
Business Rules Integration in BPEL – A Service-Oriented Approach

Florian Rosenberg and Schahram Dustdar
Vienna University of Technology

Distributed Systems Group, Information Systems Institute
1040 Vienna, Argentinierstrasse 8/184-1, Austria

{rosenberg, dustdar}@infosys.tuwien.ac.at

Abstract

Business rules change quite often. These changes cannot
be handled efficiently by representing business rules em-
bedded in the source code of the business logic. Efficient
handling of rules that govern ones business is one factor
for success. That is where business rules engines play an
important role. The service-oriented computing paradigm
is becoming more and more popular. Services offered by
different providers, are composed to new services by us-
ing Web service composition languages such as BPEL. Such
process-based composition languages lack the ability to use
business rules managed by different business rules engines
in the composition process. In this paper, we propose an
approach on how to use and integrate business rules in a
service-oriented way into BPEL.

Keywords: Business Rules, BPEL, Service-oriented Ap-
proach

1. Introduction

Business process management is one of the core tech-
niques to manage daily business. We are currently mov-
ing from object-orientation to service-oriented computing
(SOC), considering services as fundamental elements for
application development. Services are self describing,
platform-agnostic computational elements that support low-
cost composition of distributed applications [7].

Over the last years, different Web service composition
languages have emerged such as the Business Process Ex-
ecution Language for Web Services (WS-BPEL or BPEL
for short) [2] or BPML [1]. BPEL is currently the preferred
standard for Web service composition and implemented by
many vendors.

In large enterprise applications (not only legacy sys-
tems), it is a common practice that business rules are mixed

with the main business logic. Changing and managing such
imbed rules is hard and time-consuming and cannot be done
by a business analyst, who typically does not have pro-
gramming experience. Business rule knowledge should,
therefore, be managed by a rule-based system, which is
then queried by the business logic to evaluate the business
rules. Business processes are typically orchestrated by us-
ing BPEL, but there is no way to integrate rule-based knowl-
edge into the composition process.

In this paper, we propose an approach on how to in-
tegrate rule-based knowledge, accessible through business
rules engines (BRE), in a service-oriented way in BPEL or
even other Web service composition languages. We present
the design of such a system using anEnterprise Service Bus
(ESB) as middleware, where we plug in all the participating
components needed for our approach.

This paper is structured as follows: In the next section,
a motivating example is presented to explain different con-
cepts used throughout this paper. Then we introduce busi-
ness rules, the different classified types together with some
examples. In Section 4, we present our business rule inte-
gration approach. We present the architecture of our system
as well as an integration methodology by considering a sim-
ple example. Section 5 summarizes the related work done
so far and in Section 6 we conclude this work by summariz-
ing the major points.

2. Motivating Example

The following motivating example of a travel agency is
used to explain the basic concepts of BPEL and the way
we try to enrich a BPEL description with business rules. A
typical use case could be the booking of a trip with flight
tickets together with a hotel, a car for the whole stay and of
course famous sightseeing trips. Modeling this process is a
complex task; it requires many different steps to offer such
a full service to customers. We only use a very simple ex-
ample with annotations representing the business rules for
the different activities, as shown in Figure 1. These anno-

tations represent the rules executed on the data at that time.
Business rules with a before interceptor are executed before
the actual BPEL activities, after interceptors after the BPEL
activity, respectively. The concepts are explained in detail
in Section 4. We refer to the problems tackled by the use of
business rules in Section 3.< r e c e i v e >b o o k i n g R e q u e s t< i n v o k e >f i n d F l i g h t s< i n v o k e >f i n d H o t e l s< i n v o k e >b o o k C a r < i n v o k e >f i n d S i g h t S e e i n g T o u r s< r e p l y >B o o k i n g S u g g e s t i o n

a f t e r i n t e r c e p t o rR 1 : v a l i d a t e R e q u e s t (i n B o o k i n g R e q u e s t)R 2 : v a l i d a t e C u s t o m e r (i n C u s t o m e r D a t a)b e f o r e i n t e r c e p t o rR 3 : c h e c k F l i g h t s F o u n d (i n F l i g h t R e s p o n s e)a f t e r i n t e r c e p t o rR 4 : c h e c k H o t e l s F o u n d (i n H o t e l R e s p o n s e)a f t e r i n t e r c e p t o rR 5 : c a l c u a t e P r i c e (i n B o o k i n g S u g g e s t i o n)
Figure 1. Travel Agency Process

3. Business Rules

According to the Business Rules Group [10], “a business
rule is a statement that defines and constraints some busi-
ness. It is intended to assert business structure or to control
or influence the behavior of the business. The business rules
which concern the project are atomic, that is, they cannot be
broken down further.”

Modeling business rules as separate entities offers great
flexibility. Especially in the e-commerce domain, this can
be a valuable advantage, since the business analyst, who
ideally authors the business rules, does not need to have pro-
gramming knowledge to change the rules. Typically, chang-
ing the business rules happens more often than changing the
large e-commerce applications. Moreover, extracting the
business rules from the business logic leads to a better de-
coupling of the system, which, as a consequence, increases
maintainability. One of the most important facts about busi-
ness rules is that they are declarative statements, they spec-
ify whathas to be done and nothow.

In [11], a classification of business rules into four dif-
ferent types is presented, whereas the fourth type (deontic
assignments) is only partially identified. We will mainly
focus on the first three types:

Integrity Rules(or “integrity constraints”) specify asser-
tions that must be satisfied in all stages of a system. Refer-
ring to our case study in Figure 1, the rules R1 and R2 rep-
resent such integrity rules. Rule R1 and R2 check whether
the received request data is correct and consists of all the
data needed for further processing. If not, the rule execu-
tion throws an exception, which is handled by BPEL.

Derivation rules(also called “deduction rules” or “Horn
clauses”) are statements of knowledge derived from other
knowledge by using an inference or a mathematical calcu-
lation. In Figure 1, the price calculation rule R5 is a typ-
ical derivation rule. How the price is actually calculated
depends on a lot of different facts, e.g., the customer status
or the number of articles to buy.

Reaction Rules(also called “action rules” or “ECA”)
specify the invocation of actions in response to an event.
The action is only performed when a certain condition ap-
plies. In Figure 1, the rules R3 and R4 can be interpreted
as reaction rules in the sense of enabling an action or not.
Considering R1, it checks if flights where found otherwise it
skips the execution of the hotel search. The same semantic
applies to rule R4.

4. Integration Approaches

Integrating rule-based systems in a service-oriented en-
vironment is a complex task, due to the fact that both worlds
have their own paradigms. Rule-based systems have a high
significance, therefore it is reasonable to integrate them into
the enterprise architecture. The importance of integrating a
BRE with an orchestration engine is also depicted in [5].

We will now focus on the integration aspects between an
orchestration engine, in our case BPEL, and different rule-
based systems. Therefore, we mainly differentiate between
two integration approaches: (1) a tightly coupled approach
and (2) a loosely coupled approach. Concerning (1), the
idea is that the orchestration engine communicates directly
with the BRE through its proprietary API. Due to the fact
that the BPEL specification omitted the standardization of
an API to access a BPEL engine, most vendors have propri-
etary or no interfaces to communicate with a BPEL engine,
therefore, making it hard to tightly-couple different BREs
with a BPEL engine. Another important drawback of this
approach is the lack of service-orientation. It is reasonable
to expose business rules as services, in order to allow that
these services can be reused in every other inter-enterprise
(or even inter-organizational) application thus ease the de-
velopment of new application and the integration of other
applications. Based on these drawbacks of the tightly cou-
pled approach, we pursue (2).

4.1. Architecture

Our integration approach considers anEnterprise Ser-
vice Bus(ESB), a middleware well-suited for the service-
oriented architecture, as an integration platform. All ser-
vices use the ESB as a communication platform as depicted
in Figure 2. In this section we will explain the concepts of
every service and discuss some important design aspects. A
detailed discussion of design and implementational aspects
is not the intended scope of this paper.

E n t e r p r i s e S e r v i c e B u s (E S B)B P E L E n g i n e R u l e I n t e r c e p t o rS e r v i c e B u s i n e s s R u l eB r o k e rB P E LP r o c e s s R u l e S e r v i c eG e n e r a t o r R u l e W e bS e r v i c eD e s c r i p t o r
T r a n s f o r m a t i o nE n g i n e W e b S e r v i c eG a t e w a yT r a n s f o r m a t i o nR u l e s

Figure 2. Service-Oriented Approach

The BPEL engine is connected to the ESB with an
adapter. It uses the ESB as a messaging layer and communi-
cates directly with theWeb Service Gatewayto call external
Web services via<invoke> or <reply>, or waiting for
response by using<receive>.

Business Rules Broker: Due to the aforementioned het-
erogeneity of the different rule APIs, we have introduced
a Business Rules Brokerservice in [8], providing a unified
access to different BREs, through a Web service interface.
The broker architecture abstracts from the specific BRE im-
plementations by providing a plugin-based mechanism to
integrate the different BREs. The distinctive feature of the
broker approach is the automated generation of Web ser-
vices for executing business rules based on aWeb Service
Rule Interface Descriptor, describing the services to be gen-
erated and the rules to be executed by these services.

Rule Interceptor Service: The Rule Interceptor Service
is the bridge between the business rules and the executable
BPEL process. Our approach, as depicted in Figure 3, is
to intercept each incoming and outgoing BPEL Web ser-
vice call to automatically apply business rules, accessible
through theBusiness Rules Brokerservice. The mapping
of BPEL activities to concrete business rules is done by a
mapping document, which has to be created by the BPEL
designer. We present an example, how such a mapping file

R u l e I n t e r c e p t o r S e r v i c eB e f o r eI n t e r c e p t o r A f t e rI n t e r c e p t o rB P E L I n v o k eM e s s a g eB P E L E n g i n e W e b S e r v i c eG a t e w a y
B u s i n e s sR u l e B r o k e r

i n v o k ea c t i v i t y
c a l l b u s i n e s s r u l e c a l l b u s i n e s s r u l e

Figure 3. Rule Interceptor Service

is specified, later in Section 4.2. The interceptor concept of-
fers two different interception types, abeforeinterceptor, or
anafter interceptor, expressing that the interceptor is either
executed before or after the BPEL activity. The control flow
of a BPEL invoke activity interception is shown in Figure 3.

Transformation Engine: The generated business rules
services have different message types (e.g., BPEL vari-
ables) as parameters. It can happen that the message type
expected by the generated business rules services does not
confer to a given schema but can be transformed to that
type. Therefore, aTransformation Engineis needed to
transform XML messages to other formats understandable
by the business rules. The transformation is performed in
the beforeor after interceptors based on the data types of
the BPEL activity. We clarify such a transformation based
on a simple example in the next section.

4.2 Travel Agency Example Revisited

The Travel Agency process is created by the BPEL en-
gine when receiving theBookingRequest message at
the beginning of the process. Typically, this message is
generated by some other application or workflow system,
so we have to ensure some data constraints on that re-
quests. Such constraints should ideally be expressed as
business rules, e.g., a valid name, flight date, a destina-
tion, and some constraints on the data are needed. We can
ensure these constraints by using two business rules and
an after interceptor. Rule R1,validateRequest(in
BookingRequest) is called by simply invoking this
service from theBusiness Rules Broker. What hap-
pens if we want to call the rule R2 with the signature
validateCustomer(in CustomerData) in the af-
ter interceptor? The rule R2 only accepts a message
of type CustomerData, but all the customer data is
encapsulated in theBookingRequest message. That
where theTransformation Engineis used. It transforms
the necessary data, from theBookingRequest to the

CustomerData based on defined transformation rules by
using XSLT. The activity to rule mapping is shown in List-
ing 1. It is the input configuration for theRule Interceptor
Service.
<activity name="findHotels" type="invoke">
<interceptors>

<before>
<!-- no business rules needed here -->

</before>
<after>

<rule name="validateRequest">
<parameter name="BookingRequest"/>

</rule>
<rule name="validateCustomer">

<parameter name="CustomerData"
<transform rule="bookReq-to-custData"/>

</parameter>
</rule>

</after>
</interceptors>

</activity>

Listing 1. BPEL Activity to Rule Mapping

5. Related Work

The related work in this area is very diverse, ranging
from alternative Web service composition approaches to
rule-based approaches and rule representation formats as
well as rule integration approaches.

The Java Community Process (JCP) released the final
version of the Rule Engine API [4] in August 2004. It is
already supported (at least partially) by a couple of rule
engines (cf. Drools1 or JESS2). Also many commercial
business rule products are available, with ILOG3 as one
well-known representative. Another initiative, focusingon
a standard representation of business rules, is RuleML [9],
started in August 2000 and is currently the most promis-
ing initiative for representing rule markup for the Semantic
Web.

To the best of our knowledge, there is no existing
approach which focuses on a service-oriented integration
of rule-based languages with process-based Web services
composition such as BPEL. In [3], the authors present a
hybrid approach for realizing the integration of business
rules (modeled as aspects) with a BPEL orchestration en-
gine by using aspect-oriented programming techniques. In
[6], a business rule driven composition approach is pre-
sented. The authors propose a technique how to dynami-
cally compose business processes based on business rules.

6. Conclusions

Integrating business rules in process-oriented Web ser-
vice composition can improve the quality and ease develop-

1http://www.drools.org
2http://herzberg.ca.sandia.gov/jess
3http://www.ilog.com

ment by using business rules authored by domain experts.
But integration cannot be done if the business rules are
not accessible in a unified way. This is becoming increas-
ingly important when considering the emerging paradigm
of service-oriented computing.

In this paper we proposed an approach on how to in-
tegrate business rules, managed by different rules engines,
into process-oriented Web service composition languages.
We use BPEL as our composition language and an ESB to
integrate the presented components into the system. Fur-
thermore, we depicted the architecture of the system and
illustrated the concepts by using a travel agency scenario.

References

[1] A. Arkin. Business Process Modeling Language.
http://www.bpmi.org/, November 2002.

[2] BPEL. Business Process Execution Lan-
guage for Web Services Version 1.1.
http://www.ibm.com/developerworks/library/ws-bpel/,
May 2003.

[3] A. Charfi and M. Mezini. Hybrid Web Service Composition:
Business Processes Meet Business Rules. InProceedings of
the 2nd International Conference on Service Oriented Com-
puting, November 2004.

[4] Java Community Process. JSR 94 - Java Rule En-
gine API. http://jcp.org/aboutJava/
communityprocess/final/jsr094/index.
html, August 2004.

[5] D. A. Manolescu. Orchestration Patterns in
Service Oriented Architectures. URL:http:
//www.orchestrationpatterns.com/
OrchestrationPatterns.html, January 2005.

[6] B. Orriëns, J. Yang, and M. P. Papazoglou. A Framework
for Business Rule Driven Service Composition. InProceed-
ings of the Fourth International Workshop on Conceptual
Modeling Approaches for e-Business Dealing with Business
Volatility, 2003.

[7] M. P. Papazoglou. Service-oriented computing: concepts,
characteristics and directions. InProceedings of the Fourth
International Conference on Web Information Systems En-
gineering, pages 3–12, Dezember 2003.

[8] F. Rosenberg and S. Dustdar. Design and Implementation
of a Service-oriented Business Rule Broker. InProceed-
ings of the 1st IEEE International Workshop on Service-
oriented Solutions for Cooperative Organizations (SoS4CO
’05), 2005.

[9] RuleML Initiative. Website. http://www.ruleml.
org.

[10] The Business Rules Group. Defining Business
Rules – What Are They Really? http://www.
businessrulesgroup.org/first paper/
br01c0.htm, July 2000.

[11] G. Wagner. How to design a general rule markup lan-
guage? InWorkshop XML Technologien fuer das Semantic
Web (XSW), Berlin, June 2002.

