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BVI-HD: A Video Quality Database for HEVC

Compressed and Texture Synthesised Content
Fan Zhang, Member, IEEE, Felix Mercer Moss, Member, IEEE, Roland Baddeley and

David R. Bull, Fellow, IEEE

Abstract—This paper introduces a new high definition video
quality database, referred to as BVI-HD, which contains 32 ref-
erence and 384 distorted video sequences plus subjective scores.
The reference material in this database was carefully selected
to optimise the coverage range and distribution uniformity of
five low level video features, while the included 12 distortions,
using both original High Efficiency Video Coding (HEVC) and
HEVC with synthesis mode (HEVC-SYNTH), represent state-of-
the-art approaches to compression. The range of quantisation
parameters included in the database for HEVC compression was
determined by a subjective study, the results of which indicate
that a wider range of QP values should be used than the current
recommendation. The subjective opinion scores for all 384
distorted videos were collected from a total of 86 subjects, using
a double stimulus test methodology. Based on these results, we
compare the subjective quality between HEVC and synthesised
content, and evaluate the performance of nine state-of-the-art,
full-reference objective quality metrics. This database has now
been made available online, representing a valuable resource to
those concerned with compression performance evaluation and
objective video quality assessment.

Index Terms—Subjective quality assessment, BVI-HD video
quality database, visual perception, HEVC, synthesis-based com-
pression

I. INTRODUCTION

The technologies to support emerging immersive formats

including AR and VR via Head Mounted Displays (HMDs) as

well as conventional displays with higher frame rates, spatial

resolutions and dynamic ranges, are progressing rapidly. Such

formats are becoming increasingly popular as they provide

the potential to offer new sustainable multimedia services and

experiences. There is significant research activity in all aspects

of this technology [1–12], from content design to displays, new

immersive audio-visual formats and quality assessment.

With particular relevance to this paper, there is also signif-

icant activity in the video compression community, much of

it linked to the development of new standards for coding of

high spatio-temporal resolutions, high dynamic range content

and 360 degree immersive formats [13, 14]. There are a num-

ber of key challenges associated within emerging immersive
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formats such as 360 where ‘immersion-breaking’ artefacts

due to compression (delays, peripheral vision distractions,

motion blur/aliasing, temporal and spatial resolution) are very

important and must be avoided [15, 16]. Such artefacts are not

just annoying in the sense that they reduce visual quality, but

in more immersive formats, visual inconsistencies, anomalies

or artefacts can have a significant negative impact on user

immersion though the coupling to other senses such as the

auditory and vestibular systems.

Hence there is a high emphasis on compression perfor-

mance, particularly with six degree of freedom (6DoF) 360

formats where raw bit rates would exceed 140Gbps (8K

per eye at 12 bits, 3 colour channels and 120fps). Delivery

bit rates must be at a fraction, typically 15-25Mbps (for

Ultra-high Definition video streaming) [17], of this implying

compression ratios of many 1000s:1. Therefore new coding

techniques are needed to deliver content at manageable bit

rates while ensuring that the immersive properties of the

format are preserved. This work is timely as a new draft call

for proposals for future coding beyond HEVC [18] has now

been launched so techniques for addressing this problem are

urgently required.

Before widespread adoption, all proposed coding algorithms

must be performance tested and compared using databases

containing diverse samples of video content. Additionally,

video sequences with various levels of distortion, alongside

corresponding subjective quality scores, are often employed to

evaluate the prediction accuracy of objective quality assess-

ment methods. Since the performance of video codecs and

quality metrics are often content-dependent, criteria for the

selection of original sequences in subjective databases is very

important.

Since the first major subjective video quality database,

VQEG FR-TV Phase I [19], was developed, the last decade has

seen the publication of numerous video databases for different

applications. In most cases, a video database for testing com-

pression performance and evaluating quality assessment meth-

ods is expected to be composed of diverse content. Previous

research in [20] has reported that the diversity of a database

can be measured by the coverage range and uniformity of

various video features. These two metrics are therefore often

used to assess and compare video content of datasets, and also

to facilitate reference material selection.

In most video quality databases, distorted versions of the

original reference videos are created based on different levels

of compression and transmission loss. The former are usually

based on the state-of-the-art video compression standards.
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However, four years after the publication of the most recent

standardised codec [13], very few high definition (HD) video

databases containing HEVC compressed content together with

opinion score metadata are publicly-available.

In addition, more recent approaches [21–26] that use tex-

ture analysis and synthesis to compress video content have

demonstrated significant potential for rate-quality performance

improvement. This type of codec produces distinct distortions

and artefacts that are conspicuously absent from databases

currently available.

In this context, this paper presents a novel video database for

evaluating video compression algorithms and quality assess-

ment methods. The BVI-HD video quality database1 contains

32 HD, progressive-scanned reference sequences, selected to

maximise video feature coverage and uniformity. Each refer-

ence is accompanied by 12 distorted variants: half of these

using HEVC and half using a synthesis-based video codec,

HEVC-SYNTH.

We conducted subjective experiments to address three spe-

cific research topics in video compression and quality assess-

ment.

1) To determine the optimal test range of quantisation

parameters in HEVC compression for video quality

assessment (VQA) studies.

2) To understand whether there is difference in terms

of subjective quality between HEVC compressed and

HEVC+synthesis content.

3) To evaluate the performance of objective video quality

metrics on the BVI-HD video quality database.

The remainder of this paper is organised as follows. Section

II summarises the most recent research in video database

development. Section III presents the reference and distorted

sequences of the database, while the conducted subjective

experiments are described in Section IV. The subjective results

of the database are reported and discussed in Section V.

Finally, Section VI concludes the paper, and summarises future

work.

II. BACKGROUND

This section discusses the primary considerations for de-

veloping video databases, such as source content, sequence

length, and test methodology, and provides a brief review on

existing video quality databases.

A. Video Content

Irrespective of what a video database is developed for, video

content is always important. However, the content selection

process, for many existing databases, is based on subjective

preference and video availability. This is due to the lack

of a standardised approach to video parameterisation and

characterisation. In most cases, it is essential to consider the

diversity of content as this determines how representative the

database is, and consequently, the validity of the evaluation

process.

1All video sequences and subjective scores of the BVI-HD database is
publicly available for downloading at https://vilab.blogs.ilrt.org/?p=1946.

Measuring how representative a set of videos is, of a much

larger population, is not a trivial task. One popular approach

is to characterise the videos in a database using low-level

features, based on spatial and temporal information, and to

calculate the range and uniformity of feature distributions

[20]. While this can be an effective way of ranking database

coverage, it does so independently of, and without reference to,

contemporary content. After conducting a large-scale analysis

of recently-broadcast content [27], we previously identified

the distributions of five uncorrelated factors that explain the

directions of highest variance in the videos they analysed

[28]. Analysing the shape of their distributions provides a

convenient approach for comparing the content of a limited

number of sequences in a database to the wider, near-infinite

population of modern broadcast content.

B. Sequence Length

In a subjective VQA experiment, the duration of each video

sequence is important from both practical and theoretical

perspectives. It determines the overall experiment time con-

sumed for testing – using shorter video durations offers the

opportunity to collect similar volumes of subjective data within

a shorter amount of time. The presentation time for moving

pictures is recommended by the ITU as ten seconds [29].

However, recent studies in [30, 31] explicitly recommend the

use of five second instead of ten in video quality assessment

for both single and double stimulus methodologies. This

reflects the the average shot length in modern films [32], and

shorter clips also produce more critical [33] and consistent

[34, 35] test results.

C. Test Methodology

Test strategies using different stimulus presentation methods

and rating scales are well documented in [29, 36]. Double-

stimulus (DS) and single-stimulus (SS) are two commonly

used test methodologies. In a DS experiment, before request-

ing observers to vote, a pair of sequences are presented, and

the difference opinion scores between these two sequences are

recorded. If the SS approach is used, all videos are randomly

presented to subjects. After viewing a single clip, they are re-

quired to provide an absolute quality score. This methodology

is more suitable for cases without explicit reference sequences

and significantly saves testing time. In comparison to the DS

method, SS is more efficient but could suffer context effects.

Detailed reviews for various test methodologies can be found

in [17, 30].

D. Existing Video Quality Databases

Subjective video databases, designed for the validation of

objective quality metrics, in most cases, contain distorted con-

tent with coding artefacts and/or transmission errors. It is noted

that, since the publication of the latest compression standard

(HEVC) [13], few publicly-available HD video databases have

included subjective data on HEVC compressed content.

VQEG FR-TV Phase I [19], and LIVE [37] are two

commonly used subjective video databases, which contain
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sequences at standard definition (SD) resolutions, using H.263

(VQEG), MPEG-2 (VQEG and LIVE), and H.264/AVC

(LIVE) codecs to generate distorted content. Other notable

contributions include VQEG-HD [38, 39], IRCCyN/IVC 1080i

[40], IVP [41], VQEG HDTV Phase I [38, 39], EPFL

[42], MMSP-SVD [43], Poly@NYU [44] and BVI-HFR [6]

databases. None of these contains HEVC compressed content.

Current subjective databases that feature HEVC test content

include CSIQ [45], BVI Texture [46], SJTU 4K-HEVC [47],

BVI-HomoTex [48] and Yonsei 4K UHD database [49]. How-

ever, the CSIQ and BVI-HomoTex databases only includes

low resolution video sequences (480p and 256p respectively),

while the content in the BVI Texture database is limited to

homogeneous textures. The SJTU 4K-HEVC and Yonsei 4K

UHD databases do include HEVC compressed content at 4K

(3840×2160) resolution, but the limited number of source (10

in Yonsei 4K UHD) or distorted (60 in SJTU 4K-HEVC)

sequences may lead to unreliable results when used to validate

objective quality models.

III. THE BVI-HD VIDEO QUALITY DATABASE

This section presents the procedure used to select the 32

reference sequences in the BVI-HD video quality database,

and describes how the 384 distorted videos were generated.

A. Reference Sequences

One hundred and thirty-one original uncompressed se-

quences from the VQEG HDTV Phase I [38, 39], BVI-HD

Texture [46] and BVI-HFR [6] databases were included in the

initial video selection pool. Each of these progressive-scanned,

high definition (HD, 1920×1080) sequences, was truncated

from its original length to just five seconds using the method

recommended in [30, 31] to maximise temporal consistency

and minimise scene cuts.

Algorithm 1 The procedure for source sequence selection. Here |D|
represents the cardinality of set D.

Input:

Candidate video pool: V = {V1, V2, · · · , V131};
Corresponding video features for candidate videos:
{SI1, SI2, · · · , SI131}, {CF1,CF2, · · · ,CF131},
{MV1,MV2, · · · ,MV131}, {TP1,TP2, · · · ,TP131},
{DTP1,DTP2, · · · ,DTP131}
Empty dataset: D = {};

Output:

Full dataset: D = {VN1
, VN2

, · · · , VN32
}

1: Move candidate videos with extreme (maximum and minimum) feature
values from V to D;

2: while |D| < 32 do
3: Calculate the uniformity of D ∪ {Vi} for feature SI, ∀Vi ∈ V;
4: Move the video with the highest SI uniformity level from V to D;
5: if |D| ≥ 32 then

6: return D;
7: end if

8: Repeat 3-7 for features CF, MV, TP and DTP;
9: end while

10: return D

It is noted that while previous video databases have favoured

researcher intuition for scene selection, this strategy can be

vulnerable to the inclusion of redundant content and can

exhibit non-uniform content distribution, particularly within

larger sets of reference sequences. Containing 32 unique

references, the BVI-HD video database is larger than most;

therefore we developed a selection algorithm to maximise

the range and uniformity of content within the final set of

reference scenes.

In this method, thirty-two source sequences were chosen

from these 131 candidate videos based on the procedure to

maximise the range and uniformity [20] of five video features:

spatial information (SI), colourfulness (CF), motion vector

(MV), texture parameter (TP) and dynamic texture parameter

(DTP). The detailed definition of SI, CF and MV can be found

in [20], while TP and DTP have been described in [30]. The

calculation of DTP was based on normalised motion vectors,

and the normalisation method is described in [20].

Algorithm 1 describes the source content selection process.

After 32 source sequences were chosen, each selected video

was examined by eye to identify any unsuitable content, e.g.

with scene cuts or computer generated animation (only natural

content is considered). When this was the case, the video

in question was excluded, and the selection algorithm was

applied again from STEP 2 until the final acceptable 32

source sequences were identified. Sample frames from the final

selection of 32 source sequences alongside sequence names

and indices are shown in Fig. 1, and their feature distributions

are illustrated in Fig. 2.

In order to further evaluate the representativeness of the se-

lected set of sequences to contemporary broadcast content, we

projected each into the 5-dimensional factor space described

in [28], labelled: Naturalness, Movement, Brightness, Contrast

and Saturation. Fig. 3 plots the cumulative distribution curves

of these five factors for the BVI-HD video quality database,

superimposed over the same curves calculated from 14075

clips of BBC broadcast content (from the BBC Redux database

[27]), as reported in [28]. It is observed that for all five factors,

the BVI-HD database follows similar distributions compared

with BBC Redux samples.

We also applied a two-sample Kolmogorov-Smirnov test

(K-S test) [50] to see if there were significant differences

between the BVI-HD database and the BBC Redux data [27]

for the distributions of all five factors. The K-S statistic values

for all five factors are 0.134, 0.183, 0.123, 0.142 and 0.104

respectively (their corresponding p values are 0.589, 0.213,

0.694, 0.509 and 0.864); all lower than the threshold 0.241

for a significant level of 0.05. These results show that, for

all five factors, there is no significant difference between the

distributions of these two data samples (BVI-HD and BBC

Redux) at a 95% confidence interval, which indicate that the

chosen video set is representative of contemporary broadcast

content.

B. Test Sequence Generation

Each original sequence was distorted by HEVC compres-

sion (HM 14.0) using the Random Access configuration.

Primary coding parameters include: Main Profile; six different

QP values from 22 to 47 with an interval of 5; three successive

bi-directional predicted B frames (group of picture size 4);
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1. BallUnderWater 2. Bookcase 3. Boxing 4. BricksLeaves 5. BridgeRiver 6. BubblesPitcher 7. CalmingWater 8. CarpetCircleFast

9. CloudsZoom 10. Diver 11. DiverFishAndRock 12. FishAndRock 13. Fountain 14. Grass 15. Hamster 16. KineticFastPainting

17. Lightreef 18. MartialArts 19. Music 20. PaintingTilting 21. ParkPlay 22. PlasmaPan 23. PlasmaSlow 24. RockWater

25. RockWave 26. Rowing 27. SmokeGuns 28. Surfers 29. Toys 30. TreeGrassFamily 31. TreeTrunk 32. Typing

Fig. 1: Sample video frames from the BVI-HD database source sequences.
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Fig. 2: Feature distributions of the proposed database.

coding tree unit (CTU) size 64× 64; QPOffset values are set

to zero.

The QP range used here (22–47) is different from the rec-

ommendation in [51, 52], and this was justified by a subjective

study on QP range selection described in Section IV-C. It is

also noted that the GOP size and QPOffset values employed

were different from the HEVC Common Test Conditions in

[51, 52]. This is because, by using longer GOP size and

various frame level QP values (QPOffset values are non-zero),

the visual quality of each frame may change significantly in

the temporal domain (this is also content dependent). In order

to simplify the case, we have adopted zero QPOffset values

and shorter GOP size, which could produce temporally more

consistent perceptual quality. The influence of various frame

level QP values on overall visual quality will be investigated

in our future work.

Due to recent advances in synthesis-based video com-

pression [21–25], synthesised content was also included in

this database. The approach described in the appendix was

employed to create synthesised results based on the generated

HEVC compressed content (for QP 27 and 42 only). In this

approach, three quality threshold levels were used to control

the synthesis. Therefore, for each reference clip, there are six

(3×2) distorted versions with synthesis artefacts.

C. Summary

In total, the final database consisted of 32 reference and

384 (32×12) distorted sequences (each with a duration of five

seconds). The distortion coverage of the BVI-HD database

is shown in Fig.4 alongside those for three other existing

databases, VQEG [19], LIVE [37], and IVP [41], where the

most commonly used quality metric, PSNR, is used to predict

distortions. It can be observed that the histogram plot for all

384 test sequences of the BVI-HD database offers a wider

coverage across the whole PSNR range compared to the three

other datasets.

IV. SUBJECTIVE EXPERIMENTS

Two subjective studies are reported here: the first was an

experiment to determine the appropriate QP range used to

generate distorted videos; the second collected opinion scores

for each distorted sequence in the proposed database.

A. Environmental Setup

Both experiments were conducted in a darkened, living

room-style environment. The background luminance level was

set to 15% of the peak luminance of the monitor used (32 lux)

[29]. Video sequences were shown at their native framerates,

on a Panasonic BT-4LH310 LCD professional reference mon-

itor, which measures 700×370mm, with a static contrast ratio

of up to 1500:1, and with a maximum viewing angle of 178°.

The resolutions of the monitor were configured to 1920×1080

(spatially) and 60Hz (temporally). It was connected to a

Windows PC running Matlab R2012a and Psychotoolbox 3.0.

The viewing distance was set to be three times of the monitor

height (1110mm), which is within the recommended range

in ITU-R BT.500 [29]. During both experiments, a 9.71′′

iPad tablet computer was provided to each participant, and

a customised iOS app was used to collect opinion scores.

B. Experimental Procedure

In both experiments, the double stimulus continuous quality

scale (DSCQS) [29] methodology was used. In each trial, par-

ticipants were shown sequence A, then sequence B, followed

by a grey screen, at which point participants had unlimited

time to respond to two questions issued on the tablet computer
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(c) Factor 3 - Brightness
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Fig. 3: The cumulative distribution function (CDF) curves of five features identified in [28]. Blue curves are calculated from the high density
sampling of BBC broadcast content, while red curves are calculated using the reference sequences in the BVI-HD database.
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Fig. 4: Distortion coverage and distribution for various databases.
The PSNR histogram of test sequences are used here.

which were individually assigned. The first of these asked

“Which video did you perceive as better quality?”. Participants

registered their answers by clicking either ‘Video A’ or ‘Video

B’ on the tablet. The second was phrased “Please rate the

perceived quality of the two videos.”. The sliders next to the

visual analogue scales in the iOS app were provided to allow

participants to record their answers, and the scales featured

evenly-spaced labels reading: Excellent, Good, Fair, Poor and

Bad.

C. Exp. 1: the subjective study on QP range selection

This experiment was conducted to identify a suitable range

of QP values for the BVI-HD video quality database. Four HD

reference sequences, labelled Boxing, BrickPanning, Splash-

ingWater, and UnderwaterFish. Boxing and UnderwaterFish

were chosen from the VQEG HDTV Phase I [38, 39] database,

while SplashingWater was selected from the BVI Texture [46]

database. BrickPanning is a newly captured sequence using a

professional camera (RED-EPIC). These were all truncated to

5 seconds based on the procedure in [30, 31]. Sample frames

are shown in Fig. 5.

Boxing BrickPanning SplashingWater UnderwaterFish

Fig. 5: Sample frames from the source videos in Exp. 1.

Source videos were encoded by an HEVC reference codec

(HM 14.0) using six different quantisation parameters (20, 24,

28, 32, 36, 40, 44, 48). Other coding configurations are the

same as those given in Section III-B. Six university postgrad-

uate students (three male and three female with an average

age of 29) participants, reported with normal or corrected-

to-normal vision (visual acuity was confirmed with Snellen

charts, and Ishihara chart was used for colour blindness test),

viewed and rated each reference and each distorted version

three times making a total of 96 (4×8×3) trials following the

methodology in Section IV-B.

D. Exp. 2: the BVI-HD video quality database

Data collection for the BVI-HD database was divided into

four participant groups: the first group viewed trials contain-

ing original, HEVC compressed sequences from the first 16

references (source 1–16); the second group viewed trials con-

taining HEVC compressed sequences from the remaining 16

references (source 17–32); the third group of participants were

shown the distorted sequences generated by the synthesis-

based codec from source 1–16; and the final group of subjects

viewed the synthesised sequences (source 17–32). For each

test session, up to three participants simultaneously viewed

three blocks of 32-length trials. Each block lasted no more

than 15 minutes and participants were given the option of a

5-minute break between blocks. Trials within each block were

randomly permutated at the beginning of each session, as were

the order of the reference and distorted sequences.

A total of 86 undergraduate and postgraduate students

from the University of Bristol with an average age of 26

were financially compensated for their participation in the

experiment. After visual acuity and colour blindness were

tested using a Snellen chart and a Ishihara chart respectively,

participants were given instructions and presented with two

training trials containing videos that were not featured in

the main experiment. The subjective data in the training

session were not collected for subsequent analysis. Twenty-

two viewers (10 male and 12 female) were in Group 1;

Twenty-one viewers (10 male and 11 female) were in Group

2; Twenty-two viewers (9 male and 13 female) were in Group

3; Twenty-one viewers (11 male and 10 female) were in Group

4.

E. Data Processing

Responses from the visual analogue scales were first

recorded as quality scores in the range of 0 to 100. Difference

scores were then calculated for each trial and each participant
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by subtracting the quality score of the distorted sequence from

its corresponding reference. Possible outliers were removed

following the procedure in [53]. The numbers of participants

discarded are four, three, four and three for Group 1–4

respectively. Difference mean opinion scores (DMOS) were

obtained for every trial by taking the mean of the difference

scores. The standard errors (SE) of difference scores for each

trial were also calculated for subsequent analyses.

Based on participants’ responses to the first question, the

answers that incorrectly chose distorted sequences with better

quality were defined as errors. The correct rate (CR) was then

calculated for every trial as the average percentage of non-

error responses.

The subjective data, comprised of 384 DMOS, SE, and CR

values, have been published alongside the video sequences.

V. RESULTS AND DISCUSSION

This section presents the subjective results of the experi-

ments, in the context of the questions proposed in Section I.

As described above, the CR results are based on the

responses to the first question in our experiment, which can

be considered as a two alternative forced choice (2AFC) task

[54]. This enables the CR results to be fitted as a psychometric

function with QP as the stimulus level.

The subjective scores of the database were used to evaluate

nine popular objective quality metrics, including Peak Signal-

to-Noise Ratio (PSNR), Structural Similarity Index (SSIM)

[55], multi-scale SSIM (MS-SSIM) [56], Visual Information

Fidelity measure (VIF) [57], Visual Signal-to-Noise Ratio

(VSNR) [58], Video Quality Metric (VQM) [59], Motion-

based Video Integrity Evaluation index (MOVIE) [60], Spatio-

temporal Most Apparent Distortion Model (STMAD) [61] and

Video Multimethod Assessment Fusion (VMAF) [62]. PSNR,

SSIM, MS-SSIM, VIF and VSNR are commonly used image

quality metrics, while the remaining three are video quality

assessment methods. It is noted that VMAF is a machine

learning based video quality metric, which predicts subjective

quality by combining multiple existing quality metrics and

video feature (including VIF [57], Detail Loss Metric (DLM)

[63] and averaged temporal frame difference [62]) using a

Support Vector Machine (SVM) regressor [64].

Following the procedure in [19], a logistic fitting function

was used to fit the subjective DMOS and objective quality

indices based on a weighted least-squares approach. Objective

quality metric performance was parameterised using four

correlation statistics: the Linear Correlation Coefficient (LCC),

the Spearman Rank Order Correlation Coefficient (SROCC),

the Outlier Ratio (OR) and the Root Mean Squared Error

(RMSE). Definitions of these can be found in [17, 19].

A significance test was also conducted to identify the

difference in performance between the objective metrics. The

approach in [37, 65] was followed whereby an F-test was

performed on the residual between the average DMOS of the

BVI-HD database and on the DMOS predicted by the tested

objective quality metrics. The predicted DMOS values were

obtained based on the best logistic fitting curves.

A. Subjective results on QP range selection (Exp. 1)

Fig. 6.(a) shows the average DMOS over different test QP

values for all source sequences in Exp. 1. It is noted that,

in most cases, the magnitude of perceptual differences are

much more pronounced between QP32 and QP48 than they

are between QP20 and QP32.

The CR results plotted against six tested QPs are illustrated

in Fig. 6.(b). These produce a tight fit (the deviance and the

p-value are 1.986 and 0.937 respectively) to a psychometric

function. It can be observed that subjective results on content

using the full range of QP values (20-48) correspond to a

complete psychometric function. If a correct rate value of 75%

is considered as a threhold for detecting compression artefacts

[54], it corresponds to QP 36 approximately according to the

average psychometric function.
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Fig. 6: Subjective quality results of Exp. 1. (a) and (b) shows the
average DMOS and CR over tested QPs respectively. The error bars in
both sub-figures represent the standard errors over source sequences.

It is noted that the QP range recommended by the HEVC

common test conditions [51] is from 22 to 37, which only

covers half of the psychometric function curve in Fig. 6.(b)

and misses the visually-lossy part. In order to investigate

the subjective quality of HEVC compressed content across a

complete psychometric curve, we recommend the use of test

QP values of 22, 27, 32, 37, 42, and 47 for future VQA studies.

This test range is also suggested for future evaluation of the

rate quality performance of HEVC codecs2.

B. Subjective Quality for HEVC Content (Exp. 2)

The subjective quality scores against various test QPs, in

terms of the average DMOS, and the average correct ratios

over HEVC compressed content for all source sequences and

all participants, are shown in Fig. 7.

It can be observed in Fig. 7.(a) that different characteristics

appear between groups with low (22, 27 and 32) and high (37,

42 and 47) QP values. In low QP cases, the average DMOS are

below 10, and the compression quality is normally considered

as visual lossless or close to. As QP increases, the average

DMOS becomes much higher. The average CR in Fig. 7.(b)

also show the similar property as Fig. 6.(b), and it almost

covers the complete psychometric function curve as expected.

2It is noted here that this recommendation is based on the experimental
results on HEVC compressed content using constant QP values for all
types/levels of frames (QP Offset equals zero). The optimal QP test range
may differ if QP values vary among frames.
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Fig. 7: Subjective quality results for HEVC compressed videos at
various QP values. (a) and (b) shows the average DMOS and correct
ratios respectively. The error bars in both sub-figures represent the
standard errors over source sequences.

C. Subjective quality of synthesised content (Exp. 2)

Fig. 8.(a) shows the proportions of frame blocks that have

been synthesised in Bb (the definition is given in the appendix)

frames at various QPs and synthesis levels. It is observed that

from 30% to 55% of blocks are synthsised in Bb frames, and

that this figure is content dependent.
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Fig. 8: Results for synthesised content. (a) The percentage of blocks
synthesised in Bb frames, where the error bars present the standard
errors over content. (b) and (c) show the box plots of average
DMOS and correct ratios respectively, for all HEVC and synthesised
sequences at QP 27 and 42, where in each four-box group, the first
box is for HEVC, and the three other are results for synthesis level
1, 4, and 10.

Fig. 8.(b) presents the average DMOS and CR values for

HEVC and various synthesis levels. For all synthesis levels (1,

4, and 10), there is no significant difference in both average

DMOS and correct ratio results between HEVC and synthe-

sised content. In some cases, the mean of DMOS and correct

ratios for synthesised results are better than the corresponding

HEVC compressed videos. This shows the potential of texture

synthesis in video compression, particularly in the context of

the reduced bit rates achievable.

D. Objective Quality Metric Performance Comparison

The correlation performance of the objective quality metrics

against the subjective scores for the database is shown in

Fig. 9, TABLE I, and TABLE II. It can be observed that

MS-SSIM, VIF, VSNR, VQM, MOVIE, STMAD and VMAF

perform better than PSNR and SSIM, with more compact

scattering about their fitting curves and higher correlation

coefficients. This is also statistically significant based on the F-

test results in TABLE II, while the difference is not significant

between any two of MS-SSIM, VIF, VSNR, VQM, MOVIE

and STMAD. Only VMAF outperforms MS-SSIM, VSNR,

MOVIE and STMAD based on the F-test results. For the

HEVC subgroup, VMAF offers the highest SROCC value,

0.8014, and VIF performs best for synthesised content. It has

been noted that VMAF is a machine learning based quality

metric, which combines several existing quality metrics and

video features together. Its model parameters were extensively

trained on distorted content with compression artifacts [62].

TABLE I: Comparison of correlation statistics for tested video metrics
on the BVI-HD video database. The best performer is highlighted in
bold font for each statistic

Content All Data HEVC Synth

Metric LCC SROCC OR RMSE SROCC SROCC

PSNR 0.6009 0.5923 0.5625 13.8420 0.6194 0.5716

SSIM 0.5748 0.5753 0.5703 14.1642 0.5992 0.5538

MSSSIM 0.6597 0.6615 0.5130 12.1291 0.7158 0.6014

VIF 0.7658 0.7700 0.4609 11.1051 0.7712 0.7689

VSNR 0.7282 0.7362 0.4792 11.8329 0.7408 0.7345

VQM 0.7654 0.7584 0.4401 11.0933 0.7857 0.7261

MOVIE 0.7450 0.7295 0.4401 11.5051 0.7529 0.7030

STMAD 0.7536 0.7541 0.4141 11.3898 0.7958 0.7128

VMAF 0.7627 0.7446 0.4323 10.3530 0.8014 0.6781

It should be also noted that the SROCC values for all tested

quality metrics on the whole BVI-HD database are below

0.8, and are even lower (below 0.6) for PSNR and SSIM.

This level of performance is lower than achieved by the same

metrics on popular databases, such as VQEG FR-TV Phase I

[19] and LIVE [37]. This indicates that these metrics perform

relatively poorly on HEVC compressed content, something

which requires further investigation if such metrics are to be

universally accepted. Metric performance is even worse for

synthesised content, indicating that significant research is still

needed to develop perceptually accurate quality metrics that

can deal with synthesis artefacts. It can also be observed for

Fig. 9 that the fit of the metrics to the DMOS scores is, in

general, significant better for higher quality content.

VI. CONCLUSIONS

In this paper, a novel video quality database has been

presented for video compression and quality assessment. This

database contains 32 original videos that reflect the feature



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2018.2817070, IEEE

Transactions on Multimedia

8

20 30 40 50 60
−10

0

10

20

30

40

50

60

70

PSNR

D
M

O
S

PSNR vs DMOS @ BVI−HD

LCC       =0.6009
SROCC =0.5923
OR         =0.5625
RMSE    =13.8420

(a)

0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

60

70

SSIM

D
M

O
S

SSIM vs DMOS @ BVI−HD

LCC       =0.5748
SROCC =0.5753
OR         =0.5703
RMSE    =14.1643

(b)

0.75 0.8 0.85 0.9 0.95 1
−10

0

10

20

30

40

50

60

70

MSSSIM

D
M

O
S

MSSSIM vs DMOS @ BVI−HD

LCC       =0.6597
SROCC =0.6615
OR         =0.5130
RMSE    =12.1291

(c)

0 0.2 0.4 0.6 0.8 1
−10

0

10

20

30

40

50

60

70

VIF

D
M

O
S

VIF vs DMOS @ BVI−HD

LCC       =0.7658
SROCC =0.7700
OR         =0.4609
RMSE    =11.1051

(d)

0 10 20 30 40 50 60
−10

0

10

20

30

40

50

60

70

VSNR

D
M

O
S

VSNR vs DMOS @ BVI−HD

LCC       =0.7282
SROCC =0.7362
OR         =0.4792
RMSE    =11.8329

(e)

0 0.2 0.4 0.6 0.8 1
−10

0

10

20

30

40

50

60

70

VQM

D
M

O
S

VQM vs DMOS @ BVI−HD

LCC       =0.7654
SROCC =0.7584
OR         =0.4401
RMSE    =11.0933

(f)

0 2 4 6 8 10
−10

0

10

20

30

40

50

60

70

MOVIE

D
M

O
S

MOVIE vs DMOS @ BVI−HD

LCC       =0.7450
SROCC =0.7295
OR         =0.4401
RMSE    =11.5051

(g)

−5 0 5 10 15 20
−10

0

10

20

30

40

50

60

70

STMAD

D
M

O
S

STMAD vs DMOS @ BVI−HD

LCC       =0.7536
SROCC =0.7541
OR         =0.4141
RMSE    =11.3898

(h)

0 20 40 60 80 100
−10

0

10

20

30

40

50

60

70

VMAF

D
M

O
S

VMAF vs DMOS @ BVI−HD

LCC       =0.7627
SROCC =0.7446
OR         =0.4323
RMSE    =10.3530

(i)

Fig. 9: Scatter plots of subjective DMOS versus the predictions of different quality metrics on the BVI-HD database. The blue curves in the
sub-figures represent the best logistic fitting functions.

distributions observed in modern broadcasting content. Each

reference sequence is used to generate 12 distorted clips using

the current standard video codec, HEVC, and its synthesis

integrated version (HEVC-SYNTH).

In order to answer the questions proposed in Section I,

two subjective experiments were conducted, the first of which

identified an appropriate test range of quantisation levels

for HEVC, and recommends the use of wider QP range

than that currently in the HEVC common test conditions.

The second experiment collected the subjective scores of the

database, which were used to test nine popular objective

quality assessment models, and to compare the synthesised

results with HEVC content. The comparison results show the

potential of texture synthesis in video compression, while

the performance of quality assessment methods on the BVI-

HD database exposes the limitations of current video quality

metrics on HEVC, and especially on synthesised content.

The BVI-HD video quality database reported here has been

made available online1 for public testing. Its content diversity

and representativeness make it a reliable test database for

objective video metric evaluation, and the reference sequences

can also be used for video compression performance testing.

It should be noted that the number of reference and test

sequences in the BVI-HD database is still limited and only full

HD resolution has been tested. Future work should focus on

using more immersive video formats as test content, including

higher dynamic ranges, higher frame rates and higher spatial

resolutions.
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APPENDIX

SYNTHESISED CONTENT GENERATION

Fig. 10 shows a diagram of the algorithm (HEVC-SYNTH)

which was used to generate the synthesised video clips in the

BVI-HD video quality database. This is a modified version of

our synthesis-based encoder in [21].

In order to investigate the subjective quality of synthesised

content, and its difference from that of HEVC compressed

content, we utilised a one-pass strategy to enable fair compar-

ison. In this approach, following the same GOP structure used

in Section III-B, B frames that are inter-predicted only from

temporally previous frames (denoted as Bp), and I frames are

defined as key frames, and their HEVC reconstructed frames

are originally kept in the output video. The three successive

bi-directional inter-predicted B frames (denoted as Bb frames)

are processed using the following steps.
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Fig. 10: The approach used to generate synthesised content.

Each Bb frame is firstly segmented into spatially homo-

geneous regions, and then classified as static dynamic or

non-textured. For non-textured regions, their corresponding

HEVC reconstructed content are retained. The static textures

in all Bb frames are firstly warped from their nearest key

frames, while the dynamic textures in the first and third

(in every three successive Bb frames, temporal order) Bb

frames are synthesised from their two nearest key frames and

the second Bb frame (possibly with warped content). These

warped and synthesised results are then compared with the

corresponding original HEVC content in the video quality

assessment module, and are conditionally selected based on

their quality difference.

In the video quality assessment module, a recently de-

veloped video quality metric, PVM, is employed [65, 66],

which is an enhanced version of AVM (the artefact-based

video metric) that is used in [21]. Every 64 × 64 block of

warped/synthesised content and their original HEVC coun-

terpart are compared using PVM predicted DMOS, which

is converted from original PVM indices using a non-linear

fitting curve. This fitting function is defined in [19], and its

parameters were obtained based on the correlation between

PVM quality indices and subjective results in the LIVE

video database. Only when the difference between the PVM

predicted DMOS between a warped/synthesised block and

the corresponding HEVC content is lower or equal to a

certain threshold, will the warped/synthesised block replace

the HEVC content. Otherwise the HEVC compressed content

will remain in the output. The threshold was configured as 1,

4, and 10, where larger value allows more synthesis.

The texture segmentation, classification, warping and syn-

thesis methods used in this algorithm, and the definition of

PVM can be found in [21, 65].
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