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Abstract. A new bound for roots of algebraic equations will be given as a

consequence of an inequality due to Buzano.

1. Introduction

Buzano [1] obtained an extension of Schwarz's inequality: If a, b, x are

vectors in an inner product space %f, then

(i) Ka|x).<x|b)|<N-llb|l2+K>lb)|||x||2-

Since her proof is a little complicated, a new, simple proof will be given with

the equality condition.
Let P be an orthogonal projection on a subspace of an inner product space

%f. If a, b £ %?, then the usual Schwarz's inequality implies that

(2) K(2P-/)a|b)|<||a||.||b||.

Let (u ® v)w = (w | v)u (w e ft?). Then the operator x <g> x is an orthogonal

projection if ||x|| = 1 , and hence |((2x®x-7)a | b)| < ||a|| • ||b||, which implies

the required one:

2|((x ® x)a | b)| - |(a | b)| < |((2x ® x - 7)a | b)| < ||a|| • ||b||.

The equality holds iff two inequality signs in the last line turn out to be equal,

from which one obtains the equality condition: The equality in (1) holds if

{/a        (a I b)   b \ .      ,,..,,»
Hn + k^>1MJ'  when<alb>^0'

_           a(A + /?M)'             when(a|b) = 0,
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where a, P are complex numbers with |/?| = 1.

Define the numerical radius w(T) of an operator T acting on %f by

tt/(r) = sup{|(7x|x)|:||x|| = l}.

Thus Buzano's inequality with the equality condition implies at once the fol-

lowing theorem.

Theorem 1. If T = a® b is a linear operator of rank one, then

w(r) = £a|4bJ|+](aJ_b)]_

In this paper, Theorem 1 will be applied to obtain a bound for roots of

algebraic equations. Other comments on Buzano's inequality will be published

elsewhere.

2. Bounds for roots of algebraic equations

Let
I-an-\    -an-2   ■■■    -ax    -a0\

1 0       •••      0       0

C=        0 1        '••      0       0

V    0 0 10/
be the companion matrix associated with the algebraic equation

(3) z" +an-\z"-x +a„-2z"-2 + --- + axz + a0 = 0.

It is well known (cf. [5]) that the set of roots of (3) is identical with the spectrum

o(C) of C. In [3], it was shown that those classical bounds for roots were

obtained as operator norms of the companion matrix C (cf. [4]). Since the

numerical range W(T) = {(Tx \ x): \\x\\ = 1} contains o(T), it is expected

that an estimation of w(C) gives a new bound for roots of (3).

Theorem 2. If z is a root of an algebraic equation (3) then

, ., ■   *   L ys£>'M2 + i«-ii
(4) |z|<cos —+ ^-^-•

Proof. Since C = S - ex ® a, where

/tt\ /IN /0      0      0    •••     0      OX
Itt) |0| 1     0    0   ••    0    0

a =       .        ,        ei =     .     ,    and   5" =    0     1     0   • • •    0    0

\ ao~ J \0/ \0    0    0 '•••    1     0 /

one has only to estimate the value

w(C) = w(S - e, ® a) < w(S) + w(ex ® a) = w(S) + l|a|1 +^a"-^ .

To estimate w(S), one can consult with the recent paper of Davidson and

Holbrook [2].
Finally a comparison with the bound due to Carmichael-Mason (cf. [5]) will

be given: If z is a root of (3) then \z\< BCm = y 1 + Xw=To' \a'\2 ■ Tndr bound
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is not always better than the one in Theorem 2, and vice versa. It is obvious

that if the second leading coefficient vanishes and ||a|| is fairly large, then the

new bound is better than BCm ■
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