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Abstract

The evolutionary importance of hybridization and introgression has long been debated!. We used
genomic tools to investigate introgression in Heliconius, a rapidly radiating genus of neotropical
butterflies widely used in studies of ecology, behaviour, mimicry and speciation®> . We
sequenced the genome of Heliconius melpomene and compared it with other taxa to investigate
chromosomal evolution in Lepidoptera and gene flow among multiple Heliconius species and
races. Among 12,657 predicted genes for Heliconius, biologically important expansions of
families of chemosensory and Hox genes are particularly noteworthy. Chromosomal organisation
has remained broadly conserved since the Cretaceous, when butterflies split from the silkmoth
lineage. Using genomic resequencing, we show hybrid exchange of genes between three co-
mimics, H. melpomene, H. timareta, and H. elevatus, especially at two genomic regions that
control mimicry pattern. Closely related Heliconius species clearly exchange protective colour
pattern genes promiscuously, implying a major role for hybridization in adaptive radiation.

The butterfly genus Heliconius (Nymphalidae: Heliconiinae) is associated with a suite of
derived life-history and ecological traits, including pollen-feeding, extended life-span,
augmented ultraviolet colour vision, ‘trap-lining’ foraging behavior, gregarious roosting and
complex mating behaviours, and provides outstanding opportunities for genomic studies of
adaptive radiation and speciation*- ©. The genus is best known for the hundreds of different
colour pattern races seen among its 43 species, with repeated examples of both convergent
evolution among distantly related species and divergent evolution between closely related
taxa3. Geographic mosaics of multiple colour pattern races, such as in Heliconius
melpomene (Fig. 1), converge to similar mosaics in other species, and this led to the
hypothesis of mimicry2. Heliconius are unpalatable and Miillerian mimicry of warning
colour patterns enables species to share the cost of educating predators®. Divergence in wing
pattern is also associated with speciation and adaptive radiation due to a dual role in
mimicry and mate selection® 3. A particularly recent radiation is the melpomene-silvaniform
clade, where mimetic patterns often appear polyphyletic (Fig. 1a). Most species in this clade
occasionally hybridise in the wild with other clade members’. Gene genealogies at a small
number of loci indicate introgression between species8, and one non-mimetic species, H.
heurippa, has a hybrid origin®. Adaptive introgression of mimicry loci is therefore a
plausible explanation for parallel evolution of multiple mimetic patterns in the melpomene-
silvaniform clade.

A Heliconius melpomene melpomene stock from Darién, Panama (Fig. 1) was inbred via
five generations of sib mating. A single male was sequenced to 38x coverage (after quality
filtering) using combined 454 and Illumina technologies (Supplementary Information 1-8).
The complete draft genome assembly of 269 Mb consists of 3,807 scaffolds with an N50 of
277 kb and contains 12,657 predicted protein-coding genes. RAD linkage mapping was used
to assign and order 83% of the sequenced genome onto the 21 chromosomes
(Supplementary Information 4). These data permit a considerably improved genome-wide
chromosomal synteny comparison with the silkmoth Bombyx mori'% 11, Using 6,010
orthologues identified between H. melpomene and B. mori we found that 11 of 21 H.
melpomene linkage groups show homology to single B. mori chromosomes and ten linkage
groups have major contributions from two B. mori chromosomes (Fig. 2a and
Supplementary Information 8), revealing several previously unidentified chromosomal
fusions. These fusions on the Heliconius lineage most likely occurred after divergence from
the sister genus Eueides*, which has the lepidopteran modal karyotype of 7=31!2. Three
chromosomal fusions are evident in Bombyx (Fig. 2a, B. mori chromosomes 11, 23 and 24),
as required for evolution of the Bombyx n=28 karyotype from the ancestral n=31 karyotype.
Heliconius and Bombyx lineages diverged in the Cretaceous >100 MYA!L, so the
chromosomal structures of Lepidoptera genomes have remained highly conserved compared
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to those of flies or vertebrates' 14, In contrast, small-scale rearrangements were frequent. In
the comparison with Bombyx, we estimate 0.05-0.13 breaks/Mb/MY, and with the Monarch
butterfly, Danaus plexippus, 0.04-0.29 breaks/Mb/MY. Although lower than previously
suggested for Lepidopteral?, these rates are comparable to Drosophila (Supplementary
Information 8).

The origin of butterflies was associated with a switch from nocturnal to diurnal behaviour,
and a corresponding increase in visual communication!'®. Heliconius have increased visual
complexity through expression of a duplicate UV opsin®, in addition to the long wavelength,
blue, and UV-sensitive opsins in Bombyx. We might therefore predict reduced complexity
of olfactory genes, but in fact Heliconius and Danaus'’ genomes have more chemosensory
proteins (CSPs) than any other insect genome: 33 and 34 CSPs respectively (Supplementary
Information 9), versus 24 in Bombyx and 3- 4 in Drosophila'8. Lineage-specific CSP
expansions were evident in both Danaus and Heliconius (Fig. 2b). In contrast, all three
lepidopteran genomes possess similar numbers of odorant binding proteins and olfactory
receptors (Supplementary Information 9). Hox genes are involved in body plan development
and show strong conservation across animals. We identified four additional Hox genes
located between the canonical Hox genes pb and zen, orthologous to shx genes in B. mori
(Supplementary Information 10)1°. These Hox gene duplications in the butterflies and
Bombyx share a common origin, and are independent of the two tandem duplications known
in dipterans (zenZ2, bcd). Immunity-related gene families are similar across all three
lepidopterans (Supplementary Information 11), contrasting with extensive duplications and
losses within dipterans20.

The Heliconius reference genome enabled rigorous tests for introgression among
melpomene-silvaniform clade species. We used RAD resequencing to reconstruct a robust
phylogenetic tree based on 84 individuals of H. melpomene and its relatives,sampling on
average 12 Mb, or 4% of the genome (Fig 1a, Supplementary Information 12, 13, 18). We
then tested for introgression between the sympatric co-mimetic postman races of H.
melpomene aglaope and H. timareta ssp. nov. (Fig. 1) in Peru, employing ‘ABBA-BABA’
single nucleotide sites and Patterson’s D-statistics (Fig. 3a), originally developed to test for
admixture between Neanderthals and modern humans2!- 22 (Supplementary Information 12).
Genome-wide we found an excess of ABBA sites, giving a significantly positive Patterson’s
D=0.037 + 0.003 (two tailed Ztest for D=0, P=1 x 10~%9), indicating greater genome-
wide introgression between the sympatric mimetic taxa H. m. amaryllis and H. timareta ssp.
nov., than between H. m. aglaope and H. timareta ssp. nov., which do not overlap spatially
(Fig. 1b). These D-statistics yield an estimate of 2-5% of the genome exchanged?! between
the two taxa (Supplementary Information 12). Eleven of the 21 chromosomes have
significantly positive D-statistics (Fig. 3b,); interestingly, the strongest signals of
introgressions were found on two chromosomes containing the known mimicry loci B/D and
N Yb (Fig. 3b, Supplementary Information 15).

Perhaps the best known case of Miillerian mimicry is the geographic mosaic of ~30 bold
postman and rayed colour pattern races of H. melpomene (Fig. 1b, Supplementary
Information 22), which mimic a near-identical colour pattern mosaic in H. erato (Fig. 1a),
among other Heliconius. Mimicry variation is generally controlled by a few loci with major
effects. Mimetic pattern differences between the postman H. melpomene amaryllis and
rayed H. melpomene aglaope races studied here (Fig 1a) are controlled by the B/D (red
pattern) and NV Y5 (yellow pattern) loci2> 24, These loci are located on the same two
chromosomes showing the strongest D- statistics in our RAD analysis (Fig. 3b). To test
whether mimicry loci might be introgressed between co-mimetic H. timareta and H.
melpomene (Fig. 1a)’, we resequenced the colour pattern regions B/D (0.7 Mb) and N Yb
(1.2 Mb), and 1.8 Mb of unlinked regions across the genome, from both postman and ray-
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patterned H. melpomene and H. timareta from Peru and Colombia, and six silvaniform
outgroup taxa (Fig. 1a, Supplementary Information 12). To test for introgression at the B/D
mimicry locus we compared rayed H. m. aglaope and postman H. m. amaryllis as the
ingroup with postman H. timareta ssp. nov. (as in Fig. 3a) and found large, significant peaks
of shared fixed ABBA nucleotide sites combined with an almost complete lack of BABA
sites (Fig. 4b). This provides evidence that blocks of shared sequence variation in the B/D
region were exchanged between postman H. timareta and postman H. melpomene, in the
genomic region known to determine red mimicry patterns between races of H.
melpomene*3- 24 (Fig. 4a).

For a reciprocal test, we used the same H. melpomene races as the ingroup to compare with
rayed H. timareta florencia at the B/Dregion. In this case, correspondingly large and
significant peaks of BABA nucleotide sites are accompanied by virtual absence of ABBA
sites (Fig. 4c) indicating that variation at the same mimicry locus was also shared between
rayed H. timareta and rayed H. melpomene. Equivalent results in the M Yb colour pattern
region, controlling yellow colour pattern differences, are in the expected directions for
introgression and highly significant for the test using postman H. timareta ssp. nov. (P=6 x
10734), although not significant with rayed H. timareta florencia (P=0.13, Supplementary
Information 17). In contrast hardly any ABBA or BABA sites are present in either
comparison across 1.8 Mb in 55 genomic scaffolds unlinked to the colour pattern regions
(Supplementary Information 21). These concordant, but reciprocal patterns, where fixed
ABBA and BABA substitutions occur almost exclusively within large genomic blocks at
two different colour pattern loci (449 and 99 sites for B/D and N Ybrespectively, Figs. 4b,c
and Supplementary Information 17) would be very hard to explain via convergent functional
site evolution or under coalescent fluctuations. Instead, our results imply that derived colour
pattern elements have introgressed recently between both rayed and postman forms of A.
timareta and H. melpomene.

To test whether colour pattern loci might be shared more broadly across the clade, we used
sliding-window phylogenetic analyses along the colour pattern regions. For regions flanking
and unlinked to colour pattern loci, tree topologies are similar to the overriding signal
recovered from the genome as a whole (Supplementary Information 18). Races of H.
melpomene and H. timareta each form separate monophyletic sister groups and both are
separated from the more distantly related silvaniform species (Fig. 4d). By contrast, within
the region of peak ABBA/BABA differences, the topologies switch dramatically. Races of
H. melpomene and H. timareta group according to wing pattern, while the species
themselves become polyphyletic (Figs. 4e,f, Supplementary Information 19, 20).
Remarkably, the rayed H. elevatus, a member of the silvaniform clade according to genome
average relationships (Fig. 1a, Supplementary Information 18), groups with rayed races of
unrelated H. melpomene and H. timareta in small sections within both B/D and N Yb colour
pattern loci (Fig. 4e, Supplementary Information 19, 20). These results are again most
readily explained by introgression and fixation of mimicry genes.

We have developed a de novo reference genome sequence that will facilitate evolutionary
and ecological studies in this key group of butterflies. We have demonstrated repeated
exchange of small (~100 kb) adaptive genome regions among multiple species in an
adaptive radiation. Our genome-scale analysis provides considerably greater power than
previous tests of introgression 8- 25- 26 As with H. heurippa’, our evidence suggests that A,
elevatus was formed during a hybrid speciation event. The main genomic signal from this
rayed species places it closest to H. pardalinus butleri (Fig. 1a), but colour pattern genomic
regions resemble those of rayed races of H. melpomene (Fig. 4e and Supplementary
Information 18-20). Colour pattern is important in mating behaviour in Heliconius’, and the
transfer of mimetic pattern may have enabled the divergent sibling species H. elevatus to
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coexist with H. pardalinus across the Amazon. Although it was long suspected that
introgression might be important in adaptive radiation!, our results from the most diverse
terrestrial biome on the planet suggest that adaptive introgression is more pervasive than
previously realized.

Methods summary

A full description of methods can be found in the Supplementary Information.

Supplementary Material

Footnotes

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Distribution, mimicry and phylogenetic relationships of sequenced taxa

a Phylogenetic relationship of sequenced species and subspecies in the ‘ melpomene-
silvaniform clade’ of Heliconius. H. elevatus falls in the ‘silvaniform’ clade, but its colour
pattern mimics melpomene-timareta clade taxa. b Geographic distribution of ‘postman’ and
‘rayed’ H. melpomene races studied here (blue, yellow and purple), and the entire
distribution of H. melpomene (grey). The H. timareta races investigated have limited
distributions indicated by arrows (red) and mimic sympatric races of H. melpomene. H.
elevatus and the other silvaniform species are distributed widely across the Amazon basin
(Supplementary Information 22).
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Figure 2. Comparative analysis of synteny and expansion of the chemosensory genes

a Maps of the 21 Heliconius chromosomes (above) and of the 28 Bombyx chromosomes
(below in grey) based on positions of 6010 orthologue pairs demonstrate highly conserved
synteny and a shared n=31 ancestor (Supplementary Information 8). Dotted lines within
chromosomes indicate major chromosomal fusions. b Maximum likelihood tree showing
expansion of the chemosensory protein genes (CSP) in two butterfly genomes.
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Figure 3. Four-taxon ABBA-BABA test of introgression

a ABBA and BABA nucleotide sites employed in the test are derived (—— B —) in A.
timareta, compared with the silvaniform outgroup (- — — A), but differ among H. melpomene
amaryllis and H. melpomene aglaope (either ABBA or BABA). As this almost exclusively
restricts attention to sites polymorphic in the ancestor of H. timareta and H. melpomene,
equal numbers of ABBA and BABA sites?2 are expected under a null hypothesis of no
introgression, as depicted in the two gene genealogies. b Distribution among chromosomes
of Patterson’s D-statistic + s.e., which measures excess of ABBA vs. BABA sites?2, here for
the comparison H. m. aglaope; H. m. amaryllis, H. timareta ssp. nov.; silvaniform.
Chromosomes containing the two colour pattern regions (B/Dred; M Yb yellow) have the
two highest D-statistics; the combinatorial probability of this occurring by chance is 0.005.
The excess of ABBA sites (0 < D < 1) indicates introgression between sympatric H. timareta
and H. melpomene amaryllis.
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a Genetic divergence between H. melpomene races aglaope (rayed) and amaryllis (postman)
across a hybrid zone in N.E. Peru. Divergence, Fgz; is measured along the B/Dregion
(Supplementary Information 14). Fgrpeaks in the region known to control red wing pattern
elements between the genes kinesin and optix?3. b, ¢ Distribution of fixed ABBA and
BABA sites (see Fig. 4a) along B/D for two comparisons. Excesses of ABBA in b and
BABA in c are highly significant (two-tailed Z-tests for D= 0; D=0.90 £0.13, P=5 x
1074 and D=-0.91 +0.10, P= 9 x 10~2* respectively), indicating introgression. d, e, f,
Genealogical change along B/D investigated with maximum likelihood based on 50 kb
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windows. Three representative tree topologies are shown. Topology A, the species tree, is
found within the white windows. In topologies B (dark green window) and C (light green
windows) taxa group by colour pattern rather than species. Within striped windows H.
melpomene and/or H. timareta are paraphyletic but the taxa do not group by colour pattern.
Support is shown for nodes with > 50% bootstrap support (Supplementary Information 19).
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