
CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 2, PAPER 2, AUGUST 2014

Business Process Verification: The Application of

Model Checking and Timed Automata

Luis E. Mendoza Morales

Processes and Systems Department, Simón Boĺıvar University,

P.O. box 89000, Baruta, Venezuela, 1080–A

lmendoza@usb.ve

Abstract

The most important result to standardize the notation for graphical representation of
Business Processes (BPs) is the Business Process Model and Notation (BPMN). Despite
the BPs modeled with BPMN being able to support business designers, BPMN models
are not appropriate to support the analysis phase. BPMN models have no formal seman-
tics to conduct qualitative analysis (validation and verification). In this work is presented
how Model Checking (MC) verification technique for software and Timed Automata (TA)
formal language are integrated within a formal verification approach to check BPs mod-
eled with BPMN. Also, are introduced a set of guideline to transform BPMN models
into TA. The use of our approach allow to business analysts and designers to perform
evaluation (i.e., qualitative analysis) of BPs, based on the formal specification of BP–task
model with TA. The application of the approach is aimed to evaluate the behavior of
the BP–task model with respect to business performance indicators (for instance, service
time, waiting time or queue size) derived from business needs, as is shown in an instance
of an enterprise–project related to Customer Relationship Management.

Keywords: Model checking, Timed automata, Task model, Business process, Qualitative analysis.

1 Introduction

Model Checking (MC) is a formal verification technique that enables exhaustive and automatic checking
of whether or not a model meets a given specification [1]. Thus, applying MC to Business Process (BP)
verification helps to solve problems as bottlenecks and deadlocks. To apply the MC technique, the BPs need
to be described in a formal language. However, the Business Process Model and Notation (BPMN) [2], which
is a standard notation for describing BPs in the early phases of development, does not have formal semantics.
BPMN models do not provide mechanisms to quantify the computational/human effort required to perform
the activities, nor the response time of work when resources (e.g., a BP–worker) are concurrently shared
among multiple processes. In previous works [3, 4, 5], some approaches were proposed for the formalization
of BPMN; however, they did not deal well enough with temporal and concurrency constraints.

The temporal perspective is a contributing factor to both the design–time and the run–time of a BP. At
BP design–time, the temporal perspective allows the modeler to explicitly specify temporal constraints and
dependencies to ensure that all temporal requirements of the process are met. At run–time, the temporal
perspective of the BP specification leads to the ability to precisely schedule a BP. The idea of obtaining
directly an executable model (i.e., a BP–task model) from a BP conceptual —a BP descriptive model based
on qualitative assumptions about its elements, their interrelations, and BP boundaries— one (e.g., a BPMN
diagram) has taken us to use an instantiation of the formal verification approach explained in [6] integrated
with Timed Automata (TA) as was introduced in [7]. In particular, the formal verification approach explained
in [6] focus on the perspective of temporal and concurrency constraints on BPs, allowing the correctness of
BP–task models through the MC technique to support the analysis of the satisfaction of business temporal
constraints and dependencies.

In this paper, is proposed an approach based on the MC techniques for the formal verification of BPs
based on the construction of a BP–task model as a TA–network (i.e., at design–time), which conform with
the semantics of the BPMN standard [2] and the business temporal and concurrency constraints. In this
way, the behavioral aspects and temporal constraints in a BP–task model are simulated and verified (i.e.,

1

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 2, PAPER 2, AUGUST 2014

at run–time) using the Uppaal [8] MC tool as we will show in the sequel by the application to an instance
of Customer Relationship Management (CRM) strategy. First, we provide a set of mapping guidelines to
transform BPMN process models into TA that can be verified by Uppaal [8]. Next, the instantiation of
the formal verification approach introduced in [7] is applied to verify the corresponding BP–task model. As
a result, BP designers can verify BPs efficiently through the following steps: (1) description of BPs and
their constraints with a formal temporal logic, (2) systematic transformation into TA systematically with
the transformation guidelines, and (3) running of the Uppaal model checker with the BP–task model and
properties to be verified. With the verification results, the business analysts and designers can perform
improvements to BPs and adjustment of their constraints (i.e., return to step (1)) depending on the results
obtained. This helps to eliminate serious problems related to temporal and concurrency constraints in the
early phases of development and to assure the quality of BPs models.

Since our approach is aimed at representing BP–task model concurrent aspects, the contribution is more
focused on verification of consistency and synchronization of concurrent tasks which exist in BP–task model
than in other BPs oriented validations. According to our approach, the verification of structured BP–task
model can be carried out with correctness by only starting from the verification of the simplest TAs. As final
remark, our proposal can be adapted to other BP languages and standards which allow the transformation
of the properties to verify and the modelling elements of BP–task model into formal language constructs
supported by MC tools. See [9] to review an example of an adaptation of our approach to a BP–task model
derived from BPs modeled with BP UML stereotypes and [6] to check the version of formal verification
approach that integrates BPMN notation with the formal language Communicating Sequential Processes +
Time (CSP+T).

The paper’s remainder is organized as follows. Section 2 presents the related work. Section 3 introduces
the three topics required to the understanding of this work: the BPMN notation, the TA theory with the
MC technique, and the Clocked Computation Tree Logic (CCTL). Section 4 explains the BP–task model
verification approach. The defined guidelines for transforming BPMN to TA are presented in Section 5.
Section 6 shown an application example related to the CRM business, while the concluding remarks are
made in Section 7.

2 Related work

Reviewing the literature, we found few works to allow us to establish the state of the art in specifying and
verifying the temporal perspective in BPs using BPMN. In [3] is presented a extend survey of existing proposal
verification techniques of BPMN diagrams and compare them among each other with respect to motivations,
methods, and logics. Nevertheless, none of cited works take into account the temporal perspective of the
behavior of a BP. In addition, these works do not combine the modeling of BPs with the analysis/design of
BP–task models and verification activities.

For the purposes of this paper, it is worth mentioning the work in [5], due to that it is an extension of
BPMN, called Time–BPMN, with a large set of required temporalities. This work presents a classification
of flexible and inflexible temporal constraints and temporal dependencies. This extensions does not permit
to model temporal constraints relating to the duration of the BP activities. Notwithstanding, Time–BPMN
[5] is limited to the specification phase since no verification mechanism of temporal constraints is provided.

It is also important to mention the work in [10], which proposes a formal specification of BPMN with TA.
The authors extend BPMN to handle temporal, concurrency, and resource constraints. They also provide an
automatic mapping of the extended BPMN onto TA. This approach aims at verifying some features, such as
deadlocks and bottlenecks; but the scope of this paper is limited to a small subset of BPMN elements. The
extension provided in this work permits to specify temporal constraints related to only one activity within
the BP model and does not consider timed properties related to a set of activities, such as inter–activities
temporal constraints.

Finally, it is worth mentioning the work in [11], due to that it incorporates the concept of controllability
—capability of executing a workflow for any possible duration of tasks— and its evaluation at design–time;
i.e., it establishes the importance of controlling the task run–time and other notational elements of BPMN
as part of BP analysis [11]. With the work presented here, is incorporated in a practical way the concept of
controllability, which allows us to analyze the decisions made at design–time of a BP–task model associated
to a specific BP from the behavior of the elements (BP–workers specifically) that make it up at run–time,
as part of a verification approach.

The work presented here is aimed at giving a systemic, integrated vision of analysis, design and verification
tasks of BPs, by incorporating the use of TA and MC tools in the BP–task model development cycle, to
allow us to obtain the expected result: the verification of the complete BP–task model associated to a specific
BP. Following the steps mentioned in the introduction, BP analyst and designers can verify BPs efficiently.

2

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 2, PAPER 2, AUGUST 2014

In this way, we take full advantage of the strengths that a formalization of the behavioral and temporal
aspects of BPMN can offer to the BP analysis both at design–time and run–time, integrating verification
software tools.

3 Background

3.1 Business Process Model and Notation (BPMN)

The Business Process Modeling Notation (BPMN) provides organisations with the capability of specifying
and depicting their BPs using a graphical notation with an emphasis on control–flow. The latest version of
BPMN [2] aims to be a visual language to communicate BPs in a standard manner. The BPMN Business
Process Diagram (BPD) incorporates constructs adequate to BP modelling, such as events, tasks, gateways
and flows, and defines more advanced constructs, such as task looping, parallel multinstances, inclusive OR
decission, subprocesses and exception handling. And hence, a language of this type will include the modelling
concepts necessary to describe certain aspects of a BP at a certain abstraction level. Figure 1 shows the
main BPMN notational elements as they are represented in BPDs.

Figure 1: Graphical representation of BPMN elements.

An event is something that happens during the course of a process and affects the flow of the process. The
start event indicates where a process will start, and end event indicates where a process will end. An activity
is a generic term for work performed in the process; it can be atomic (called task) or compound. In this work,
the term activity refers to an atomic activity or task. A sequence flow is used to show the order in which
activities will be performed. A gateway is used to control the divergence and convergence of sequence flows.
Gateways can have several behavior controls and each type of control affects both the incoming and outgoing
flow: exclusive, parallel, and inclusive gateways. In a parallel between BPMN objects and the workflow
terminology, an exclusive gateway corresponds to a XOR-split/join, a parallel gateway corresponds to an
AND-split/join, and an inclusive gateway corresponds to an OR-split/join. A Pool typically represents an
organization or business entity and a Lane represents a department or BP–worker within that organization,
or other modelling entities like functions, applications, and systems. Both, pools and lanes, represent BP
participants. A message flow represents the communication between two asynchronous organizations or
business entities; i.e, two asynchronous pools. An association is used to link information with graphical
elements. Text annotations provide additional information for readers of the BPMN diagrams. Other
BPMN objects can be expressed in terms of the objects of Figure 1. For example, activity looping and
multi–instances activities can be modeled using atomic activities and exclusive/parallel gateways.

Consider, for instance, the simple example of a typical choreography model designed in BPMN shown
in Figure 2. The BPD depicts the message flows between two partners, a seller and an auctioning service.
The choreography describes the interactions needed for creating an auction. You see message send tasks
and intermediate message events that are properly connected through message flow. Two pools are used.
Control flow constructs are available to show the causal dependencies between the different communication
actions; thus, the synchronization between both participants is a necessary behavioral property for successful
collaboration.

The suitability and expressiveness of BPMN as a process modeling language has been explored from
various perspectives [3, 4, 5, 6, 7, 11], however BPMN has not yet the semantic precision required to
unambiguously represent fully executable BPs [12]. Moreover, in order to perform verification of critical
properties of BPs, we first need to construct a formal model of the processes that are critical to the conduct
of the business. The BP of interest must be modeled with the adequate formal notation, which is usually
determined by the complexity of the communications carried out by the tasks in which the BP is structured.

3

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 2, PAPER 2, AUGUST 2014

Figure 2: Example of a BPMN diagram.

To obtain semantic precision and verifiability of syntactic constructs, in this work is suggests the use of TA
theory as a formal description language for BP modelling languages.

3.2 Timed Automata (TA) and Model Checking (MC)

According to the TA theory, a timed automaton is a finite directed graph annotated with conditions over and
resets of non–negative real valued clocks, and a system is modeled as a collection of finite state machines and
a finite set of clocks. In the standard scheme the clocks are synchronized and can be reset by the transition
from one state to another. Clocks are also used to guard transitions. Within TA, time is continuous but the
clock’s statements are usually restricted to using integer values. Time is never negative as the clocks can
only be resets to 0. Bounded liveness is represented by the requirement that some specific clock can never
obtain a value greater than some specified deadline, or cannot do so while a state or collection of states is
occupied. Transitions are defined to be instantaneous and hence it is possible to model behaviors that are
not easily implementable. Where there are two or more possible transitions from a state then each is a valid
transition.

For example, according to the in Figure 3 the transition out of state S cannot be taken before time 3. In
this example, T is a clock; it is resetting when the state S is achieve. In a simple model (i.e., the invariant
T < 5 do not exist) the only exit from the state S is when T is greater than 3; i.e., the example therefore
illustrates the imposition of a delay. A state can also have a temporal invariant to force an exit transition.
Figure 3 illustrate this because the state S cannot leave before T = 3 but must leave before T = 5. If for
some reason the transition cannot be taken then the automata contains an error condition (deadlock).

Figure 3: Example of a TA.

Next are presented the basic definitions for timed automaton and TA–network, which are important for
our purposes.

Definition 1 (Timed Automaton). A timed automaton is a tuple A = 〈S,Σ, C,E, s0〉 that consists of
the following components:

• S is a finite set. The elements of S are called the states of A.

• Σ is a finite set called the alphabet or actions of A.

• C is a finite set called the clocks of A.

• E ⊆ S × Σ×B(C)× P (C)× S is a set of edges, called transitions of A, where

– B(C) is the set of boolean clock constraints involving clocks from C, and

– P (C) is the powerset of C.

• s0 is an element of S, called the initial state.

An edge 〈s, a, g, r, s′〉 ∈ E is a transition from state s to s′ with action a, guard g and clock resets r.

4

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 2, PAPER 2, AUGUST 2014

As was introduced previously, the semantics of a timed automaton is defined as a transition system
where a state or configuration consists of the current location and the current values of clocks. There are
two types of transitions between states. The automaton may either delay for some time (a delay transition),
or follow an enabled edge (an action transition). A timed action is a pair (t, a), where a ∈ Σ is an action
taken by a timed automaton A after t ∈ R+ time units since A has been started. The absolute time t
is called a time–stamp of the action a. A timed trace is a (possibly infinite) sequence of timed actions
ξ = (t1, a1)(t2, a2) . . . (ti, ai) . . . where ti ≤ ti+1∀i ≥ 1.

To model concurrent systems (as the BPs), TA can be extended with parallel composition. In process
algebras, various parallel composition operators have been proposed to model different aspects of concurrency
—see e.g. Calculus of Communicating Systems (CCS) [13] and Communicating Sequential Processes (CSP)
[14]. These algebraic operators can be adopted in TA, which allows interleaving of actions as well as hand-
shake synchronization. Essentially the parallel composition of a set of timed automaton is the product of
the automata, just called TA–network.

Definition 2 (TA–network). A TA-network is the parallel composition TAN = A1 ‖ · · · ‖ An of a set
of timed automata A1 . . .An, called processes, combined into a single system by a parallel composition
operator with all external actions hidden. Synchronous communication between the processes is by hand–
shake synchronization using input and output actions. The action alphabet is assumed to consist of symbols
for input actions denoted c?, output actions denoted c!, and internal actions represented by the distinct
symbol τ .

TA are designed so that they can be verified by MC. In MC a formal model is checked for correctness
against requirements expressed in temporal logic [1]. Intuitively, MC works by exploring all possible state
transition from the initial state of the system. All possible traces from the beginning set of states are explored
to see if an unsafe state can be reached or a liveliness condition broken. MC is a technique that requires
tool support. In this work we use the Uppaal tool [8], because it supports the graphical representation
of TA and allows the tool user to interact with a window editing program to create and modify models.
In Uppaal, the product automaton is computed on-the-fly during verification. The tool also supports an
interactive simulation facility which is a useful means of animating a model. A verify command invokes the
model checker and allows requirement statements to be examined. If a required property is found to be
false then a counter–example is generated and can be input to the simulator. From the business analysts
and designers viewpoint, Uppaal is easy to use; although for non–trivial models considerable computing
power is required by the model checker. The underlying formalism for Uppaal is TA–networks [8], which are
easily understood by business people and faithfully reflect the BP–workers’ behavior in the BP execution.
Currently the verification facility supports a slightly more expressive language then the simulator, very
appreciated by those responsible for modelling BPs. As the use of the simulator is fundamental to the whole
verification process we use only those features that the simulator implements.

3.3 Clocked Computation Tree Logic (CCTL)

Property specification languages are used to obtain a formal specification of the expected BP behavior accord-
ing to the business requirements. CCTL [15, 16] is a propositional temporal logic that extends Computation
Tree Logic (CTL) [1] with quantitative time bounds for expressing real time properties (e.g., bounded live-
ness). CCTL is used to deal with sequences of states, where a state gives a temporal interpretation of a
set of atomic propositions (AP) at a certain time interval and time instants are isomorphic to the set of
non–negative integers.

CCTL includes the CTL with the operators until (U) and next (X), and other derived operators in
Linear Temporal Logic (LTL) [1], such as release (R), weak until (W), cancel (C) and since (S). In the Table
1 a textual description of some temporal operators usually deployed in CCTL specifications can be seen
(ϕ and ψ are arbitrary CCTL formulae, and a ∈ N and b ∈ N ∪ {∞} are time bounds). All of them have
proved to be useful for facilitating the definition of the properties included in reactive systems requirements
specification. All LTL–like temporal operators are preceded by a run quantifier (A universal, E existential)
which determines whether the temporal operator must be interpreted over one run (existential quantification)
or over every run (universal quantification). See [15, 16] for more details.

Furthermore, all interval operators can also be accompanied by a single time–bound only. In this case the
lower bound is set to zero by default. If no interval is specified, the lower bound is implicity set to zero and
the upper bound is set to infinity. If the EX–operator has no time bound, it is implicity set to one. For this
paper we will only use the semantics for the AG and EF–operators (“Always Globally” and “Eventually”,
respectively), the semantics for the others operators may be found in [15, 16]. The semantics of CCTL is
given be a model relation (|=).

5

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 2, PAPER 2, AUGUST 2014

Operator Description

X[a]ϕ The formula ϕ has to hold after exactly the time a.

F[a,b]ϕ The formula ϕ has to hold at least once within the interval [a,b].

G[a,b]ϕ The formula ϕ has to hold at all time of the interval [a,b].

ϕU[a,b]ψ
The formula ψ has to become true within the interval [a,b] and all time steps before, the
formula ϕ has to be valid.

ϕR[a,b]ψ
Its the logical dual of the U operator. The formula ψ has to become true along the interval
[a,b] up to and including the first time instance where the formula ϕ has to be valid.

ϕB[a,b]ψ
If ψ becomes true within the interval [a,b] then ϕ has to be valid at one time instance before
this event. Otherwise ϕ has to be valid at least once up to the time b.

ϕC[a]ψ
If the formula ϕ is true on the current run up to the time a − 1 then the formula ψ has to
hold at time a.

ϕS[a]ψ
From time zero up to time a− 1 the formula ϕ has to hold and at time a the formula ψ has
to become valid.

Table 1: Informal description of some CCTL temporal operators.

4 BP–task model

A business comprises several BPs. Under the BPMN approach, to entirely model a business is required
one BPD by each BP. Each of these BPD represent a scenario where each BP–worker carry out the tasks
scheduled in the BPs. In this work, and according to our experience, (1) each task is performed by only
one BP–worker or automated system at time, and (2) is called BP–worker both the person that perform the
task as the system that automates the task.

A BP–task model structure is a set of groups of tasks, representing a large number of possible real–world
scenarios expressed in compact form. Thus, we are focused here on the BP–task model and the set of
overlapping user scenarios, which allow us to obtain a description of most of the tasks that a BP–task model
must take into account [17]. The compilation of all these scenarios constitute the BP behavioral view (see
Figure 4); i.e., the BP–task model. Each BP–worker has a vision of a BP, according to their participation
in the BP execution. When these partial behaviors are grouped, we obtain the BP–worker behavioral view.
In this view, languages and formal techniques, such as finite state–machines or TAs, among others, have
proved very useful to describe this behavior.

Figure 4: BP–task model systemic view.

Due to a BP–worker can be concurrently involved in several BPs into a company, the BP–task model is
obtained taking into account the behavior of these BP–worker according to each BP. The BP–worker are
the ones who execute the tasks and are responsible of business behavior. Thus, the BP–task model gives us
a cross–BP view of the business behavior, unlike the partial view showing by the BPDs. A BP–task model
associated with a set of BPs combines the behaviors of every BP–worker involved in these BPs.

According to the approach described in this work, the complete description of the BP–task model be-
havior is obtained by a TA–network of a given set of BPs modeled with BPMN. Thus, some non–functional
requirements (i.e., deadlock–freeness, reliability) and temporal constraints (i.e., timeliness, deadlines) that

6

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 2, PAPER 2, AUGUST 2014

the BP–task model must fulfill are modeled by using a TA by each BP–worker or business entity. As result,
we obtain a TA–network that specify and deal with behavioral aspects and temporal constraints of the BP–
workers involved into the BP–task model. In this sense, the verification carried out here exclusively refers
to the BP–task model behavior modeled by the TA–network that describe the behavior of the collaboration
among BP–workers, i.e., the composition of the BP–workers execution.

Once obtained the TA–network, we can proceed to BP–task model verification by using the Uppaal [8]
MC tool; i.e., it is possible to check whether a BP–task model satisfies the expected temporal behavior of
the BP–task model specified with a set of CCTL formulas [15, 16]). These formulas comprise the formal
specification of its properties representing the characteristics declaration of the BP–task model. Both exe-
cution and properties specification should be oriented by the associated BPs and business goals and rules.
We obtain the verification of the BP–task model by the interpretation of boolean expressions (True, False),
according to its expected behavior properties representing the expected characteristics declaration for the
BP–task model.

We decided to use the Uppaal [8] MC tool, because is a tool box that allows us to model a BP–task
model using TA, simulate it and the verify properties on it. In this sense, the features of Uppaal allow
to any business analyst with the responsibility to define and model the BPs of a company, to study the
temporal behavior of a BP using the TA–network representing a BP, in an easy and understandable way.
The BP–worker’ interaction is pairwise and the result of this collaboration is used by one of the workers
when it interacts with a new worker. Pairwise communication reflects the real world collaboration between
distinct BP–workers, since it is carried out progressively by pairs. Otherwise this communication could not
be represented clearly. With Uppaal, a BP–task model is modeled as a network of several synchronized TA
in parallel, reflecting a sound reality of the interaction performed as part of the BPs.

5 Guidelines to transform BPMN to TA

The main contribution of this work is to propose a set of mappings and simple steps defined over the models
to converts BPMN diagrams into TA–networks. This transformation is the first phase required to conduct
the evaluation (i.e., qualitative analysis) of a BP. After, the TA–network generated by the transformation,
which represents the BP–task model, is numerically analyzed by the support of a MC tool, as Uppaal, to
provide varied business performance indicators (for instance, service time, waiting time or queue size) of a
BP.

A BP consists of a set of coordinated activities that progress through an organizational and technical
environment [18]. A BP is structured into a number of tasks that need to be performed by BP–workers or
automated systems constrained to a set of business conditions and within a period of time that cannot be
exceeded. A task is a atomic and logic unit of work that is completely carried out by a resource [19]. In these
tasks, BP–workers participate by following a workflow (or process) that is defined by a given service. In
addition, BPs are constrained by a set of business rules, which must be abided and determine the information
structure and the policies of the company [20].

The process executes by a BP–worker passes through several states. For this work, these states, according
to BPMN [2], can either be tasks, events or control gateways. These states are linked by sequence, exception
or message flows, which represent the state transitions specified by the process. Sequence flows can be either
incoming to or outgoing from a state and have associated guards. An exception flow from a state represents an
occurrence of error within the state. Message flows represent directional communication between flow objects,
which corresponds to the synchronization of separate processes. A sequence of sequence flow represents a
specific control flow instance of the business process.

To transform BP models described by BPMN into TA–networks, the BP models are separated in three
aspects: the behavior of each BP–worker, represented by a BPMN lane or by a pool without lanes in a BPD,
the relations between the workers or departments, represented by BPMN diagrams or BPDs, and the time
constraints on BPs, derived from the business rules. In few words, the two former are mapped onto time
automaton and synchronization between timed automaton (i.e., to conform the corresponding TA–network),
respectively, and the latter is mapped onto invariants, guards, and assignments on TA.

5.1 BP–workers

The behavior of a BP–worker (represented by a lane or by a pool without lanes in a BPD) is modeled
as a states transition system or TA, which are characterized by their actions for channels synchronization,
invariants, guards, and assignments. The next definition formalize the proposed mapping.

Definition 3 (BP–worker). A BP–worker modeled through a BPMN lane or pool without lanes, corre-
spond to a timed automaton A = 〈S,Σ, C,E, s0〉 that consists of the following components:

7

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 2, PAPER 2, AUGUST 2014

• S is a finite set of BPMN flow objects; i.e., S ∈ {events, tasks, gateways}. The elements of S are
called the states of A.

• Σ is a finite set called the alphabet or actions (input and output) of A, which is the synchronous
communication between BP–workers.

• C is a finite set called the clocks of A.

• E ⊆ S×Σ×B(C)×P (C)×S is a set of edges, which correspond with both the BPMN sequence flow
as the called transitions of A, where

– B(C) is the set of boolean clock constraints involving clocks from C, which represent the temporal
constraints, and

– P (C) is the powerset of C.

• s0 is an element of S, called the initial state, which correspond to the BPMN Start event.

An edge 〈s, a, g, r, s′〉 ∈ E is a transition from state s to s′ with action a, guard g and clock resets r.

The constant variables referred by invariants, guards, and assignments, are temporal parameters, the
values of which are decided depending on the other aspects, i.e., the relations between the BP–workers and
the constraints on the BP models. For instance, to specify the behavior of a BPMN tasks, the invariants
(t ≤ max), guard conditions (t ≥ max), and assignments or clocks resets (t := 0) are defined on the locations
and the edges of the corresponding timed automaton. Thus, t is a clock variable that holds the elapsed time
of task, and the invariant and the guard specify that the transition from task to any BPMN flow object (i.e.,
event, task, gateway) can never occur until the minimum execution time (min) has elapsed, and must occur
before the maximum execution time (max) has elapsed. The constants variables (max, min) are temporal
parameters.

5.2 Synchronization of BP–workers

Each process carried out by one BP–worker into a company must interact with others BP–workers within
the organization or with process from different organizations to perform completely a BP. Therefore, to
obtain the formal representation of the BP–task model (see Figure 4), which describes how the BP–workers
perform the tasks in terms of collaborating BP, the TA–network should be constructed. As result, we obtain
a TA–network that specify and deal with behavioral aspects and temporal constraints of the BP–workers
involved into the BP–task model.

Definition 4 (Synchronization of BP–workers). The synchronization of BP–workers is obtained as the
parallel composition TAN = A1 ‖ · · · ‖ An of a set of timed automata A1 . . .An, called BP–workers, com-
bined into a single system by a parallel composition operator with all external actions hidden. Synchronous
communication between the workers/departments is by hand–shake synchronization using input and output
actions. The action alphabet is assumed to consist of symbols for input actions denoted c?, output actions
denoted c!, and internal actions represented by the distinct symbol τ .

5.3 Guide to conducting the transformation

According to our experience, transforming from annotated BPD onto TA can be achieved through the
following steps:

1. Include temporal constraints to BPMN diagram. For the verification of temporal properties of BPs, such
as response time of business services, and temporal constraints, such as execution time of activities,
should be specified in the BPDs. Due to there is no attribute for specifying these in BPMN, must
be used the Intermediate event (timer) to define clocks and to incorporate temporal constraints on
process flow. Note that an advantage of the approach proposed in this paper is not requires the use
of some kind of temporal annotations or extension of BPMN, as proposed in Time–BPMN [5]. It is
sufficient to use the timers or Intermediate events defined by BPMN, which are easy to use by business
analysts.

2. Obtain the timed automaton corresponding to each BP–worker. With reference to the definition 3 stated
in section 5.1, the timed automaton required to specify the behavior of each worker is constructed to
formally specify the workflow that the worker must be follow to collaborate in the execution of the BP.

8

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 2, PAPER 2, AUGUST 2014

3. Assignment of values of constraints attributes on the annotated BPD to the corresponding variables on
the timed automaton. According to the intermediate events added to the BPD, the invariants, guards,
and assignments on the timed automaton are defined.

4. Obtain the TA–network corresponding to the collaboration among BP–workers. From the definition 4
stated in section 5.2, the TA–network required to construct the BP–task model that specify and deal
with behavioral aspects and temporal constraints of the BP–workers involved into the BP–task model.
Assignment of channels to the timed automaton is according to the synchronization of BP–workers. It
is also necessary to change the structure of the TA–network depending on the concurrency constraints.

As result of apply the above steps, the timed automaton (as the shown in Figure 7) is constructed and
the TA–network (as the shown in Figure 8) is composed, in order to carry out the qualitative analysis of
BPs in an easy way, at an adequate level of formality.

6 CRM application example

CRM is a strategy by which a company seeks to establish and maintain relations with its customers [21].
CRM is considered to be a complex combination of business and technical factors that should be aligned
according to a strategy [21]. Briefly, the CRM’ BP modelling obtained the following BPs, Informing Cus-
tomer, Customizing Service, Studying behavior Pattern, Product/Service Produce, Product/Service Sell and
Assisting Customers, which represents a minimum functionality of the CRM strategy and are key factors to
understanding the CRM business. As our objectives are not to show how the BP modelling was performed
using BPMN, we will only use the BPMN diagrams considered of interest to show our entire verification
approach.

Is worth indicating that the CRM domain is wide a complex, but due to space limitations and the
objectives of this research, to apply our proposal to the application example we shall mainly focus on
verifying one part of the BP–task model associated with CRM. We opted to work with the Product/Service
Sell and Product/Service Produce BPs, due to their importance to the CRM strategy. The information
needed to perform the BP–task model verification is on the BPDs depicted on Figure 5 and Figure 6 that
models the above BPs, and the business rules that the BP–task model must comply to meet the CRM
business goals. Note that the BPDs depicted on Figures 5 and 6 have added timers, which corresponds to
step 1 of the Guide to conducting the transformation presented in Section 5. In the next section these timers
will be used to comply with step 3 of this guide and to obtain the CRM BP–task model.

Figure 5: BPD of the Product/Service Sell BP.

For the purposes of this paper, let us observe that the Logistic worker is located in the execution of
both Product/Service Sell BP and Product/Service Produce BP. This means that Logistic worker must
to perform tasks associated with the Product/Service Produce BP with the responsibility of providing the
materials required to create a new product/service. The Logistic worker also must to perform (collaboratively
with the Attention Channel worker) the tasks associated with the Product/Service Sell when it receives a
purchase order from a customer. In this sense, the Logistic worker should conform the time execution and
synchronization established in the BP–task model associated to both BPs. Also, take into account that the
Logistic worker should work collaboratively so closely with the Product/Service and Purchase workers to
perform the Product/Service Produce BP. Hence, it must not be in conflict with other BP–workers as this

9

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 2, PAPER 2, AUGUST 2014

Figure 6: BPD of the Product/Service Produce BP.

could cause a deadlock (i.e., when it cannot perform any task) among a group of the BP–task model. In
the software domain, deadlock means that all components are blocked (it cannot perform any computation)
waiting for an event that is not possible.

6.1 CRM task model

We now proceed to model the BP–task model; i.e., the execution and synchronization of the BP–workers
tasks implicated with the Product/Service Sell and Product/Service Produce BP–task model. To obtain this
model, were applied the definitions 3 and 4 and followed the steps 2, 3, and 4, of the Guide to conducting
the transformation presented in Section 5.

A TA was designed for each BP–worker (Customer, Sale, Attention Channel, Logistic, Product/Service,
Purchase, Marketing, and Finances), using the definition 3 stated in section 5.1. For the sake of simplicity,
next only is described the detailed behavior of the Logistic worker tasks (see Figure 7), which is considered
to be the most important for the purposes of the present application, because he is concurrently involved in
the execution of both BPs. The most important aspect of the Logistic worker execution is the transitions
are modeled to accurately represent the possible execution of Logistic worker tasks; i.e., this worker can
attend a request for a available product/service for the Attention Channel worker while it is waiting for the
Purchase worker to acquire the materials that the Product/Service worker requires for build/assemble a new
product/service.

DispatchC

BusyC

DispatchB

BusyB

Waiting

Consulting

DispatchA

BusyA

IdleL

tw==2

tw==2tw==2

Upd_ex!

Upd_ex!Upd_ex!

Disp_prod!

tw<2

Ex_upd?

Sen_disp_req?
tw:=0

Disp_prod!

tw<2
Ex_upd?

Sen_disp_req?
tw:=0

Deliver!

td<17
Mat_purch? Purch_req!

Show_aval?td<2
Deliver!

Con_aval!Mat_req?
td:=0

Disp_prod!

tw<2

Ex_upd?

Sen_disp_req?
tw:=0

Figure 7: TA of the Logistic worker.

TA in Figure 7 presents the states Consulting and Waiting, which are states entered by the Logistic
worker when it is seeking information from the StockDB entity and collaborating with the Purchase worker,
respectively. Note that this states correspond to the activities modeled in the BPDs depicted on Figure 5
and Figure 6. Additionally, the BusyA, BusyB, BusyC states were added to represent the situation when

10

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 2, PAPER 2, AUGUST 2014

the Logistic worker is updating information in the StockDB entity, while the DispathA, DispatchB, and
DispatchC states are reached when it is working with the Purchase worker. The Logistic worker is able to
attend concurrently requests from the Product/Service Sell and Product/Service Produce BPs, respectively.

As can be seen in Figure 7, when the Logistic worker is in the IdleL state, concurrently requests from
the Attention Channel and from Product/Service workers can both be attended. The Logistic worker leaves
the IdleL state in the following cases:

1. when it receives the Sen disp req event from the Attention Channel worker. In this case, the Logistic
worker enters the BusyA state and captures the reception time of the request in the tw variable. It then
sends the action Upd ex to the StockDB entity. When it is in the BusyA state, the Logistic worker
may not be able to receive Product/Service worker requests and remain in the current state while:
(a) it is receiving from StockDB entity, within the time interval [tw,tw+2), the response Ex upd and
dispatching to the Attention Channel worker the task execution results (signal Disp prod) and then
passing to the IdleL state; or (b) it is in the waiting time for Ex upd reception defeat; i.e., the time
instant [tw+2,tw+2] is reached and a timeout is provoked, returning the Logistic worker to the IdleL
state.

2. when it is addressing the Mat req from the Product/Service worker. In this case it passes to the
Consulting state, storing in the td variable the time instant at which the request is received and initiates
the execution of the action to satisfy it. This latter situation then presents two alternatives: (a) when
the quantity of materials required is available (aval ≥ amount) and the materials availability consulting
event Show aval is received the Logistic worker delivers the required results within the time interval
[td,td+2), (signal Deliver) and again returns to the IdleL state; or (b) when the quantity of materials
required is not available (aval < amount) and the materials availability consulting event Show aval is
received, the Logistic worker sends the material purchase request Purch req to the Purchase worker
and continues waiting within the [td,td+17) time interval to receive the notification of the material
purchase.

Note that the temporal constraints discussed in the previous paragraph and assigned to the TA in Figure 7,
corresponds to the timers previously placed in the BPDs depicted on Figures 5 and 6. This specification
of invariants, guards, and assignments on the TA, corresponds to the execution of step 3 of the Guide to
conducting the transformation presented in Section 5.

Having obtained the TA representing BP–workers, the definition 4 was applyed to mapping the syn-
chronization among workers and accomplish with the step 4 of the Guide to conducting the transformation
presented in Section 5. Figure 8 shows the simulator view of Uppaal, where are representing the TA–
network conformed by the Logistic, Sale, Attention Channel, Product/Service, Purchase, Marketing and
Finances workers and the StockBD entity, by means of their corresponding TAs. This is the result of ap-
plying the step 4 of the guide presented at the end of Section 5. We used this view to ‘simulate’ the CRM
BP–task model execution to choose transitions to analyze, go through a trace (i.e., sequence of executed
tasks), to see how certain states are reachable, and, finally, to analyze the CRM BP–task model behavior
with respect to the CRM business indicators.

6.2 CRM properties

Taking into account the Product/Service Sell and Product/Service Produce BPDs and the abstract properties
(i.e., business rules) previously set as the initial inputs to verify the BP–task model, we can now define what
is expected to be accomplished by the CRM BP–worker when they receives a specific request from the
Customer. Some of the expected behavior is specified by the CCTL formulas shown in Table 2, as an
instance of the business rules according to the QoS contract level set by the CRM business.

The formulas in Table 2 describes the CRM BP–task model timed abstract behavior, which gives a
high level of insight into what is expected of the CRM BP–worker to deliver when it receives a Customer
request and how long would it take. On the other hand, these CCTL formulas specify the task order
and the execution time required for each task (or set of task) expected from the Product/Service Sell and
Product/Service Produce BP–task model to accomplish the BPs Quality of Service (QoS) contract level. In
other words, with our approach we can checking two views of a business at the same time: the workers
viewpoint and the processes flow viewpoint.

Note that the deadlock concept is being transferred from the software verification field to the BP world
to obtain the φ2 formula. Thus, we say that the BP–task model is deadlock–free if the CRM BP–workers
are never blocked; i.e., a time deadlock–freeness reflects that the time constraints of the two composed
BP–workers (i.e., two composed TA) are compatible. In other words, the BP–task model is deadlock–free
because the tasks always are executed in order, which is the result of the correctness of the BP–workers

11

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 2, PAPER 2, AUGUST 2014

Figure 8: TA–network of CRM BP–worker.

synchronization. Thus, when we check that the BP–task model is deadlock–free, we are proved that the
BP–task model satisfies tasks timely and orderly, i.e., the BP–workers do not perform tasks asynchronously.

6.3 CRM verification

To proceed to the CRM BP–task model verification, we introduce each one of the CCTL formulas previously
defined in section 6.2 in the Query field below Overview, using the Uppaal MC tool notation (see Figure 9).
E.g., theUppaal notation for the CCTL temporal formula EF[44](Prom inf) is E<>Product service.Prom inf

imply ta<=44, and should be understood as “is it possible to reach the location Prom inf in process
Product service in 44 units of time up”. The bullet in the overview section will turn green indicating that
the property indeed is satisfied. Also appear in the status section the messages Property is satisfied or
Property is not satisfied, below the text with the property checked, depending on the property pass
or not the verification.

The most important result to highlight is that the BP–task model passes the verification of the property
φ3 (A[](not deadlock)), i.e., the BP–task model is deadlocks free, which means that the BP–task model
does there occur a deadlock situation by which the BP–worker remain waiting indefinitely for communication
between each other. Additionally, the BP–task model has satisfied the φ4 and φ5 (see Table 2) properties
verification, which means the BP–task model always met the Customer requests within the time stipulated
by the QoS contract level for the Product/Service Sell and Product/Service Produce BPs, i.e., the BP–task
model modeled completely satisfied the CRM business rules.

6.4 Discussion of results

According to the results of the verification shown in Figure 9, we can say that the application of the approach
support us to evaluate the behavior of the BP–task model with respect to business performance indicators
(for instance, service time, waiting time or queue size) derived from business needs. We can assure that
Logistic, Sale, Attention Channel, Product/Service, Purchase, Marketing and Finances workers and the
StockBD entity, does not provoke a deterioration of the QoS required for the Product/Service Sell and
Product/Service Produce BPs, respectively.

As described along the article, our verification approach is based on using the set of guidelines to transform
BPMN to TA as main factor to ensure the proper construction of the BP–task model. Following the guide
to conduct the transformation (presented in Section 5), the BP–task model of the application example was
specified by a TA–network that faithfully reflects the behavior of the BP–workers that are composed in
parallel. As we can see in this application example, the proposed approach to perform the verification
activity and the mapping definitions 3 and 4 ensures the preservation of the individual properties associated

12

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 2, PAPER 2, AUGUST 2014

Table 2: Some CRM properties – BP–task model expected behavior
Property CCTL specification Interpretation

When a Customer want to buy a
available Product/Service, the com-
munication with the Customer must
be established in 2 units of time up.

φ1 := AG[2](Idle → Communicated)

Whenever the Idle state holds by the Customer
worker the Communicated state will eventually
hold by the Customer worker within the [0, 2]
time interval.

The information requested by the
Customer must be send in 5 units of
time up.

φ2 := AG[5](Inform → Informed])
When the Attention channel worker enter to In-
form state it will eventually hold the Informed
state within the [0, 5] time interval.

The BP–task model satisfy the tasks
order and never execute task asyn-
chronously

φ3 := AG(not deadlock) The BP–task model is deadlocks free.

The BP–task model can always sat-
isfy the creation of a new Prod-
uct/Service in 44 units of time up.

φ4 := EF[44](Prom inf)
The Product Service worker eventually reach the
Prom inf state within the [0, 44] time interval.

The BP–task model can always sat-
isfy the delivery of an available Prod-
uct/Service in 23 units of time up.

φ5 := EF[23](Deliv PS)
The Attention channel worker eventually reach
the Deliv PS state within the [0, 23] time inter-
val.

An available Product/Service will
eventually delivered in 23 units of
time up.

φ6 := AG[23](Wait PS → Deliv)

The time elapsed since the Customer enter
to Wait PS state until the Attention channel
worker eventually reach the Deliv PS state
should be less than or equal to 23 time units.

A new Product/Service will eventu-
ally available in 44 units of time up.
If the new Product/Service is not fea-
sible, their cancellation will eventu-
ally notified to the Customer in 24
units of time up.

φ7 := AG[44](Wait new PS →

[EF[44](Prom inf)∧
EF[24](Can PS)])

The time elapsed since the Customer enter to
Wait new PS state until the Product service
worker eventually reach the Prom inf state
should be less than or equal to 44 time units.
When the new Product/Service is not feasible,
the Product service worker eventually should be
enter to the Can PS state in less than or equal
to 24 time units.

with independent task–sets within the BP–task model into which they are integrated; i.e., the resulting
BP–task model (modeled as a TA–network) can be used to conduct qualitative analysis (validation and
verification).

7 Conclusion and future work

The main contribution of this work is to propose a set of mappings and simple steps defined over the models
to converts BPMN diagrams into TA–networks. This transformation is the first phase required to conduct the
evaluation (i.e., qualitative analysis) of a BP. Also, we describe how MC verification technique for software
and TA formal language are integrated within a formal verification approach to check BPs modeled with
BPMN. Along the paper has shown that is methodologically feasible providing support to BP analysts and
designers to conduct the qualitative analysis of a BP–task model associated to a BPMN diagram using the
TA theory. Our proposal was applied to a real project related to the CRM business modeled with BPMN
and verified with the Uppaal MC tool.

Future work is aimed on the formalization of the guidelines introduced in this paper as a set of trans-
formation rules that can be automated and incorporated in our BTransformer

1 [22] tool. With this
version of BTransformer, we can automate the support to business analysts to obtain “as–equivalent–as–
possible” executable BP–task models in TA that ensures the proper evaluation (i.e., qualitative analysis) of
BPs modeled with BPMN using the Uppaal MC tool.

Acknowledgment

This research was partially supported by National Fund of Science, Technology and Innovation, Venezuela,
under contract G–2005000165 and conducted as part of the Information Systems Research Laboratory (LISI,
by the Spanish acronym Laboratorio de Investigación en Sistemas de Información) research group.

References

[1] E. Clarke, O. Grumberg, and D. Peled, Model Checking, ser. MIT. Cambridge, USA: The MIT Press,
2000.

[2] OMG, Business Process Model and Notation – v2.0. Massachusetts, USA: Object Management Group,
2011. [Online]. Available: http://www.omg.org/spec/BPMN/2.0/PDF

1Developed using Open Unified Process (OpenUP) methodology (http://www.eclipse.org), BTransformer has the capa-
bility to read input/output models written in standard XML and it can be used with different operating systems: Windows,
Linux and MacOS. The idea is to construct a new version of this tool to generate the TA from any source BPMN diagram by
the access to a future BPMN2TA menu option.

13

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 2, PAPER 2, AUGUST 2014

Figure 9: A screen shot of the application example verification with Uppaal.

[3] S. Morimoto, A Survey of Formal Verification for Business Process Modeling, Lecture Notes in Computer
Science 5102: Proc. 8th International Conference on Computational Science (ICCS 2008). Berlin:
Springer–Verlag, 2008, pp. 514–522.

[4] P. Wong and J. Gibbons, “A relative timed semantics for {BPMN},” Electronic Notes in Theoretical
Computer Science, vol. 229, no. 2, pp. 59–75, 2009.

[5] D. Gagne and A. Trudel, “Time–bpmn,” in 2009 IEEE Conference on Commerce and Enterprise Com-
puting (CEC 2009). Los Alamitos, USA: IEEE Computer Society, 2009, pp. 361–367.

[6] L. Mendoza, M. Capel, and M. Pérez, “Conceptual framework for business processes compositional
verification,” Information and Software Technology, vol. 54, no. 2, pp. 149–161, 2012.

[7] L. Mendoza, “Business process verification using a formal compositional approach and timed automata,”
in XXXIX Conferencia Latinoamericana en Informática (CLEI 2013). Los Alamitos, USA: IEEE
Computer Society, 2013, p. To appear.

[8] G. Behrmann, A. David, and K. Larsen, “A tutorial on uppaal,” in Formal Methods for the Design of
Real-Time Systems: 4th International School on Formal Methods for the Design of Computer, Commu-
nication, and Software Systems, SFM-RT 2004, ser. LNCS, M. Bernardo and F. Corradini, Eds., no.
3185. Springer–Verlag, September 2004, pp. 200–236.

[9] M. Capel, L. Mendoza, and K. Benghazi, “Automatic verification of business process integrity,” Int. J.
Simulation and Process Modelling, vol. 4, no. 3/4, pp. 167–182, 2008.

[10] K. Watahiki, F. Ishikawa, and K. Hiraishi, “Formal verification of business processes with temporal and
resource constraints,” in 2011 IEEE International Conference on Systems, Man, and Cybernetics (SMC
2011). Los Alamitos, USA: IEEE Computer Society, 2011, pp. 1173–1180.

[11] C. Combi and R. Posenato, “Controllability in temporal conceptual workflow schemata,” in Business
Process Management, ser. Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2009, vol.
5701, pp. 64–79.

[12] K. Greer, Thinking Networks - the Large and Small of it: Autonomic and Reasoning Processes for
Information. CreateSpace Independent Publishing Platform, 2008.

[13] R. Milner, A Calculus of Communicating Systems. Secaucus, USA: Springer–Verlag New York, Inc.,
1982.

14

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 2, PAPER 2, AUGUST 2014

[14] C. Hoare, Communicating Sequential Processes, ser. International Series in Computer Science. Hert-
fordshire UK: Prentice–Hall International Ltd., 1985.

[15] J. Rüf and T. Kropf, “Symbolic model checking for a discrete clocked temporal logic with intervals,” in
Proceedings of the IFIP WG 10.5 International Conference on Correct Hardware Design and Verification
Methods. London, UK: Chapman & Hall, Ltd., 1997, pp. 146–163.

[16] ——, Modeling and checking networks of communicating real–time processes, Lecture Notes in Computer
Science 1703: Correct Hardware Design and Verification Methods (CHARME). Berlin: Springer–
Verlag, 1999, pp. 256–279.

[17] F. Paternò, Handbook of Software Engineering And Knowledge Engineering: Recent Advances. River
Edge, USA: World Scientific Publishing Co., Inc., 2001, ch. Task Models in Interactive Software Systems.

[18] M. Weske, Business Process Management: Concepts, Languages, Architectures. Berlin, Germany:
Springer Berlin Heidelberg, 2007.

[19] W. Aalst and H. Kee, Workflow Management: Models, Methods, and Systems, ser. Cooperative Infor-
mation Systems. Cambridge, USA: MIT Press, 2004.

[20] M. Ort́ın, J. Garćıa, B. Moros, and J. Nicolás, “El modelo de negocio como base del modelo de requi-
sitos,” in Actas de las Jornadas. de Ingenieŕıa de Requisitos Aplicada, Sevilla, Spain, 2009.

[21] L. Mendoza, A. Marius, M. Pérez, and A. Grimán, “Critical success factors for a customer relationship
management strategy,” Inf. Softw. Technol., vol. 49, no. 8, pp. 913–945, 2007.

[22] A. González, L. Mendoza, M. Capel, M. Pérez, A. Méndez, and K. Domı́nguez, “BTransformer –
a tool for BPMN to CSP+T transformation,” in Proc. 13th International Conference on Enterprise
Information Systems (ICEIS 2011), vol. 3. Setúbal, Portugal: SciTePress, 2011, pp. 363–366.

15

