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Abstract 

Business intelligence (BI) technologies have received much attention recently from both academics 

and practitioners, and the emerging field of Business Analytics (BA) is beginning to generate 

academic research. However, the impact BI and the relative importance of the related field of BA 

on corporate performance management (CPM) has not yet been investigated. To address this gap, 

we modelled a CPM framework based on the Integrative model of IT business value and on 

information processing theory, and subsequently conducted a global survey of senior managers in 

337 companies. Partial least squares was employed to analyse the survey data. Findings suggest 

that the more effective the BI implementation, the more effective the CPM-related planning and 

analytic practices. BI effectiveness is strongly related to BA, planning and to measurement. BA 

effectiveness in contrast, is strongly related to planning but less so to measurement. The study 

suggests that although both BI and BA contribute to corporate management practices, the 

information needs are different based on the level of uncertainty versus ambiguity characteristic 

of the management practice.    
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INTRODUCTION 

 

Making key strategic decisions in a dynamic business environment is a challenge faced by many 

organizations today.  Although most organizations today perform well in applying management 

systems in the areas of budgeting, financial and management reporting, and business intelligence 

analysis, the use of such systems for corporate-level decision making is not as prominent. A 

corporate performance management (CPM) system is a tool that can help organizations address 

this challenge. These systems combine management practices and information technologies (IT) 

to enable organizational performance [22; 93]. Corporate-level management practices determine 

organizational success because they set the organization’s strategy and enable its execution [93]. 

For example, case studies of Nortel, Circuit City, and Kodak [52; 77; 83] show that poor 

information processing and analysis, particularly with respect to corporate planning, played a 

significant role in the failure of these former Fortune 500 companies. Business Intelligence (BI) 

technologies are thought to support CPM [56], yet, while research suggests that BI can help 

improve the effectiveness of operational processes [2; 20; 28], its impact on management practices 

has been less studied [113].  

 

Organizations have used data to make informed decisions for over 200 years. For example, 

companies such as Standard Oil and Carnegie Steel in the late 1800s made extensive use of data 

to improve performance [103]. Since then, analytic methods such as the use of financial ratios and 

operations research have been adopted by many firms. In today’s organizations, the growth of 

advanced analytics using large volumes of data has led to the creation of advanced analytics 

functions (which we will refer to as Business Analytics or BA). These practices involve 

approaches, such as data mining, that look for patterns not discernible using standard BI tools.  
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Despite the recent shift towards the term Business Intelligence and Analytics [e.g., 8], traditional 

BI systems often deliver aggregated data while the statistical methods employed in BA tend to use 

raw data. Furthermore, it has been argued that organizational needs related to analytic information 

differ from those related to more transactional information [46; 101]. Therefore, differences exist 

between these two analytic approaches which suggests that a BI system that extracts and 

transforms transactional information might not necessarily support BA practices.  

 

Key corporate-level management practices include planning, measurement and analysis [93; 107].  

While the BI system might not necessarily support BA due to the different types of information 

and technologies used, we would expect that the BI system would strongly support planning and 

measurement. Not all BI systems deliver the capability needed by decision makers [31].  

Therefore, exploring the relationship between BI system effectiveness and the effectiveness of 

corporate-level management practices would provide an indication of the importance of these 

systems for CPM.  

 

The emerging practice of BA could be considered a management practice that relies on the BI 

system but also influences the other management practices of planning and measurement. Since 

BA typically relies on raw data for statistical modelling purposes however, we would expect that 

BA and the BI system influences planning and measurement management practices in different 

ways.  

 

Based on the above reasoning, our research questions are as follows: 
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1. What is the relationship between the effectiveness of BI system implementation and the 

effectiveness of corporate-level management practices?   

2. To what degree does the BI system influence the BA practice in organizations?  

3. What is the relative importance of the BI system versus BA for corporate-level 

management practices? 

 

Addressing these questions would advance the BI value literature by examining the impact of BI 

on corporate-level management practices. In addition, assessing the relative impact of BA within 

CPM adds to the growing literature on the use of BA in organizations.  From a theoretical 

perspective, we extend empirical work on the Integrated Model of IT Business Value to the 

corporate management domain and introduce Information Processing Theory as an important 

element in theorizing about information needs for management practices.  

 

The remainder of this article has been structured as follows. The next section reviews the literature. 

We then outline the research method and discuss the findings. In subsequent sections, the 

implications for theory and practice are discussed, followed by the inherent limitations of our work 

and avenues for future research.  

 

 

 

LITERATURE REVIEW 
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Although the literature characterizes BI in different ways [3; 68; 111], BI tools are generally 

considered to be software applications that deliver information to decision makers to help maintain 

business performance [20; 113]. Most BI systems include different technological components [2; 

72] that allow decision makers to view and work with subsets of data [8].  

 

The research questions discussed earlier position this study in the broader domain of IT value, in 

this case, exploring the degree to which BI system effectiveness enables corporate-level 

management practices. The Integrative Model of IT Business Value [50] suggests that IT 

influences operational processes which in turn influence organizational performance. Based on 

the Resource Based Theory (RBT), IT systems are viewed as internal resources accompanied by 

complementary assets such as workplace practices that may moderate or mediate the overall 

impact of IT. Melville et al. [50] point out that one of the weaknesses of the RBT is that it 

assumes that all resources are used to their full potential.  Their model further suggests that the 

way in which an IT system is deployed depends on IT managerial skill, and research suggests 

that the level of IT managerial skill influences the quality of the system [5; 6; 38]. Research also 

suggests that not all organizations derive value from BI because of mismatches between the 

capability required and that delivered by the BI system [25; 31]. The implication is that 

organizations possess different levels of IT managerial skill which influences the effectiveness to 

which a BI system is implemented. More effective implementations would lead to better 

information access and quality to better support corporate-level management practices.   

 

This question of BI implementation effectiveness is related to the notion of BI maturity. Maturity 

however, implies a progression in capability in which an organization evolves their BI system 
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from fragmented applications to a full enterprise view [37; 71]. Implementation effectiveness 

may be viewed as the degree to which system implementation meets organizational expectations: 

whether the system is doing what it was intended to do [26; 93]. As previously emphasized in the 

BI maturity literature, a well-implemented system would provide easy access to high quality 

information [68]. This would hold true whether it was deployed for a specific business area or 

across the organization.   

 

Within specific business areas, several authors have demonstrated the impact of BI systems on 

sales, marketing, and inventory management [2; 20; 18].  In a review of the BI impact literature, 

Aruldoss et al. [2] suggest that for sales and marketing, the BI system provides information on 

customer needs across many customer segments to help managers better match products to 

market demand. For inventory management, a BI system could provide historical information on 

stock-outs or inventory carrying costs thus permitting better forecasting. These types of 

situations fall under the category of “management control” that requires an exchange of 

information from operational levels to responsible managers and vice versa [41].  For some of 

these decisions, business rules could be programmed into the BIS [20; 33] to speed up 

information processing.  

 

No such evidence is available for the impact of BI on corporate-level management practices.  

One might conjecture, however, that the BI system provides historical information and permits 

an exchange of information among managers similar to its role in operational processes. The 

information needs of management practices however, differ from that of operational processes.  
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Recently, information processing theory has been invoked to explore the question of information 

needs related to BA [7; 36]. This theory argues that organizations strive to fit information 

capability to information requirements. Task uncertainty generates higher information needs and 

when uncertainty persists despite the delivery of additional information, buffers are often used. 

For example, in the case of inventory management, firms might hold “safety stocks” when 

managers are unsure about the level of demand for their products [69]. Equivocality, defined as 

“…the multiplicity of meaning conveyed by information about organizational activities” [11, p. 

211] is another important element of information processing theory. In this situation, information 

is available, but considerable ambiguity exists such that decision makers are not confident about 

what course of action to follow.  

 

Ambiguity is often present in non-routine, complex tasks and can be resolved through the 

selection of “rich” media. Media richness is defined as the information carrying capacity of an 

information medium [13]. The richest medium is face-to-face communication. In ambiguous 

situations, face-to-face encounters can help to better frame the problem and explore multiple 

courses of action. Empirical support for this theory is provided by Kowalczyk & Buxmann [36] 

who demonstrate that companies facing complex decisions use group meetings more often 

during the decision-making process. In contrast, decisions that were considered routine relied 

exclusively on the BA process.  

 

Media richness theory was developed in the late 1980s. Considering modern analytic capabilities 

in organizations, ambiguity reduction can be viewed from a different perspective. The BI system, 

for example, might serve to reduce uncertainty by delivering large amounts of information. For 
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operational decisions, where the outcome is often clear and various models exist to help 

determine specific courses of action, information volume might well serve the needs of decision 

makers.  The BI system might also help to reduce information overload through data 

aggregation.  On the other hand, methods used in BA, such as data-mining, could reduce 

ambiguity by sorting through large volumes of data to discover meaningful patterns. Therefore, 

while a BI system might be directly useful for decisions characterized by low complexity, BA 

might be of more importance for situations featuring more complex and thus ambiguous 

decision-making conditions as often found in corporate planning and management practices.  

 

These corporate-level management practices may be viewed as a set of habitual activities designed 

to establish and implement the organization’s strategy [93]. A practice is defined as a “habitual or 

customary operation”1: a series of activities done the same way each time the practice is 

implemented. A method is a particular form of procedure. Research demonstrates that 

organizations use a wide range of different tools and techniques [79; 99] integrated into higher-

level management practices.  The practice of management accounting for example, includes 

methods such as Activity-Based Costing or Balanced Scorecards, each implemented following a 

set of specific procedures [9]. Similarly, a corporate-level management practice such as planning 

would involve methods that include environmental scanning, SWOT (strengths, weaknesses, 

opportunities and threats) analysis, or strategy mapping. For the purposes of this study, we define 

these practices as corporate-level customary operations that include a variety of different methods.   

 

 
1 Similar definitions can be found in any of the major English language dictionaries.  
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In the context of information processing theory, planning is arguably a complex process where 

managers integrate external and internal information to chart a course for the company. It has 

been argued in fact, that planning is itself an information gathering exercise [82]. The practice of 

measurement by contrast, involves defining performance indicators, gathering and analyzing 

current performance versus expectations and then taking corrective action as required [41]. 

Measurement therefore could feature less equivocality because organizational objectives would 

provide a context for the measures being used. For example, targets are often set for sales or for 

customer satisfaction. The measure compared to the target provides unambiguous feedback about 

current performance.   

 

In summary, based on the integrative model of IT value, we argue that BI system implementation 

effectiveness influences process effectiveness through its influence on three CPM practices: 

planning, measurement and analytics. The practice of BA in turn, also influences planning and 

measurement.  Figure 1 outlines the research model based on the above argument. Consistent 

with the Integrative Model of IT Business Value, the two management practices of planning and 

measurement are thought to directly influence process effectiveness (used here as the proxy for 

organizational performance). These two practices contribute to process effectiveness because 

they represent different forms of control mechanisms [96]. Planning can be considered a 

“feedforward” mechanism in that it helps to ensure that employees design processes that 

accomplish business objectives. Measurement is a feedback mechanism to permit ongoing course 

correction. Both control mechanisms work in tandem [112] to enable organizational success 

through effective process management. 

----------------------- 
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Insert Figure 1 here 

----------------------- 

 

RESEARCH METHOD 

Data Collection 

This study was conducted in collaboration with two industry partners, PricewaterhouseCoopers 

(PwC) and the Canadian Advanced Technology Association (CATA). These industry partners 

collectively represent more than 50 years of experience in the field of performance management 

and therefore they confirmed face and content validity of the survey used in collecting data. 

Specifically, the partners had worked with many of the organizations involved in the study and 

therefore helped to identify the specific techniques involved in the CPM practices. The study used 

an online survey method for data collection. Survey questions were developed based on the 

research hypotheses and on feedback from the industry partners. The questions went through three 

rounds of reviews by a sub-set of respondents in the partner organizations. Survey respondents 

were recruited through e-mail invitations distributed to 1,300 senior managers from PwC’s and 

CATA’s databases. A total of 337 complete responses were received and analysed using the Partial 

Least Squares (PLS) with the SmartPlS 3 software [80].  PLS-SEM was selected because of the 

exploratory nature of the study.  

 

Given our focus on CPM, we targeted senior managers, executives and board members of the 

companies surveyed.  The intent was to elicit the assessment of the most senior level managers 

who would have a corporate viewpoint of BI system implementation and CPM practice 

effectiveness. It has been argued that these executives can accurately perceive the value of IT 
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investments through distributed sensemaking [102] because they often approve the BI system 

expenditures and they are closely involved in many of the CPM practices. Moreover, their 

assessments tend to be accurate when compared with objective measures of the same phenomena 

[20] and the best way to assess user perceptions of system effectiveness is to ask them [31]. 

 

Since the informants provided responses to the dependent and independent variables, the marker 

variable statistical test was adopted to estimate the impact of Common Method Variance (CMV). 

Following Lindell and Whitney [40], a scale measuring the quality of information provided to the 

board of directors (Cronbach’s alpha of 0.85) was included and used as a “marker” variable since 

it was thought to be theoretically unrelated to the dependent variable. This variable was comprised 

of four measures: information related to customers, employees, innovation and the impact of 

company activities on the environment. The PLS algorithm demonstrated high validity of the 

construct (t-values of the measurement variables ranged from 38 to 128 and factor loadings from 

0.96 to 0.98). The correlation of the marker variable to other constructs in the study ranged from 

0.02 to 0.08 with t-values ranging from 0.15 to 0.70. The largest correlation accounted for only 

0.006 of one of the constructs (measurement effectiveness), which led us to conclude the CMV is 

not a problem in this study.  

 

Constructs and Measures 

The logic of a PLS-based study is that unobservable constructs can be measured by gathering 

information on observable items related to that the construct. In this study, the central construct is 

the effectiveness of the BI system and CPM practices as measured by the perceived effectiveness 



12 

of related components and methods (the observable measures in this case). We relied on guidance 

from the industry partners and on the published literature to define the constructs and the measures.  

 

A considerable debate has emerged about the use of reflective and formative constructs in PLS-

based research [1.a.i.1; 10; 17; 32; 39; 64; 81; 108]. One area of consensus emerging from this 

debate is that constructs could be modelled either as formative or reflective based on theory and 

on the objectives of the research.  Jarvis et al., [32] defined four basic criteria for determining 

whether constructs should be modelled as formative or reflective. The first criterion refers to the 

direction of causality, does the does the construct determine the measures or do the measures 

determine the construct?  Coltman et al., [10] suggest that whether the construct exists 

independently of the measures is also important and Petter et al., [64], argue that one should also 

consider whether all measures reflect a common theme. If so, the construct would be perceived 

as unidimensional and therefore reflective. The second criterion is the degree to which measures 

are interchangeable such that the construct does not change as the measures change. The third is 

the the degree to which the measures are correlated, and the fourth considers whether the 

measures have similar antecedents and consequences. 

 

In this study, respondents assessed the effectiveness of specific components of the BI system and 

the methods used in the three management practices to form an aggregate evaluation of overall 

effectiveness. We will apply the four criteria to assess the BI system effectiveness construct as 

representative of all constructs in the study. Conceptually speaking, BI system effectiveness 

(defined as the degree to which the system delivers what it is supposed to deliver) could exist 

without the existence of the BI system itself. For example, during the planning stages, managers 
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would consider the BI capability needed [31]. This capability requirement defines in fact, the 

“effectiveness” needed from the BI system, and specific BI system components would be 

selected and implemented based on the planned requirements. The effectiveness of each of these 

specific components provides an overall measure of effectiveness of the BI system.  

 

In terms of the second criterion, these specific components are interchangeable because our 

interest was on the aggregate notion of BI system effectiveness, not on any of the specific 

components themselves. Accordingly, the measures carry a common theme (i.e., does each 

component do what it was meant to do) that provides for an assessment of the overall system.  

 

For the third criterion, it is difficult to know a priori if the measures are related, but one assumes 

that if an organization effectively implements one BI system component, the others will also be 

implemented effectively.  Finally, with respect to the fourth criterion, each component would 

have similar antecedents and consequences: the BIS is implemented to solve information 

delivery issues and results in improved access to information. The consequence of a well 

implemented system is that decision makers have access to high-quality information [68]. This 

reasoning holds for all components of a BI system thus the measures have similar antecedents 

and consequences.  

 

The survey questions focused on BI system implementation and management practice 

effectiveness. In this case, effectiveness referred to the degree to which the BI system and the 

management practices achieved the intended goals [26; 93].  Respondents were asked to record 
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their perceptions of effectiveness on a scale of 1 to 7 with 7 meaning “highly effective”. The overall 

score for effectiveness for each construct was the mean of the associated components and methods. 

 

Validity and Reliability 

Convergent validity is confirmed when measurement items load more highly on their latent 

constructs than on any other construct and show a significant t-value [23]. Tables 1 and 2 provide 

the factor loadings for all constructs showing that their measures do in fact load significantly (p 

<=0.01). 

----------------------- 

Insert Table 1 here 

----------------------- 

 

----------------------- 

Insert Table 2 here 

----------------------- 

 

Discriminant validity is demonstrated when the average variance extracted (AVE) related to the 

latent construct is at least 0.50 and when the square root of the AVE is larger than the correlation 

of the construct with any other construct. Table 3 confirms that this is indeed the case.  

 

----------------------- 

Insert Table 3 here 

----------------------- 
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Control Variables 

Research suggests that organizational size [30] and industry sector [16; 20] can influence the ways 

in which CPM is employed in organizations. Accordingly, size and industry sector are considered 

as control variables for this study. For organization size, we use the number of employees as the 

basis for creating categories of small (less than 250 employees, 139 cases) and large (250 or more 

employees, 198 cases) organizations. For the sector variable, we collapsed the various industry 

sectors represented into service (200 cases) and non-service (137 cases) based on the argument 

that firms differ most markedly in their use of CPM systems along this line of delineation [20].  

 

In addition, it is possible that companies in Asia use BI systems differently than do North American 

companies [115]. Accordingly, we also collapsed the sample into East (China and Japan, 88 cases) 

and West (North America, 225 cases). Companies that did not fit into these categories were 

eliminated from the data set.  
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RESEARCH RESULTS 

Table 4 displays demographic information on the respondents and their organizations. 

 

 

----------------------- 

Insert Table 4 here 

----------------------- 

 

 

 

Figure 2 provides the results of the PLS analysis (t-values in brackets). In Figure 2, we note a 

strong relationship between BI system implementation effectiveness and the effectiveness of BA. 

This finding indicates that the BI system might help to organize data for use in BA. The R2 is 

0.336, however, indicating that BI system effectiveness accounts for a moderate portion of the 

variance in BA effectiveness. We consider two factors to explain this result. First, BI system use 

is voluntary: decision makers could access information from different sources [4]. Second, in many 

BI systems data are aggregated, but advanced analytics typically requires the use of raw data. 

Accordingly, as more advanced analytics techniques are adopted in organizations, the use of BI 

system-based aggregated data might decline in favour of storage systems (such as data lakes) that 

maintain data in more granular formats. 

----------------------- 

Insert Figure 2 here 

----------------------- 

 

 

 

Table 5 displays effect sizes for the relationships in the research model. BI system effectiveness 

has a strong influence on all management practices. The impact of BA is not as pronounced and 
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its effect size is not significant for measurement but it is for planning. This finding is consistent 

with information processing theory because, as previously discussed, planning could be 

considered a more ambiguous management practice than measurement. Accordingly, the 

application of more sophisticated analytic models might be used more so than in measurement.  

 

We can see that measurement has a strong relationship (0.461) with process effectiveness while 

planning has a weaker (0.375) but still significant relationship.  These findings could be 

explained through control theory [41]. Planning is a feedforward mechanism and at corporate 

levels in the organization, is often done once a year. Measurement by contrast is a feedback 

device that is used on an ongoing basis to help make mid-course corrections to organizational 

activities.   

 

 

----------------------- 

Insert Table 5 here 

----------------------- 
 

 

----------------------- 

Insert Table 6 here 

----------------------- 

 

 

Considering Tables 5 and 6, we conclude that BI system effectiveness strongly influences BA 

and has a weaker but significant relationship with the other management practices. By contrast, 

BA has a significant impact on planning, but its effect on measurement is small and not as 
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important.  Table 5 shows that both the BI system and BA significantly impact process 

effectiveness, but the weight for the BI system is significantly higher than for BA.  

 

Control Variables 

We examined potential heterogeneity of the findings using the control variables identified earlier 

in this paper by comparing the outer loadings of the measurement model subsets. A comparison 

of the regression weights was performed using the PLS-MGA approach [27]. The only significant 

finding was a difference in the R2 for the measurement practice between large (R2=0.224) and 

small organizations (R2=0.297). This appeared to be the result of a combined effect of a stronger 

link between the BI system and BA for smaller firms (0.617 versus 0.572) and between analytics 

and measurement (0.212 versus 0.137). Overall, it suggests that smaller firms rely more on 

analytics to inform their measurement practice.   

 

DISCUSSION 

This exploratory research project examined the relationship between the effectiveness of BI 

system implementation and the effectiveness of CPM practices. We also explored the relative 

importance of the BI system versus BA.   

 

This study shows a positive and significant relationship between BI system implementation 

effectiveness and the key corporate management practices of BA, planning and measurement.  

The strength of the relationship differs among the practices however. The BI system 

effectiveness shows a strong relationship to BA effectiveness (0.581) accounting for 33.6% of its 

variance. Given that in this study, the BI system was positioned as an information delivery tool, 
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this finding suggests that BA processes in organizations rely on the BI system, but that other 

sources of information are also used. Clearly, other factors would contribute to BA effectiveness 

such as the skills of the analysts and the processes being used. The finding does suggest 

however, that the BI system plays a positive role in BA effectiveness. 

 

The total effects calculations show that BI system effectiveness is strongly related to 

measurement (0.499), planning (0.566) and process effectiveness (0.444). BA effectiveness by 

contrast, shows a weak relationship to measurement (0.204, effect size of 0.042) and to process 

effectiveness (0.211) but a stronger relationship to planning (0.311, effect size of 0.108). Given 

that planning is thought to be a management practice characterized by higher levels of ambiguity 

than measurement, this finding is consistent with information processing theory in that BA 

practices such as data mining can be used to help reduce the ambiguity present in large amounts 

of data.    

 

Planning and measurement influence process effectiveness to different degrees (0.377 and 0.459 

respectively). Measurement has a stronger relationship which might result from the fact that 

planning occurs less frequently in organizations than does measurement. Yet both function as 

control mechanisms that help the organization identify the right types of processes to put in place 

and provide feedback to continually modify processes as needed.  

 

The study reveals that BI system effectiveness is related to the effectiveness of important CPM 

practices but with different levels of influence. Overall, the BI system shows a stronger influence 

than the BA function. This might be because BA is relatively new in organizations, or it might be 
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due to the different frequencies with which organizations conduct the different corporate-level 

management practices. Alternatively, many BI systems now include basic analytic functionalities 

(i.e., for forecasting and trend analysis), therefore it is possible that many previously specialized 

BA functions are being built into new BI system tools.  

 

Implications 

The study has several important implications for theory. First, it confirms the Integrative Model 

of IT Business Value for corporate-level management practices. It also introduces the notion of 

control practices at the corporate level of analysis. These might in fact, be representative of the 

“workplace” practices noted in this model that influence the degree to which the system itself 

positively impacts organizational performance.  The study also provides some validation of 

information processing theory in the context of the different uses of information in BI and BA. 

This is an important issue particularly considering the differences noted between transactional 

and analytic information delivery [101] and types of IT managerial skill needed to implement 

systems that support the different information needs. As the use of BA increases in 

organizations, it would be important to understand the different skill sets, both of IT staff who 

implement these systems, and of the managers and decision makers who need to interpret the 

analyses.  

 

The study also suggests that advanced analytics capabilities in modern organizations might call 

for a revisiting of the concept of media richness. This theory was developed in the late 1980s 

where the emphasis was on the information carrying capacity of the channel between the sender 

and the receiver [13]. In modern organizations where BA practices have become more 
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sophisticated, perhaps the notion of media richness can now be expanded to include the 

interpretation systems of the receiver. That is, sophisticated analytic methods such as data 

mining or artificial intelligence algorithms might serve the purpose of reducing ambiguity in 

place of or in concert with media-rich channels of communication.   

This research offers several implications for practice, especially for BI stakeholders who are 

involved in planning, reviewing or implementing BI to support CPM. BI adoption has become 

widespread as organizations continue to search for ways to support business performance 

management. Yet, it has been reported that between 70% and 80% of BI projects fail due to 

inadequate communication between IT and business users about the specific uses of the tools 

being implemented [25].  

For organizations that wish to explore BI tools to support CPM, this study suggests that a 

consideration of purpose of the tools−uncertainty versus ambiguity reduction−can help determine 

the blend between standard BI and more advanced BA packages. An important aspect to consider 

however is IT managerial skill in implementing and supporting the use of the tools post-

implementation.  

 

Limitations and future research 

The findings of the study should be interpreted in the light of a few limitations. Because we focused 

our attention on CPM, we gathered information from senior managers in the participating 

organizations. Additional research focusing on the middle management layers might shed more 

insight on the research questions. Moreover, the use of additional variables such as the competence 

of staff to use BI tools might help to better explore the linkages of BI to process effectiveness. 
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Nevertheless, the study provides an important first step in examining how BI influences CPM 

practices in organizations and establishes a foundation for future research that might include data 

collection from managers at different layers in the organizational hierarchy and the use of 

longitudinal approaches to better understand the specific mechanisms through which BI supports 

CPM over time. 

 

 

 

 

 

 

 

REFERENCES 

1. Amaro, S., & Duarte, P. “Modelling Formative Second Order Constructs in PLS,” 

Proceeding of the 15th European Conference on Research Methodology for Business 

and Management Studies, Kingston, UK, 2016. 

2. Aruldoss, M., Travis, M. L., & Venkatesan, V. P. “A survey on recent research in 

business intelligence,” Journal of Enterprise Information Management 27: (6), 2014, 

831-866. 

3. Baars, H., & Kemper, H. G. “Management support with structured and unstructured data: 

an integrated business intelligence framework,” Information Systems Management 25: 

(2), 2008, 132-148. 

4. Bischoff, S., Aier, S., Winter, R., & Haki, M. K. “Understanding continuous use of 

business intelligence systems: A mixed methods investigation,” Journal of Information 

Technology Theory and Application 16: (2), 2015, 5-38. 

5. Boynton, A., Zmud, R., & Jacobs, G. “The influence of IT management practice on IT 

use in large organizations,” MIS Quarterly 18: (3), 1994, 299-318. 

6. Byrd, T. A., & Turner, D. E. “An exploratory analysis of the value of the skills of IT 

personnel,” Decision Sciences 32: (1), 2001, 21-54. 



 

23 

7. Cao, G., Duan, Y., & Li, G. “Linking business analytics to decision making 

effectiveness: A path model analysis,” IEEE Transactions on Engineering Management 

62: (3), 2015, 384-395. 

8. Chen, H., Chiang, R. H., & Storey, V. C. “Business intelligence and Analytics: From big 

data to big impact,” MIS Quarterly 36: (4), 2012, 1165-1188. 

9. Chenhall, R. H., & Langfield-Smith, K. “Adoption and benefits of management 

accounting practices: An Australian study,” Management Accounting Research 9, 1998, 

1-19. 

10. Coltman, T., Devinney, T. M., Midgley, D. F., & Venaik, S. “Formative versus reflective 

measurement models: Two applications of formative measurement,” Journal of Business 

Research 61: (12), 2008, 1250-1262. 

11. Daft, R. L., & Macintosh, N. B. “A tentative exploration into the amount and 

equivocality of information processing in organizational work units,” Administrative 

Science Quarterly 26: (2), 1981, 207-224. 

12. Daft, R., & Weick, K. “Toward a model of organizations as interpretation systems,” 

Academy of Management Review 9, 1984, 284-295. 

13. Daft, R., Lengel, R., & Trevino, L. “Message equivocality, media selection and manager 

performance: Implications for Information Systems,” MIS Quarterly 11: (3), 1987, 335-

366. 

14. Davenport, T. “Competing on Analytics,” Harvard Business Review, 2006, 2-10. 

15. Davenport, T. H. “Business Intelligence and Organizational Decisions,” International 

Journal of Business Intelligence Research 1: (1), 2010, 1-12. 

16. Dehning, B., & Richardson, V. J. “Returns on investment in information technology: A 

research synthesis,” Journal of Information Systems 16: (1), 2002, 7-30. 

17. Diamantopoulos, A., Riefler, P., & Roth, K. P. “Advancing formative measurement 

models,” Journal of Business Research 61: (12), 2008, 1203-1218. 

18. Dobbs, T., Stone, M., & Abbott, J. “UK data warehousing and business intelligence 

implementation,” Qualitative Market Research 5: (4), 2002, 235-238. 

19. Dutot, V., Bergeron, F., & Raymond, L. “Information management for the 

internationalization of SMEs: An exploratory study based on a strategic alignment 

perspective,” International Journal of Information Management 34, 2014, 672-681. 

20. Elbashir, M. Z., Collier, P. A., & Davern, M. P. “Measuring the effects of business 

intelligence systems: The relationship between business process and organizational 

performance,” International Journal of Accounting Information Systems 9, 2008, 135-

153. 

21. Fetzner, M., & Freitas, H. “Business Intelligence (BI) Implementation from the 

perspective of individual change,” Journal of Information Systems and Technology 

Management 8: (1), 2011, 25-50. 

22. Frolick, M., & Ariyachandra, T. “Business performance management: one truth,” 

Information Systems Management 23: (1), 2006, 41-48. 

23. Gefen, D., & Straub, D. “A practical guide to factorial validity using PLS-Graph: Tutorial 

and annotated example,” Communications of the Association for Information Systems 16, 

2005, 91-109. 

24. Gilad, T., & Gilad, B. “SMR Forum: Business intelligence-the quiet revolution,” Sloan 

Management Review 27: (4), 1986, 53-61. 



24 

25. Goodwin, B. “Poor communication to blame for business intelligence failure, says 

Gartner,” 2011, Retrieved 2013 йил 5-May from ComputerWeekly.com: 

www.computerweekly.com/news/1280094776/Poor-communication-to-blame-for-

business-intelligence-failure-says-Gartner 

26. Grubljesic, T., & Jaklic, J. “Conceptualization of the business intelligence extended use 

model,” The Journal of Computer Information Systems 55: (3), 2015, 72-82. 

27. Hair, J. T., Hult, G. T., Ringle, C. M., & Sarstedt, M. A Primer on Partial Least Squares 

Structural Equation Modeling (PLS-SEM), Thousand Oaks, CA: Sage Publications, 2014. 

28. Hocevar, B., & Jaklic, J. “Assessing benefits of business intelligence systems: a case 

study,” Management 15: (1), 2010, 87-119. 

29. Holsapple, C., Lee-Post, A., & Pakath, R. “A unified foundation for business analytics,” 

Decision Support Systems 64, 2014, 130-141. 

30. Hoque, Z., & James, W. “Linking BSC measures to size and market factors: Impact on 

organizational performance,” Journal of Management Accounting Research 12, 2000, 1-

17. 

31. Isik, O., Jones, M. C., & Sidorova, A. “Business intelligence success and the role of BI 

capabilities,” Intelligent Systems in Accounting, Finance and Management 18, 2011, 161-

176. 

32. Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. “A critical review of construct 

indicators and measurement model misspecification in marketing and consumer 

research,” Journal of Consumer Research 30: (2), 2003, 199-218. 

33. Kaula, R. “Business intelligence rationalization: A business rules approach,” 

International Journal of Information, Business and Management 7: (1), 2015, 129-143. 

34. Korhonen, P., Mano, H., Stenfors, S, & Wallenius, J. “Inherent Biases in Decision 

Support Systems: The Influence of Optimistic and Pessimistic DSS on Choice, Affect, 

and Attitudes,” Journal of Behavioral Decision Making 21, 2008, 45–58. 

35. Koutsoukis, N. S., & Mitra, G. Decision Modelling and Information Systems, Boston: 

Kluwer Academic Publishers, 2003. 

36. Kowalczyk, M., & Buxmann, P. “Big data and information processing in organizational 

decision processes,” Business and Information Systems Engineering 5, 2014, 267-278. 

37. Lahrmann, G., Marx, F., Winter, R., & Wortmann, F. “Business intelligence maturity: 

Development and evaluation of a theoretical model,” Proceedings of the 44th Hawaii 

International Conference on Systems Sciences, Hawaai, 2011.  

38. Larosiliere, G. D., McHaney, R., & Kobelsky, K. “The effects of IT management on 

technology integration,” Journal of Computer Information Systems 56: (4), 2016, 341-

351. 

39. Lee, N., & Cardogan, J. W. “Problems with formative and higher-order reflective 

variables,” Journal of Business Research 66, 2013, 242-247. 

40. Lindell, M. K., & David J. W. "Accounting for common method variance in cross-

sectional research designs," Journal of applied psychology 86: 1, 2001, 114. 

41. Long, C. P., Sitkin, S. B., Cardinal, L. B., & Burton, R. M. “How controls influence 

organization information processing: insights from a computational modeling 

investigation,” Comput Math Organ Theory 21, 2015, 406-436. 

42. Luhn, H. P. “A business intelligence system,” IBM Journal of Research and Development 

2: (4), 1958, 314-319. Retrieved 2012 йил 5-August from A business intelligence system: 

http://www.research.bim.com/journal/rd/024/ibmrd0204.pdf 



 

25 

43. Lukman, T., Hackney, R., Popovic, A., Jaklic, J., & Irani, S. “Business intelligence 

maturity: The economic transitional context within Slovenia,” Information Systems 

Management 28, 2011, 211-222. 

44. Maholtra, N. K., Kim, S. S., & Patil, A. “Common method variance in IS research: a 

comparison of alternative approaches and a reanalysis of past research,” Management 

Science 52: (12), 2006, 1865-1883. 

45. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Hung Byers, 

A. Big data: The next frontier for innovation, competition and productivity. Mckinsey & 

Company, 2011. 

46. March, S. T., & Hevner, A. R. “Integrated Decision Support Systems: A data 

warehousing perspective,” Decision Support Systems, 2007, 1031–1043. 

47. Matusik, S. F., & Heeley, M. B. “Absorptive capacity in the software industry: 

identifying dimensions that affect knowledge and knowledge creation activities,” Journal 

of Management 31, 2005, 549-572. 

48. May, T. The New Know: Innovation Powered by Analytics, Boston: John Wiley and 

Sons, 2009. 

49. Mayers, R. E., & Moreno, R. “Nine Ways to Reduce Cognitive Load in Multimedia 

Learning,” Educational Psychologist 38: (1), 2003, 43-52. 

50. Melville, N., Kraemer, K., & Gurbaxani, V. “Information Technology and performance: 

An integrative model of IT business value,” MIS Quarterly 28: (2), 2004, 283-322. 

51. Micheli, P., & Manzoni, J. F. “Strategic performance measurement: benefits, limitations 

and paradoxes,” Long Range Planning 43, 2010, 465-476. 

52. Moore, S. Profile of Kodak: from Film to Digital Photography, University of Michigan, 

William Davidson Institute, 2010. 

53. Moyer, D. Defining and measuring competencies, Click to Learn, 2001. 

54. Mukhopadhyay, T., Kekre, S., & Kalathur, S. “Business value of Information 

Technology: A study of electronic data interchange,” MIS Quarterly 19: (2), 1995, 137-

156. 

55. Muller, R. M., Linders, S., & Pires, P. L. “Business Intelligence and service-oriented 

architecture: A Delphi study,” Information Systems Management 27, 2010, 168-187. 

56. Negash, S. “Business Intelligence,” Communications of the Association for Information 

Systems 13, 2004, 177-195. 

57. Niu, l., Lu, J., & Zhang, G. Cognition-Driven Decision Support for Business Intelligence. 

Berlin: Springer-Verlag, 2009. 

58. Nonaka, I., & Takeuchi, H. The Knowledge Creating Company: How Japanese 

Companies Create the Dynamics of Innovation, New York: Oxford University Press, 

1995. 

59. Nonaka, I., Konno, N., & Toyama, R. Emergence of BA: A conceptual framework for the 

continuous and self-transcending process of knowledge creation, In I. N. (Eds), 

Knowledge Emergence. New York: Oxford University Press, 2001. 

60. O'Dell, C., & Grayson, C. J. If Only we Knew what we Know: The Transfer of Internal 

Knowledge and Best Practices, New York, NY: The Free Press, 1998. 

61. Otim, S., Dow, K. E., Grover, V., & Wong, J. “The impact of information technology 

investments on downside risk: Alternative measurement of the business value of IT,” 

Journal of Management Information Systems 29: (1), 2012, 159-194. 



26 

62. Otley, D. “Performance management: a framework for management control systems 

research,” Management Accounting Research 10, 1999, 363-382. 

63. Perry, J., & Rainey, H. “The public-private distinction in organization theory: A critique 

and research strategy,” Academy of Management Review 13: (2), 1988, 192-201. 

64. Petter, S., Straub, D., & Rai, A. “Specifying formative constructs in Information Systems 

research,” MIS Quarterly 31: (4), 2007, 623-656. 

65. Piaget, J. The Psychology of Intelligence, New York: Routledge, 1950. 

66. Pilichowski, E. Results of the survey of knowledge management practices for 

ministries/departments/agencies of central government in OECD member countries, 

2003. (O. Public Governance and Territorial Development Directorate, Producer) 

Retrieved 2011 йил 12-December from 

http://www.oecd.org/dataoecd/24/63/2496135.ppt 

67. Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. “Common method 

biases in behavioural research: A critical review and recommended strategies,” Journal of 

Applied Psychology 88: (5), 2003, 879-903. 

68. Popovic, A., Hackney, R., Simoes Coelho, P., & Jaklic, J. “Towards business intelligence 

systems success: Effects of maturity and culture on analytical decision making,” Decision 

Support Systems 54, 2011, 729-739. 

69. Premkumar, G., Ramamurthy, K., & Stoak-Saunders, C. “Information processing view of 

organizations: An exploratory examination of fit in the context of interorganizational 

relationships,” Journal of Management Information Systems 22: (1), 2005, 257-294. 

70. Rainey, H. “Public management: recent research on the pological context and managerial 

roles, structures and behaviors,” Journal of Management 15: (2), 1989, 229-250. 

71. Rajteric, H. “Overview of business intelligence maturity models,” Management 15: (1), 

2010, 47-67. 

72. Ramakrishnan, T., Jones, M. C., & Sidorova, A. “Factors influencing business 

intelligence data collection strategies: an empirical investigation,” Decision Support 

Systems 52, 2012, 486-496. 

73. Randall, R., Ferguson, E., & Patterson, F. “Self-assessment accuracy and assessment 

centre decisions,” Journal of Occupational and Organizational Psychology 73, 2000, 

443-459. 

74. Ranjan, J. “Business justification with business intelligence,” VINE: Journal of 

Information and Knowledge Management Systems 38: (4), 2008, 461-475. 

75. Rashman, L., Withers, E., & Hartley, J. “Organizational learning and knowledge in 

public sector organizations: a systematic review of the literature,” International Journal 

of Management Reviews 11: (1), 2009, 463-494. 

76. Richards, G. S., & Duxbury, L. “Work-group knowledge acquisition in knowledge 

intensive public sector organizations: An exploratory study,” Journal of Public 

Administration Research and Theory, 2014. doi:10.1093/jopart/muuo34 

77. Richards, G., Mirabeau, L., Calof, J., & Mignerat, M. “A process view of organizational 

failure: The case of Nortel,” Academy of Management Conference, Philadelphia, 2014. 

78. Riege, A., & Lindsay, N. “Knowledge management in the public sector: stakeholder 

partnerships in the public policy development,” Journal of Knowledge Management 10: 

(3), 2006, 24-39. 

79. Rigby, D., & Bilodeau, R. Management tools and trends, 2009, Bain and Company, 

2009. 



 

27 

80. Ringle, C M; Wende, S; Becker, J M. SmartPls 3, Boenningstedt, SmartPLS GmbH, 

http://smartpls.com. 

81. Roberts, N., & Thatcher, J. B. “Conceptualizing and testing formative constructs: 

Tutorial and annnotated example,” The DATA BASE for advances in Information Systems 

40: (3), 2009, 9-39. 

82. Rogers, P. R., Miller, A., & Judge, W. Q. “Using information-processing theory to 

understand planning/performance relationships in the context of strategy,” Strategic 

Management Journal 20, 1999, 567-577. 

83. Romero, J. “The Rise and Fall of Circuit City,” Economic History, 2013, 1-3. 

84. Rubenstein-Monanto, B., Buchwalter, J., & Liebowitz, J. “Knowledge management: A 

US social administration case study,” Government Information Quarterly 18, 2001, 223-

253. 

85. Sahay, B. S., & Ranjan, J. “Real time business intelligence in supply chain analytics,” 

Information Management and Computer Security 16: (1), 2008, 28-48. 

86. Sambamurthy, V., Bharadwaj, A., & Grover, V. “Shaping agility through digital options: 

Reconceptualizing the role of IT in contemporary firms,” MIS Quarterly 27: (2), 2008, 

237-263. 

87. Sarin, S., & McDermott, M. “The effect of team leader characteristics on learning, 

knowledge application and performance of cross-functional new product development 

teams,” Decision Sciences 34, 2003, 707-739. 

88. Scherbaum, C. A., & Ferreter, J. M. “Estimating statistical power and required sample 

sizes for organizational research using multilevel modelling,” Organizational Research 

Methods 12: (2), 2009, 347-367. 

89. Schultze, U., & Stabell, C. “Knowing what you don't know: discourses and contradictions 

in knowledge management research,” Journal of Management Studies 41: (4), 2004, 549-

573. 

90. Schulz, M. “The uncertain relevance of new knowledge: organizational learning and 

knowledge flows,” Academy of Management Journal 44, 2001, 661-677. 

91. Seddon, P. B., Constantinidis, D., & Dod, H. “How does Business Analytics contribute to 

Business Value?,” Thirty third International Conference on Information Systems, 

Orlando, 2012. 

92. Sessa, V., & London, M. “Interventions to stimulate group learning in organizations,” 

Journal of Management Development 27, 2008, 554-573. 

93. Sharma, R. S., & Djiaw, V. “Realising the strategic impact of business intelligence 

tools,” VINE 41: (2), 2011, 113-131. 

94. Shrauger, S. J., & Osberg, T. M. “The relative accuracy of self-prediction and judgements 

by others in psychological assessment,” The Psychological Bulletin 90, 1981, 322-351. 

95. Simon, H. A. “A behavioral model of rational choice,” The Quarterly Journal of 

Economics 69: (1), 1955, 99-118. 

96. Simons, R. Levers of Control, Boston: Harvard Business School Press, 1995. 

97. Snijders, T., & Bosker, R. Multilevel Analysis, London: Sage Publications, 1999. 

98. Speckbacher, G., Bischoff, J., & Pfeiffer, T. “A descriptive analysis on the 

implementation of Balanced Scorecards in German-speaking countries,” Management 

Accounting Research 14, 2003, 361-387. 



28 

99. Stenfors, S., Tanner, L., Syrjanan, M., Seppala, T., & Haapalinna, I. “Executive views 

concerning decision support tools,” European Journal of Operational Research 181, 

2007, 929-938. 

100. Stock, G., Greis, N., & Fischer, W. “Absorptive Capacity and new product 

development,” Journal of High Technology Management Research 12, 2001, 77-91. 

101. Stroh, F., Winter, R., & Wortmann, F. “Method support of information 

requirements analysis for analytical information systems,” Business and Information 

Systems Engineering 3: (1), 2011, 33-43. 

102. Tallon, P. P. “Do you see what I see? The search for consensus among executives' 

perception of IT business value,” European Journal of Information Systems 23, 2014, 

306-325. 

103. Tedlow, R. S. Giants of Enterprise: Seven Business Innovations and the Empires 

they Built, New York: Harper Row, 2003. 

104. Titus Jr., V. K., Covin, J. G., & Slevin, D. P. “Aligning strategic processes in 

pursuit of firm growth,” Journal of Business Research 64: (5), 2011, 446-453. 

105. Todorova, G., & Durisin, B. “Absorptive capacity: valuing a 

reconceptualization,” Academy of Management Review 22, 2007, 774-786. 

106. Tsai, W. “Knowledge transfer in intraorganizational networks: effects of network 

position and absorptive capacity on business unit innovation and performance,” Academy 

of Management Journal 44, 2001, 996-1004. 

107. Turban, E., Sharda, R., & Delen, D. Decision Support and Business Intelligence 

Systems, New York: Pearson, 2011. 

108. Urbach, N., & Ahlemann, F. “Structural Equation Modeling in Information 

Systems research using Partial Least Squares,” Journal of Information Technology 

Theory and Application 11: (2), 2010, 5-40. 

109. Vinekar, v., Teng, J. T., & Chennamaneni, A. “The interaction of business 

intelligence and knowledge management in organizational decision-making,” Journal of 

International Technology and Information Management 18: (2), 2009, 143-259. 

110. Vuksic, V. B., Bach, M. P., & Popovic, A. “Supporting performance management 

with business process management and business intelligence: A case analysis of 

integration and orchestration,” International Journal of Information Management 33, 

2013, 613-619. 

111. Watson, H. J., & Wixom, B. H. “The current state of business intelligence,” 

Computer 40: (9), 2007, 96-99. 

112. Widener, S. K. “An empirical analysis of the levers of control framework,” 

Accounting, Organizations and Society 32, 2007, 757-788. 

113. Wieder, B., & Ossimitz, M.-L. “The impact of Business Intelligence on the 

quality of decision making-a mediated model,” Procedia Computer Science 64, 2015, 

1163-1171. 

114. Wixom, B. H., Watson, H. J., Reynolds, A., & Hoffer, J. A. “Continental Airlines 

continues to soar with Business Intelligence,” Information Systems Management 25, 

2008, 102-112. 

115. Yeoh, W., Richards, G., & Wang, S. “Benefits and barriers to Corporate 

Performance Management systems,” Journal of Computer Information Systems, 2014. 

105-116. 

 



 

29 


