
F. Daniel and F.M. Facca (Eds.): ICWE 2010 Workshops, LNCS 6385, pp. 325–337, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Business Process Compliance through Reusable Units of
Compliant Processes

David Schumm1, Oktay Turetken2, Natallia Kokash3,
Amal Elgammal2, Frank Leymann1, and Willem-Jan van den Heuvel2

1 Institute of Architecture of Application Systems (IAAS), University of Stuttgart,
Stuttgart, Germany

{Schumm,Leymann}@iaas.uni-stuttgart.de
2 European Research Institute in Service Science (ERISS), Tilburg University,

Tilburg, Netherlands
{o.turetken,a.f.s.a.elgammal,w.j.a.m.vdnheuvel}@uvt.nl

3 Centrum Wiskunde & Informatica (CWI) Amsterdam, Netherlands
{Natallia.Kokash}@cwi.nl

Abstract. Compliance management is essential for ensuring that organizational
business processes and supporting information systems are in accordance with a
set of prescribed requirements originating from laws, regulations, and various
legislative or technical documents such as Sarbanes-Oxley Act or ISO 17799.
As the violation of such requirements may lead to significant punishment for an
organization, compliance management should be supported at the very early
stages of business process development. In this paper, we present an integrated
approach to compliance management that helps process designers to adhere to
compliance requirements relevant for their processes. Firstly, we introduce a
conceptual model for specifying compliance requirements originating from
various compliance sources. Secondly, we propose a framework for augmenting
business processes with reusable fragments to ensure process compliance to
certain requirements by design. Furthermore, we discuss the formalization of
compliance requirements using mathematical logics and integrate the frame-
work for process reuse with automated software verification tools.

Keywords: Compliance, Business Process Management, Process Fragment,
Formal Modeling, Process Verification.

1 Introduction

In today’s business environment, organizations have to cope with an increasing num-
ber of diverse and complex compliance requirements stemming from various laws,
regulations, internal or external policies, business contracts etc. This increases the
necessity and importance of a comprehensive compliance management solution,
which must support compliance throughout all the stages of the business process life
cycle. Compliance management ensures that business processes are in accordance
with a set of prescribed requirements. It should be considered in three main stages: (i)
compliance verification of business process models (static verification at design time),
(ii) compliance monitoring of the running instances (dynamic verification at runtime),

326 D. Schumm et al.

and (iii) offline monitoring of the completed business process executions. We con-
sider the static and dynamic verification phases as indispensible and complementary
phases for ensuring and managing compliance. This is mainly because offline moni-
toring is a retrospective approach, which is based on the after-the-fact principle. A
preventive focus is fundamentally required in order to achieve sustainability and ef-
fectiveness in compliance management.

In this paper we introduce a process-centric approach to compliance management
focusing on the design time aspects where reusable units of compliant processes are
utilized to augment a process with structures related to compliance. The basic idea is
to combine the advantages of compliance checking based on logical formulas with a
novel approach for business process reuse. Assume a reusable building block that
implements a compliance requirement by means of activities and control dependency
among them. We refer to such a building block as a process fragment for compliance,
or compliance fragment for short. This fragment can be integrated into an existing
process with the intention of making the process compliant to the corresponding com-
pliance requirement. Thus, after the fragment has been integrated into a process, the
process should actually comply with the requirement that the fragment implements.
However, there is still a possibility that the process design violates the requirements
as there is yet no evidence that the fragment has been integrated in the correct manner
and in the correct place. The major reasons for an incorrect integration are wrong
positioning, wrong concretization, and change of the original fragment design. There-
fore, we propose involving rules that represent this compliance requirement in a for-
mal manner. These rules can be checked against the modified process model using
advanced methods for process verification to assure compliance.

The steps that have to be performed to provide the assurance of compliant process
design are briefly described in the following: at first, a compliance expert defines and
formalizes the requirements to which a particular process has to comply with. The
resulting formal rules are either associated with existing compliance fragments or
with new ones which are developed in cooperation of the compliance expert and a
process designer. The compliance fragments which are associated with the rules are
then integrated into the process by the process designer. The subsequent verification
indicates if all rules could be verified, or if changes on the process are required.

The rest of this paper is organized as follows: In Section 2, we introduce a concep-
tual model for compliance management on which our work is based. In Section 3, we
describe a common industrial scenario, which we use as a running example through-
out this paper. Our approach to the development of business process models compli-
ant by design is demonstrated in Section 4. In Section 5, we discuss related work.
Finally, in Section 6, we conclude the paper and outline future work.

2 Conceptual Model

Most of the compliance requirements originate from rather generic compliance docu-
ments. Compliance requirements may emerge from different sources and can take
various forms. They may originate from legislation and regulatory bodies (such as Sar-
banes-Oxley and Basel II), standards and code of practices (such as: ISO 9001) and/or
business partner contracts. These documents can be ambiguous and thus it is difficult to
decide what exactly has to be changed in a business process in order to ensure its

 Business Process Compliance through Reusable Units of Compliant Processes 327

compliance to these requirements. Therefore, an appropriate model for capturing and
specifying compliance requirements is needed. In particular, since some parts of such
documents may not be relevant for a given process, this model needs to describe com-
pliance requirements and correlate them with business processes that must conform to
them. Furthermore, since legislation and regulations tend to change over time, a link to
the compliance source should be preserved. The conceptual model depicted in Fig. 1
provides the constructs to manage compliance in business processes.

Fig. 1. Conceptual model for compliance management

A Compliance requirement is a constraint or assertion that results from the inter-
pretation of the compliance sources, such as laws, regulations, policies, standards,
contracts, etc. Failure to meet these requirements increases the likelihood of a compli-
ance risk to materialize, which in turn might impair the organization’s business
model, reputation and financial condition. To mitigate these risks and ensure that
compliance requirements are satisfied an organization defines controls. A control
describes the restraining or directing influence to check, verify or enforce rules to
satisfy one or more compliance requirements. A Compliance rule is an operative
definition of a compliance requirement which formally describes a control. A Com-
pliance fragment is a connected process structure that can be used as a reusable build-
ing block for ensuring a faster and more consistent specification and integration of
compliance into a process. Compliance fragments can be used to implement a compli-
ance rule in terms of activities and control structures. A Compliance target is a ge-
neric specification, such as a business process, or a compliance fragment, which is a
target of compliance requirements. A user (compliance or business expert) can issue a
compliance request to check whether a set of compliance targets conforms to a set of
applicable compliance requirements. The purpose of a compliance request is to iden-
tify if and how a process can or should be changed to make it (more) compliant.

3 Running Scenario

In order to provide an illustration for the concepts introduced above and to demon-
strate our approach we go over a motivating scenario. The general environment in
which the scenario takes place is the e-business application domain, and particularly,

328 D. Schumm et al.

banking applications in which compliance to strict regulations and legislations is
crucial. Fig. 2 depicts an excerpt from the process model for a “loan origination”
process represented using the Business Process Modeling Notation (BPMN). The
process starts with the customer submitting a loan request. Once the loan request is
received, a credit broker checks if the customer’s banking privileges are suspended.
Next, a loan threshold is calculated. If the threshold amount is less than 1M Euros, the
post processing clerk checks the credit worthiness of the customer through a credit
bureau service. If the threshold amount is greater than 1M Euros, the clerk supervisor
is responsible for performing the same activities instead of the post processing clerk.
Finally, the manager needs to approve the loan form and (in case of acceptance) send
the signed form to the customer to sign it.

Fig. 2. An excerpt from the BPMN model of the running scenario

There are diverse compliance requirements relevant to this loan origination proc-
ess, including access rights, temporal aspects, privacy and security. Table 1 gives an
example of a compliance requirement regarding the appropriate segregation of duties
on the loan origination process. The proposed approach will be discussed by going
through this requirement and relevant controls.

Table 1. Compliance requirements relevant for the loan origination process

Control Compliance
Requirement

Comp. Risk Comp. Source

1- Customer bank privilege check is segregated from credit
worthiness check

2- If the loan request exceeds 1M Euros, the Clerk Supervisor
checks the credit worthiness of the customer

3- The branch office Manager checks whether risks are
acceptable and makes the final approval of the request

Duties in Loan
Processing
should be
adequately
segregated

Loan granted
with inade-
quate level of
assurance

- Sarbanes-Oxley
Sec. 404
- ISO 17799-
10.1.3

 Business Process Compliance through Reusable Units of Compliant Processes 329

4 Ensuring Compliance of Business Processes

This section explains how compliance fragment reuse and static process verification
can help us to achieve business process compliance by design.

As discussed in the previous section, a process designer is faced with the task of
making a process compliant. We assume that an organization has a repository man-
aged by compliance experts where all relevant requirements are stored in a format
represented by the aforementioned conceptual model. As a proof of concept, we have
implemented such a repository and call it Compliance Requirements Repository
(CRR). The designer uses the CRR to find requirements that the particular process
needs to adhere to. The ‘requirements search’ can be a simple keyword search done
through all attributes of the requirement (including sources, risks and controls), or be
based on an advanced query for expert users.

In response to the designer’s request, the CRR returns a list of all relevant require-
ments. If the discovered requirements have already been instantiated, i.e., formalized
as discussed in Section 4.1 and available as concretized process fragments discussed
in Section 4.2, they can be directly (re-)used. In this case, the concretized fragments
are integrated into the process without the need to check them separately, as their
compliant design has been proven before. The augmented process can then be
checked against the formal rules by utilizing process verification tools for proving
compliant process design (discussed in Section 4.3).

Formal rules can be associated to corresponding compliance requirements with the
help of Compliance Request Language Tools (CRLT), discussed in more detail in
Section 4.1. If there is one or more abstract fragment that corresponds to a particular
rule, it can be concretized and customized by the process designer to fit a specific
process. If such a fragment does not exist yet, it can be created and reused in the fu-
ture. By integrating the fragment into the process, we ensure that the process adheres
to the corresponding compliance rules. In our approach, we assume that entities (con-
structs) present in concrete fragments and compliance rules share unique identifiers in
order to provide the correlation.

4.1 Defining and Formalizing Compliance Requirements

Compliance requirement specification language should be based on concepts derived
from formal logics to enable automated verification of compliance targets against
these requirements. Deontic logic (e.g. [19]) and temporal logic (e.g. [14]) families
have been intensively discussed in the literature as a basis for such a specification
language. In our framework, we mainly rely on temporal logic for representing com-
pliance rules. Our choice is justified by the fact that system property specification
using temporal logics is a mature field supported by efficient verification tools tested
and applied in practice for over 20 years. Among the formalisms within temporal
logic family, we prefer Linear Temporal Logic (LTL) [16] to Computational Tree
Logic (CTL) mainly due to its simplicity, intuitiveness and compositionality of rea-
soning [22].

330 D. Schumm et al.

One of the main problems of the temporal logic family in general is that logical
formulas are difficult to write and understand for users. The notion of property
specification patterns (Dwyer’s property patterns) was introduced in [6] as high-level
abstractions of frequently used logical formulas. These patterns assist users in under-
standing and defining formal specifications. In addition to the original patterns intro-
duced in [6], we have developed Compliance Patterns to capture recurring patterns in
the compliance context. Table 2 shows such patterns applied to the running scenario.
The first control is implemented using the newly introduced SegregatedFrom pattern
that captures the typical compliance requirement which mandates segregation of duties
among different roles and actors. In LTL, G, F, U correspond to the temporal operators
‘always’, ‘eventually’, and ‘until’ respectively. ‘G’ denotes that formula f must be true
in all the states of the business process model. ‘F’ indicates that formula f will be true at
some state in the future. ‘U’ denotes that if at some state in the future the second for-
mula g will be true, then the first formula f must be true in all the subsequent states. For
example, the LTL representation of ‘P LeadsTo Q’ is ‘G(P F(Q))’, which can be read
as: If P is true, then in the future Q should occur.

Table 2. Compliance rules for the examples from the loan origination process

Control Pattern Comp. Rules in LTL
1- Customer bank privilege check
is segregated from credit
worthiness check

CheckCustomerBankPrivilege
SegregatedFrom Check Credit
Worthiness

G((CheckCustomerBankPrivilege.Role
(Role1) G(!(CheckCredit Worthiness.
Role(Role1))

2 If the loan request exceeds 1M,
the Clerk Supervisor checks the
credit worthiness of the customer

((CreateLoanFile.Threshold >= 1M)
LeadsTo CheckCredit
Worthiness.Role("Supervisor"))

G((CreateLoanFile.Threshold >= 1M)
F(CheckCredit Worthiness.Role(Supervisor)))

3- The branch office Manager
checks whether risks are
acceptable and makes the final
approval of the request.

((JudgeHighRiskLoan AND
Approved = “Yes”) Preceeds
SignOfficiallyLoanContract.Role(‘M
anager’)) AND
((JudgeHighRiskLoan AND
Approved = “No”) Preceeds
DeclineDueToHighRisk(‘Manager’))

G((JudgeHighRiskLoan Approved = “Yes”)
(¬

SignOfficiallyLoanContract.Role(‘Manager’)
U (JudgeHighRiskLoan Approved =
“Yes”)))
G((JudgeHighRiskLoan Approved = “No”)

(¬ DeclineDueToHighRisk.Role(‘Manager’)
U (JudgeHighRiskLoan Approved =
“No”)))

We are currently implementing an environment1 as a part of a tool-suite for busi-
ness process compliance management. The prototype is a web-based environment,
which also incorporates stand-alone tools for building graphical representation of
requirements using patterns. The ongoing integration with Process Verification toolkit
(see Section 4.3) for process verification is achieved through a group of asynchronous
web service calls. BPMN or BPEL representations of compliance targets (i.e. process
models) and relevant formal compliance rules specified in LTL are transferred to the
Process Verification toolkit. The toolkit returns the verification result, listing the rules
that have been checked and whether they are satisfied or not. Fig. 3 presents one of
the user interfaces from the implementation reflecting how the results of the compli-
ance check are communicated to the business or compliance expert. The user interface
exemplifies the case that the first control given in Table 2 is violated.

1 CRLT: Compliance Request Language Tools, http://eriss.uvt.nl/compas

 Business Process Compliance through Reusable Units of Compliant Processes 331

Fig. 3. A user interface with compliance requirements identified for the running scenario

4.2 Compliance Fragments

Process fragments provide a lightweight approach for reusable process structures. In
[20] we introduced process fragments for compliance (abbreviated as compliance
fragments) as a means to realize compliance requirements within business processes
(e.g., based on BPMN) and workflows (e.g., based on BPEL) respectively. In order to
utilize this concept for a fast and consistent augmentation of processes with compli-
ance a library of such reusable compliance fragments has to be built up by the bank or
a consulting agency in our running scenario. This leads to the first phase in the man-
agement life cycle of compliance fragments, which is identification and design. In this
phase either reusable process structures related to compliance are identified within an
existing process and extracted there from, or they are designed from scratch. For in-
stance, the fragment for approval shown in Fig. 4 could have been extracted from the
bank’s quality assurance process. To ease reuse the extracted or designed fragment
needs to be rendered somewhat abstractly, i.e. static values have to be parameterized,
activities need to be generalized and process-specific parts have to be removed
(Fig. 4a). A compliance fragment may have multiple points for integration into a
process. We call those points fragment entries and fragment exits.

The next phase in the fragment life cycle is storage and retrieval. For this phase we
are developing a fragment repository [7] that efficiently supports versioned storage
and retrieval. In our example the process designer would query this repository and
find (and retrieve) the abstracted fragment for approval. This fragment can then be
integrated into the loan approval process in order to realize the compliance require-
ment. During integration the fragment has to be concretized, i.e. parameters have to
be set and the fragment has to be customized for the particular process in which it is
applied (see Fig. 4b). Therefore, checking an abstract fragment against concrete rules
has little advantages, but it is possible (and useful) to check a concrete rule against a
concrete fragment.

332 D. Schumm et al.

(a)

Judge
High-Risk Loan

Yes

No

No

Yes

Approved?

Low Risk?

Manager

(b)

Fig. 4. (a) Abstracted process fragment for approval; (b) Concretized fragment

4.3 Process Verification

To achieve compliance-by-design, we aim at the detection of the violation of compli-
ance rules in design and implementation of compliance fragments and business proc-
esses. To accomplish this goal, we automatically convert a compliance fragment or a
business process (either in BPMN, BPEL or UML) to its formal representation in Reo
[5]. Reo [2] is a graphical channel based coordination language that enables the mod-
eling of complex behavioral protocols using a small set of channel types with prede-
fined behavior. The application of Reo to business process modeling resembles that of
Petri nets. Intuitively, an asynchronous FIFO channel with a buffer of capacity one in
Reo corresponds to a place in a classical Petri net, while the notion of Petri net transi-
tion is generalized and can be composed of multiple synchronous channels. This
enables the propagation of synchrony across Reo networks and helps us to model
business processes in a more concise and compositional manner. Fig. 5 shows a Reo
counterpart for the approval fragment. In this model, an abstract activity Perform
check is represented as a buffer while conditional gateways correspond to nodes with
outgoing filter channels.

Automated conversion of BPMN, BPEL or
UML diagrams to Reo process models

Automated conversion of BPMN, BPEL or
UML diagrams to Reo process models

Fig. 5. Process formalization: Abstracted fragment for approval is converted to Reo

 Business Process Compliance through Reusable Units of Compliant Processes 333

Eclipse Coordination Tools (ECT) [3], a supporting framework for behavioral ser-
vice-based process modeling in Reo, consists of a set of integrated plug-ins that pro-
vide the functionality for converting, editing, animating, annotating, simulating and
model checking formalized process models. Since high-level models often do not
contain all the information necessary for the automated process verification, we as-
sume that ECT is used by a technical specialist to refine the process models that are
passed for compliance verification. The imported process models and fragments need
to be refined and the compliance rules have to be transformed to a format which can
be accepted by a specific model checking tool chosen to verify a given property.

Currently, three model checking tools are supported by ECT, namely Vereofy [23],
mCRL2 [15] and PRISM [18]. Vereofy is a tool that can check properties specified in
LTL and CTL-like logics and can be used for control flow analysis. Among its advan-
tages are its compatibility with the compliance rule language discussed in Section 4.1
and the ability to visualize counterexamples in a user-friendly manner by showing
them on Reo models using flash animations. Detailed examples of using this tool to
process compliance analysis, in particular verification of temporal constraints on
process control flow and segregation of duties, can be found in [11]. However, data
specification supported by Vereofy currently is not elaborate enough to enable the
verification of data-dependent compliance rules. Such rules can be analyzed with the
help of the mCRL2 toolset. The mCRL2 specification language and the corresponding
toolset were developed by the University of Eindhoven and represent a powerful
means for large-scale system verification. ECT includes a plug-in for automatic
generation of mCRL2 specifications from Reo process models [12], annotated, if
necessary, with data and time constraints. For example, Fig. 6 shows the model of the
dataflow in a concretized process fragment, where the input data domain is described
by a sort el(activated: Bool, amount: Nat) which indicates whether the approval is
activated and provides the requested loan amount. Data constraints in a format under-
standable by mCRL2 (e.g., amount(e1(d)) > 1000000) are used as annotations to
graphical Reo models and specify process dataflow branching conditions.

Fig. 6. Formal process model refinement: Concretized fragment for approval is annotated with
information about input data domain and dataflow

334 D. Schumm et al.

Such a model can be used for explicit state space generation or model checking
against properties specified in a variant of μ-calculus. This format subsumes temporal
logics LTL and CTL and allows us to formally express compliance rules with time
and data-aware conditions. For example, a compliance rule “if a requested loan
amount is higher than 1M, a manager authorization must be obtained” corresponds to
the following formula:

[] []XionauthorizatXamountamounttloanRequesamounttrue μ)1000000()(.:.* >∧∃ N

This formula literarily states that for a loan request with the amount exceeding 1M
Euro the authorization activity is unavoidable. Finally, the PRISM model checker is
used for the verification of probabilistic and quantitative properties of a Reo process
model. More detailed study of the application of this tool to compliance analysis con-
stitutes our future work. Apart from process model checking, formalized Reo process
models can be used for model-based test generation [21]. In this case, generated tests
may assure the compliance of an actual system implementation rather than just the
designed model. For example, in the aforementioned scenario at least four test in-
stances should be generated, with and without activated check conditions and loan
requests with two amounts: one exceeding 1M, and one not exceeding 1M. Model-
based test generation tools such as JTorX are compatible with the generated mCRL2
specifications and can be easily employed in our framework. After the verification,
formalized models and model checking results are saved in a repository for further
reuse and process reengineering. Counterexamples found by the model checking tools
and generated tests that the system did not pass can help the designer to understand
why the property violation occurs in the composed process (e.g., detect fragments that
are implemented in a wrong way, point out where the wrong integration points or
incorrect placements of fragments are).

5 Related Work

Temporal logic has been used intensively in the literature for the formal specification
of compliance requirements, key work examples are: [1], [4], [8], [9], [14] and [10].
The authors of [14] proposed a static compliance-checking framework that includes
various model transformations. Compliance requirements are modeled using the
graphical Business Property Specification Language (BPSL) tool where graphically
represented compliance requirements are automatically transformed to LTL formulas.
Next, the NuSMV2 model checker is used to verify the compliance. The study in [1]
utilized π-Logic to formally represent compliance requirements. In addition, a toolkit
has been developed to implement the proposed approach (HAL toolkit).

On the other hand, business process models are abstractly modeled. If the abstract
business process model is compliant, a BPEL process equivalent to the abstract repre-
sentation can be automatically generated. The study in [4] utilized past LTL (PLTL)
where properties about the past can be represented. However, sequential compliance
requirements are just considered. On the other hand, the study in [16] has utilized
the original pattern based system adapted in this paper. They considered only runtime

 Business Process Compliance through Reusable Units of Compliant Processes 335

compliance monitoring though. The study in [10] employed the original pattern speci-
fication system used in this paper for the verification of service compositions. In addi-
tion, they have introduced the logical composition of patterns using Boolean logical
operators. The correctness of pattern composition has also been proved. Composite
patterns enable the definition of complex properties in terms of property patterns.
Composite patterns can also be used for the specification of complex compliance
requirements. Furthermore, authors in [9] have extended the original property pattern
system to capture time-related property specifications, so that real-time requirements
can be represented via patterns. E.g. activity A must always be followed by activity B
within k time units.

Concerning reuse in business processes many concepts have been proposed so far.
Besides the well-known approaches for reuse such as sub processes or business rules,
more and more lightweight approaches are proposed. For instance, in decentralized
process modeling multiple people are involved, each of them having local know-how.
Each of the involved designers can model a particular aspect of a process as process
fragment, i.e. as an incomplete but connected process structure. These fragments are
later composed to a complete process model [13]. Although there is a significant
number of works in each of these areas, there is, to the best of our knowledge, cur-
rently no approach that combines the advantages of formal languages and compliance
checking based on logical formulas with an approach for business process reuse. Here
we discussed a concept that demonstrates how these different fields can be combined
to support compliance management in business processes.

6 Conclusion and Outlook

In this paper, we presented a framework for design-time business process compliance
management. In particular, we introduced a conceptual model for specifying compli-
ance requirements and discussed how these requirements can be stored and processed.
The main contribution of this paper is an approach that combines the formalization of
compliance requirements, their automated verification for a given process and a novel
approach for process reuse. This combination enables a consistent augmentation of
business processes with process structures that implement relevant compliance re-
quirements and supports the development of compliant-by-design software applica-
tions. By going through a scenario, we briefly demonstrated the concepts and the
proposed approach. We also demonstrated the core functionalities of the tools util-
ized, each representing a part of an ongoing effort on the development of a compre-
hensive tool-suite for business process compliance management.

Although the formal language introduced in this paper can be used to formalize
compliance requirements of diverse types, only those requirements relevant to the
control flow of the business processes can be tackled powerfully with compliance
fragments. For instance, a locative requirement that demands a certain set of rules on
data storage requires a different approach as it refers to database applications rather
than activities and control structures. The approach presented in this paper can be
seen as one piece of the puzzle in an overall solution to managing compliance.

336 D. Schumm et al.

Acknowledgements

This work is a part of the research project COMPAS (www.compas-ict.eu) which is
funded by the European commission, contract no. FP7-215175. Many thanks go to
Huy Tran for the development of the process model of the loan origination scenario.

References

1. Abouzaid, F., Mullins, J.: A Calculus for Generation, Verification, and Refinement of
BPEL Specifications. In: Proc. of the WWV 2007, pp. 43–68 (2007)

2. Arbab, F.: Reo: A Channel-based Coordination Model for Component Composition.
Mathematical Structures in Computer Science 14, 329–366 (2004)

3. Arbab, F., Koehler, C., Maraikar, Z., Moon, Y., Proenca, J.: Modeling, Testing and Exe-
cuting Reo Connectors with the Eclipse Coordination Tools. In: Tool Demo Session at
FACS 2008 (2008)

4. Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking using BPMN-Q and
Temporal Logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS,
vol. 5240, pp. 326–341. Springer, Heidelberg (2008)

5. Changizi, B., Kokash, N., Arbab, F.: A Unified Toolset for Business Process Model For-
malization. In: Proc. of the Int. Workshop on Formal Engineering approaches to Software
Components and Architectures (FESCA 2010) (2010)

6. Dwyer, M., Avrunin, G., Corbett, J.: Property Specification Patterns for Finite-State Veri-
fication. In: Int. Workshop on Formal Methods on Software Practice, pp. 7–15 (1998)

7. Fragmento - Fragment-oriented Repository. Online Documentation (2010),
http://www.iaas.uni-
stuttgart.de/forschung/projects/fragmento/start.htm

8. Giblin, C., Liu, A., Muller, S., Pfitzmann, B., Zhou, X.: Regulations Expressed As Logical
Models. In: Proc of the 18th Int. Annual Conf. on Legal Knowledge and Information Sys-
tems (2005)

9. Gruhn, V., Laue, R.: Specification Patterns for Time-Related Properties. In: 12th Int’l
Symposium on Temporal Representation and Reasoning, USA, pp. 198–191 (2005)

10. Yu, J., Manh, T., Han, J., Jin, Y.: Pattern-Based Property Specification and Verification for
Service Composition. In: Aberer, K., Peng, Z., Rundensteiner, E.A., Zhang, Y., Li, X.
(eds.) WISE 2006. LNCS, vol. 4255, pp. 156–168. Springer, Heidelberg (2006)

11. Kokash, N., Arbab, F.: Formal Behavioral Modeling and Compliance Analysis for Service-
Oriented Systems. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.) FMCO 2008.
LNCS, vol. 5751, pp. 21–41. Springer, Heidelberg (2009)

12. Kokash, N., Krause, C., de Vink, E.: Data-aware design and verification of service compo-
sition with Reo and mCRL2. In: Proc. of the SAC 2010. ACM Press, New York (2010)

13. Eberle, H., Unger, T., Leymann, F.: Process Fragments. In: Proc. of the 17th Int. Confer-
ence on Cooperative Information Systems (CoopIS). Springer, Heidelberg (2009)

14. Liu, Y., Muller, S., Xu, K.: A Static Compliance-Checking Framework for Business Proc-
ess Models. IBM Systems Journal 46 (2007)

15. mCRL2 toolset, http://www.mcrl2.org
16. Namiri, K., Stojanovic, N.: Pattern-based Design and Validation of Business Process

Compliance, pp. 59–76. Springer, Heidelberg (2007)
17. Pnueli, A.: The Temporal Logic of Programs, In: Proc. of the 18th IEEE Symposium on

Foundations of Computer Science, Providence, pp. 46–57 (1977)

 Business Process Compliance through Reusable Units of Compliant Processes 337

18. Probabilistic model checker, http://www.prismmodelchecker.org/
19. Sadiq, S., Governatori, G., Naimiri, K.: Modeling Control Objectives for Business Process

Compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 149–164. Springer, Heidelberg (2007)

20. Schumm, D., Leymann, F., Ma, Z., Scheibler, T., Strauch, S.: Integrating Compliance into
Business Processes: Process Fragments as Reusable Compliance Controls. In: Proc. of the
MKWI 2010, Universitätsverlag Göttingen (2010)

21. Tretmans, J.: Model Based Testing with Labelled Transition Systems. In: Hierons, R.M.,
Bowen, J.P., Harman, M. (eds.) FORTEST 2008. LNCS, vol. 4949, pp. 1–38. Springer,
Heidelberg (2008)

22. Vardi, M.: Branching vs. Linear Time: Final Showdown. In: Margaria, T., Yi, W. (eds.)
TACAS 2001. LNCS, vol. 2031, pp. 1–22. Springer, Heidelberg (2001)

23. Vereofy model checking tool, http://www.vereofy.de/

	Business Process Compliance through Reusable Units of Compliant Processes
	Introduction
	Conceptual Model
	Running Scenario
	Ensuring Compliance of Business Processes
	Defining and Formalizing Compliance Requirements
	Compliance Fragments
	Process Verification

	Related Work
	Conclusion and Outlook
	References

