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Abstract

Cloud technology has the potential for widening access to high-performance computational resources for e-science

research, but barriers to engagement with the technology remain high for many scientists. Workflows help overcome

barriers by hiding details of underlying computational infrastructure and are portable between various platforms

including cloud; they are also increasingly accepted within e-science research communities. Issues arising from the

range of workflow systems available and the complexity of workflow development have been addressed by focusing

on workflow interoperability, and providing customised support for different science communities. However, the

deployments of such environments can be challenging, even where user requirements are comparatively modest.

RESWO (Reconfigurable Environment Service for Workflow Orchestration) is a virtual platform-as-a-service cloud

model that allows leaner customised environments to be assembled and deployed within a cloud. Suitable distributed

computation resources are not always easily affordable and can present a further barrier to engagement by scientists.

Desktop grids that use the spare CPU cycles available within an organisation are an attractively inexpensive type of

infrastructure for many, and have been effectively virtualised as a cloud-based resource. However, hosts in this

environment are volatile: leading to the tail problem, where some tasks become randomly delayed, affecting

overall performance. To solve this problem, new algorithms have been developed to implement a cloudbursting

scheduler in which durable cloud-based CPU resources may execute replicas of jobs that have become delayed. This

paper describes experiences in the development of a RESWO instance in which a desktop grid is buttressed with

CPU resources in the cloud to support the aspirations of bioscience researchers. A core component of the architecture,

the cloudbursting scheduler, implements an algorithm to perform late job detection, cloud resource management and

job monitoring. The experimental results obtained demonstrate significant performance improvements and benefits

illustrated by use cases in bioscience research.
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Introduction
Cloud technology has the potential to increase access

to a much wider range of powerful computational re-

sources for advancing e-science research, but in practice,

rapid uptake by scientists has been impeded by a num-

ber of factors, most notably that cloud computing,

as with grid computing in former years, typically re-

quires advanced understanding of underlying computing

technologies which many scientists do not possess. Bar-

riers to engagement with cloud technology are high, and

as a result the potential benefits of high performance

computing in the cloud are largely unrealised. Computa-

tional workflows can help overcome the barriers: they

hide details of underlying computational infrastructure

and are portable between different cloud platforms. They

also provide an intuitive framework for expressing com-

putational requirements, and as a result, are increasingly

accepted within e-science research communities in both
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Workflows are not without their own challenges. There

are for example, many competing workflow systems

available and different communities adhere to different

systems. Developing and even using workflows can be

daunting for non-computer scientists. These issues

have been taken up by a number of projects including:

SHIWA [1], which focuses on workflow interoperability

and SCI-BUS [2], which provides web-based scientific gate-

ways that include graphical workflow development support

tools for different science communities. Still, deployment

of such useful environments can be challenging – the

systems tend to be large, addressing a wide span of com-

putational targets that currently includes CPU-clouds,

grids and local clusters, each with a huge range of pos-

sible operating system software and middleware. The

resulting codes tend be rather cumbersome, especially in

cases where the end-user requirements are actually quite

straightforward. A solution to this problem is to decouple

the code into components and deploy components only as

needed. RESWO (Reconfigurable Environment Service for

Workflow Orchestration) is an emerging virtual platform-

as-a-service cloud model based on technologies developed

originally in projects such as SHIWA and SCI-BUS. The

cloud platform service permits customised environments

to be assembled more precisely in accordance with the

needs of the user, which then can be redeployed in the

cloud as a software service.

Another barrier for scientists wishing to engage with

the cloud is the ready availability of suitable and afford-

able computational resources. Desktop Grids (DGs),

based on the principle of using spare CPU cycles within

an organisation, are an attractively inexpensive type of

distributed computing infrastructure (DCI) for many

users. The EDGI project [3] has focused on the use of

workflows in DGs and on the interoperability of DGs

with Service Grids (SGs). DGs have subsequently been

effectively virtualised as a cloud-based resource. How-

ever, DG hosts (usually desktop PCs) are volatile: users

log on at random times, taking over the host and in

most environments, pre-empting the local task contrib-

uting to the DG computation. Completion of the task is

inevitably delayed, affecting overall performance. This

can be overcome through cloudbursting: the dynamic

deployment in real-time of durable (i.e. highly reliable

and available) cloud-based CPU resources that execute

replicas of jobs that have become delayed. The DG is

thereby effectively buttressed with CPU-cloud resources,

potentially improving its performance.

This paper presents the application of workflow within

an experimental prototype RESWO environment that tar-

gets a DG that may be buttressed with cloud-based CPU

resources, to support the aspirations and requirements

of bioscience researchers. The performance enhance-

ment achieved through cloudbursting is demonstrated

experimentally, and the experiences of the bioscientists

in using the system are reported. Computational work-

flows and cloud-based DCIs for scientific computing

are discussed in Sections 'Workflow-oriented environ-

ments for scientists' and 'Desktop grids within the cloud

ecosystem' respectively. In Section 'Buttressing desktop

grids through cloudbursting', the architecture of a hy-

brid cloud-based DCI based on a DG buttressed with

durable CPU resources to support two experimental use

cases is introduced. In section 'Performance evaluation',

the performance results, and end user experiences, are

described for two bioscience use cases.

Workflow-oriented environments for scientists
Computational workflows allow program developers to

focus on the composition of reusable legacy programs

to create larger and more powerful applications and as

a result have a strong impact on high-performance ap-

plication development [4]. The use of workflows for or-

chestrating services and jobs within complex execution

scenarios is becoming established in e-science research,

but lack of interoperability between different workflow

systems makes the reuse of workflows difficult, imped-

ing the pace of adoption in academia and industry [5].

Approaches to interoperability include translation (e.g.

CppWfMS [6]) and embedding (e.g. VLE-WFBus [7]).

The SHIWA Simulation Platform (SSP) [8] enables both

approaches and allows different scientific user com-

munities to share and re-use workflows amongst them-

selves. SSP uses WS-PGRADE/gUSE [9], a derivative of

the P-GRADE Portal technology [10] that provides a web-

based, service-rich environment for the development, exe-

cution and monitoring of workflows on various DCIs. It

therefore offers platform interoperability allowing individ-

ual workflows to execute across hybrid platforms com-

prised of multiple SGs and DGs. Adoption of workflows

by scientists is also facilitated by availability of easy-

to-use lifecycle support tools and environments. The

SCI-BUS project extended the development of a gen-

eric gateway framework of WS-PGRADE/gUSE and

created a methodology for customising gateways for the

support of workflow-oriented development and end usage.

The framework incorporates support for deployment,

management and accounting/billing on various clouds sup-

ported by the CloudBroker DCI service broker [11]. The

WS-PGRADE/gUSE platform and CloudBroker platform

have been integrated in SCI-BUS enabling the develop-

ment and execution of P-GRADE workflows on virtually

any DCI. In both SCI-BUS and SHIWA, target DCIs could

typically include any combination of SGs (e.g. ARC [12],

gLite [13], Globus [14], UNICORE [15]), DGs (e.g. BOINC

[16], OurGrid [17], XtremWeb [18], etc.) and clouds

(e.g. Amazon EC2 [19], IBM SmartCloud Enterprise [20],

OpenStack [21], Eucalyptus [22] and OpenNebula [23]).
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Thus SCI-BUS and SHIWA provide core technologies

that facilitate adoption by scientists in both industry and

academia.

Deployment of SCI-BUS and SHIWA-based envi-

ronments can be demanding, even where the end

user requirements are comparatively modest. RESWO

(Reconfigurable Environment Service for Workflow

Orchestration) is a cloud-oriented model based on the

core technologies of SCI-BUS and SHIWA, aimed at the

construction of leaner customised environments. It ex-

ploits virtualisation to allow rapid assembly, customisation

and deployment of complex, distributed infrastructures on

demand. Workflow developers may then create custo-

mised configurations of SSP elements and host this con-

figuration in a virtualised environment such as an

Infrastructure-as-a-Service (IaaS) in the cloud. Through

the graphical portal interfaces derived from SCI-BUS,

various custom workflow development, sharing, execut-

ing and interoperability scenarios can be supported. The

aim for each customised instance is to provide only those

interfaces, workflow engines, workflow and workflow

engine repositories, web services, discovery services,

monitoring services and DCI services required by the

workflows that end users plan to run. RESWO itself can

be offered as a cloud-based service Platform-as-a-Service

(PaaS), accessible via a portal. Workflow developers may

then easily assemble their own customised environment

for deployment on the fly, allowing workflows to be

searched for, discovered, deployed, executed, and moni-

tored. The dynamically generated workflow orchestration

environment features all the advantages of SHIWA and

SCI-BUS. For example, user communities traditionally

working with a particular workflow system may easily ac-

commodate workflows developed under a different system

by a different community, using the workflow interoper-

ability features of SHIWA. However, since the environment

is dynamically customised it may be configured to include

only the necessary components for the target user scenario.

The RESWO approach also offers scientists considerable

flexibility of provision at DCI level that may include com-

binations of clouds, clusters, service grids, and desktop

grids. Each of these types of DCI has particular characteris-

tics, attractions and restrictions for different user commu-

nities. For example, applications are often constrained to

run only on particular infrastructures. Support for a hybrid

multi-DCI allows such applications to be easily mapped

onto an appropriate DCI within the system.

Desktop grids within the cloud ecosystem
DGs use the spare CPU cycles available within an organ-

isation or a community, usually sourced from desktop

PCs. In a local DG the resources are all within a single

organisation and typically, and are managed centrally. In

a volunteer DG, resources are provided on a voluntary

basis by citizens, from around the world. In both cases,

nodes are configured to be used within the DG according

to the node owner’s preferred policy. Typically this occurs

whenever the nodes are not being used locally. The PC

runs a client daemon that requests computation tasks from

a centralized DG server that dispatches work. Virtually all

institutions maintain a large number of networked desktop

PCs, and together the power of these machines may be

harnessed to provide cheap “off-peak” computing power in

the form of a local DG. Universities in particular invest in

large numbers of laboratory PCs that are practically unused

outside of teaching hours. Generally DGs are well-suited to

so-called embarrassingly parallel, or “bag of tasks”, compu-

tations [24], since nodes communicate only with the server

and not with each other. As a result of developments in

the EDGI project, DGs have been effectively virtualised

and as a consequence may be considered as a particular

type of cloud-based resource.

A DG is an example of a very cheap DCI for scientific

research (it is in effect “free”, from the point of view of

most researchers), but has performance limitations aris-

ing not only from intrinsic physical size limitations, but

also the volatile nature of its underlying desktop PC

nodes. In local DGs, the maximum number of compute

resources is limited by the total number of PCs in the

organisation. Actual availability (i.e. the number of ma-

chines available to the DG user in accordance with the

DG use policy at any particular time) can vary hugely

according to local usage – ranging from very high (for

example during the night) to around very low (for example

during a typical working day). There are occasions when

any limitation, no matter how large or small, becomes

restrictive. At such times, the ability to access additional

resources for a short period, seamlessly and without per-

turbing the overall workflow, would be very useful. For ex-

ample, in one common scenario, a scientific researcher

based at a university has routine access to cheap local desk-

top grid (DG) resources, and uses these wherever possible,

on the grounds of cost. Occasionally however, they also

wish to access additional resources to achieve short bursts

of highly intensive computation in response to deadlines,

or to manage peaks of data throughput.

A second performance issue arises from the tail

problem [25] - a well-known phenomenon in DG com-

puting arising from the volatility of the underlying desk-

top PCs, which can seriously undermine the makespan

(i.e. completion time) of a collection of submitted tasks.

A parameter sweep computational stage within a workflow,

or indeed any batch submission, is dependent upon the fin-

ish time of the last job of the batch. If some of the tasks be-

come delayed, the completion time of the last job in the

batch may be some while after the majority of the jobs

have finished, thus seriously affecting the overall comple-

tion time of the batch. A late job in this context is called a
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lagger, and the period at the end of the parameter sweep

computation when only lagger results are outstanding is

termed the tail phase of the computation.

The phenomenon is illustrated in Figures 1 and 2,

which assumes a constant statistical pattern of lagger be-

haviour in two cases. For large batches (Figure 1) the im-

pact of late jobs arriving can be fairly modest – but for

small batches (Figure 2), this effect can be considerable.

Figure 3 depicts the outcome of a concrete experiment

in which a small batch of 50 jobs was submitted to the

University of Westminster local campus DG. This DG

comprises student laboratory PC hardware across the

university, and utilizes a BOINC-based middleware that

has been adapted for local DG computing. In the

depicted run, the DG is offering approximately 1000 active

nodes and employs a first-come-first-served (FCFS) sched-

uling policy and timeout values of 25 minutes, after which

the job is considered late by BOINC and is replicated on

another node. The jobs within the batch comprise a par-

ameter sweep computation, in which the same function is

applied to a range of prescribed input data sets - in this

case employing the Autodock molecular docking tool [26]

to find binding sites between a simple ligand molecule and

a more complex protein. Clearly the makespan is affected

adversely by the few late jobs towards the end, which had

been scheduled to run on a number of nodes that were

interrupted by students in the middle of the execution -

the University’s DG policy requires that a DG job shall be

suspended when a student uses the host laboratory PC.

The DG scenario is a potent example of the need for a

RESWO system to incorporate dynamic strategies for

mapping tasks onto multiple DCIs; in the DG case to

consider dynamically augmenting the volatile (albeit cheap)

DCI with more reliable (albeit expensive) resources – that

could be derived from the cloud.

Buttressing desktop grids through cloudbursting
Minimizing the makespan for batches submitted to DGs

is discussed in [27-29]. The approach is typically to

control the scheduling mechanism within the DG server,

by manipulating task selection and node selection, op-

tionally with the replication of laggers onto idle available

resources. Whilst these algorithms can be efficient, for

high throughput (when the batch is large) the FCFS algo-

rithm employed by most DGs is near optimal [25]. How-

ever when the batch size is less than or approximately

equal to the number of compute nodes, more sophisti-

cated methods of resource selection and task replication

are usually necessary. Strategies involving intelligent task

and machine selection have been proposed to address the

DG tail problem using DG resources only. For example,

tail jobs can be replicated on historically more reliable

and faster DG nodes. Alternatively, the number of com-

pute jobs submitted for a given desired result can be in-

creased above the minimum necessary, with a view to

discarding (i.e. simply not waiting for) the last few results.

However, the former is still constrained by the volatile

nature of the DG in terms of resource availability, whilst

the latter is inefficient since much redundant computa-

tion is performed. Both strategies are open-loop control

strategies, in that they make no attempt to take account

of the observable behaviour of the system as the compu-

tation progresses. Thus, using the DG alone, albeit with

enhanced scheduling policies, is not always adequate to

solve the tail problem.

SpeQuloS, a quality of service (QoS) model for enhan-

cing the performance of “best effort” DCIs, i.e. DCIs in

which service providers do not guarantee that resources

will remain available during the lifetime of any running

application, has been described in [30]. One particular

scenario accommodated by SpeQuloS is the use of cloud

(specifically cloud spot) instances as a source of durable

CPU resources to buttress a DG, coupled with a task du-

plication strategy using cloud resources to mitigate the

tail problem inherent to DGs. Evaluation of this scenario

based on simulations has indicated very encouraging

performance improvements. SpeQuloS is concerned with

providing quality of service (QoS) for a given batch of

Figure 1 The tail problem in DG computing showing modest impact on larger jobs.
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tasks through a computational credit exchange system,

in which credits accrued from previous DG processing

by one institution (the donor) on another institution’s

behalf (the requester), can be exchanged back for cloud

resources at the requester’s site when the donor requires

them.

In the project “Optimal Scheduling of Scientific Appli-

cation Workflows for Cloud-augmented Grid Infrastruc-

tures” (OSCA) [31], the authors of this article have

investigated a similar scenario: the performance en-

hancement of DG applications obtained by buttressing

the DG infrastructure with durable cloud resources. Spe-

cifically, a system has been designed and built to replicate

laggers in an EC2-compatible cloud to avoid waiting for

the return of late tail jobs that prolong the makespan. In

contrast to SpeQuloS, the OSCA approach assumes the

use of any public EC2 (Elastic Cloud Compute) compat-

ible cloud such as Amazon or Openstack, and there are

no limitations to the resources that can be bought. In

addition, synchronisation between the DG and the CPU

cloud is realised via a specific interface, the 3GBridge

[32] (described below) that allows the DG scheduler to

be the sole scheduler in the system; an implementation

detail that modifies slightly the duplicated scheduler

model assumed in SpeQuloS. The approach also incorpo-

rates the reuse of cloud instances, as a means of reducing

Figure 2 The tail problem in DG computing showing considerable impact on small jobs.

Figure 3 Submission of 50 Autodock jobs to UoW DG illustrating the tail problem. The makespan is increased significantly by the last

4 jobs.
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overall cloud costs. A major aim of the project was to ex-

plore the DG/cloudbursting strategy in the context of

realistic use cases, and to measure the performance of an

actual physical deployment. In the experimental plat-

form, durable cloud resources were sourced from an ex-

perimental cloud infrastructure at the University of

Westminster: a private Openstack-Nova cloud consisting

of 30 CPU cores, in contrast to the cloud spot instances

assumed in SpeQuloS. Whilst cloud resources are gener-

ally billed by the hour, the OSCA system permits a more

flexible method of resource provisioning and billing. This

is due to the fact that the scheduler can maintain infor-

mation about the state of the replicated jobs on Portable

Batch System (PBS) clients/cloud instances. With this in-

formation, the scheduler can reassign those instances that

no longer have jobs assigned. For example a free instance

that has already been purchased may have used only 50%

of its purchased time. The scheduler can reassign the in-

stance to a new batch in its tail phase instead of simply

releasing the instance that has already been paid for.

The architecture of the OSCA hybrid DG/cloud infra-

structure is shown in Figure 4. In step 1, workflows de-

veloped by users in the P-GRADE environment are sent

to the 3GBridge: a submission backend for P-GRADE

developed in the EDGeS Project [33], conceived to achieve

interoperability between DG and SG infrastructures. The

3GBridge is a fully decoupled submitter capable of creat-

ing jobs for different infrastructures including service

grids, BOINC-based DGs (via a DG plugin), and EC2

clouds (via a cloud plugin that starts cloud instances). In

step 2, jobs are submitted entirely to the DG, after which

(in step 3) the scheduler component begins to monitor the

status of the batch to determine whether the tail phase has

been entered, according to a predefined metric, e.g. fixed

percentage of tasks complete. Once the tail has been de-

tected, virtual machine (VM) instances are instantiated in

the cloud (step 4) following an instruction from the sched-

uler to the 3GBridge to use the cloud plugin. The VM

instances connect back over a Virtual Private Network

(VPN) to a PBS server (step 5), and register their instance

identifier and hostname in a database. Since the instances

are running PBS clients, the scheduler can submit repli-

cated tail jobs to the PBS server, explicitly defining the

instance to which a given replicated job is submitted.

Finally, in step 6, the scheduler monitors both the repli-

cated tail jobs in the cloud, and the tail jobs that are still

processing (albeit running late) on the DG. Whichever

returns a successful result first is used and returned to the

portal. The cloudbursting scheduler algorithm at the core

of the system is shown diagrammatically in Figure 5. A

more detailed description of the algorithm and the devel-

oped system is given in [34].

Performance evaluation
Evaluation of the system was undertaken from two per-

spectives: the performance gains achievable in practice

from the hybridisation of two formerly distinct classes

of DCI; and the experiences of scientists newly en-

gaged with e-science research objectives. The experi-

mental platform used is based on a technologies developed

in SHIWA and SCI-BUS, and complies with RESWO

model principles.

Figure 4 Architecture of the hybrid DG/cloud system developed in the OSCA project.
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System performance

The system was evaluated using a testbed comprising

the P-GRADE portal, the 3GBridge, the University of

Westminster (UoW) local DG [35], and an EC2 IaaS

cloud of 30 CPU cores based on Openstack Compute

(Nova) cloud software. The test workflow was the com-

putationally dominant Autodock parameter sweep stage

of the docking workflow shown in Figure 6 the compu-

tationally non-intensive pre- and post-processing stages

being ignored. In this respect the system was evaluated

based on a real-world workflow use case specified by

UoW bio-scientists. Since the UoW DG was based on

Windows PCs, the version of Autodock used in the ex-

periments necessarily ran under Cygwin [36], a Linux

simulation environment. A single instance of Autodock

was mapped to a single CPU core in every case.

Many different batch sizes were investigated to explore

the benefits of the system. In the experiments, the tail

phase was pragmatically defined as the last 5% of the

batch. Figure 7 shows a submission of a batch of 1000

jobs, for which the tail phase comprises the last 50 jobs.

The figure illustrates the benefits of using cloudbursting,

i.e. buttressing the DG infrastructure with cloud re-

sources dynamically and on demand, compared with using

the DG alone under a first-come-first-served FCFS sched-

uling algorithm.

Table 1 shows the mean percentage decrease calcu-

lated from 3 runs of the workflow. Performance is fairly

consistent as indicated by the standard deviation value.

Autodock under Cygwin incurs a performance penalty:

running approximately 3 times slower than in the native

Linux environment for which Autodock was designed.

Whilst this could be a significant issue in the case of ser-

ial execution, the problem can be readily overcome in a

DCI based on DGs and clouds, for parameter sweep

computations. For example, 3 parallel Autodock/Cygwin

instances on 3 Windows nodes execute collectively

in approximately the same time as 3 native Autodock

Figure 5 Schematic of cloudbursting scheduling algorithm.
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instances running serially on a single Linux node. Per-

formance loss in the Windows environment can thus be

recovered through the use of additional resources. In a

cloud-buttressed DG, availability of resources is not a

major problem, and the cost of using more hardware

is not particularly prohibitive. For users, the DG is

effectively “free” and under a pay-as-you-go model, cloud

resources are also very cost efficient. A bonus for users

in this scenario is that when a native Windows version of

Autodock becomes available (as a result of a vendor up-

grade), and is subsequent deployed on the DG, the benefits

are immediately perceived by users as a 3-fold performance

enhancement windfall.

Bioscience research Use cases

Biomedical research is increasingly being undertaken

using in silico computer simulation – contrasting with

conventional “wet laboratory” or in vitro methodologies -

providing reductions in both experimental time and la-

boratory cost. In silico experiments, in common with their

in vitro counterparts, are not typically constrained to a sin-

gle stage or process; multiple stages of computation are

Figure 6 The workflow required by the bio-scientists. The Autodock parameter sweep stage was also the basis for system

performance evaluation.

Figure 7 1000 Autodock jobs with tail defined at 5%. 30 CPU cores were used for the cloud. Each data point marks the completion of

a job.
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common, usually with data needed as inputs to one stage

provided by the outputs of a preceding stage.

To evaluate the utility of the hybrid DG/cloudbursting

system as part of the in silico environment, two use case

scenarios from bioscience research were explored.

Biological use case 1: design of carbohydrate-based vaccines

Carbohydrate recognition is critical to human biological

functions. Examples include the highly specific responses

of the immune system to pathogens and interaction and

communication between cells. Understanding how path-

ogens bind to cell surface proteins can lead to the design

of novel carbohydrate-based drugs and diagnostic and

therapeutic agents. The bio-scientists were aiming to con-

struct a library of tens of thousands of small molecule can-

didates available in databases such as DrugBank, that have

been screened against known targets using molecular mod-

elling and tools (in this case, Autodock). Such a small mol-

ecule library can be made available to other researchers for,

say, in vitro validation, etc. The computational require-

ments here were to run Autodock many times for many

small molecules screened for many docking sites.

Biological use case 2: effects of pharmaceutical compounds

on aquatic organisms

Pharmaceuticals as environmental pollutants are detri-

mental to some organisms, e.g. vulture decline in India/

Pakistan caused by veterinary drug diclofenac, and endo-

crine disruption of fish due to human contraceptives.

Aquatic organisms are exposed to chronic low levels

of pharmaceutical cocktails from sewage effluent. Major

therapeutic classes are present in fresh water at environ-

mentally relevant concentrations, e.g. analgesics, antibi-

otics, etc., but the lack of ecotoxicological data means

effects on aquatic organisms of chronic, multi-generational

exposure is scientifically uncertain. The bio-scientists

wanted to establish whether currently available bioinfor-

matics databases are a potential tool to predict the effects

of pharmaceutical compounds on aquatic organisms. They

needed to identify target species and chronic endpoints for

the ecotoxicology testing of pharmaceuticals

In both use cases, the same in silico workflow pattern

applies, and is shown in Figure 6. It comprises a pre-

processing stages followed by a large parameter sweep

computation, finishing with some post processing. This

demonstrates the dynamically varying computational

loads that often arise in scientific workflows. In Figure 8

the same workflow is shown as it represented within the

P-GRADE environment.

In order to provide an even more convenient environ-

ment for bio-scientists to execute this workflow, which

remains constant throughout the experiments performed

by the scientists, a custom end-user interface has been

built within the P-GRADE portal and is depicted in

Figure 9. Using this interface, bio-scientists create indi-

vidual workflow instances by uploading the necessary in-

put files and setting input parameters. From the end

user’s point of view this will simply appear as a new task -

the complexity of the underlying workflow (Figure 6) is

completely hidden. After submission, the execution of

the workflow can be monitored from the portal inter-

face. The workflows are executed on the experimental

hybrid DG/cloud infrastructure. Once the execution has

finished, the resulting files (in this case depicting molecu-

lar representations) can be immediately visualised on the

screen and or downloaded for further investigation and

analysis.

The general observations made by the scientists were:

� Workflow development was natural, reflecting both

intuition and previous experience based on in vitro

methodology.

� The customised interface was highly appreciated,

allowing quick and easy entry of data and

parameters into the previously developed workflow.

� Individual workflow computations completed in a

shorter time, allowing faster turnaround of the many

experimental evaluations required.

A brief inspection of the two workflow representations

in Figures 6 and 8 shows that the mapping between

them is easy and very natural – one of the reasons that

the bio-scientists have found the P-GRADE portal ex-

tremely usable. Such ease of use is a major requirement for

acceptability in bioscience and other e-science communi-

ties. P-Grade has already stimulated growing interest within

those communities that do not readily adopt computing-

based scientific methods, or enjoy struggling with technolo-

gies perceived as arcane. The workflow-based portal has

helped overcome barriers to take-up, enabling the biosci-

entists to concentrate on their scientific research. The

computational benefits achievable by cloudbursting are

greatly appreciated by the bioscientists, given that the

total number of individual computations was extremely

high. The requirement for hugely increased data through-

put is expected to become very common within many

scientific research processes. Typically, this will be driven

by the quest for improved experimental reliability based on

repeated runs, or, as in the case of molecular studies, the

straightforward need to explore large data sets representing

the myriad range of molecular structures.

Table 1 Percentage decrease in makespan achieved by

using 30 cloud CPU cores to process the tail (defined as

the last 5% of jobs)

Run 1 Run 2 Run 3 Mean Std Dev

34.3 39.6 39.7 37.9 3.1
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Figure 9 Custom graphical user interface for executing the workflow from the P-GRADE portal.

Figure 8 The same computational workflow as Figure 6 represented in the P-Grade portal.
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Further comment from the scientists regarding Use

Case 1:

� Screening a large number of compounds for binding

affinity against a single protein can be carried out

in vitro, but is both time-consuming and expensive

given the cost of buying the compounds to screen

and the complexity of the experiments required.

Novel microarray technology enables compounds to

be placed on fabricated supports and these are

screened using either labelled or unlabelled protein/

peptide. However, the in silico approach exemplified

by these experiments will enable researchers to

screen hundreds of thousands of compounds and

then determine the most likely drug candidates that

could then be sourced and tested in vitro. This will

be a more focused, rapid and cost-effective approach.

However, in order to carry out thousands of docking

experiments, grid- or cloud-based computing

resources are required to deliver timely and robust

data. In a related project to screen for novel

neuraminidase inhibitors, an in silico workflow using

Autodock was developed and ported. Molecular

structures of small molecules were sourced and

stored in the appropriate format in a library of

250,000 compounds. An additional 8,000 glycan

structures were also sourced. It is now possible for a

researcher to take a model of their protein of interest

that has been energy minimised, and evaluate its

binding partners within days compared to weeks/

months using a single processor.

Further comment from the scientists regarding Use

Case 2:

� In this scenario, interest is focused on the binding of

known human and veterinary drugs and their

homologues to specified proteins in selected

vertebrates and invertebrates in order to help evaluate

their potential toxicity. Currently, determining the

acute and chronic toxicity of pharmaceuticals, and

indeed industrial chemicals, in the environment is

undertaken through ecotoxicity testing. These in vitro

based approaches involve the exposure of the

candidate species at different stages of their life-cycle

to varying concentrations of potential toxins/drugs for

varying times. It involves the use of animals and is a

costly and time-consuming procedure. Utilising

Gromacs (a molecular dynamics package primarily

designed for bio-molecular systems such as proteins

and lipids), an energy minimised structure is

produced that can be used as a target in an Autodock

experiment. This then can be interrogated with the

drug of interest to determine whether a particular

species would be a good candidate for in vitro trials.

It would also enable us to broaden our search to

look at potential impacts of specific molecules on the

receptors from a range of environmental species

rather than focusing on the species commonly used

in ecotoxicological testing, which may not possess

or express the proteins and hence would be poor

indicator species for toxicity. In the past the in

silico approach would have been time consuming,

taking weeks to produce results. With the desktop

grid/cloud based solutions such analysis can be

completed within days or even hours rather than

weeks or months.

Conclusions
Scientists operate in a multi-workflow, multi-DCI com-

putational environment, but such environments are often

difficult to engage with and inhibit wider take-up within

mainstream scientific research. Interoperability solutions

combined with portal technology offer solutions but are

typically cumbersome; RESWO provides a model for effi-

cient deployment of such environments. DCIs based on

DGs are cheap, powerful and attractive to scientists. They

are also volatile, but augmentation through cloud-based

CPU resources, creating a multi-DCI platform, can over-

come the drawbacks. Within the framework of the RESWO

model, a system has been constructed that employs a novel

algorithm for scheduling CPU resources in the cloud on de-

mand to buttress the performance of a DG. The perform-

ance of the system has been evaluated, firstly from the

point of view of technical performance improvements in

overcoming the drawbacks of DG computation, and sec-

ondly from the scientific user perspective that includes ease

of use, and research productivity. The results have demon-

strated that considerable performance improvements on a

simple DG can be obtained for realistic use cases. The sci-

entists have been delighted by the environment, which they

found easy to use for expressing their requirements, and

delivering the results they required in a timely fashion.
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