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Abstract

We study the dynamics of front solutions in a three-component reaction-diffusion system via
a combination of geometric singular perturbation theory, Evans function analysis and cen-
ter manifold reduction. The reduced system exhibits a surprisingly complicated bifurcation
structure including a butterfly catastrophe. Our results shed light on numerically observed
accelerations and oscillations and pave the way for the analysis of front interactions in a pa-
rameter regime where the essential spectrum of a single front approaches the imaginary axis
asymptotically.

1 Introduction

The dynamics generated by systems of reaction-diffusion equations can be extremely complex.
Nevertheless, even far from equilibrium, it is remarkably often the case that these dynamics can be
viewed as being governed by the interactions of localized structures [Pe93, NU01]. Such structures
are close to a trivial background state for the largest part of the spatial domain; the regions in which
the solutions, or patterns, exhibit transitions between different background states, or to-and-from
the same background state, are relatively small. Spots and stripes are typical examples of such
localized structures in two space dimensions. In one space dimension, one can distinguish between
fronts and pulses. Developing a mathematical understanding of the dynamics of reaction-diffusion
equations far from equilibrium, i.e. in situations not close to bifurcations of a trivial state that are
governed by small-amplitude dynamics, is most often centered around these localized structures.
Moreover, this approach has the nature of a three-step process: first one focuses on establishing the
existence of simple – stationary, or traveling with a constant speed – localized structures, followed
by a spectral stability analysis. Based on that, one can begin the study of interactions between
these objects.
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In recent years, significant progress has been made within all three steps of this approach, es-
pecially in the context of singularly perturbed systems in one spatial dimension, see for instance
[CW09, DKP07, vHDKP10, Ra13, SRW05] and the references therein, or for structures with (at
leading order) some kind of internal symmetry – circular spots, planar fronts and/or stripes – in
two space dimensions, see [vHS11, KWW06, KWY13] and the references therein. In fact, there is
a quite well-developed general theory for the weak interactions of pulses and fronts in one spatial
dimension [Ei02, EMN02, Pro02, Sa02]. Here weak refers to the condition that two interacting
structures should be sufficiently far removed from each other; more explicitly, in the weak case the
dynamics are driven by the interactions between the exponentially small ‘tails’ of the fronts/pulses.
As a consequence, these weak dynamics are exponentially slow and, hence, the dynamical richness
is rather limited. For instance fronts/pulses cannot change shape within the weak limit, nor can
their stability type be influenced by weak interactions. This only happens when the fronts/pulses
are too close to each other, i.e., in the strong interaction case. There is, however, no mathematical
theory for strong interactions in reaction-diffusion systems.

To extend the class of systems and/or phenomena that can be studied analytically, the concept of
semi-strong interactions was introduced in [DK03] in the context of singularly perturbed systems.
In a singularly perturbed system, one distinguishes between (relatively) large and small diffusion co-
efficients; the fast components only vary on (relatively) short spatial scales and are associated to the
small diffusion coefficients, the slow components, associated to large diffusivities, change on longer
spatial scales. By definition, fronts/pulses are in semi-strong interaction if the fast components of
the localized structures are in a weak, exponentially small tail-tail interaction, while the slow com-
ponents are coupled in a strong way (and thus not only through tail-tail interactions). Semi-strong
interaction dynamics are much richer than weak interaction dynamics, fronts/pulses change their
shape and nature, they may bifurcate and even blow-up in finite time. Moreover, the renormaliza-
tion group approach that was originally developed in the context of weak interactions [Pro02] has
been extended to the semi-strong setting in a sequence of papers [DKP07, vHDKP10, BDKP13]:
in these papers it is shown that if the essential spectrum associated to a solitary front/pulse is not
too close to the origin of the complex plane, a bootstrap-like method can be devised by which both
the validity and the nonlinear stability, or (local) attractivity, of the front/pulse-dynamics can be
established rigorously.

Naturally, a central issue in obtaining a deeper understanding of (semi-strong) pulse dynamics
is the question about the impact of having essential spectrum too close to the imaginary axis. Sim-
ulations in [DvHK09, vHDK08, vHDKP10] strongly indicate that the richness of the (semi-strong)
pulse dynamics greatly increases as the essential spectrum moves closer to the imaginary axis. More-
over, the formal approach of [DK03], originally developed in [DEK01], by which the (leading order)
front/pulse interaction equations can be derived in a geometrical way, also breaks down under these
same circumstances – while the essential spectrum itself does not appear at all in this method (see
also [DEK01, DK03, DKP07, vHDKP10]). Moreover, the character of the equations derived by this
method cannot describe the phenomena exhibited by the localized structures as the essential spec-
trum approaches the origin. In particular, the N -front interaction equations obtained and validated
in [vHDKP10] have a gradient structure, and thus cannot govern Hopf bifurcations. However, Hopf
bifurcations do appear in the (PDE) dynamics beyond the range of validity of the renormalization
group approach [vHDKP10]. Thus we are led to conclude that the condition on not being too close
that underpins the renormalization group approach of [DKP07, vHDKP10, BDKP13] may not be

2



a technical condition: the essential spectrum – or, better – its closeness to the origin, may have a
significant impact on the dynamics of fronts/pulses.

This issue is the underlying motivation for the research presented in this paper. To facilitate and
focus our investigation, we consider the same FitzHugh-Nagumo type system of reaction-diffusion
equations as in [DvHK09, vHDK08, vHDKP10],

Ut = ε2 Uxx + U − U3 − ε(αV + βW + γ) ,

τVt = Vxx + U − V ,
θWt = D2Wxx + U −W ,

for the three real-valued components U, V,W , each depending on (x, t) ∈ R × R+. For the system
parameters ε, α, β, γ, τ, θ,D ∈ R, we assume τ, θ > 0, D > 1 and that 0 < ε � 1, that is, ε plays
the distinguished role of a small perturbation parameter, and determines that the U -component is
fast, while the V - and W -components are slow. Apart from its importance in the theory of pattern
formation (cf. [NTU03, NTYU07, VE07, CC12]), this system has previously been suggested as phe-
nomenological model for gas-discharge (cf. [SOBP97, NTU03, DvHK09] and the references therein).

In this system, localized structures have a front, or multi-front, character [DvHK09]: the system is
bi-stable with 2 stable trivial background states at leading order in ε given by (U, V,W ) = ±(1, 1, 1).
Clearly, the parameters τ and θ directly control the position of the essential spectrum associated
to front solutions connecting these states. In [vHDKP10], the dynamics of N interacting fronts is
studied analytically under the condition that τ and θ are O(1) with respect to ε. In this paper, we
focus on the parameter regime

τ =
τ̂

ε2
, θ =

θ̂

ε2
, τ̂ , θ̂ > 0,

that is, where τ and θ are large, so the essential spectrum associated to front-type solutions is
close, in fact O(ε2)-close, to the imaginary axis. This is the setting in which the renormalization
group approach breaks down and in which the three-component system exhibits particularly rich
dynamics (in fact the methods break down as soon as τ, θ become � 1 – see [vHDK08] for a brief
discussion of the transition case 1� τ, θ � 1/ε2).

An analytical explanation of both the observed complex dynamics and the encountered analyti-
cal challenges in these parameter regimes begins by going back to the start of the above sketched
three-step process, that is, by developing a full understanding of the building blocks of these more
complicated structures: single fronts. This is the subject of the present work. We will find that
in this setting even a single front can exhibit unexpectedly rich dynamics such as accelerations
and oscillations – much richer than the solitary front dynamics for τ, θ = O(1). This already pro-
vides a first step in explaining the rich semi-strong front interaction dynamics for large τ and/or θ
[NTU03, NTYU07, DvHK09].

In the subsequent analysis, we set τ = τ̂
ε2
, θ = θ̂

ε2
, with τ̂ , θ̂ > 0, and examine front solutions of the
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rescaled system 
Ut = ε2Uxx + U − U3 − ε(αV + βW + γ) ,

τ̂Vt = ε2Vxx + ε2(U − V ) ,

θ̂Wt = ε2D2Wxx + ε2(U −W ) .

(1.1)

Since the specific scaling of τ and θ causes all diffusion coefficients to be of equal asymptotic scaling,
it is more natural to work with the rescaled spatial scale ξ = x

ε
for which (1.1) becomes

Ut = Uξξ + U − U3 − ε(αV + βW + γ) ,

τ̂Vt = Vξξ + ε2(U − V ) ,

θ̂Wt = D2Wξξ + ε2(U −W ) .

(1.2)

This system is equivalent to (1.1) for ε 6= 0. Note that, despite the equal scaling of all three diffusion
coefficients, the different scaling in the reaction terms still gives rise to a traveling wave ODE with
slow/fast structure (see (2.1) and (2.3)).

The existence of fronts comes as no surprise since the (dominating) U component solves an Allen-
Cahn/Nagumo type equation for which the existence of front solutions is well-known. The problem
at hand is indeed similar to the perturbed bi-stable equation

∂tU = ε2∂2
xU + U − U3 − εγ, (1.3)

which is known to feature fronts connecting the homogeneous background states −1 + O(ε) and
+1 + O(ε), whose interface becomes sharper as ε → 0 and which travel with speed O(ε2γ) (cf.
[CP89] and [FH89]).

Outline and main results

The present work is organized in three parts. In Section 2, we treat the existence problem for uni-
formly traveling front solutions (see left panel of Figure 1). An existence result (see Proposition 2.2)
is presented featuring existence condition (2.10) which reads

1

3

√
2 c = α v∗ + β w∗ + γ , v∗ = v∗(c; τ̂) , w∗ = w∗(c; θ̂, D) , (1.4)

that arises from Melnikov analysis and relates the front speed ε2c (in the slow variable x) with
the system parameters. The construction involves geometric singular perturbation theory w.r.t.
0 < ε � 1 (cf. [Jo95]) closely following the construction in [DvHK09], where it was demonstrated
that a uniformly traveling pulse constructed as a two-front with width ξ∗ exists for parameter con-
stellations which reduce to our condition (1.4) for ξ∗ → ∞ (see [DvHK09] for more details). To
keep the exposition at reasonable length, we therefore choose to omit the proof and rather simply
delineate the construction of fronts followed by a thorough analysis of the bifurcation structure that
the existence condition reveals. We find the imprint of a partially unfolded butterfly catastrophe
(see Lemma 2.5 and Figure 1 or Figure 6). Thus, the existence problem has a remarkably rich
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structure with the possible coexistence of up to five fronts with different velocities (see Lemma 3.9).

In Section 3 we discuss the stability of uniformly traveling fronts which turns out to be decided by
the so-called small eigenvalues λ = ε2λ̂. Based on an explicit computation of the (leading order)
Evans function, we give in Theorem 3.4 relation (3.6) for the small eigenvalues reading

−
√

2

6
λ̂+ αFcτ̂ ,τ̂ (λ̂) +

β

D
Fcθ̂/D,θ̂(λ̂) = 0 .

Note that, even though our proof strategy follows [vHDK08], which discusses stability of multifront
solutions, the derivation of the stability result for the single front in the present setting needed
substantial modifications. Moreover, [vHDK08] does not discuss the entire parameter regime. For
transparency of presentation, the details of the (spectral) stability analysis are postponed to Ap-
pendix B.

Despite the complexity of the derived eigenvalue relation (3.6), it is possible to prove (see Ap-
pendix C) that there are at most three small eigenvalues, of which zero is always one due to the
translation invariance of our system (see Lemma 3.6). This can be directly translated into the
expected dynamics of bifurcating fronts. Put differently, a center manifold reduction at onset of
instability will lead to a system whose dimension is at most two (after factoring out the translation
invariance).

The findings of our stability analysis pave the way for Section 4 where we use center manifold reduc-
tion to describe dynamically evolving fronts bifurcating from stationary ones (see Theorem 4.1). To
simplify the exposition, we choose to execute the reduction and unfolding for a special parameter
regime which results in a scalar reduced equation rather than a two-dimensional system as in the
general case.

We conclude the paper with a discussion of consequences and future directions. Directly in line
with the center manifold analysis of Section 4, the most interesting investigation is the exploration
of the parameter regimes that allow both a triple zero eigenvalue and the butterfly catastrophe
(see Lemma 3.9), which together foreshadow a possible Bogdanov-Takens bifurcation with butter-
fly imprint. We also return to the above described phenomena that motivated our research and
discuss the potential impact of our findings on the three-step process underlying our approach to
understanding the (semi-strong) interactions of localized structures.

Remark 1.1. Note that the findings of our work clearly highlight the importance of having a third
component in the linearly coupled system (1.1). Without its presence (that is, for β = 0) the bifur-
cation structure collapses to a common cusp bifurcation (as, for instance, described in [KNO90] or
[EIK08]) and the reduced equation on the center manifold is always one-dimensional. In particu-
lar, the Hopf bifurcation (see Figure 11) that gives rise to oscillating fronts is not possible for the
corresponding two-component system{

Ut = ε2 Uxx + U − U3 − ε(αV + γ) ,

τVt = Vxx + U − V .
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Figure 1: Left panel: Spatial profile of a stationary front solution (U solid, V,W dashed). Middle panel:
Butterfly catastrophe for traveling fronts bifurcating from stationary ones. Right panel: Spectrum of the
linearization around traveling fronts.
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2 Existence of stationary and uniformly traveling fronts

To study the existence of uniformly traveling front solutions we choose a comoving frame y =
x− ε2ct, c ∈ R, and insert the traveling wave ansatz

(U, V,W )(x, t) = (u, v, w)(x− ε2ct),

into (1.1) to arrive at a traveling wave ODE that we write as first-order system

εu′ = p ,

εp′ = −u+ u3 + ε(αv + βw + γ − cp) ,
v′ = q ,

q′ = v − u− cτ̂q ,
w′ = r

D
,

r′ = 1
D

(w − u)− c θ̂
D2 r ,

(2.1)

where ·′ = d
dy

. The relevant fixed points of this system are given by

P±ε = (u±ε , 0, u
±
ε , 0, u

±
ε , 0), u±ε = ±1∓ 1

2
ε(α + β ± γ) +O(ε2) . (2.2)

Heteroclinic connections between them correspond to uniformly traveling fronts of (1.1). The ODE
system (2.1) is singularly perturbed and, hence, can be viewed as a slow system whose fast counter
part associated with the fast scale η = x−ε2ct

ε
= y

ε
is of the form (differentiation now being understood
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Figure 2: Left panel: Phase portrait for ü = −u + u3. Middle panels: Phase portraits for the slow
components in (2.6) with u = +1 and u = −1. Right panel: v∗ = luv (−1) ∩ lsv(+1), w∗ = luw(−1) ∩ lsw(+1).

w.r.t. η) 

u̇ = p ,

ṗ = −u+ u3 + ε(αv + βw + γ − cp) ,
v̇ = εq ,

q̇ = ε(v − u)− εcτ̂q ,
ẇ = ε

D
r ,

ṙ = ε
D

(w − u)− ε
D2 cθ̂r .

(2.3)

Systems (2.1) and (2.3) are equivalent for ε 6= 0 and geometric singular perturbation theory can be
employed to construct a heteroclinic orbit from the different limiting equations for (2.1) and (2.3)
when ε→ 0. Setting ε = 0 in (2.3) gives the fast reduced system

u̇ = p ,

ṗ = −u+ u3,

v̇ = q̇ = ẇ = ṙ = 0 ,

(2.4)

whose equation for the u-component is known to have a pair of heteroclinic solutions connecting
−1 and +1 (see Figure 2, left panel) given by

(u0,±(η), p0,±(η)) = ±
(

tanh

(
η√
2

)
,

1√
2

sech2

(
η√
2

))
. (2.5)

This provides the core of the heteroclinic orbit for the full system and, therefore, for the front
solution of our PDE system (1.1). Setting ε = 0 in (2.1) gives the slow reduced system

0 = −u+ u3 ,

v′ = q ,

q′ = v − u− τ̂ cq ,
w′ = r

D
,

r′ = 1
D

(w − u)− θ̂
D2 cr .

(2.6)

Its solutions are obtained by solving the (v, q, w, r)-equations on the manifolds

M±
0 = {(u, p, v, q, w, r) | u = ±1, p = 0} .
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As illustrated in Figure 2 (middle panels) these equations possess saddle equilibria at (v, q) = (±1, 0)
or (w, r) = (±1, 0) respectively with stable and unstable manifolds (corresponding in this case to
the eigenspaces)

lu/sv (u0) =
{

(v, q) | q = λ±v (v − u0)
}
, lu/sw (u0) =

{
(w, r) | r = Dλ±w(w − u0)

}
, u0 = ±1

with u0 = +1 or u0 = −1 and

λv,± =
1

2

(
−cτ̂ ±

√
c2τ̂ 2 + 4

)
, λw,± =

1

2D

(
−cθ̃ ±

√
c2θ̃2 + 4

)
,

θ̂

D
=: θ̃.

Remark 2.1. Note that, for the existence analysis, the parameters θ̂ and D only appear as θ̂
D

= θ̃,

while for the stability analysis in the next section θ̂ and D have distinguished roles.

In the following we will denote the corresponding manifolds in the full phase space by

Λ
u/s
±1 =

{
(u, p, v, q, w, r) | (v, q, w, r) ∈ lu/sv (±1)× lu/sw (±1)

}
.

Associated with the slow and fast systems (2.1) and (2.3) are the slow and fast intervals that we
define w.r.t. the fast variable η, that is,

Is,− =

(
−∞,− 1√

ε

)
, If =

[
− 1√

ε
,+

1√
ε

]
, Is,+ =

(
+

1√
ε
,+∞

)
. (2.7)

A crucial observation is that the (v, q, w, r)-components are constant to leading order during the
jump fromM−

0 toM+
0 (while the (u, p)-components are described to leading order by (2.5)). This

is due to the fact that, in the fast interval If , we have

v

(
+

1√
ε

)
− v

(
− 1√

ε

)
=

∫
If

v̇(η) dη = O(
√
ε)

and similarly for the (q, w, r)-components (cf. [DvHK09] for details). This motivates the right panel
in Figure 2 according to which these constant values are obtained from the intersection of luv(−1)
and lsv(+1) (resp. luw(−1) and lsw(+1)), that is,

(v∗, q∗) = luv(−1) ∩ lsv(+1), (w∗, r∗) = luw(−1) ∩ lsw(+1),

which can be determined explicitly to be given by

v∗ =
cτ̂√

c2τ̂ 2 + 4
, w∗ =

cθ̃√
c2θ̃2 + 4

, (2.8)

where again, θ̃ = θ̂
D

. It is worth remarking already at this point that (2.8) shows that the sign
of the jump values of v∗, w∗ coincides with the sign of the velocity c. In particular, v∗, w∗ = 0 for
stationary fronts.

We can now construct a singular orbit (corresponding to a heteroclinic from −1 to +1)

z0
het = z0

het;s,− ∪ z0
het;f ∪ z0

het;s,+ (2.9)
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q, r

P−ε

v, w

q, r

P+
ε

M−
ε M+

ε

Figure 3: Schematic picture of the heteroclinic orbit Zεhet of the full system (2.1), stressing that, for ε→
0, the heteroclinic orbit approachesM±0 , each a manifold given by the product of two planes corresponding
to the (v, q) and (w, r) coordinates, respectively.

whose three parts are given by

z0
het;s,− = {(u, p, v, q, w, r) ∈M−

0 ∩ Λu
−1 | − 1 ≤ v ≤ v∗,−1 ≤ w ≤ w∗} ,

z0
het;f = {(u, p, v∗, q∗, w∗, r∗) | u = u0,+(η), p = p0,+(η), η ∈ R} ,

z0
het;s,+ = {(u, p, v, q, w, r) ∈M+

0 ∩ Λs
+1 | v∗ ≤ v ≤ +1, w∗ ≤ w ≤ +1} .

A heteroclinic orbit zεhet of the full system (2.1) connecting P−ε to P+
ε lies in the intersection of the

unstable manifoldWu(P−ε ) of P−ε and the stable manifoldWs(P+
ε ) of P+

ε . Since dim(Ws(P±ε )) = 3
and the phase space is 6-dimensional, we will use the parameter c to create a one-dimensional
intersection. Exploiting the Hamiltonian nature of the (u-equation of the fast reduced) system
ü = −u + u3, we can construct a Melnikov function which will yield an implicit relation for c that
guarantees the persistence of the heteroclinic orbits (2.5) of the reduced fast system (see Figure 2,
left panel) into the regime ε > 0. Formal analysis by means of regular expansions and matching for

the slow and fast systems (2.1) and (2.3) yield the existence condition αv∗ + βw∗ + γ −
√

2
3
c = 0,

where v∗, w∗ are the values of the (v, w)-components in the fast field (see (2.8)). Combining Fenichel
theory and Melnikov analysis this existence condition can be derived rigorously. In fact, one can
prove an existence result for uniformly traveling fronts by closely following [vHDK08]. Hence, we
simply state the result and omit the proof here.

Proposition 2.2. (Existence of stationary and uniformly traveling fronts)
For any bounded set of α, β, τ̂ , θ̂, D, γ, c there is ε0 > 0 and an open neighborhood U ⊂ R6 of the
singular orbit z0

het from (2.9) such that for all ε ∈ (0, ε0) solutions to

Γ0(c) := α

(
cτ̂√

c2τ̂ 2 + 4

)
+ β

(
cθ̃√

c2θ̃2 + 4

)
+ γ −

√
2

3
c = 0, θ̃ =

θ̂

D
, (2.10)

are in one-to-one correspondence with heteroclinic orbits

zεhet = (uεhet, p
ε
het, v

ε
het, q

ε
het, w

ε
het, r

ε
het)
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ξ

U, V,W

ξ0 ξ0 ξ0

t t t

ξ0(t) ξ0(t) ξ0(t)

Figure 4: Large plots: Spatial profile of a front solution (U solid, V,W dashed). Small plots: Trajectory
of the front represented by the space-time plot of the zero-crossing ξ0 of the U -component. Parameter
settings: ε = 0.03, β = 3, θ = 1, D = 3 with varying γ, τ, α. Left panel: γ = 0, τ = 1, α = 0.6428. Middle
panel: γ = 1, τ = 1, α = 0.6428. Right panel: γ = 0, τ = 1

ε2
, α = 1.2428. Numerical computations where

carried out by a moving grid code (cf. [Zeg07])

.

of (2.1) that lie in U and connect P−ε to P+
ε from (2.2). Moreover, for each x ∈ R we have that

dist
(
zεhet(x), z0

het

)
−→ 0 , ε −→ 0 ,

and the dependence of zεhet on ε is smooth for each fixed x ∈ R. These heteroclinics give rise to
uniformly traveling fronts

Ztf(x, t) = (Utf , Vtf ,Wtf)(x, t) = (uhet(x− ε2ct), vhet(x− ε2ct), whet(x− ε2ct)) (2.11)

for the three-component system (1.1), which are unique in U . In particular, stationary fronts Zsf ,
that is, Ztf with c = 0, exist if and only if γ = 0 and Zsf is an odd function of x.

Corollary 2.3. The leading order expression of (uεhet, v
ε
het, w

ε
het) is given by

−1

(v∗ + 1)eλ
+
v y − 1

(w∗ + 1)eλ
+
wy − 1

χs−(y) +


tanh

[
y√
2ε

]
v∗

w∗

χf (y) +


+1

(v∗ − 1)eλ
−
v y + 1

(w∗ − 1)eλ
−
wy + 1

χs+(y)

where χs− = χ(−∞,−
√
ε), χf = χ[−

√
ε,+
√
ε], χs+ = χ(+

√
ε,+∞) are the characteristic functions for the

three different intervals in the slow variable.

For the stability analysis in the next section we will need some information on the higher order
correction terms of zεhet. They are described in Appendix A.

2.1 Parameters and front properties

Recall that for the Allen-Cahn equation (1.3) the velocity of fronts is proportional to γ. In partic-
ular, γ = 0 implies c = 0. This structure carries over to our system (1.1) as long as τ, θ = O(1)
(see left panel of Figure 4 for a stationary front with γ = 0 and middle panel of Figure 4 for a
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front traveling with velocity c = O(γ)). However, for large τ, θ, fixing γ = 0 does not necessary
imply c = 0, since the existence condition (2.10) can have more than just the trivial solution c = 0.
Hence, traveling fronts can coexist with the stationary one. Such a traveling front in this regime is
depicted in the right panel of Figure 4.

We will explain the underlying pitchfork bifurcations later on (in Section 2.2), but would like to
already stress at this point that one can see from the front profiles in Figure 4 that the pitchfork
bifurcation caused by γ does not alter the front profile qualitatively (compare left and middle panel
of Figure 4), while for large τ and/or θ, if c = 0 then v∗ = w∗ = 0, and if c ≶ 0, then ∓1 ≶ v∗ ≶ 0
and ∓1 ≶ w∗ ≶ 0. In other words, the sign of the velocity coincides with the sign of the jump
values v∗, w∗ (see right panel of Figure 4). This agrees with the interpretation that γ is a forcing
term whereas the rest of the parameters are expected to create traveling fronts through instabilities.

Examining our existence condition (2.10) reveals the possible coexistence of up to five fronts with
different velocities (see Figure 5 for a respective parameter regime).

Lemma 2.4. (Number of coexisting fronts) The existence condition (2.10) has n = {1, 3, 5}
solutions counted with multiplicity. In more detail,

(i) if αβ ≥ 0 and ατ̂ + β
D
θ̂ < 2

√
2

3
, then n = 1,

(ii) n = 5 requires αβ < 0.

Γ0(c)

c

Figure 5: Existence function Γ0 in (2.10) with parameters α = −0.61, β = 1.4023, γ = −0.05, τ̂ =
10, θ̂ = 5 and D = 2 where five traveling fronts coexist.

Proof. We first note that Γ0(c)−γ is a smooth odd function with respect to c and limc→±∞ Γ0(c) =
∓∞. Hence, the number of roots of Γ0(c) = 0 (counted with multiplicity) is odd. Second, we have

d2

dc2
Γ0(c) = −12c

(
ατ̂ 3

(c2τ̂ 2 + 4)5/2
+

β(θ̂/D)3

(c2(θ̂/D)2 + 4)5/2

)

so that inflection points of Γ0 lie at c = 0 and at roots of the second factor. The latter requires
αβ ≤ 0 and

c2 = −4
(ατ̂ 3)2/5 + (β(θ̂/D)3)2/5

(θ̂/D)2(ατ̂ 3)2/5 + τ 2(β(θ̂/D)3)2/5
. (2.12)
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In conclusion, if αβ < 0, then Γ0 has three inflection points, hence, at most five roots. If αβ > 0,
then Γ0 has a unique inflection point and therefore at most three roots. Since limc→±∞ Γ0(c) = ∓∞,
the unique inflection point at c = 0 for αβ ≥ 0 further implies a unique zero of Γ0 in case d

dc
Γ0(0) < 0.

Indeed, the condition of item (i) implies

d

dc
Γ0(0) =

1

2

(
ατ̂ +

β

D
θ̂ −
√

2

3

)
< 0.

2.2 A butterfly catastrophe

We now examine the bifurcation structure in detail. It turns out that one can find the normal
form of a partially unfolded butterfly catastrophe (see [PS96]) by expanding the existence condition
(2.10) around c = 0, that is,

0 = Γ0(c) = γ +
1

2
κ1c+

1

16
κ3c

3 +
3

256
κ5c

5 +O(c7), (2.13)

with

κ1 :=

(
ατ̂ + β

θ̂

D
− 2
√

2

3

)
, κ3 :=

(
ατ̂ 3 + β

θ̂3

D3

)
, κ5 :=

(
ατ̂ 5 + β

θ̂5

D5

)
.

Lemma 2.5. (Organizing center of the butterfly catastrophe) Consider the existence con-
dition (2.13). For θ̂, τ̂ > 0, we have that Γ0(c) = O(c5) if and only if τ̂ 6= θ̂/D and

(γ, κ1, κ3) = (0, 0, 0) ,

which is is equivalent to
(α, β, γ) = (αb, βb, 0)

where

αb =

(
2
√

2

3

)(
θ̂2

τ̂

)(
1

θ̂2 − τ̂ 2D2

)
, βb = −

(
2
√

2

3

)(
τ̂ 2

θ̂

)(
D3

θ̂2 − τ̂ 2D2

)
. (2.14)

There is no parameter constellation such that Γ0(c) = O(c7).

Proof. Since (α, β) 7→ (κ1, κ3) is simply an affine transformation, we have that(
κ1

κ3

)
=

(
0
0

)
=

(
τ̂ θ̃

τ̂ 3 θ̃3

)
︸ ︷︷ ︸

=A

(
α
β

)
+

(
−2
√

2
3

0

)

⇔
(
α
β

)
=

(
αb
βb

)
= A−1

(
2
√

2
3

0

)
=

 1

τ̂ θ̃
[
θ̃2 − τ̂ 2

]
( θ̃3 −θ̃

−τ̂ 3 τ̂

)(
2
√

2
3

0

)
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β ≤ βb β > βb

γ

α

γ

α

c

α

c

α

γ > 0

γ = 0

γ < 0

γ > 0

γ = 0

γ < 0

a e

d h

b f

c g

Figure 6: Detailed exposition of partially unfolded butterfly catastrophe created by the bifurcation
parameters γ, α, β with fixed τ̂ = 10, θ̂ = 5 and D = 2.

with θ̃ = θ̂
D

and where we used that det(A) 6= 0 if and only if τ̂ 6= θ̂/D and θ̂, τ̂ > 0. Since

κ5(αb, βb) = −2
√

2

3
τ̂ 2θ̃2 6= 0

this concludes the proof.

Directly examining the existence condition (2.10) gives another viewpoint on Lemma 2.5 and the
bifurcation scenario in Figure 6. Setting γ = 0 in (2.10) always yields the solution c = 0, which
is the only solution if τ̂ = θ̂ = 0. In case τ̂ > 0 or θ̂ > 0, there can be coexisting traveling fronts
which can be found, for instance, by examining the dependence α = α(c), that is,

α(c) =

√
c2τ̂ 2 + 4

τ̂

(√
2

3
− β

(
cθ̃√

c2θ̃2 + 4

))
(2.15)

for fixed τ̂ and θ̂ and varying β (recall θ̃ = θ̂/D). At the critical value

d

dc
α(0) =

1

τ̂

(
2
√

2

3
− βθ̃

)
=: αp , β 6= βb , (2.16)

a pitchfork bifurcation occurs (see Figure 6, (b)) which can be super- or subcritical depending on
the sign of

d2

dc2
α(0) =

βθ̃
(
θ̃2 − τ̂ 2

)
+ 3
√

2τ̂ 2

4τ̂
,

giving rise to the critical value for βb in (2.14) which distinguishes these two cases (see Figure 6, (b)
and (f)). The value of α at the organizing center is, hence, αb = αp(βb). For γ 6= 0 the reflection
symmetry of (1.1) is broken which is reflected in the bifurcation diagrams as imperfect pitchfork bi-
furcations (see Figure 6, (a), (c), (e) and (g)). The information of the different bifurcation diagrams
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is usually distilled into graphs that only keep track of fold locations, which in the case β ≤ βb leads
to the cusp in Figure 6 (d) and otherwise to the butterfly in Figure 6 (h).

Recall that (2.10) really is a leading order existence condition, that is, for ε = 0. Geometric
singular perturbation theory combined with the implicit function theorem ensures the persistence
of this structure for ε > 0, a fact that we sum up in a corollary for convenience.

Corollary 2.6. Assume τ̂ − θ̂/D = O(1) with respect to ε. For ε sufficiently small, there exists a
β̃b, to leading order given by βb, such that the following holds true.

(i) If β < β̃b, then there exists a parameter combination (α̃p, γ̃p), to leading order given by (αp, 0),
such that the full system undergoes a supercritical pitchfork bifurcation.

(ii) If β > β̃b, then there exists a parameter combination (α̃p, γ̃p), to leading order given by (αp, 0),
such that the full system undergoes a subcritical pitchfork bifurcation.

(iii) Setting γ = γ̃p + γ̌ with sufficiently small varying γ̌ creates a partially unfolded butterfly
catastrophe.

Remark 2.7. The use of α, β, γ as bifurcation parameters is not stringent. Since α and τ̂ (and
resp. β and θ̂) appear only as products in (2.10), one can interchange their roles. Furthermore,
one could also use β for the pitchfork bifurcation and α to deform it (see Figure 6). Note that,
in contrast to the standard bifurcation scenario for the butterfly catastrophe, the cusp point moves
as it is being deformed into a butterfly. However, with the affine transformation in the proof of
Lemma 2.5 the cusp point is fixed.

2.3 Special features of the three-component model

Recall that (1.1) is of FitzHugh-Nagumo type, but with an additional third component W . The
question arises in which way the third component W enriches the dynamics. One answer is given by
the bifurcation analysis of the last section which uncovers that in order to deform the cusp to create
the butterfly, we need the parameter β which directly controls the influence of the W -component on
the U -component. In other words, the third component increases the complexity of the bifurcation
scenario from a cusp to a butterfly (see Figure 6).

However, we only see a partially unfolded butterfly catastrophe. This is due to the symmetries of
our system (1.1) which are inherited by the traveling wave ODE (2.1). The fact that our system
is autonomous implies the usual reflection symmetry (c, x) → (−c,−x), such that for any given
solution (u, p, v, q, w, r)(x) with velocity parameter c, the function (u, p, v, q, w, r)(−x) is a solution
for speed −c. Since the vector field together with the parameter γ is odd, (2.1) enjoys the symmetry

(c, x, u, p, v, q, w, r, γ)→ (c, x,−u,−p,−v,−q,−w,−r,−γ)

and in combination with the spatial reflection symmetry we obtain

(c, x, u, p, v, q, w, r, γ)→ (−c,−x,−u,−p,−v,−q,−w,−r,−γ).

As expected the (leading order) existence condition (2.10) reflects this. Furthermore, noting that
fronts at γ = c = 0 are odd and unique, and thus invariant under (u, p, v, q, w, r)→ (−u,−p,−v,−q,−w,−r),
one can sum up the symmetry properties of the bifurcation as follows.
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0.06−

−0.06−

0.06−

−0.06−

γ γ

| |
−0.014 −0.004

||
−0.014 −0.004

α α

Figure 7: The butterfly catastrophe described in Corollary 2.6 and depicted in Fig. 6 is
confirmed by the bifurcation software AUTO-07P for the traveling wave ODE (2.1) on an interval
of length 50 with Neumann boundary conditions and the integral condition

∫ 50
0 v(x) dx = 0.

Parameter setting: ε = 0.1, β = 0.85, θ̂ = 2, τ̂ = 2, D = 2. Left Panel: Butterfly catastrophe in
the (α, γ)-plane. Right Panel: Asymmetric butterfly catastrophe for the traveling wave ODE
derived from the extended PDE (2.17) with µ = 0.002 in the (α, γ)-plane.

Lemma 2.8. The image of any solution under the reflection (c, γ) → (−c,−γ) is also a solution.
In particular, if there is a unique branch bifurcating from c = γ = 0 as c or γ vary, then it possesses
the symmetry.

This implies that the unfolding by the system parameters is constrained to lie within the symmetry
subspace also for the full ε-dependent existence condition, so there are no terms of even power in c
at any order in ε. As a result, the butterfly is only partially unfolded. In order to fully unfold the
butterfly catastrophe, one could modify our system by adding a quadratic term to the U equation,
e.g. adding εµV 2 to the U equation which breaks the aforementioned symmetry, that is,

Ut = Uξξ + U − U3 − ε(αV + βW + γ + µV 2) ,

τ̂Vt = Vξξ + ε2(U − V ) ,

θ̂Wt = D2Wξξ + ε2(U −W ) .

(2.17)

See the right panel of Figure 7 for an asymmetric butterfly catastrophe obtained from this extended
system.

3 Stability of fronts

In the previous section, we have demonstrated the existence of uniformly traveling fronts and
now proceed to study their stability. To this end we introduce a co-moving frame by (x, t) →
(x− ε2ct, t) = (y, t), so that (1.1) becomes

∂tU = ε2Uyy + ε2cUy + U − U3 − ε(αV + βW + γ) ,

τ̂∂tV = ε2Vyy + ε2cτ̂Vy + ε2(U − V ) ,

θ̂∂tW = ε2D2Wyy + ε2cθ̂Wy + ε2(U −W ) ,
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which upon setting Z = (U, V,W ) can be abbreviated as

M∂tZ = G(Z) + ε2cM∂yZ, M = diag[1, τ̂ , θ̂]. (3.1)

Linearized around Ztf from Proposition 2.2, it reads
∂tU =

[
ε2∂2

y + ε2c∂y + (1− 3U2
tf)
]
U − ε(αV + βW ) ,

τ̂∂tV =
[
ε2∂2

y + ε2cτ̂∂y − ε2
]
V + ε2U ,

θ̂∂tW =
[
ε2D2∂2

y + ε2cθ̂∂y − ε2
]
W + ε2U ,

which can be abbreviated as

M∂tZ = LcZ, Lc = ∂ZG(Ztf) + ε2cM∂y. (3.2)

It is standard to split the spectrum σ(Lc) of Lc into (the disjoint sets) essential spectrum σess(Lc) and
point spectrum σpt(Lc) (cf., for instance, [Hen81, Sa02]). The essential spectrum can be computed
as in [vHDK08], so we omit the proof here.

Lemma 3.1. (Essential spectrum σess(Lc)) For ε sufficiently small, the essential spectrum of
the operator Lc in (3.2) arising from the linearization around a uniformly traveling front Ztf from
Proposition 2.2, lies in the open left half plane

{λ ∈ C : R(λ) < λ0}, b < λ0 < 0, b = max

{
−2,−ε

2

τ̂
,−ε

2

θ̂

}
.

The translation symmetry of our system allows to gain some insight into the point spectrum.

Lemma 3.2. (The zero EV of Lc and Jordan block structure) Assume a parameter regime
where traveling fronts as described in Proposition 2.2 exist.

(i) The point spectrum σpt(Lc) of the operator Lc always contains zero with corresponding eigenspace
containing span{∂yZtf}.

(ii) For c = 0, the algebraic multiplicity of the eigenvalue zero at the pitchfork bifurcation value α̃p,
which to leading order is given by αp from (2.16), is at least two and a generalized eigenfunction
ψ is given by

∂cZtf |c=0 =: ψ. (3.3)

Proof. The first statement of the lemma follows immediately from the translation invariance of
our system (3.1). To prove the second part, we observe that the existence theorem for uniformly
traveling fronts, Proposition 2.2, guarantees that for fixed parameters β, τ̂ , θ̂, D and γ = 0 there is
a smooth function α = α(c) (with α(c) = α̃p if and only if c = 0) giving rise to a smooth family
of uniformly traveling fronts Ztf = Ztf(c) which are stationary solutions of the traveling wave PDE
(3.1), so

0 = G(Ztf(c)) + ε2cM∂yZtf(c) . (3.4)
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Taking a derivative w.r.t. c of this relation gives

0 = ∂ZG(Ztf(c))∂cZtf(c) +M∂yZtf(c) + ε2cM∂cZtf(c) .

Recall that ∂yZtf(0) = ∂xZsf is an eigenfunction for the zero eigenvalue. Then the above expression
evaluated at the pitchfork bifurcation point c = 0 gives

0 = ∂ZG(Zsf)∂cZtf |c=0 +M∂yZsf ,

from which we can readily conclude that ∂cZtf |c=0 is a corresponding generalized eigenfunction for
α = α̃p.

In order to get insight into the nontrivial point spectrum, let us write out the eigenvalue problem
in the fast variable η = y

ε
[
∂2
η +

(
1− 3 (Utf)

2)]u − ε(αv + βw − cuη) = λu ,[
∂2
η + εcτ̂∂η − ε2

]
v + ε2u = τ̂λv ,[

D2∂2
η + εcθ̂∂η − ε2

]
w + ε2u = θ̂λw .

(3.5)

Even though the stability problem inherits the slow/fast-structure of our original system, it is non-
autonomous which makes geometric singular perturbation theory less convenient. We refrain from
displaying a full rigorous derivation of the point spectrum calculation at this point and instead give
some formal arguments that can be made rigorous by Evans function analysis (see Appendix B).
In the singular limit ε→ 0 the eigenvalue problem (3.5) reduces to

∂2
ηu+

(
1− 3 tanh2

(
η√
2

))
u = λu

which is known to have eigenvalues λ0 = 0 (due to translation symmetry) and λlarge = −3
2
. Hence,

we expect for ε > 0 point spectrum close to these values. However, since we are interested in
instabilities and bifurcations of fronts, we will focus on point spectrum around 0, which, in the
language of [vHDK08], we refer to as small eigenvalues (as opposed to the large eigenvalues around
−3

2
). It turns out (see Appendix B for details) that there are small eigenvalues

λ = ε2λ̂

of which (again due to translation symmetry) there is always at least one, the eigenvalue λ̂0 = 0
(recall Lemma 3.2). Consequently, spectral stability of uniformly traveling fronts is decided by the
location of these small eigenvalues. The results are summarized in Lemma 3.3 and Theorem 3.4
(which are proven in Appendix B).

Lemma 3.3. (Point spectrum σpt(Lc)) For ε sufficiently small, the point spectrum σpt(Lc) of
the operator Lc in (3.2) arising from the linearization around a uniformly traveling front Ztf from
Proposition 2.2, can be split into two disjoint sets σpt,large(Lc), σpt,small(Lc). The eigenvalues in
σpt,large(Lc) are in the open left half-plane, uniformly bounded away from the imaginary axis by an
O(1) (w.r.t. ε) bound. The set σpt,small(Lc) contains the eigenvalues that are to leading order in
one-to-one correspondence to the roots of the so-called Evans function

Ec(λ̂) =−
√

2

6
λ̂+ αFcτ̂ ,τ̂ (λ̂) +

β

D
Fcθ̂/D,θ̂(λ̂) , (3.6)
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Re{λ}

Im{λ}

Figure 8: Sketch of a possible constellation for σ(Lc). The shaded region illustrates the essential
spectrum σess(Lc) and the dashed vertical line indicates its bound as derived in Lemma 3.1. There are
at most three small eigenvalues (see zoomed in frame). Recall that both, essential spectrum and small
eigenvalues are O(ε2) close to the imaginary axis.

where

Fρ1,ρ2(λ̂) =

 1√
ρ2

1 + 4
− 1√

ρ2
1 + 4(λ̂ρ2 + 1)

 .

Theorem 3.4. (Stability of uniformly traveling fronts) Assume that the system parameters of
(1.1) are such that Proposition 2.2 guarantees the existence of a uniformly traveling front Ztf . Then
for ε > 0 sufficiently small this front is stable if the equation (3.6) has, apart from the translation
invariance solution λ̂0 = 0, only solutions λ̂ with non-positive real part.

Remark 3.5. Note that in [DvHK09] a traveling pulse was constructed by concatenating two fronts
separated by a distance that is denoted by ξ∗ in [DvHK09]. Our existence condition (2.10) is con-
sistent with the first existence condition of (3.13) in [DvHK09] in the limit ξ∗ →∞. Moreover, for
c = 0 our Evans function (3.6) is consistent with the Evans function (5.5) in [vHDK08] again in
the limit ξ∗ → ∞. However, there is no expression in [vHDK08] that allows to find the full Evans
function as given in (3.6).

The proof (in Appendix B) relies essentially on the methods used in [vHDK08] where 2-fronts were
studied. Since for a single front the eventful parameter regime of large τ, θ are more amenable
to analysis, we can now determine the complete picture of possible bifurcations of stationary and
uniformly traveling front solutions. To be more precise, (3.6) allows to conclude the maximal number
of small eigenvalues, which is directly related to the possible dimension of the reduced ODE on the
center manifold (see Section 4).

Lemma 3.6. (Maximum number of small eigenvalues in σpt(Lc)) There are at most three
small eigenvalues for the operator Lc in (3.2) arising from the linearization around a uniformly
traveling front from Proposition 2.2.

Proof. The rather technical proof can be found in Appendix C.

3.1 Onset of instability for stationary fronts

To study instabilities of stationary fronts, we examine (3.6) for c = 0, so

2E0(λ̂) =: E(λ̂) =
1

2
κ1λ̂+ δ2λ̂

2 + δ3λ̂
3 +O(λ̂4), (3.7)
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where κ1 is as defined in (2.13), so

κ1 =

(
ατ̂ +

β

D
θ̂ − 2

√
2

3

)
, δ2 :=

3

4

(
ατ̂ 2 +

β

D
θ̂2

)
, δ3 :=

15

8

(
ατ̂ 3 +

β

D
θ̂3

)
.

For small τ̂ and θ̂ this expression reduces at leading order to E(λ̂) = −
√

2
3
λ̂ , and, hence, zero is the

only eigenvalue and local bifurcations occur. From the above expansion (3.7) we can immediately
read off when the multiplicity of the zero eigenvalue increases, which paves the way for bifurcations.
Elementary computations give the following result.

Lemma 3.7. (Multiplicity of the zero root of the Evans function) Assume D > 1, τ̂ , θ̂ > 0
and α, β ∈ R\{0}. If (α, β, τ̂ , θ̂, D) are chosen on the surface S defined by

S =

{
(α, β, τ̂ , θ̂, D) ∈ R5

∣∣∣∣∣ κ1 = ατ̂ +
β

D
θ̂ − 2

√
2

3
= 0

}
, (3.8)

then E from (3.7) has a double zero root. If, in addition,

δ2 = ατ̂ 2 +
β

D
θ̂2 = 0 , (3.9)

the zero root of E is triple. Combining (3.8) and (3.9) gives

(κ1, δ2) = (0, 0) ,

or, equivalently,
(α, β) = (αtriple, βtriple) ,

where

αtriple = −

(
2
√

2

3

)
θ̂

τ̂(τ̂ − θ̂)
,

βtriple

D
=

(
2
√

2

3

)
τ̂

θ̂(τ̂ − θ̂)
. (3.10)

So, for the triple zero root, α and β have different signs and τ̂ 6= θ̂. The zero root has at most
multiplicity three.

As a consequence of Lemma 3.7 and the construction via geometric singular perturbation theory
the following holds true for the possible algebraic multiplicity of the zero eigenvalue of the operator
σpt(L0).

Corollary 3.8. (Multiplicity of the zero eigenvalue in σpt(L0)) Let the conditions in Lemma 3.7
be fulfilled. In an O(ε)-neighborhood of the parameter combination resulting in a double (resp. triple)
root of the Evans function there is a corresponding parameter combination for which the operator
σpt(L0) has an algebraically double (resp. triple) zero eigenvalue.

Further elementary computations (combining the parameter regimes in Lemma 2.6 and Lemma 3.7)
indicate the possibility of a Bogdanov-Takens bifurcation scenario with butterfly imprint.
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Lemma 3.9. (Butterfly catastrophe and triple zero eigenvalue) The organizing center of
the butterfly catastrophe in Lemma 2.5 coincides with a triple zero eigenvalue if

(γ, κ1, κ3, δ2) = (0, 0, 0, 0) ,

or, equivalently,
(γ, α, β,D) = (0, αb,tr, βb,tr, Db,tr) ,

where

αb,tr = −2
√

2

3

θ̂

τ̂(τ̂ − θ̂)
, βb,tr =

2
√

2

3

√
τ̂√

θ̂(τ̂ − θ̂)
, Db,tr =

√
θ̂

τ̂
.

Since D > 1 we need θ̂ > τ̂ .

3.2 Pitchfork bifurcation of a stationary front

Parameter regimes around the double zero eigenvalue are expected to give rise to a pitchfork bi-
furcation. In the next section, we will examine the pitchfork bifurcation for stationary fronts (so
c = 0) by center manifold reduction. To facilitate the exposition, we will restrict the discussion to
the case τ̂ = θ̂ = 1, where we have explicit control over the roots.

Lemma 3.10. Consider the roots of Ec from (3.6) for c = 0, τ̂ = θ̂ = 1.

(i) If α + β/D ≤ 0, the zero root is simple, while the real part of a possible complex conjugate
pair is less than −3

4
.

(ii) If α + β/D > 0, there are exactly two roots and both roots are real.

(iii) There is an open neighborhood Uc ∈ R of αp = 2
√

2
3
− β/D, such that for α ∈ Uc we have

exactly two roots and both are real.

Remark 3.11. Note that the condition τ̂ = θ̂ = 1 excludes the possibility of having a triple zero

eigenvalue, but allows the butterfly catastrophe since this requires τ̂ 6= θ̂
D

and D > 1 by assumption.

Proof. The Evans function E in (3.6) with c = 0, τ̂ = θ̂ = 1 has at most three roots by elementary
considerations. If α + β/D ≤ 0, then

f(λ̂) = g(λ̂)

with

f(λ̂) := −
√

2

3
λ̂+ α + β/D , g(λ̂) :=

α + β/D√
τ̂ λ̂+ 1

, (3.11)

has only λ̂ = 0 as solution (see panel (a) of Figure 9) and inspection of the explicit expressions for
the roots of the third order polynomial shows that, if there are complex roots, their real part is
always bounded from above by −3

4
. So, (i) follows. Similarly, if α+β/D > 0, there are exactly two

crossing points of f and g (see panels (b)-(e) of Figure 9), which excludes the existence of a third

eigenvalue, so, (ii) follows. Lastly, for α = αp + α̌ we have α + β/D = 2
√

2
3

+ α̌ > 0 for α̌ small
enough, so, by (ii), we have exactly two roots and both are real, which shows (iii).
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(a) (b) (c) (d) (e)

Figure 9: Illustration of the crossing of the functions f (solid) and g (dashed) from (3.11) for and

corresponding eigenvalues for (a) : α + β/D = −0.1, (b) : α + β/D = 0.1, (c) : α + β/D = 2
√

2
3 − 0.6 ,

(d) : α+ β/D = 2
√

2
3 , (e) : α+ β/D = 2

√
2

3 + 1

Again, the pitchfork bifurcation described in the previous lemma persists for ε > 0 and coincides
with the bifurcation described in Corollary 2.6. In order to prepare the center manifold reduction
in Section 4 we summarize the spectral features of the operator σpt(L0):

Lemma 3.12. (Eigenspace and spectral projections for the double zero of σpt(L0)) Fix

γ = 0, τ̂ = θ̂ = 1 and ε > 0 sufficiently small.

(i) There is α̃p (to first order given by αp from Lemma 3.10) such that the operator L0(α̃p) in (3.2)
with c = 0 arising from the linearization around a stationary front Zsf from Proposition 2.2
has a zero eigenvalue with algebraic multiplicity one and geometric multiplicity two. In more
detail, we have

L0(α̃p)φ = 0, φ = Z ′sf , L0(α̃p)ψ = φ, ψ = ∂cZtf |c=0 . (3.12)

Setting α = α̃p + α̌ for sufficiently small α̌ creates a pitchfork bifurcation. Furthermore,
introducing the phase space χ = Hs(R)3, s ≥ 2, (product space of L2-based Sobolev spaces)
and the duality product

〈Z, Z̃〉χ = 〈U, Ũ〉L2 + 〈V, Ṽ 〉L2 + 〈W, W̃ 〉L2 , (3.13)

we know that for the adjoint operator L∗0 we have the corresponding properties, so

L∗0(α̃p)φ
∗ = 0, L∗0(α̃p)ψ

∗ = φ∗ . (3.14)

(ii) The functions φ, φ∗, ψ, ψ∗ define a projection onto the spectral subspace E0 = span[φ, ψ] (be-
longing to the zero eigenvalue) by

PE0{·} = 〈·, ψ∗〉χφ+ 〈·, φ∗〉χψ. (3.15)

We have 〈φ, φ∗〉χ = 0 and we can choose the functions such that 〈φ, ψ∗〉χ = 〈φ∗, ψ〉χ = 1 and
〈ψ, ψ∗〉χ = 0. Furthermore, define PE− = Id − PE0, so E− = R(PE−) is the spectral subspace
belonging to σ− := σ(L0) \ {0}. In other words, we have the splitting

χ = E0 ⊕ E− .
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(iii) The functions φ, φ∗, ψ, ψ∗ are all even.

Proof. Parts (i) and (ii) are a combination of restating Lemma 3.2, using geometric singular pertur-
bation theory to argue the persistence of the leading order result in Lemma 3.10 and basic spectral
theory. The parity of the eigenfunctions stated in (iii) can be understood from the following argu-
ment: The front solution Zsf is odd, so φ = Z ′sf is even. The operator L0 is of second order and
features multiplication with an even function, and, hence, preserves parity.

Re{λ}

Im{λ}

2

Figure 10: Double zero eigenvalue for σ(L0). The shaded region illustrates the essential spectrum, the
striped vertical line its bound and the cross the large eigenvalue λ̃large.

4 Dynamics of bifurcating front solutions

In this section, we perform a center manifold reduction to unfold the butterfly catastrophe from
Section 2.2 by making use of the spectral properties of the operator L0 (see Lemma 3.12). This will
result in a reduced equation describing dynamically evolving fronts that bifurcate from stationary
ones.

Let us write our system (1.1) in the more compact form

∂tZ = G(Z) . (4.1)

In the realm of center manifold reduction for systems with continuous symmetries we set

Z(·, t) = Ta(t)[Zsf(·) + R̄(·, t)] = Ta(t)[Zsf(·) + b(t)ψ(·) +R(·, t)] , (4.2)

where Ta is the translation operator Ta(f)(·) = f(· − a), ψ is a generalized eigenfunction (cf.
Lemma 3.12) and a, b, R, R̄ are real-valued functions. Note that the coordinate function a on the
center manifold describes the position of the front, so ȧ is its velocity.

Theorem 4.1. (Velocity of bifurcating fronts) Fix τ̂ = θ̂ = 1 and ε > 0 small enough such
that there exists a stationary front Zsf as in Proposition 2.2. For small enough α̌, β̌, γ̌ consider the
parameter regime

α = α̃b + α̌, β = β̃b + β̌, γ = γ̃b + γ̌ ,

where the critical values (α̃b, β̃b, γ̃b) are as in Corollary 2.6. Then the velocity ȧ(t) =: ν(t) of a front
bifurcating from Zsf satisfies the first order ODE

ν̇ = ε2

[
γ +

1

2
κ1ν +

1

16
κ3ν

3 +
3

256
κ5ν

5

]
+ h.o.t. , (4.3)
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where κ1, κ3, κ5 are defined in (2.13) and h.o.t. denotes higher order terms. In particular, the
bifurcation structure of this ODE features a butterfly catastrophe as described in Corollary 2.6.

Remark 4.2. We set τ̂ = θ̂ = 1 in the upcoming analysis to facilitate the exposition, but would
like to stress that this is by no means necessary. Any parameter regime where the third eigenvalue
is known to stay in the left half plane will yield the same result.

Proof. Implementing ansatz (4.2) into the left hand side of (4.1) gives

∂tZ = ȧ(Zsf)
′ + ḃψ + ȧbψ′ + ȧ∂yR + ∂tR = ȧφ+ ḃψ + ȧbψ′ + ȧ∂yR + ∂tR ,

where ˙ = d
dt

represents a time derivative, while ′ = d
dy

and ∂y are spatial derivatives w.r.t. y =

x− a(t). The right hand side of (4.1) becomes

G(Z) = G(Zsf) + ∂ZG(Zsf)R̄ +
1

2
∂2
ZG(Zsf)[R̄, R̄] +

1

6
∂3
ZG(Zsf)[R̄, R̄, R̄],

where the residual term G(Zsf) = G(Zsf ; γ̌) = (−εγ̌, 0, 0)t accounts for the fact that Zsf is not a
solution for non-zero γ̌ and the nonlinear terms are given by

1

2
∂2
ZG(Zsf)[R̄, R̄] +

1

6
∂3
ZG(Zsf)[R̄, R̄, R̄] = −(3Zsf

U (R̄U)2 + (R̄U)3, 0, 0)t .

Note that the expansion is exact since the nonlinearity is a cubic polynomial. In order to use center
manifold theory to study the bifurcation we introduce the splitting

∂ZG(Zsf ;α) = ∂ZG(Zsf ; α̃b + α̌) = ∂ZG(Zsf ; α̃b) + [∂ZG(Zsf ; α̃b + α̌)− ∂ZG(Zsf ; α̃b)]︸ ︷︷ ︸
=:G(Zsf ;α̌)

where in fact
G(Zsf ; α̌)R̄ = −(εα̌R̄V , 0, 0)t.

Note, that Zsf = Zsf(α̃b) is chosen fixed. Using the above notation we see that the right hand side
of (4.1) has the form

G(Z;α, γ) = ∂ZG(Zsf ; α̃b)R̄ + F(α̌, γ̌)[R̄]

with

F(α̌, γ̌)[R̄] = (−(εγ̌ + εα̌R̄V + 3Usf(R̄U)2 + (R̄U)3), 0, 0)t. (4.4)

Note that F has only a U -component. In summary, ansatz (4.2) transforms equation (4.1) into

ȧφ+ ḃψ + ȧbψ′ + ȧ∂yR + ∂tR = ∂ZG(Zsf ; α̃b)R− bφ+ F [bψ +R] . (4.5)

We now make use of the properties of the adjoint operator L∗0(α̃b) = ∂ZG(Zsf ; α̃b)
∗ described in

Lemma 3.12 and the spectral projections defined therein. Projecting equation (4.5) onto the cen-
ter eigenspace E0 and its complement E− respectively and using the symmetry of eigenfunctions
described in Lemma 3.12, part (iii), gives the following coupled ODE-PDE system for (a, b, R):

ȧ =
1

s

(
1

s+ 〈∂yR,ψ∗〉

)
(−sb+ 〈F [bψ +R], ψ∗〉) =: ga(b, R, α̌, γ̌) , (4.6)

ḃ =
1

s
〈F [bψ +R], φ∗〉 − 1

s
ga(b, R, α̌, γ̌)〈∂yR, φ∗〉 , (4.7)

∂tR = L0(α̃b)R + PE−{F [bψ +R]− ga(b, R, α̌, γ̌)bψ′ − ga(b, R, α̌, γ̌)∂yR} . (4.8)
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Note that, due to the special form of our ansatz, the right hand side of (4.6)-(4.8) does not depend
explicitly on a. It is, hence, sufficient to study the subsystem (4.7)-(4.8) for (b, r), since the equation
for a can simply be integrated upon knowledge of b and R. The existence of a center manifold for
(4.7)-(4.8) that captures all bifurcating solutions follows from standard results (see e.g. [HI11],
Theorem 3.23), since (4.7)-(4.8) is a semilinear, parabolic problem in a Hilbert space. We state the
respective result without proof.

Proposition 4.3. (Center manifold reduction) Let the parameter regime be as stipulated in
Theorem 4.1. Then there is a map h ∈ Ck(E0 × R3, E−) satisfying h(0) = 0, Dh(0) = 0 and
a neighborhood U(a,b,R) × U(α̌,β̌,γ̌) ∈ Hs(R)3 × R3 such that for (α̌, β̌, γ̌) ∈ U(α̌,β̌,γ̌) the manifold

{Ta[Zsf + bψ + h(b, α̌, β̌, γ̌)]} is locally invariant under the flow of (4.7)-(4.8) and exponentially
attracting. Furthermore, it contains the set of all bounded solutions that stay in U(a,b,R) for all
t ∈ R.

Note that from (4.6), it is easy to see that ȧ = −b + O(b2), so the front velocity ȧ(t) = ν(t) will
be governed by a scalar ODE. From the existence condition for uniformly traveling fronts, we know
the fixed point structure of the evolution equation for the velocity to leading order in ε. Hence,
up to a scaling constant δ, the Taylor expansion of the RHS of the ODE coincides with the Taylor
expansion of the existence condition (2.13). Using the eigenvalue information from the stability
analysis in the last section, we get δ = ε2. This concludes the proof of Theorem 4.1.

5 Summary and future investigations

We presented the analysis of existence, stability and bifurcations for single, uniformly traveling front
solutions in the (FitzHugh-Nagumo type) three-component reaction-diffusion system (1.1) featur-
ing parameters such that the essential spectrum of (the linearization around) stationary fronts is
asymptotically close to the origin. By means of geometric singular perturbation theory we were able
to give implicit (leading order) expressions for the existence of uniformly traveling fronts (see (2.10))
and their stability (see (3.6)). While the existence analysis follows the approach in [DvHK09] very
closely and essentially relies on a Melnikov type argument, the stability analysis – though similar in
spirit to [vHDK08] – had to be significantly modified and extended to incorporate parameter regimes
where τ and θ are large. We found that there exist at most three small eigenvalues which could lead
to instabilities (of which one is always zero due to translational symmetry of the problem). In fact,
it turned out that there are parameter regimes for which the multiplicity of the zero eigenvalue is
either two or three, providing an entry point for the analysis of bifurcating, dynamically evolving
fronts. In our bifurcation analysis we mainly focused on the unfolding of the double zero eigenvalue
case for stationary fronts (see Lemma 3.12). By center manifold reduction for equivariant systems,
we derived the scalar ODE (4.3) describing the time evolution of the velocity of bifurcating fronts.
This ODE bears the imprint of a partially unfolded butterfly (as described in Section 2.2).

More generally, our analysis shows that one may expect to observe the full dynamics of a two-
dimensional system near the triple zero point. In particular, it predicts a Bogdanov-Takens type
bifurcation scenario with butterfly imprint (see Lemma 3.9). The unfolding of the triple zero eigen-
value case will be the subject of future investigations. Note that a Bogdanov-Takens scenario, for
instance, indicates the presence of a Hopf bifurcation near this regime, which we could confirm
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numerically (see Figure 11 for an oscillating front solution).

ξ

U, V,W

ξ0

t

ξ0(t)

Re{λ}

Im{λ}

Figure 11: Hopf bifurcation leading to an oscillating front. Left panel: Spatial profile of a front solution
with U solid and V,W dashed (large plot) and trajectory of the oscillating front represented by the space-
time plot of the zero-crossing ξ0 of the U -component (small plot). Right panel: Complex conjugate pair
crosses the imaginary axis in the parameter regime of numerically observed oscillations. Parameter setting:
ε = 0.03, γ = 0, D = 3, τ̂ = 4.21, θ̂ = 10, α = 0.79, β = −1.2057.

Finally, we return to our original motivation to study system (1.1) with asymptotically large pa-
rameters τ and/or θ of order O(1/ε2). In this parameter regime, numerical simulations show very
rich front interaction dynamics that are much more complex than for smaller values of τ and θ
– see [NTU03, NTYU07, DvHK09]. In [vHDKP10], the validity and local attractivity of an ex-
plicitly determined N -dimensional system describing the semi-strong interactions of N fronts has
been rigorously established for τ, θ = O(1). Although the dynamics exhibited by these systems are
certainly nontrivial – see [vHDKP10] – these systems are intrinsically not capable of describing the
front interaction dynamics for large τ and θ. For instance, these systems have a gradient structure
and thus cannot describe the periodic behavior observed in the simulations with τ and θ large.

The findings of this paper show that even the dynamics of single fronts – the building blocks of
the front interaction dynamics – increase dramatically when τ and/or θ are increased: as Figure 11
shows, solitary fronts may start to oscillate by internal mechanisms, without being in interaction
with neighboring fronts (as is the case for the breathing pulses/double fronts studied in [vHDK08]).
Thus, the present analysis provides an important element of a further analytical understanding of
semi-strong front dynamics. Our analysis strongly indicates that for τ and θ large, the dynamics of a
localized front should be described by the ‘eigenmodes’ associated to the small eigenvalues relevant
for bifurcations of which there are at most three. In the case τ, θ = O(1), there is only one such
eigenfunction, the (spatial) derivative of the front solution associated to the translational invariance
of (1.1). As a consequence, the dynamics of N interacting fronts are for τ, θ = O(1) described by
an N -dimensional system for the N translational eigenmodes associated to each of the N fronts
[vHDKP10]. Our present results, thus, foreshadow that a 3N -dimensional system might be neces-
sary to describe the interactions of N -fronts when τ, θ become large (in the sense τ, θ = O(1/ε2)).
However, it is not clear yet whether this will be sufficient: from an asymptotic point of view, the
impact of the essential spectrum is in principle as strong as that of the point spectrum since they are
both of order O(ε2). In fact, the essential spectrum very likely already does play a significant role
‘in the background’: each of the two additional eigenvalues/eigenmodes (per front) originates from
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the essential spectrum as τ, θ increases from O(1) to O(1/ε2). In other words, the essential spec-
trum enabled the growth from the N -dimensional front interaction system to a 3N -dimensional one.

The central question, that will be the topic of future research, is thus: Can the semi-strong N -
front dynamics indeed be described by only a 3N -dimensional system (for τ, θ = O(1/ε2))? Both
possible answers generate fundamental questions. If the full PDE dynamics differ from that of
the 3N -dimensional system spanned by the localized eigenmodes, then one needs to devise novel
methods by which the influence of the essential spectrum can be determined. Even if this is not the
case, or if it is not obvious, one needs to go beyond the renormalization group method developed
in [DKP07, vHDKP10, BDKP13] to rigorously establish the validity and local attractivity of the
3N -dimensional dynamics.

A Higher order corrections of the front profile

The stability analysis for uniformly traveling fronts Ztf = (Utf , Vtf ,Wtf) as derived in Proposition 2.2
makes use of information about the higher order terms of the front profile (2.3). To ease notation
we introduce the abbreviation

√
2(U0

tf)η = sech2

(
η√
2

)
=: ρ(η) . (A.1)

Upon working in a (fast) co-moving frame η = ξ−εct and using a regular expansion for Utf(η), that

is, Utf(η) = U0
tf(η) + εU1

tf(η) + ε2U2
tf(η) +O(ε3), with U0

tf(η) = tanh
(

η√
2

)
, we obtain the following

result.

Lemma A.1. Let the conditions in Proposition 2.2 be fulfilled.

(i) The higher correction term U1
tf(η) is an even function in the fast field If (see (2.7)).

(ii) Its derivative obeys the relation

L(U1
tf)η := ((U1

tf)η)ηη + (U1
tf)η − 3(U0

tf)
2(U1

tf)η =− c(U0
tf)ηη + 6U0

tf(U
0
tf)ηU

1
tf = − c√

2
ρη + 3

√
2U0

tfU
1
tfρ .

(iii) The next order correction term U2
tf(η) obeys the integral relation

c

∫
(U1

tf)ηηρdη − 6

∫
U0

tf(U
0
tf)ηU

2
tfρdη − 6

∫
U0

tfU
1
tf(U

1
tf)ηρdη − 3

∫
(U0

tf)η(U
1
tf)

2ρdη

= c

∫
(U1

tf)ηηρdη − 3
√

2

∫
U0

tfU
2
tfρ

2dη − 6

∫
U0

tfU
1
tf(U

1
tf)ηρdη −

3√
2

∫
(U1

tf)
2ρ2dη

= 4
√

2

α( 1√
c2τ̂ 2 + 4

)
+
β

D

 1√
c2θ̂2

D2 + 4

 .

Proof. The proof of this lemma is completely analogues to the proofs in §2.2 of [vHDK08] upon
plugging in the correct expressions for the derivatives of the slow components in the fast field If

(from (2.7)). The parity of U1
tf(η) follows from expanding Utf(η) in a regular fashion and studying
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the O(ε)-level of the U -equation of (3.1). After plugging in the derived existence condition (2.10),
we obtain the following equation for U1

tf

LU1
tf = c

(√
2

3
− (U0

tf)η

)
=
√

2c

(
1

3
− 1

2
ρ

)
.

Since the operator L conserves parity and the right hand side of the above equation is even, we
obtain that U1

tf(η) is an even function. The relations for (U1
tf)η and U2

tf follow from studying the
derivative of the U -equation of (3.1) in the fast field in the co-moving frame:

Uηηη = −Uη + 3U2Uη + ε(αVη + βWη − cUηη) .

After plugging in the regular expansion for Utf and noting that Vη and Wη are O(ε) and constant
in the fast field, we obtain

O(1) : L(U0
tf)η =0 ,

O(ε) : L(U1
tf)η =− c(U0

tf)ηη + 6U0
tf(U

0
tf)ηU

1
tf ,

O(ε2) : L(U2
tf)η =αVη + βWη − c(U1

tf)ηη + 6U0
tf(U

0
tf)ηU

2
tf + 6U0

tfU
1
tf(U

1
tf)η + 3(U0

tf)η(U
1
tf)

2 ,

where we indicated the correct asymptotic scaling of the slow components by taking their derivatives
with respect to the slow variable. To obtain the integral relation involving U2

tf , we note that ρ is in
the kernel of L and we apply a solvability condition on the O(ε2)-equation. This gives

2
√

2(αVη + βWη) =c

∫
(U1

tf)ηηρdη − 6

∫
U0

tf(U
0
tf)ηU

2
tfρdη − 6

∫
U0

tfU
1
tf(U

1
tf)ηρdη − 3

∫
(U0

tf)η(U
1
tf)

2ρdη ,

where we used that
∫
ρ(η)dt = 2

√
2 . Finally, from (2.8) we get that

Vη = λ+
v (v∗ + 1) =

1

2

(
− c2τ̂ 2

√
c2τ̂ 2 + 4

+
√
c2τ̂ 2 + 4

)
=

2√
c2τ̂ 2 + 4

,

Wη = λ+
w(w∗ + 1) =

1

2

1

D

− c2θ̂2

D2√
c2θ̂2

D2 + 4
+

√
c2θ̂2

D2
+ 4

 =
1

D

 2√
c2θ̂2

D2 + 4

 .

This completes the proof.

B Proof of Theorem 3.4 via Evans function analysis

As alluded to, we will make use of the Evans function to compute the point spectrum of our
operator. For slow-fast systems, as analyzed in this paper, it has been shown in [AGJ90] that the
Evans function D(λ) can be split into an analytic fast part Df(λ) and a meromorphic slow part
Ds(λ) and a nonzero function d(λ). In [DGK98, DGK01, DGK02], the NLEP-method was developed
in context of two-component singularly perturbed reaction-diffusion equations by which these two
parts of the Evans function can be explicitly computed. In [vHDK08], this method was extended
to N -component singularly perturbed reaction-diffusion equations with one fast and (N − 1)-slow
components. In more detail, for N = 3 we can write the Evans function D(λ) as

D(λ) = d(λ)Df(λ)Ds(λ) = d(λ)t+1 (λ)
(
t+22(λ)t+33(λ)− t+23(λ)t+32(λ)

)
,
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where t+1 (λ) is an analytic transmission function corresponding to Df(λ) and t+ij(λ) , i = 2, 3 are four
slow-fast transmission functions corresponding to Ds(λ). A transmission function measures how
much information is transferred to ∞ through the potential given by the square of the front for a
function which we fix at −∞. See [vHDK08] for more details and note that the term transmission
function comes from scattering theory. Also observe that we use a slightly different notation then
[vHDK08], instead of ti, t2i, and t3i, i = 1, · · · , 6, we use t±i , t

±
2i, and t±3i, i = 1, · · · , 3. We first

determine the fast transmission function t+1 (λ).

Lemma B.1. (Fast transmission function) The fast-fast transmission function t+1 (λ) is of the
form

t+1 (λ) = λ− ε2λ̂fast , (B.1)

where, to leading order,

λ̂fast =
6√
2

 α√
c2τ̂ 2 + 4

+
β

D
√

c2θ̂2

D2 + 4

 .

Proof. From §4.1 in [vHDK08], modified for uniformly traveling fronts, we know that the fast
transmission function can be obtained by studying

Lu = λu− εcuη ,

where L is defined in Lemma A.1. Moreover, from this work it follows that this problem possibly
has positive eigenvalues near zero. Therefore, we write

λ = ελ0 + ε2λ̂ .

Upon using a regular expansion for u(η), that is, u = u0 + εu1 + ε2u2 +O(ε3), we obtain

O(1) : Lu0 = 0 ,

O(ε) : Lu1 = λ0u0 − cu0
η + 6U0

tfU
1
tfu

0 ,

O(ε2) : Lu2 = λ0u1 + λ̂u0 − cu1
η + 6U0

tfU
2
tfu

0 + 6U0
tfU

1
tfu

1 + 3(U1
tf)

2u0 .

The leading order equation yields u0(η) = Cρ(η) , with C ∈ R and ρ defined in (A.1). Applying a
solvability condition to the O(ε)-equation yields

0 = λ0C

∫
ρ2dη − cC

∫
ρρηdη + 6C

∫
U0

tfU
1
tfρ

2dη .

The last two integrals vanish since they are odd, see Lemma A.1, and since the first integral is
unequal to zero, this yields λ0 = 0, i.e. λ is of O(ε2). Thus, the equation for u1 becomes

Lu1 = −cCρη + 6CU0
tfU

1
tfρ .

By Lemma A.1, we get that u1 =
√

2C(U1
tf)η. Finally, using all this information, the O(ε2)-equation

reduces to

Lu2 = Cλ̂ρ−
√

2cC(U1
tf)ηη + 6CU0

tfU
2
tfρ+ 6

√
2CU0

tfU
1
tf(U

1
tf)η + 3C(U1

tf)
2ρ ,
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and a solvability condition gives

0 = λ̂

∫
ρ2dη −

√
2c

∫
(U1

tf)ηηρdη + 6

∫
U0

tfU
2
tfρ

2dη + 6
√

2

∫
U0

tfU
1
tf(U

1
tf)ηdη + 3

∫
(U1

tf)
2ρ2dη .

The last four integral terms are equal up to factor
√

2 to the integral condition in Lemma A.1, and
since

∫
ρ2dη = 4

√
2

3
, we get

λ̂ =
6√
2

 α√
c2τ̂ 2 + 4

+
β

D
√

c2θ̂2

D2 + 4

 .

This completes the proof of Lemma B.1.

Lemma B.2. The slow transmission functions t+22, t
+
23, t

+
32, t

+
33 are given by

t+22(λ̂) = 1− 2
√

2√
Gv

C2 , t+23(λ̂) = − 2
√

2

D
√
Gw

C2 , (B.2)

t+32(λ̂) = − 2
√

2√
Gv

C3 , t+33(λ̂) = 1− 2
√

2

D
√
Gw

C3 ,

with

Gv = c2τ̂ 2 + 4(λ̂τ̂ + 1), Gw = c2 θ̂
2

D2
+ 4(λ̂θ̂ + 1) ,

and C2 and C3 are two different integration constants for two different slow basis functions Φ2,3.

Proof. The proof of this lemma is very similar to the derivation of the slow transmission functions
in [vHDK08], see especially §4.2 and §5.3. Note that it is even less complicated here since we
only make one excursion through a fast field and we do not have to introduce the intermediate
transmission functions sij. Therefore, we omit the proof of this lemma and only state that we need
the same asymptotic scalings as in §5.3 of [vHDK08], get the same eigenvalues and eigenvectors,
and in the end need to match the slow components and their derivatives over their jump through
the fast field If .

From Lemma B.2, it follows that

t+22t
+
33 − t+23t

+
32 = 1− 2

√
2√
Gv

C2 −
2
√

2

D
√
Gw

C3 ,

and the Evans function thus reads

D(λ̂) = d(λ̂)

(
t+1 (λ̂)− 2

√
2√
Gv

C2t
+
1 (λ̂)− 2

√
2

D
√
Gw

C3t
+
1 (λ̂)

)
, (B.3)

where d(λ̂) is a nonzero function and note that we suppressed the explicit dependence on λ̂ in
Gv,w. In order to finish the proof of Theorem 3.4, we need to determine the constants C2 and C3.
Therefore, we look at the higher order corrections of the fast component of the eigenvalue problem
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(3.5) in the fast field If . From the proof of Lemma B.2 it followed that we also need to rescale the
slow variables

(v, w)(η) = ε(ṽ, w̃)(η) .

(Note that the proof of this last lemma is actually not in the present work, but can be found in
§5.3 of [vHDK08].) With the above rescalings, the fast u-component of (3.5) becomes

uηη + (1− 3(Utf)
2)u = −εcuη + ε2(αṽ + βw̃ + λ̂u) .

Using the regular expansions u(η) = u0(η)+εu1(η)+ε2u2(η)+O(ε3) and Utf(η) = U0
tf(η)+εU1

tf(η)+
ε2U2

tf(η) +O(ε3), we get

O(1) : Lu0 = 0 ,

O(ε) : Lu1 = −c(u0)η + 6U0
tfU

1
tfu

0 ,

O(ε2) : Lu2 = −c(u1)η + αṽ + βw̃ + λ̂u0 + 6U0
tfU

1
tfu

1 + 6U0
tfU

2
tfu

0 + 3(U1
tf)

2u0 ,

where L is defined in Lemma A.1. The leading order equation yields that

u0(η) = C2,3ρ(η),

see (A.1), where we use two different constants for the two different slow basis functions Φ2,3.
Comparing the O(ε)-equation with Lemma A.1, yields

u1(η) =
√

2C2,3(U1
tf(η))η .

Finally, integrating the O(ε2)-equation against ρ(η), and implementing the above expressions for
u0(η) and u1(η) gives

0 =−
√

2cC2,3

∫
(U1

tf)ηηρdη + αṽ

∫
ρdη + βw̃

∫
ρdη + λ̂C2,3

∫
ρ2dη

+ 6
√

2C2,3

∫
U0

tfU
1
tf(U

1
tf)ηρdη + 6C2,3

∫
U0

tfU
2
tfρ

2dη + 3C2,3

∫
(U1

tf)
2u0ρ2dη

= 2
√

2αṽ + 2
√

2βw̃ + 4

√
2

3
λ̂C2,3 − 8C2,3

 α√
c2τ̂ 2 + 4

+
β

D
√

c2θ̂2

D2 + 4

 ,

where we used the integral condition of Lemma A.1 in the last step and exploited that ṽ and w̃
are the constant values of the slow components in the fast field. When we closely examine the
above equation, we recognize the fast transmission function t+1 (λ̂) given by (B.1). More precisely,
the above equality reduces to

0 =
√

2αṽ +
√

2βw̃ + C2,3
2
√

2

3
t+1 (λ̂) .

Now, we have constructed our slow basis functions in such a fashion that ṽ = 1 and w̃ = 0 for Φ2

and vice versa for Φ3. Therefore, C2 and C3 are given by

C2 = −3

2

α

t+1 (λ̂)
, C3 = −3

2

β

t+1 (λ̂)
.
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Implementing this in the Evans function representation of (B.3) gives

D(λ̂) =d(λ̂)

(
t+1 (λ̂) +

3
√

2√
Gv

α +
3
√

2√
Gw

β

D

)

=d(λ̂)

λ̂+ 3
√

2α

 1√
c2τ̂ 2 + 4(λ̂τ̂ + 1)

− 1√
c2τ̂ 2 + 4


+3
√

2
β

D

 1√
c2 θ̂2

D2 + 4(λ̂θ̂ + 1)
− 1√

c2θ̂2

D2 + 4

 ,

which completes the proof of Theorem 3.4.

C Number of small eigenvalues (Proof of Lemma 3.6)

We examine the roots of the Evans function (3.6), that is, of

E(λ̂) = λ̂+ 3
√

2
(
F0 + F (λ̂)

)
,

where F (λ̂) = α
√
F1 + β

D

√
F2 and

F0 = − α√
c2τ̂ 2 + 4

− β√
c2θ̂2 + 4D2

, F1(λ̂) =
1

c2τ̂ 2 + 4 + 4τ̂ λ̂
, F2(λ̂) =

1

c2θ̂2/D2 + 4 + 4θ̂λ̂
.

We shall prove in this section that E possesses at most three (complex) roots. Since one of these is
always zero, in case of two roots the other one must be real, and if there are three, either all are real
or the nonzero ones form a complex conjugate pair. In fact, we shall prove that for α, β > 0 there
are precisely two real eigenvalues, for α, β ≤ 0 there is one, and in case αβ < 0 we give conditions
for when the number is one or three.

Let us briefly relate this to the spectrum of the linearization Lc in a front, where changes in the
number of roots of E are changes in the number of eigenvalues. In the analysis below, we find that
eigenvalues are lost to or born from a branch cut B∗ ⊂ R−\{0} for E. This relates to the spectral
theory of Lc via the so-called absolute spectrum as defined in [SS00], which is the branch cut in our
case and more generally the boundary for analytic continuations of an Evans function [SS04].

Before entering into the proof, we make some preliminary observations on the domain and holo-
morphic (analytic) nature of E. Clearly, E(λ̂) = λ̂ for α = β = 0, which is holomorphic on C and
has zero as its only root. Concerning singularities and the occurrence of square root terms

√
Fj in

E, these can cancel each other in the sense that F ≡ 0 for αβ 6= 0 if and only if αβ < 0 and the
two square root terms merge into a single one. The latter means that the possible singularities in
λ̂, given by

λ̂τ̂ = − 1

τ̂ − c2τ̂
4

, λ̂θ̂ = − 1

θ̂ − c2θ̂
4D2
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are equal, which is equivalent to

c2

4

(
τ̂ − θ̂

D2

)
+

1

τ̂
− 1

θ̂
= 0. (C.1)

If in addition Σ = 0, where

Σ :=
α√
τ̂

+
β

D
√
θ̂
, (C.2)

then both F (λ) and F0 vanish. In case (C.1) and (C.2) hold we have E(λ̂) = λ̂, as for α = β = 0.
Simple examples for (C.1) are τ̂ = θ̂, and c = 0 or D = 1. (Recall that we have stipulated that
D > 1. However, this is not necessary for this proof.) If, in addition, α = −β/D then also (C.2) is
fulfilled.
Notably, condition (C.1) is independent of α, β, which is a splitting of parameter space we shall
exploit later.

In the generic case, where (C.2) fails, the nature of E is different. We understand square roots
as the principal branch with branch cut the negative real axis, that is, λ̂ ∈ C has arguments in
(−π, π], and the image of the square roots has non-negative real parts. Hence, the images of

√
Fj

have non-negative real parts and E is holomorphic only on C \B∗ with branch cut for E being the
half line B∗ := (−∞,max(λ̂τ̂ , λ̂θ̂)] ⊂ R− \{0}, where λ̂τ̂ and λ̂θ̂ defined above are the branch points
and also singularities of E.

The proof that there are at most three roots goes by a homotopy argument to a case of merged
singularities (C.1). Before entering into the homotopy, we proceed with following preliminary
observations, where the number of roots is understood to be counted with multiplicity.

Lemma C.1. Assume (α, β) 6= (0, 0) and D, τ̂ , θ̂ > 0.

(i) For αβ 6= 0 there are no roots of E in the closed interval between the singularities λ̂τ̂ and λ̂θ̂.

(ii) Suppose α = 0 or β = 0, or (C.1) holds, and define Σ as in (C.2). Then E has precisely two
roots if Σ > 0 and one, if Σ ≤ 0. None of these roots lies in B∗.

(iii) For αβ 6= 0, E possesses a root λ̂B ∈ B := (−∞,min(λ̂τ̂ , λ̂θ̂)] ⊂ B∗ if and only if αβ < 0,

λ̂B = 3
√

2α√
c2τ̂2+4

+ 3
√

2β√
c2θ̂2+4D2

∈ B, and α, β lie on the curves of the hyperbolic conic section C

in the (α, β)-plane given by Aα2 + aα = Bβ2 + bβ with strictly positive

A =
3
√

2

τ̂
, B = A

τ̂

D2θ̂
, a =

√
c2τ̂ 2 + 4

c2θ̂2 + 4D2

4τ̂ θ̂D2
, b =

√
c2θ̂2 + 4D2

c2τ̂ 2 + 4

4τ̂ θ̂D2
.

Such a root of E is simple (on the principal part of the square roots).

(iv) If E(λ) = 0 then p(z) = 0, where z =
√
c2τ̂ 2 + 4(τ̂λ+ 1) and p(z) is a polynomial of degree

at most 8 with real coefficients. In particular, E has at most 8 roots and for any bounded
parameter set there is an R > 0 such that there is no root of E with modulus larger than or
equal to R for parameters chosen from this set.
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Proof. (i) For λ̂ between the singularities, exactly one of the square root terms involving λ̂ is
purely imaginary while all other terms are real. Hence, the imaginary part of E is given by
the reciprocal of a square root, and as such never vanishes on its domain.

(ii) In all cases only one square root term in E involving λ̂ remains, and E = 0 can be arranged

to read λ̂ − ΣC1/
√
C2 = −ΣC1/

√
C2 + λ̂, where C1, C2 > 0. Upon rescaling λ̃ = λ̂/C2 and

setting C = C1/C
3/2
2 this becomes

λ̃− ΣC = −ΣC/
√

1 + λ̃. (C.3)

Let us consider λ̃ ∈ R first and note that C > 0. Then the left hand side of (C.3) is always
real, but the right hand side is not for λ̃ < −1, that is, λ̂ is in the interior of B. Hence, there
are no roots on B. For λ̃ ≥ −1, the graph of the left hand side of (C.3) is always a line with
positive slope, which meets the graph of the right hand side at λ̃ = 0. The latter is concave
and unbounded for Σ > 0, which generates two intersections counted with multiplicity. In
case Σ ≤ 0 the only intersection point is λ̃ = 0.

Upon squaring both sides in the above equation and multiplying by the denominator, we find
a polynomial of degree three, which means there are at most three complex roots. Dividing
by λ̃ this polynomial reduces to

λ̃2 + (1− 2ΣC)λ̃+ (ΣC − 2)ΣC = 0.

Since roots come in complex conjugate pairs, the fact that for Σ > 0 there are two real roots
already proves that a third non-real solution is not possible and so there are precisely two
real ones. In the case Σ < 0 we can rule out a complex conjugate pair of roots as follows.
From the quadratic equation we infer that the real part of such roots would be ΣC − 1/2 < 0
so that the left hand side of (C.3) in this root has negative real part. However, the right
hand side has positive coefficient in this case and the principal branch of the square root has
non-negative real parts. Hence, also the reciprocal has positive real part and so for Σ < 0 the
only root is λ̂ = 0.

(iii) For λ̂ ∈ B both square root terms in E involving λ̂ are purely imaginary, and the real part of
E reads

λ̂− 3
√

2α√
c2τ̂ 2 + 4

− 3
√

2β√
c2θ̂2 + 4D2

,

which gives the claimed location of λ̂, and since Re(∂λ̂E(λ̂B)) = 1 it is a simple root. As the
imaginary part is a sum of square root reciprocals, it can only vanish if these have opposing
sign, which means αβ < 0. Substituting the location of λ̂ and dividing out the trivial root
λ̂ = 0, a straightforward calculation yields the claimed conic section.

(iv) Set z2 = c2τ̂ 2 + 4(τ̂ λ̂ + 1), that is, λ̂ = (z2 − c2τ̂ 2 − 4)/(4τ̂) and substitute this into E(λ̂).
Then, using z =

√
z2, at most one square root term involving z2 remains and E = 0 can

be arranged so that the right hand side is a pure square root. Upon squaring, the left hand
side is the sum of a rational function with numerator of degree at most 4 and denominator of
degree at most 2. The right hand side is the reciprocal of an at most quadratic polynomial so
that the equation can be rearranged as p(z) = 0 with suitable polynomial p of degree at most
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(a) (b)

β̂

Σ > 0

Σ < 0

λ̂B ∈ B Σ < 0

Σ > 0

λ̂B 6∈ B

α̂

β̂

α̂

n = 2
n = 2

n = 2
(n = 1)

n = 1

S0

1 ≤ n ≤ 3

S−

S+

Figure 12: Schematic illustrations in case λ̂τ̂ > λ̂θ̂. (a) the conic section, C, at the beginning of

the homotopy (bold) and at the end (dashed), and the region where λ̂B 6∈ B (shaded), as well as the
signs of Σ in the various regions. (b) The relevant part of C, C∗, at the beginning of the homotopy
to (C.1) (bold) and at the end (dashed). The numbers of roots, n, in the various regions inside the
homotopy. The shaded regions have αβ > 0.

8 with real coefficients. Compare (C.5) below. Its at most 8 complex roots are confined to a
bounded region and continuous dependence of roots on the parameters gives R.

We are now ready to prove Lemma 3.6. Figure 12 illustrates the setting.

For parameters as in item (ii) of Lemma C.1, the claim holds so that we next assume parameters
with αβ 6= 0 and where (C.1) fails, i.e., λ̂τ̂ 6= λ̂θ̂.

The case αβ > 0. For αβ > 0, take any homotopy in (c,D, τ̂ , θ̂) from the given parameters to a
point for which (C.1) holds, for instance to D = 1, τ̂ = θ̂. Clearly, during the homotopy there is no
sign change of α and β. Lemma C.1, (iv), provides an R so that there is no root on {|z| = R} during
the homotopy and Lemma C.1, (i), (iii) for αβ > 0, imply that there are no roots on the branch
cut B∗ during this homotopy. Since αβ > 0 we readily estimate that the (finitely many) roots stay
uniformly away from the singularities and hence from B∗. This provides an open neighborhood U
of B∗ without roots during the homotopy. Now E is holomorphic in the closed simply connected
set G = {z ∈ C : |z| ≤ R} \ U and there are no roots on ∂G during the homotopy. Hence, the
number of roots of E in G remains constant during the entire homotopy. Therefore, Lemma C.1,
(ii), implies that E possesses up to two roots in C \ U also for the initially given parameters, and
since there are none in U this also holds in C. More precisely, α, β > 0 implies Σ > 0 so that by
Lemma C.1, (ii), there are two roots, and α, β < 0 implies Σ < 0 so that there is one root in this case.
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The case αβ < 0. If we still can choose a homotopy to a point where (C.1) holds such that
no root approaches B during the homotopy, the argument for αβ > 0 applies and it follows that
there are one or two roots depending on the sign of Σ. However, this is not possible in general.
The two main points to consider are the possible gain or loss of roots when crossing C and at the
endpoint of the homotopy. Let n denote the parameter dependent number of roots. The strategy
in the following to show that a homotopy in (c,D, τ̂ , θ̂, α, β) can be chosen so that

(a) n changes at most by two when crossing C,

(b) at most one (and usually no) such crossing occurs during the homotopy,

(c) at the homotopy endpoint, n changes in such a way that 1 ≤ n ≤ 3 throughout the homotopy.
In fact, the precise number of roots in different regions in parameter space will be derived.

(a) Crossing C. Assume parameters lie on C so that there exists a simple and unique root λB ∈ B
according to Lemma C.1 (iii). To see all Riemann surface branches, consider the multivalued
images of the square root terms and record all λ on the principal branch with argument in (−π, π]
upon perturbing parameters. The four sign distributions on the square roots in F yield all images
Es
σ(λ) = λ+ F0 + σ

√
F1(λ) + s

√
F2(λ), σ, s ∈ {−1,+1}, where we drop the 1’s to ease notation so

that E = E+
+ is the image on the principal branch. For λ ∈ B the square root term images in F form

two complex conjugate pairs on the imaginary axis, while λ̂ + F0 is real. Thus, Im(E+
+(λB)) = 0

implies F (λB) = 0 and hence E−−(λB) = 0, while E+
−(λ), E−+(λ) 6= 0 since (C.1) fails. The analytic

continuation of Es
σ yields continuous curves of roots (and typically a branch switching), so that

the only possible roots on the principal branch for perturbations of parameters away from C are
continuations of λ as roots of the analytic continuations of E+

+ or E−− . But this means that typically
n changes by two if the root crosses B as parameters cross C. Indeed, this always occurs as implicit
differentiation shows: let us write E in the compact form

E(λ̂) = λ̂+ F0 +
c1√
c2 + λ̂

+
c3√
c4 + λ̂

, (C.4)

with c1 = β/(2D
√
θ), c2 = −λ̂θ̂, c3 = α/(2

√
τ̂), c4 = −λ̂τ̂ . Since λ̂B is a simple root the implicit

function theorem applies to its parameter dependence. Since c1 6= 0 (αβ < 0) let us consider the
c1-dependence of this root; dependencies on other parameters driving off C are analogous. From

Im(∂c1E(λ̂B)) =
1√

−c2 − λ̂B
6= 0

it follows that roots cross the branch cut B when parameters cross C, and hence move to another
branch of the Riemann surface, and n changes by two.

In particular, when the initial parameters lie on C and λ̂B ∈ B, the number of roots lies between
the numbers of roots near C.

(b) Number of crossings of C. In order to choose a homotopy that avoids unnecessary crossings
of C, we normalize C by rescaling β̂ = b

B
β, and then α̂ = b√

AB
α, which changes C to Ĉ given by
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α̂2 + âα̂ = β̂2 + β̂ with

â =
a

b

√
B

A
=

√
c2θ̂2 + 4D2

c2τ̂ + 4

τ̂

D2θ̂
=

√
c2/D2 + 4/θ̂

c2 + 4/τ̂
=

√
λ̂θ̂
λ̂τ̂
.

Note that a homotopy to a point that satisfies (C.1), i.e., λ̂θ̂ = λ̂τ̂ , is a homotopy of â to 1. The
formula for â yields a homotopy so that â monotonically grows or decays to 1, e.g., changing τ̂
only. This homotopy yields a homotopy in {αβ 6= 0} such that (α̂, β̂) remain unchanged during
the homotopy that changes â. Since a fixed (α̂, β̂) lies on Ĉ at a unique value of â, it follows that
there is at most one crossing of Ĉ during the combined homotopy, which will be the homotopy in
the following.

In fact, only the branch of C contained in {Σ < 0} is relevant at all, and there is no crossing for
Σ > 0 as shown next.

The relevant component of C: C∗. Let us check the condition λ̂B ∈ B, that is, λ̂B < min{λ̂τ̂ , λ̂θ̂}
from Lemma C.1 (iii) on C. Substituting the formulas for these quantities, we readily compute that
the (α̂, β̂)-value for λ̂B = min{λ̂τ̂ , λ̂θ̂} lies on one branch of C. More precisely, for λ̂τ̂ < λ̂θ̂ this point

lies at α̂ = 0, β̂ = −1 and for λ̂τ̂ > λ̂θ̂ at α̂ = −â, β̂ = 0. Since λ̂B cannot cross a singularity as

(α̂, β̂) move on a curve of C, the line {λ̂B = λ̂τ̂} is tangent to C at the intersection point; compare
Figure 12(a). Due to the conic section geometry, the line does not cross the other branch of C.
Since increasing α̂ means increasing λ̂B, the other branch of C has λ̂B 6∈ B. Therefore, always only
the branch of C in the region {Σ < 0} is relevant; denote this by C∗.

The location of C∗, sgn(Σ) and the set ±0. To show C∗ is contained in {Σ < 0}, consider
the sign of Σ during the homotopy. It follows from (C.2) that

sgn(Σ) = sgn
(√

Aα +
√
Bβ
)

= sgn(Σ̂), Σ̂ := α̂ + β̂.

Together with the fact that Ĉ can be written as

α̂ = − â
2
±
√
â2

4
+ β̂2 + β̂,

we readily infer that Σ = 0, i.e., α̂ = −β̂, requires â = −1, which is outside the homotopy range.
Therefore, {Σ = 0} is disjoint from C during the homotopy (recall that C and also Ĉ change during
the homotopy). Hence, since either (α̂, β̂) = (−â, 0) or (0,−1) lies on Ĉ∗ and has Σ < 0, it holds
that Σ < 0 on the entire C∗ in {α̂β̂ < 0} and during the homotopy. In conclusion, crossing Ĉ∗ in
case αβ < 0 requires Σ < 0. Moreover, since the homotopy makes a locally bounded monotone
change in Ĉ, there is an open region within {Σ̂ < 0} that is disjoint from all Ĉ during the homotopy.
Let ±0 denote this set; compare Figure 12(b).

(c) Change of n at the homotopy endpoint. Next to crossing C∗, the only possible change
in the number of roots are bifurcations from the branch point at the end of the homotopy. (Due
to Lemma C.1, this cannot happen in the interior of B∗, and roots remain away from the disjoint
singularities inside the homotopy.) Recall that the singularities, λ̂τ̂ , λ̂θ̂, merge into the branch point
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at the end of the homotopy, where (C.1) holds. Consider the form (C.4) of E with c4 = c2 + δ ≥ c2

so that in case λ̂τ̂ < λ̂θ̂ we have c1 = β/(2D
√
θ), c3 = α/(2

√
τ̂) and c2 = λ̂θ̂, δ = λ̂θ̂− λ̂τ̂ . Otherwise

c1 and c3 are interchanged and c2 = λ̂θ̂. Note that always c1 + c3 = Σ. Since we are concerned only

with roots approaching −c2, we write λ̂ = w2 − c2, w ∈ C, which gives

F (w2 − c2) =

(
c1

w
+

c3√
w2 + δ

)
.

The full Evans function in this form, denoted by Eδ, reads Eδ(w
2) = w2 − c2 + F0 + F and roots

satisfy

w2 − c2 + F0 +
c1

w
= − c3√

w2 + δ
.

Upon squaring and multiplication by denominators this yields the polynomial equation

Pδ(w) := (w3 + (F0 − c2)w + c1)2(w2 + δ)− c2
3w

2 = 0. (C.5)

We readily compute that P0(0) = 0, ∂wP0(0) = 0, and ∂2
wP0(0) = 2(c2

1 − c2
3). Hence, in {αβ < 0}

we have ∂2
wP0(0) = 0 if and only if Σ = 0, which means that in {αβ < 0,Σ 6= 0} precisely two

roots of Pδ bifurcate from w = 0 at δ = 0. (Here we suppressed the dependence of cj on δ, which
is irrelevant for the argument.)

However, these bifurcating roots are not necessarily roots of Eδ. Indeed, consider the bifurcation
of real roots, which, away from C∗, is necessarily for z = w2 > 0. Here the graph of Eδ converges
locally uniformly to that of E0 as δ → 0. See Figure 13(a). We readily check that ∂2

zEδ has a unique
positive root for δ > 0, so that the only option for a change in the number of roots is a change by
one through a sign change of the asymptotics as z → 0. If δ > 0 we have sgn(F ) = sgn(c1), while
sgn(F ) = sgn(c1 + c3) for δ = 0. Hence, if sgn(c1) = sgn(c1 + c3) no real roots bifurcate, while for
sgn(c1) 6= sgn(c1 + c3) one real root is lost as δ → 0.

Which case occurs in terms of the original parameters depends on the ordering of singularities.
For λ̂τ̂ < λ̂θ̂ (λ̂τ̂ > λ̂θ̂) a change of n by one occurs when sgn(α) 6= sgn(Σ) (sgn(β) 6= sgn(Σ))
and otherwise n remains constant or changes by two. Therefore, n can change by two at the end
of the homotopy only in the component of {αβ < 0,Σ 6= 0} that contains C∗. Compare Figure 12(b).

Counting roots. Let us now gather what we learned about the number of roots n: in the quadrant
of {αβ < 0} containing the irrelevant branch of the conic section, C \ C∗, n can only change at the
end of the homotopy, where n = 2 for Σ > 0 and n = 1 for Σ < 0. Since such a change is at most
by one, it follows that inside the homotopy (i.e. without the endpoint) n = 2 in this quadrant of
{αβ < 0}.

Within the quadrant of {αβ < 0} containing C∗, let ±− denote the subset where Σ < 0 and ±+

where Σ > 0. In ±+, n changes at the end of the homotopy, where it drops by one, so that inside
the homotopy n = 3, and this extends to {Σ = 0}. In ±− we have n = 1 at the end of the homotopy
from a possible drop by one or two, so that 1 ≤ n ≤ 3 inside the homotopy.

In conclusion, 1 ≤ n ≤ 3 for all parameter values. More precisely, the global distribution of n in
parameter space is as follows; see Figure 13(b): n must be constant (inside the homotopy) in the
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β̂

α̂

n = 2
n = 2

n = 2
(n = 1)

n = 1

S0

S−

S+

n = 3
(n = 2)

n = 1

-45

n = 3 (n = 1)

Eδ(z)

n = 3

(n = 2)

z

Figure 13: In both panels n in brackets is the value at the end of the homotopy, if different
from inside the homotopy in the given region. (a) Sketch of the graphs of Eδ for δ > 0 (solid) and
δ = 0 (dashed) illustrating the loss of one real root into the branch point z = 0, which occurs for
sgn(β) 6= sgn(Σ) if λ̂τ̂ > λ̂θ̂, and for sgn(α) 6= sgn(Σ) if λ̂τ̂ < λ̂θ̂. (b) The distribution of n in case

λ̂τ̂ > λ̂θ̂ with curves and regions are as in Figure 12(b).

connected components of {α̂β̂ < 0} \ C∗. Since crossing {Σ = 0} does not change the number of
roots we have n = 3 in the component containing ±+. Since crossing C∗ changes n by two it follows
that n = 1 in the component containing S0.
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