperature and solar insolation (relevant for solar heating 
effects), are uncertain at the DA stage. Using the scenario 
reduction algorithm described in [3], three scenarios of 
environmental profiles are defined for each season/test each 
with their associated probability of occurrence. These are 
combined with the imbalance price profiles (see Section V.D) 
to form, in total, nine scenarios for each season/test. 

C. Demand parameters 

As previously described, the space heating demand is 
determined by dwelling active occupancy, set temperature, as 
well as the building parameters. The set temperature varies by 
dwelling and is set according to a pseudo-random process 
following the distribution of set temperatures described in 
[18]. For each dwelling the number of occupants is set 
following a pseudo-random process based on [19]. This 
informs the synthesis of pseudo-random active occupancy, 
DHW and non-heating electricity demand profiles, which are 
generated as described in [2]. Each dwelling is assigned a 
different set of profiles for each scenario representing the 
uncertainty of these profiles at the DA stage. 

D. Price components 

The original series of DA and imbalance prices are taken 
from the UK context, from 01/01/2009 to 12/05/2014 [14]. 
Note that the UK has separate positive and negative imbalance 

prices, so that DA trading is always preferred rather than being 
exposed to the ISP. For each test (described in TABLE I), the 
series of historical DA prices are subject to the price model, 
mean price levels and volatility levels. The imbalance price 
record is then set by applying the difference between the 
original DA and imbalance price series to the new DA price 
series. For each season the scenario reduction algorithm is run 
to find the most representative daily price profile to represent 
the season. The scenario reduction algorithm is run again as 
part of the scenario formulation process to produce three 
imbalance price scenarios, with associated probabilities, for 
each season/test. These, together with the environmental 
parameter profiles, form the required nine scenarios. 

As well as DA and imbalance prices, several other price 
components are relevant to the dwellings situated on the 
distribution network in the UK. These are fees related to 
distribution use of system (DUoS) (for maintenance and 
operation of distribution networks), transmission network use 
of system (TNUoS) (for maintenance and operation of 
transmission networks), balancing services use of system 
(BSUoS) (for provision of system balancing services), ESO 
(for government environmental and social programs) and 
VAT (a general consumption tax). For this case study, the 
various price components were set based on half-hourly 
metered domestic dwellings situated in the North-West of 
England. DUoS fees were taken from [20], whilst TNUoS fees 
(charged on the average consumption in the highest three 
settlement periods [21]) were taken from [22]. Similarly to 
imbalance prices, BSUoS fees [23] are not known a priori and 
hence scenarios for these fees are determined along with the 
imbalance prices. ESO and VAT is set according to rates 
relevant to domestic consumers [24]. Naturally, the price 
components vary across seasons. As an example of the price 
evolution through the day, Fig. 2 shows the expected price 
profile for a winter weekday for Test 1 (see TABLE I). Fig. 2 
shows that ESO and VAT rates are constant, whilst DUoS 
rates vary significantly throughout the day. DA prices, 
expected imbalance prices

1
 and BSUoS fees also vary, 

peaking in the early evening, when system load is the highest. 
There is no TNUoS fee shown here as TNUoS fees are only 
considered when a TRIAD (one of the three highest demand 
periods in the year) occurs, on the expected fifteen peak days 
of the year that define the peak season. 

 
                                                           

1 The negative imbalance prices is shown as additional to the DA import 

price, and the DA export price as additional to the positive imbalance price 

 

Fig. 2. Winter weekday price components 
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VI. RESULTS 

A. DA prices 

The following studies are run to assess the effect of 
changing mean and price volatility in DA prices on the 
benefits of a retailer-aggregator optimizing the operation of 
domestic EHP. Changes to mean price levels and price 
volatility are detailed in TABLE I. These price scenarios were 
chosen as representative of the general trends in UK wholesale 
prices, forecasted by the UK regulator, Ofgem [11]. As 
described in Section IV, a new stochastic DA price process is 
simulated based on actual price data, with its mean and 
volatility altered accordingly. A comparison of the actual price 
on a day (21

st
 January 2009) with the simulated prices for Test 

4 and Test 7 is shown in Fig. 3, where the solid line represents 
the actual price data, while the other two lines represent 
simulated prices with a 5% and 10% decrease in mean value. 
The prices, although shifted downwards, differ from the actual 
data since a new process is generated at each simulation.  

  

 

 

In Fig. 4, the solid line represents the actual price data, 
while the other two represent simulated prices with a 50% and 
100% increase in volatility, corresponding to Test 2 and Test 3 
respectively. As the price model generates one day of prices, 
corresponding to the 48 settlement periods, the simulation is 
repeated for each day. 

B. Costs 

Changes to mean price levels and price volatility will be of 
particular interest to two groups. Those who may wish to 
optimize their portfolio of EHP resources, and want to 
quantify potential benefits; and, those retailer-aggregators (or 
similar parties) who are already responsible for flexible EHP 
resources and want to understand how changing DA price may 
affect their business. Fig. 5 shows the effect of moving from a 
simple load following policy (where heating units are simply 
operated when there is an active occupant in the dwelling) to a 
cost optimization, as described in Section III.  

It is clear that significant benefits can be gained from 
moving to a cost optimization under all tests, where a 
minimum saving of £66 is realized under the Test 1 scenario, 
where both mean and volatility are the same as today. 
However, as volatility increases, so do the benefits. Test 2 and 
Test 3 see a 3% and 5% respective increase over Test 1. 
Similar results can be seen for all tests, where Test 9 shows 
the highest benefit of £72 and represents an 8% increase over 
Test 1. A slight increase in benefits is realized from a 
reduction in the mean price but this only represents a 2% 
increase for a 10% decrease in mean value. The most 
substantial benefits arise from avoiding TNUoS charges and 
the periods of high DUoS charges. Further benefits come from 
shifting electricity consumption away from periods of high 
DA prices. Nonetheless, the cost of negative imbalances can 
be larger when optimizing than under load following, even 
though the overall energy cost is lower. This is due to the 
optimization relying more on the ISP for additional electricity 
since, as can be seen in Fig. 2, the difference between the 
wholesale export price and the expected imbalance export 
price (i.e., between the DA price and the system sell price) is 
equal to or greater than the difference between the expected 
imbalance import price and the wholesale import price (i.e., 
between the DA price and the system buy price). This 
suggests that it is better to be in a short position in the DA 
market and rely on paying negative imbalance prices rather 
than being long and paying the positive imbalance prices. 

Additionally, the expected benefit from the optimization 
generally increases as price volatility increases, given the 
greater benefits from intelligently shifting demand. There is, 
however, no significant change when the mean price level 
changes, since the changes in the mean affect both the load 
following and the optimized cases equally. The variability in 
the results also comes from the fact that each simulation 
generates a new stochastic price process, resulting in slightly 
different results every time. The parties who already optimize 
EHP resources will be more interested in the effect of price 
changes on the optimization compared with current prices 
(Test 1: mean 0%, volatility 0%). Fig. 6 shows that expected 
savings generally increase as the DA price mean drops.  

 

TABLE I: TEST DEFINITIONS 

Test % change to mean prices % change to price volatility 

1 0 0 
2 0 50 
3 0 100 
4 -5 0 
5 -5 50 
6 -5 100 
7 -10 0 
8 -10 50 
9 -10 100 

 

 
Fig. 3. Actual vs. Simulated Prices for 21st January 2009 with 

different mean values 

 

Fig. 4. Actual vs. Simulated Prices for 21st January 2009 with 

different levels of volatility 



 

 

On the other hand, there is no clear trend related to 
changes in volatility, perhaps since the results exhibit some 
variability, as discussed in Section IV. Indeed, from current 
results it is not possible to draw conclusions on the effect of 
changing volatility on costs. 

VII. CONCLUSION 

This paper investigates the effect of likely future changes 
in day-ahead electricity prices, including different average 
prices and prices with higher volatility, on business cases for 
electric heat pump (EHP) owners and aggregators. A novel 
price simulation model is presented in order to simulate future 
stochastic price scenarios reflecting different market 
conditions anticipated by the electricity regulator in the United 
Kingdom (UK). These include prices with lower mean values 
and higher volatility. Simulated prices are used in a two-stage 
stochastic programming model to optimize the day-ahead 
electricity purchase strategy of a retailer-aggregator using 
EHP to supply thermal energy and minimize energy costs 
subject to multiple uncertainties, including imbalance prices, 
outdoor temperature, building occupancy, domestic hot water 
and non-heating electricity demand. The paper presents an 
increase in savings, realized from optimizing the aggregation 
of EHP to take advantage of market price arbitrage, where the 
largest savings occur under high volatile market prices, as 
there is a greater benefit from shifting demand to periods of 
low prices. Although the results show that greater savings can 
arise from lower average prices, they are not firmly correlated 

with changes in volatility, due to the nature of the price model. 
A larger number of tests would therefore need to be run in 
order to draw firmer conclusions.  
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Fig. 5. Expected annual benefits from optimizing EHP operation 

compared with load following for each test case 
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Fig. 6. Effect of future market prices on expected annual savings 

compared to current prices (Test 1) 
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