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ABSTRACT

WAN bandwidth remains a constrained resource that is eco-
nomically infeasible to substantially overprovision. Hence,
it is important to allocate capacity according to service pri-
ority and based on the incremental value of additional allo-
cation. For example, it may be the highest priority for one
service to receive 10Gb/s of bandwidth but upon reaching
such an allocation, incremental priority may drop sharply
favoring allocation to other services. Motivated by the ob-
servation that individual flows with fixed priority may not
be the ideal basis for bandwidth allocation, we present the
design and implementation of Bandwidth Enforcer (BwE),
a global, hierarchical bandwidth allocation infrastructure.
BwE supports: i) service-level bandwidth allocation follow-
ing prioritized bandwidth functions where a service can rep-
resent an arbitrary collection of flows, ii) independent alloca-
tion and delegation policies according to user-defined hier-
archy, all accounting for a global view of bandwidth and fail-
ure conditions, iii) multi-path forwarding common in traffic-
engineered networks, and iv) a central administrative point
to override (perhaps faulty) policy during exceptional con-
ditions. BwE has deliveredmore service-efficient bandwidth
utilization and simpler management in production for mul-
tiple years.

CCS Concepts

•Networks→ Network resources allocation; Network man-
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Permission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for third-party components of

this work must be honored. For all other uses, contact the owner/author(s).

SIGCOMM ’15 August 17-21, 2015, London, United Kingdom

© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3542-3/15/08.

DOI: http://dx.doi.org/10.1145/2785956.2787478

Keywords

Bandwidth Allocation; Wide-Area Networks; So�ware-
Defined Network;Max-Min Fair

1. INTRODUCTION

TCP-based bandwidth allocation to individual flows con-
tending for bandwidth on bottleneck links has served the In-
ternet well for decades. However, this model of bandwidth
allocation assumes all flows are of equal priority and that all
flows benefit equally from any incremental share of available
bandwidth. It implicitly assumes a client-server communi-
cation modelwhere a TCP flow captures the communication
needs of an application communicating across the Internet.
his paper re-examines bandwidth allocation for an im-

portant, emerging trend, distributed computing running
across dedicated privateWANs in support of cloud comput-
ing and service providers. housands of simultaneous such
applications run across multiple global data centers, with
thousands of processes in each data center, each potentially
maintaining thousands of individual active connections to
remote servers.WAN traffic engineeringmeans that site-pair
communication follows different network paths, each with
different bottlenecks. Individual services have vastly differ-
ent bandwidth, latency, and loss requirements.

We present a newWAN bandwidth allocation mechanism
supporting distributed computing and data transfer. BwE
provides work-conserving bandwidth allocation, hierarchi-
cal fairness with flexible policy among competing services,
and Service Level Objective (SLO) targets that independently
account for bandwidth, latency, and loss.

BwE’s key insight is that routers are thewrong place tomap
policy designs about bandwidth allocation onto per-packet
behavior. Routers cannot support the scale and complex-
ity of the necessary mappings, o�en because the semantics
of thesemappings cannot be captured in individual packets.
Instead, following the End-to-End Argument[28], we push
all such mapping to the source host machines. Hosts rate
limit their outgoing traffic andmark packets using the DSCP
field. Routers use the DSCP marking to determine which
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path to use for a packet and which packets to drop when
congested. We use global knowledge of network topology
and link utilization as input to a hierarchy of bandwidth en-
forcers, ranging from a global enforcer down to enforcers on
each host. Bandwidth allocations and packet marking pol-
icy flows down the hierarchy whilemeasures of demand flow
up, starting with end hosts. he architecture allows us to de-
couple the aggregate bandwidth allocated to a flow from the
handling of the flow at the routers.
BwE allocates bandwidth to competing applications based

on flexible policy configured by bandwidth functions cap-
turing application priority and incremental utility from ad-
ditional bandwidth in different bandwidth regions. BwE
supports hierarchical bandwidth allocation and delegation
among services while simultaneously accounting for multi-
pathWAN communication. BwE is the principal bandwidth
allocation mechanism for one of the largest private WANs
and has run in production formultiple years across hundreds
of thousands of end points. he systems contributions of our
work include:

● Leveraging concepts from So�ware Defined Network-
ing, we build a unified, hierarchical control plane for
bandwidth management extending to all end hosts. In
particular, hosts report per-user and per-task demands
to the control plane and rate shape a subset of flows.

● We integrate BwE into existing WAN traffic engineer-
ing (TE) [17, 11, 12]mechanisms including MPLSAuto-
Bandwidth [22] and a custom SDN infrastructure. BwE
takes WAN pathing decisions made by a TE service
and re-allocates the available site-to-site capacity, split
across multiple paths, among competing applications.
At the same time, we benefit from the reverse integra-
tion: using BwEmeasures of prioritized application de-
mand as input to TE pathing algorithms (Section 5.3.1).

● We implementhierarchicalmax-min fair bandwidth al-
location to flexibly-defined FlowGroups contending for
resources acrossmultiple paths and at different levels of
network abstraction. he bandwidth allocation mech-
anism is both work-conserving and flexible enough to
implement a range of network sharing policies.

In sum, BwE delivers a number of compelling advantages.
First, it provides isolation among competing services, deliv-
ering plentiful capacity in the common case whilemaintain-
ing required capacity under failure andmaintenance scenar-
ios. Capacity available to one service is largely independent of
the behavior of other services. Second, administrators have a
single point for specifying allocation policy. While pathing,
RTT, and capacity can shi� substantially, BwE continues to
allocate bandwidth according to policy. Finally, BwE enables
theWAN to run at higher levels of utilization. By tightly inte-
grating loss-insensitive file transfer protocols running at low
priority with BwE, we run many of our WAN links at 90%
utilization.

Figure 1: WAN Network Model.

2. BACKGROUND

We begin by describing ourWAN environment and high-
light the challenges we faced with existing bandwidth alloca-
tion mechanisms. housands of individual applications and
services run across dozens of wide area sites each containing
multiple clusters. Hostmachineswithin a cluster share a com-
mon LAN. Figure 1 shows an exampleWAN with sites S1, S2
and S3; C

1
1 and C2

1 are clusters within site S1.
We host a combination of interactive web services, e.g.

search and web mail, streaming video, batch-style data pro-
cessing, e.g., MapReduce [13], and large-scale data transfer
services, e.g., index copy from one site to another. Cluster
management so�waremaps services to hosts independently;
we cannot leverage IP address aggregation/prefix to identify
a service. However, we can install control so�ware on hosts
and leverage a control protocol running outside of routers.
We startedwith traditional mechanisms for bandwidth al-

location such as TCP,QoS andMPLS tunnels. However these
proved inadequate for a variety of reasons:

● Granularity and Scale: Our network and service capac-
ity planners need to reason with bandwidth allocations
at different aggregation levels. For example, a prod-
uct groupmay need a specifiedminimumof site-to-site
bandwidth across all services within the product area.
In other cases, individual users or servicesmay require
a bandwidth guarantee between a specific pair of clus-
ters. We need to scale bandwidthmanagement to thou-
sands of individual services, and product groups across
dozens of sites each containing multiple clusters. We

need a way to classify and aggregate individual flows
into arbitrary groups based on configured policy. TCP
fairness is at a 5-tuple flow granularity. On a congested
link, an application gets bandwidth proportional to the
number of active flows it sends across the links. Our
services require guaranteed bandwidth allocation inde-
pendent of thenumber of activeTCPflows. RouterQoS
andMPLS tunnels do not scale to the number of service
classes wemust support and they do not provide suffi-
cient flexibility in allocation policy (see below).

● Multipath Forwarding: For efficiency, wide area packet
forwarding follows multiple paths through the net-
work, possibly with each path of varying capac-
ity. Routers hash individual service flows to one of
the available paths based on packet header content.
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Any bandwidth allocation from one site to another
must simultaneously account for multiple source/des-
tination paths whereas existing bandwidth allocation
mechanisms—TCP, router QoS, MPLS tunnels—focus
on different granularity (flows, links, single paths re-
spectively).

● Flexible and Hierarchical Allocation Policy: We found
simple weighted bandwidth allocation to be inade-
quate. For example, we may want to give a high pri-
ority user a weight of 10.0 until it has been allocated 1
Gb/s, a weight of 1.0 until it is allocated 2 Gb/s and a

weight of 0.1 for all bandwidth beyond that. Further,
bandwidth allocation should be hierarchical such that
bandwidth allocated to a single product group can be

subdivided to multiple users, which in turn may be hi-
erarchically allocated to applications, individual hosts
and finally flows. Different allocation policies should
be available at each level of the hierarchy.

● Delegation or Attribution: Applications increasingly
leverage computation and communication from a vari-
ety of infrastructure services. Consider the case where
a service writes data to a storage service, which in
turn replicates the content to multiple WAN sites for
availability. Since the storage service acts on behalf of
thousands of other services, its bandwidth should be

charged to the originating user. Bandwidth delegation
provides differential treatment across users sharing a

service, avoids head of line blocking across traffic for
different users, and ensures that the same policies are
applied across the network for a user’s traffic.

We designed BwE to address the challenges and require-
ments described above around the principle that bandwidth
allocation should be extended all theway to end hosts. While
historically we have looked to routers with increasingly so-
phisticated ASICs and control protocols forWAN bandwidth
allocation, we argue that this design point has resulted sim-
ply from lack of control over end hosts on the part of net-
work service providers. Assuming such access is available,we
find that the following functionality can be supported with
a hierarchical control infrastructure extending to end hosts:
i) mappingWAN communication back to thousands of flow
groups, ii) flexibly sub-dividing aggregate bandwidth alloca-
tions back to individual flows, iii) accounting for delegation
of resource charging from one service to another, and iv) ex-
pressing and enforcing flexible max-min bandwidth sharing
policies. On the contrary, existing routers must inherently
leverage limited information available only in packet headers
to map packets to one of a small number of service classes or
tunnels.
Figure 2 shows an instance of very high loss in multiple

QoS classes during a capacity reduction on ournetwork. TCP
congestion control was not effective and the loss remained
high until we turned on admission control on hosts.

Figure 2: Reduction in TCP packet loss a�er BwE was de-
ployed. Y-axis denotes packet loss in percentage. Different
lines correspond to different QoS classes (BE1 denoting best
effort, and AF1/AF2 denoting higher QoS classes.)

3. ABSTRACTIONS AND CONCEPTS

3.1 Traffic Aggregates or FlowGroups

Individual services or users run jobs consisting ofmultiple
tasks. Each task may contain multiple Linux processes and
runs in a Linux container that provides resource accounting,
isolation and information about user_name, job_name and
task_name.Wemodified the Linuxnetworking stack tomark
the per-packet socket buffer structure touniquely identify the
originating container running the task. his allows BwE to
distinguish between traffic from different tasks running on
the same hostmachine.
BwE further classifies task trafficbased ondestination clus-

ter address. Optionally, tasks use setsockopt() to indicate
other classification information, e.g. for bandwidth delega-
tion. Delegation allows a task belonging to a shared infras-
tructure service to attribute its bandwidth to the user whose
request caused it to generate traffic. For example, a copy ser-
vice can delegate bandwidth charges for a specific file transfer
to the user requesting the transfer.

For scalability, baseline TCP regulates bandwidth formost
application flows. BwEdynamically selects the subset offlows
accounting for most of the demand to enforce. Using TCP
as the baseline also provides a convenient fallback for band-
width allocation in the face of a BwE system failure.
BwE allocates bandwidth among FlowGroups at various

granularities, defined below.

● Task FlowGroup or task-fg: <delegating_service,
user_name, job_name, task_name, source_cluster,
destination_cluster>. his FlowGroup is the finest unit
of bandwidth measurement and enforcement.

● Job FlowGroup or job-fg: Bandwidth usage across all
task-fgs belonging to the same job is aggregated into
a job-fg: <delegating_service, user_name, job_name,

source_cluster, destination_cluster>.

● User FlowGroup or user-fg: Bandwidth usage across
all job-fgs belonging to the same user is aggre-
gated into a user-fg: <delegating_service, user_name,

source_cluster, destination_cluster>.

● Cluster FlowGroup or cluster-fg: Bandwidth usage
across all user-fg belonging to same user_aggregate
and belonging to same cluster-pair is combined
into a cluster-fg: <user_aggregate, source_cluster,
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destination_cluster>. he user_aggregate corresponds
to an arbitrary grouping of users, typically by business
group or product. hismapping is defined in BwE con-
figuration (Section 3.2).

● Site FlowGroup or site-fg: Bandwidth usage for cluster-
fgs belonging to the same site-pair is combined into a

site-fg: <user_aggregate, source_site, destination_site>.

BwE creates a set of trees of FlowGroupswith parent-child
relationships startingwith site-fg at the root to cluster-fg, user-
fg, job-fg and eventually task-fg at the leaf.Wemeasure band-
width usage at task-fg granularity in the host and aggregate
to the site-fg level. BwE estimates demand (Section 6.1) for
each FlowGroup based on its historical usage. BwE allocates
bandwidth to site-fgs,which is redistributed down to task-fgs
and enforced in the host kernel. Beyond rate limiting, the hi-
erarchy can also be used to perform other actions on a flow
group such as DSCP remarking. All measurements and rate
limiting are done on packet transmit.
BwE policies are defined at site-fg and user-fg level. Mea-

surement and enforcement happen at task-fg level. Other lev-
els are required to scale the system by enabling distributed
execution of BwE across multiple machines in Google data-
centers.

3.2 Bandwidth Sharing Policies

3.2.1 Requirements

Our WAN (Figure 1) is divided in two levels, the inter-
site network and the inter-cluster network. he links in the
inter-site network (l7, l8 and l9 in the figure) are the most
expensive. Aggregated demands on these links are easier
to predict. Hence, our WAN is provisioned at the inter-
site network. Product groups (user_aggregates) create band-
width requirements for each site-pair. For a site-pair, de-
pending on the network capacity and its business priority,
each user_aggregate gets approved bandwidth at several allo-
cation levels. Allocation levels are in strict priority order, ex,
Guaranteed allocation level should be fully satisfied before al-
locating to Best-Effort allocation level. Allocated bandwidth
of a user_aggregate for a site-pair is further divided to all its
member users.
Even though provisioning and sharing of the inter-site net-

work is themost important, several links not in the inter-site
network may also get congested and there is a need to share
their bandwidth fairly during congestion. We assign weights
to the users that are used to subdivide their user_aggregate’s
allocated bandwidth in the inter-cluster network. To allow
more fine grained control, we allow weights to change based
on allocated bandwidth as well as to be overridden to a non-
default value for some cluster-pairs.

3.2.2 Configuration

Network administrators configure BwE sharing policies
through centralized configuration. BwE configuration spec-
ifies a fixed number of strict priority allocation levels, e.g.,
there may be two levels corresponding to Guaranteed and
Best-Effort traffic.

(a) f g1
Allocation Weight Bandwidth
Level (Gbps)

Guaranteed 0 0

Best-Effort
20 10
5 ∞

(b) f g2
Allocation Weight Bandwidth
Level (Gbps)

Guaranteed 10 10

Best-Effort 10 ∞

Table 1: BwE Configuration Example.

 0

 5

 10

 15

 20

 25

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Ba
nd

w
id

th
 (G

bp
s)

Fair Share

(a) f g1

 0

 5

 10

 15

 20

 25

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Ba
nd

w
id

th
 (G

bp
s)

Fair Share

(b) f g2

Figure 3: Example Bandwidth Functions.

he BwE configuration maps users to user_aggregates.
Mapping from user-fg to site-fg can be derived from this. he

BwE configuration policies describe how site-fgs share the
network and also describe how user-fgs within a site-fg share
bandwidth allocated to the site-fg. For all FlowGroups in a

level of hierarchy, the BwE configuration defines: 1) band-
width for each allocation level and 2) within each allocation
level,weight of the FlowGroup that can change based on allo-
cated bandwidth. An example of a BwE configuration for the
relative priority for two FlowGroups, f g1 and f g2 is shown
in Table 1.

3.2.3 Bandwidth Functions

he configured sharing policies are represented insideBwE
as bandwidth functions1. A bandwidth function [17] specifies
the bandwidth allocation to a FlowGroup as a function of
its relative priority on an arbitrary, dimensionlessmeasure of
available fair share capacity,whichwe call fair share. fair share
is an abstractmeasure and is only used for internal computa-
tion by the allocation algorithm. Based on the config, every
site-fg and user-fg is assigned a piece-wise linear monotonic
bandwidth function (e.g. Figure 3). It is capped at the dynamic
estimated demand (Section 6.1) of the FlowGroup. hey can
also be aggregated to create bandwidth functions at the higher
levels (Section 3.2.4).
he fair share dimension can be partitioned into regions

(corresponding to allocation levels in the BwE configura-
tion) of strict priority. Within each region, the slope2 of a
FlowGroup’s bandwidth function defines its relative priority
or weight. Once the bandwidth reaches the maximum ap-
proved for the FlowGroup in a region, the bandwidth function
flattens (0 slope) until the start of the next region. Once the

1Bandwidth functions are similar to utility functions [8, 6]
except that these are derived from static configured pol-
icy (Section 3.2) indicating network fair share rather than
application-specified utility as a function of allocated band-
width.
2Slope can be amultiple of weight as long as the samemulti-
ple is used for all FlowGroups.
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Figure 4: Bandwidth Sharing on a Bottleneck Link.

bandwidth function reaches the FlowGroup’s estimated de-
mand, it becomes flat from that point for all the following
regions.
Figure 3 shows example bandwidth functions for two Flow-

Groups, f g1 and f g2, based on BwE configuration as defined
in Table 1. here are two regions of fair share: Guaranteed (0-
2) and Best-Effort (2-∞). he endpoints for each region are
system-level constants defined in BwE configuration. BwE’s
estimated demand of f g1 is 15Gbps and hence, its bandwidth
function flattens past that point. Similarly, f g2’s estimated de-
mand is 20Gbps.
We present a scenario where f g1 and f g2 are sharing one

constrained link in the network. he goal of the BwE algo-
rithm is to allocate the bandwidth of the constrained link
such the following constraints are satisfied: 1) f g1 and f g2 get
maximumpossible but equal fair share, and 2) sumof their al-
located bandwidth corresponding to the allocated fair share
is less than or equal to the available bandwidth of the link.
Figure 4 shows the output of the BwE allocation algorithm
(Section 5.3) with varying link’s available bandwidth shown
on the x-axis. he allocated fair share to the FlowGroups is
shown on the right y-axis and the corresponding bandwidth
allocated to the FlowGroups is shown on the le� y-axis. Note
that the constraints above are always satisfied at each snap-
shot of link’s available bandwidth. One can verify using this
graph that the prioritization as defined byTable 1 is respected.

One of BwE’s principal responsibilities is to dynamically
determine the level of contention for a particular resource
(bandwidth) and to then assign the resource to all compet-
ing FlowGroups based on current contention. Higher val-
ues of fair share indicate lower levels of resource contention
and correspondingly higher levels of bandwidth that can po-
tentially be assigned to a FlowGroup. Actual consumption
is capped by current FlowGroup estimated demand,making
the allocation work-conserving (do not waste any available
bandwidth if there is demand).
he objective of BwE is themax-min fair [6] allocation of

fair share to competing site-fgs and then the max-min fair
allocation of fair share to user-fgs within a site-fg. For each
user-fg, maximize the utilization of the allocated bandwidth
to the user-fg by subdividing it to the lower levels of hierar-

Figure 5: BwE Architecture.

chy (job-fgs and task-fgs) equally (no weights) based on their
estimated demands.

3.2.4 Bandwidth Function Aggregation

Bandwidth Functions can be aggregated from one Flow-
Group level to another higher level. We require such aggre-
gation when input configuration defines a bandwidth func-
tion at a finer granularity, but the BwE algorithm runs over
coarser granularity FlowGroups. For example, BwE’s input
configuration provides bandwidth function at user-fg level,
while BwE (Section 5.1) runs across cluster-fgs. In this case,
we aggregate user-fgs bandwidth functions to create a cluster-
fg bandwidth function.We create aggregated bandwidth func-
tions for a FlowGroup by adding bandwidth value for each
value of fair share for all its children.

4. SYSTEM DESIGN

BwE consists of a hierarchy of components that aggregate
network usage statistics and enforce bandwidth allocations.
BwE obtains topology and other network state from a net-
work model server and bandwidth sharing policies from an
administrator-specified configuration. Figure 5 shows the
functional components in BwE.

4.1 Host Enforcer

At the lowest level of the BwE hierarchy, theHost Enforcer
runs as a user space daemon on end hosts. Every five sec-
onds, it reports bandwidth usage of local application’s tasks-
fgs to the Job Enforcer. In response, it receives bandwidth
allocations for its task-fgs from the Job Enforcer. he Host
Enforcer collects measurements and enforces bandwidth al-
locations using the HTB (Hierarchical Token Bucket) queu-
ing discipline in Linux.

4.2 Job Enforcer

Job Enforcers aggregate usages from task-fgs to job-fgs and
report job-fgs’ usages every 10 seconds to the Cluster En-
forcer. In response, the Job Enforcer receives job-fgs’ band-
width allocations from theClusterEnforcer.he JobEnforcer
ensures that for each job-fg, bandwidth usage does not ex-
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ceed its assigned allocation. To do so, it redistributes the as-
signed job-fg allocation among the constituent task-fgs using
theWaterFill algorithm (Section 5.4).

4.3 Cluster Enforcer

he Cluster Enforcermanages two levels of FlowGroup ag-
gregation - user-fgs to job-fgs and cluster-fgs to user-fgs. It
aggregates usages from job-fgs to user-fgs and computes user-
fgs’ bandwidth functions based on input from a configuration
file. It aggregates the user-fgs’ bandwidth functions (capped
at their estimated demand) to cluster-fg bandwidth functions
(Section 3.2.4), reporting them every 15 seconds to theGlobal
Enforcer. In response, the Cluster Enforcer receives cluster-
fgs’ bandwidth allocations,which it redistributes among user-
fgs and subsequently to job-fgs (Section 5.4).

4.4 Network Model Server

he Network Model Server builds the abstract network
model for BwE. Network information is collected by stan-
dard monitoring mechanisms (such as SNMP). Freshness is
critical since paths change dynamically. BwE targets getting
an update every 30 seconds. he consistency of themodel is
verified using independentmechanisms such as traceroute.

4.5 Global Enforcer

he Global Enforcer sits at the top of the Bandwidth En-
forcer hierarchy. It divides available bandwidth capacity on
the network between different clusters. he Global Enforcer
takes the following inputs: i) bandwidth functions from the
Cluster Enforcers summarizing priority across all users at
cluster-fg level, ii) global configuration describing the shar-
ing policies at site-fg level, and iii) network topology, link ca-
pacity, link utilization and drop statistics from the network
model server. A small fraction of flows going over a link may
not be under BwE control. To handle this, for every link we
also compute dark bandwidth. his is the amount of traffic

going over the linkwhichBwE is unaware of.hismay be due
to packet header overhead (particularly tunneling in network
routers) or various failure conditions where BwE has incom-
plete information. Dark bandwidth is the smoothed value of
(actual link usage - BwE reported link usage), and link al-
locatable capacity is (link capacity - dark bandwidth). BwE
reported link usage is computed by taking the set of flows
(and their current usage) reported to the Global Enforcer by
Cluster Enforcers, and mapping them to the paths and links
for those flows. Given these inputs, theGlobal Enforcer runs
hierarchicalMPFA (Section 5.3) to compute cluster-fgs’ band-
width allocations and sends these allocations to Cluster En-
forcers.

5. BWE ALLOCATION ALGORITHM

One of the challenges we faced was defining the optimiza-
tion objective for bandwidth allocation to individual flows.
First, we did not wish to allocate bandwidth among compet-
ing 5-tuple flows but rather to competing FlowGroups. Sec-
ond, services do not compete for bandwidth at a single bottle-
neck link because services communicate from multiple clus-

ters to multiple other clusters, with each cluster pair utilizing
multiple paths. Hence, the bandwidth allocationmust simul-
taneously account formultiple potential bottlenecks.

Here,we present an adaptation of the traditional max-min
fairness objective for FlowGroups sharing a bottleneck link
tomultipath cluster-to-cluster communication. We designed
a centralizedMultiPath Fair Allocation (MPFA) algorithm to
determine global max-min fairness. We present a simpler
version of the problem with a single layer of FlowGroups
(Section 5.2) and then extend it to multiple layers of Flow-
Groups with different network abstractions in hierarchical
MPFA (Section 5.5).

5.1 Inputs and Outputs

Inputs to the BwE algorithm are task-fgs’ demands, band-
width functions of user-fgs and site-fgs and network paths for
cluster-fgs and site-fgs.We aggregate task-fgs’ demands all the
way up to site-fgs and aggregate user-fgs’ bandwidth functions
to cluster-fgs’ bandwidth functions (Section 3.2.4). We run
global hierarchicalMPFA (Section 5.5) on site-fgs and cluster-
fgs that results in cluster-fgs’ allocations. hen, we distribute
cluster-fgs’ allocations to task-fgs (Section 5.4), which are en-
forced at the hosts.

5.2 MPFA Problem

Inputs forMPFA are:

1. Set of n FlowGroups, F = { f i , ∀i ∣ 1 ≤ i ≤ n} where
FlowGroups are defined in Section 3.1. Each f i has an
associated bandwidth function (Section 3.2.3), B f i . B f i

maps fair share to bandwidth for f i . If f i is allocated fair
share of s, then it should be allocated bandwidth equal
to B f i (s).

2. Set of m links, L = {lk , ∀k ∣ 1 ≤ k ≤ m}. Each link lk
has an associated allocatable capacity c lk .

3. Set of n f i paths for each f i . Each path, p
f i
j , has an as-

sociated weight, w
f i
j , where 1 ≤ j ≤ n f i and for each

f i , ∑1≤ j≤n f i
w

f i
j = 1. Each path, p

f i
j , is a set of links, i.e,

p
f i
j ⊆ L.

We define the fraction of f i that traverse lk as FR( f i , lk).
his is calculated as the sumofweights,w

f i
j , for all paths, p

f i
j ,

for the FlowGroup, f i , such that lk ∈ p
f i
j .

FR( f i , lk) = ∑
1≤ j≤n f i

∣lk∈p
f i
j

w
f i
j

he output of MPFA is the max-min fair share alloca-
tion s f i to each FlowGroup, f i , such that ascending sorted
(s f1 , s f2 , . . . , s fn) ismaximized in lexicographical order. Such
maximization is subject to the constraint of satisfying capac-
ity constraints for all links, lk .

∑
∀ f i

FR( f i , lk) × B f i (s f i ) ≤ c lk
5.3 MPFA Algorithm

heMPFA algorithm (Algorithm 1) can be described in the
following high-level steps:
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Figure 6: MPFA Example.

1. For each link, lk , calculate the link’s bandwidth func-
tion, B lk , by aggregating bandwidth functions of all
non-frozen3 FlowGroups, f i , in appropriate fractions,
FR( f i , lk). B lk maps fair share, s, to allocation on the
link lk when all FlowGroups traversing lk are allocated
the fair share of s.

2. Find the bottleneck fair share, sblk , for each remaining

(not bottlenecked yet) link, lk , by finding the fair share
corresponding to its capacity, c lk in the link’s bandwidth
function, B lk . Since bandwidth function is a piece-wise
linearmonotonic function, finding fair share for a given
capacity can be achieved by a binary search of the in-
teresting points (points where the slope of the function
changes).

3. he link, lb , with the minimum bottleneck fair share,
smin is the next bottleneck. If theminimum bottleneck
fair share equals∞, then terminate.

4. Mark the link, lb , as a bottleneck link. Freeze all Flow-
Groups, f i , with non-zero fraction, FR( f i , lb), on lb .
Frozen FlowGroups are not considered to find further
bottleneck links. Subtract frozen FlowGroups’ band-
width functions beyond the bottleneck fair share,smin

from all remaining links.

5. If any link is not a bottleneck, continue to step 2.

Figure 6 shows an example of the allocation algorithmwith
three links, l1, l2 and l3,with capacity 13, 13 and 4 respectively.
Assume all bandwidth numbers are in Gbps for this exam-
ple. here are three FlowGroups: 1) f1 takes two paths (l2 and
l1 → l3) with weights 0.75 and 0.25 respectively, 2) f2 takes
one path (l2), and 3) f3 taking one path (l1). All FlowGroups
have demand of 18. Assume f1, f2 and f3 have weights of 1, 2
and 3 respectively, corresponding bandwidth functions of the
FlowGroups are: B f1(s) = min(18, s), B f2(s) = min(18, 2s)
and B f3(s) =min(18, 3s).
Based on that paths, fraction of FlowGroups( f i) travers-

ing Links(lk) are: FR( f1 , l1) = 0.25, FR( f1 , l2) = 0.75,
FR( f1 , l3) = 0.25, FR( f2 , l2) = 1 and FR( f3 , l1) = 1.
We calculate bandwidth function for links as:

B l1(s) = ( 0.25(min(18, s))
+min(18, 3s) ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

3.25s ∶ 0 ≤ s < 6
0.25s + 18 ∶ 6 ≤ s < 18
22.5 ∶ s ≥ 18

3A frozen FlowGroup is a FlowGroup that is already bottle-
necked at a link and does not participate in the MPFA algo-
rithm run any further.

Input:
FlowGroups, F ∶ { f i ,∀i ∣ 1 ≤ i ≤ n};
Links, L ∶ {lk ,∀k ∣ 1 ≤ k ≤ m};
Allocatable capacities for ∀lk : {c lk ,∀k ∣ 1 ≤ k ≤ m};
bandwidth function for f i : B f i ;
// ∀ f i ,∀lk, Fraction of f i traversing link, lk
Function, FR( f i , lk) : Output is a fraction ≤ 1;

Output:
Allocated fair share for ∀ f i :{s f i ,∀i ∣ 1 ≤ i ≤ n};

Bottleneck Links , Lb
← ∅;

Frozen FlowGroups, F f
← ∅;

foreach f i do s f i ←∞;
// Calculate bandwidth function for each lk
foreach lk do ∀s, B lk (s)← ∑∀ f i

FR( f i , lk) × B f i (s) ;

while (∃lk ∣ lk ∉ L
b) ∧ (∃ f i ∣ f i ∉ F

f ) do
Bottleneck link, lb ← nul l ;

Min Bottleneck fair share, smin
←∞;

foreach lk ∉ L
b
do

Find s
b
lk
∣ c lk = B lk (s

b
lk
);

if sblk < s
min

then s
min
← s

b
lk
; lb ← lk ;

if lb ≠ nul l then Add lb to L
b ;

else break;
// Freeze f i taking the bottleneck link, lb

foreach f i ∣ FR( f i , lb) > 0 ∧ f i ∉ F
f
do

Add f i to F
f ; s f i ← s

min ;
// Remove allocated bandwidth from B f i

∀s, B f i (s)← max(0, B f i (s) − B f i (s
min));

// Subtract B f i from B lk
for all its links

foreach lk ∣ FR( f i , lk) > 0 ∧ lk ∉ L
b
do

∀s, B lk (s)← B lk (s) − FR( f i , lk) × B f i (s);

Algorithm 1:MPFA Algorithm

B l2(s) = ( 0.75(min(18, s))
+min(18, 2s) ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2.75s ∶ 0 ≤ s < 9
0.75s + 18 ∶ 9 ≤ s < 18
31.5 ∶ s ≥ 18

B l3(s) = 0.25(min(18, s)) = { 0.25s ∶ 0 ≤ s < 18
4.5 ∶ s ≥ 18

Next, we find bottleneck fair share, sblk for each link, lk ,

such that B lk(sblk) = c lk . his results in sbl1 = 4, sbl2 ≈ 4.72,

sbl3 = 16. his makes l1 the bottleneck link and freezes both

f1 and f3 at fair share of 4. l1 will not further participate in
MPFA. Since f1 is frozen at fair share of 4, B l2 and B l3 need to
be updated to not account for B f1 beyond fair share of 4. he

updated functions are:

B l2(s) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2.75s ∶ 0 ≤ s < 4
2s + 3 ∶ 4 ≤ s < 9
21 ∶ s ≥ 9

B l3(s) = { 0.25s ∶ 0 ≤ s < 4
1 ∶ s ≥ 4

We recalculate sbl2 and sbl3 based on the new values for B l2

and B l3 . his results in sbl2 = 5 and sbl3 =∞. l2 is the next bot-

tleneckwith fair share of 5. f2 is now frozen at the fair share of
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5. Since all FlowGroups are frozen,MPFA terminates. he fi-
nal allocation to ( f1, f2, f3) in fair share is (4, 5, 4), translating
to (4Gbps, 10Gbps, 12Gbps) using the corresponding band-
width functions.his allocation fills bottleneck links, l1 and l2
completely and fair share allocation (4, 5, 4) is max-min fair
with the given pathing constraints. No FlowGroup’s alloca-
tion can be increased without penalizing other FlowGroups
with lower or equal fair share.

5.3.1 Interaction with Traffic Engineering (TE)

he BwE algorithm takes paths and their weights as input.
A separate system, TE [17, 11, 12], is responsible for finding
optimal pathing that improves BwE allocation. Both BwE
and TE are trying to optimize network throughput in a fair
way and input flows are known in advance. However, the
key difference is that in BwE problem formulation, paths and
their weights are input constraints, where-as for TE [17, 11,
12], paths and their weights are output. In our network, we
treat TE and BwE as independent problems.

TE has more degrees of freedom and hence can achieve
higher fairness. In the above example, the final allocation
can be more max-min fair if f1 only uses the path l2. In this
case,MPFAwill allocate fair share to flow groups ≈ (4.33, 4.33,
4,33)with corresponding bandwidth of (4.33Gbps, 8.66Gbps,
13Gbps). Hence, a good traffic engineering solution results in
better (moremax-min fair) BwE allocations.

We runTE [17] and BwE independently because they work
at different time-scales and different topology granularity.
Since TE is more complex, we aggregate topology to site-
level where-as for BwE, we are able to run at a more gran-
ular cluster-level topology. TE re-optimizes network less of-
ten because changing network pathsmay result in packet re-
ordering, transient loss [16] and resulting routing changes
may add significant load to network routers. Separation of
TE and BwE also gives us operational flexibility. he fact
that both systems have the same higher level objective func-
tion helps ensure that their decisions are aligned and efficient.
Even though in our network we run these independently the
possibility of having a single system to do both can not be
ruled out in future.

5.4 Allocation Distribution

MPFA allocates bandwidth to the highest level of aggrega-
tions, site-fgs. his allocation needs to be distributed to lower
levels of aggregation. Distribution of allocation from cluster-
fg to lower levels is simpler since the network abstraction
does not change and the set of paths remains the same during
de-aggregation. We describe such distributions in this sec-
tion. he distribution from site-fg to cluster-fg is more com-
plex since the network abstraction changes from site-level to
cluster-level (Figure 1), requiring an extension of MPFA to
Hierarchical MPFA (Section 5.5) to allocate bandwidth di-
rectly to cluster-fgs while honoring fairness and network ab-
stractions at site-fg and cluster-fg level.
To distribute allocation from a cluster-fg to user-fgs,we cal-

culate the aggregated bandwidth functions for the cluster-fgs
(Section 3.2.4) and determine the fair share, su , correspond-
ing to the cluster-fg’s bandwidth allocation. We use su to look

Figure 7: Allocation UsingWaterFill.

up the bandwidth allocation for each user-fg using its band-
width function.

Bandwidth distribution from a user-fg to job-fgs and from
a job-fg to task-fgs is simple max-min fair allocation of one
resource to several competing FlowGroups using aWaterFill
as shown in Figure 7. WaterFill calculates thewater level cor-
responding to themaximum allocation to any FlowGroup.
he allocation to each child FlowGroup is

min(demand , waterlevel). If there is excess band-
width still remaining a�er running the WaterFill, it is
divided among the FlowGroups as bonus bandwidth. Since
some (or a majority) of the FlowGroups will not use the
bonus assigned to them, the bonus is over-allocated by a

configurable scaling factor.

5.5 Hierarchical MPFA

Next,we describe hierarchicalMPFA,which reconciles the
complexity between site-fg and cluster-fg level allocation.he

fairness goal is to allocate max-min fair share to site-fg re-
specting bandwidth functions and simultaneously observing
inter-site and intra-site topological constraints (Figure 1). Be-
cause not all cluster-fgs within a site-fg share the sameWAN
paths, individual cluster-fgs within a site-fg may bottleneck
on different intra-site links.
Wemotivate hierarchical fairness using an example based

on Figure 1. All links have 100Gbps capacity, except l1
(5Gbps) and l9 (40Gbps). here are two site-fgs, s f1 from S1
to S3 and s f2 from S2 to S3. s f1 consists of cluster-fgs: c f1
from C1

1 to C
1
3 and c f2 from C2

1 to C
1
3. s f2 consists of a cluster-

fg: c f3 from C1
2 to C1

3. All site-fgs have equal weights and for
each site-fg, all itsmember cluster-fgs have equal weights. c f1
and c f3 have 100Gbps of demand while c f2 has a 5Gbps de-
mand. If we run MPFA naively on site-fgs, then s f1 and s f2
will be allocated 20Gbps each due to the bottleneck link, l9.
However,whenwe further subdivide s f1’s 20Gbps among c f1
and c f2, c f1 only receives 5Gbps due to the bottleneck link l1
while c f2 only has demand of 5Gbps. c f3 receives all of s f2’s
20Gbps allocation.
With this naive approach, the final total allocation on l9 is

30Gbpswasting 10Gbps, where c f3 could have used the extra
10Gbps. Allocation at the site level must account for indepen-
dent bottlenecks in the topology one layer down. Hence, we
present an efficient hierarchical MPFA to allocate max-min
fair bandwidth among site-fgs while accounting for cluster-
level topology and fairness among cluster-fgs.
he goals of hierarchicalMPFA are:
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● Ensure max-min fairness of fair share across site-fg
based on site-fgs’ bandwidth functions.

● Within a site-fg, ensure max-min fairness of fair share
across cluster-fgs using cluster-fgs’ bandwidth functions.

● he algorithm should be work-conserving.

● he algorithm should not over-allocate any link in the
network, hence, should enforce capacity constraints of
intra-site and inter-site links.

For hierarchicalMPFA, wemust runMPFA on all cluster-
fgs to ensure that bottleneck links are fully utilized and en-
forced. To do so, we must create effective bandwidth func-
tions for cluster-fgs such that the fairness among site-fgs and
fairness within a site-fg are honored.

We enhance MPFA in the following way. In addition to
bandwidth function, Bc f i , for cluster-fg, c f i , we further con-
sider the bandwidth function, Bs fx for site-fg, s fx . Using
∀i , Bc f i and ∀x , Bs fx , we derive the effective bandwidth func-
tion, Be

c f i
, for c f i .

We create Be
c f i

by transforming Bc f i along the fair share di-

mension while preserving the relative priorities of c f i with
respect to each other. We call bandwidth values of different
c f i as equivalent if they map to the same fair share based
on their respective bandwidth functions. To preserve rela-
tive priorities of ∀c f i ∈ s fx , the set of equivalent bandwidth
values should be identical before and a�er the bandwidth
functions transformation. Any transformation applied in fair
share should preserve this property as long as the same trans-
formation is applied to all c f i ∈ s fx . Allocated bandwidth to
each c f i on a given available capacity (e.g. Figure 4) should
be unchanged due to such transformation. In addition, we
must find a transformation such that when all c f i ∈ s fx use
their effective (transformed) bandwidth functions, Be

c f i
, they

can together exactly replace s fx . his means that when Be
c f i

are added together, it equals Bs fx . ∀s,∑∀i∣c f i∈s fx B
e
c f i
(s) =

Bs fx (s).
he steps to create Be

c f i
are:

1. For each site-fg, s fx , create aggregated bandwidth func-
tion, Ba

s fx
(Section 3.2.4):

∀s, Ba
s fx
(s) = ∑

∀c f i∈s fx

Bc f i (s)

2. Find a transformation function of fair share from Ba
s fx

to Bs fx . he transformation function, Tx is defined as:

Tx(s) = s̄ ∣ Ba
s fx
(s) = Bs fx (s̄)

Note that since bandwidth function is piece-wise linear
monotonic function, just find Tx(s) for values for in-
teresting points (where slope changes in either Ba

s fx
or

Bs fx ).

3. For each c f i ∈ s fx , apply Tx on fair share dimension of
Bc f i to get B

e
c f i
.

Be
c f i
(Tx(s)) = Bc f i (s)
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Figure 8: Bandwidth Function Transformation Example

Again, just applying the transformation at the inter-
esting points (points where the slope of the function
changes) is sufficient.

An example of creating effective bandwidth function is
shown in Figure 8. MPFA algorithm as described in Sec-
tion 5.3 is run over cluster-fgs as FlowGroups with their ef-
fective bandwidth functions to achieve hierarchical fairness.
When we run hierarchical MPFA in the topology shown

in Figure 1, the allocation to c f3 increases to 30Gbps, fully
using bottleneck link l9. However, if c f2 has higher demand
(say 100Gbps), then it will not receive benefit of c f1 being
bottlenecked early and s f1 will not receive its full fair share
of 20Gbps. To resolve this, we rerun the bandwidth function
transformation for a site-fg when any of its member cluster-
fgs is frozen due to an intra-site bottleneck link.

6. SYSTEM IMPLEMENTATION

his section describes various insights, design and imple-
mentation considerations thatmade BwE a practical and use-
ful system.

6.1 Demand Estimation

Estimating demand correctly is important for fair alloca-
tion and high network utilization. Estimated demand should
be greater than current usage to allow each FlowGroup to
ramp its bandwidth use. But high estimated demand (com-
pared to usage) of a high priority FlowGroup canwaste band-
width. In our experience, asking users to estimate their de-
mand is untenable because user estimates are wildly inaccu-
rate. Hence, BwE employs actual, near real-time measure-
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ments of application usage to estimate demand. BwE es-
timates FlowGroup demand by maintaining usage history:
Demand =max(max∆t(usage) × scale , min_demand)
We take the peak of a FlowGroup’s usage across ∆t time

interval,multiply it with a factor scale > 1 and take themax
with min_demand. Without the concept of min_demand,
small flows (few Kbps) would ramp to their real demand too
slowly. Empirically, we found that ∆t = 120s, scale = 1.1 and
min_demand = 10Mbps works well for user-fg for our net-
work applications. We use different values of min_demand
at different levels of the hierarchy.

6.2 WaterFill Allocation For Bursty Flows

he demands used in ourWaterFill algorithm (Section 5.4)
are based on peak historical usage and different child Flow-
Groups can peak at different times. his results in demand
over-estimation and subsequently the WaterFill allocations
can be too conservative. To account for burstiness and the re-
sulting statistical multiplexing,we estimate a burstiness factor
(≥ 1) for each FlowGroup based on its demand and sumof its
children’s demand:

burstiness f actor =
∑∀chi ldren estimated demand

parent′s estimated demand

Since estimated demand is based on peak historical usage
(Section 6.1), the burstiness factor of a FlowGroup is a mea-
sure of sumof peak usages of children divided by peak of sum
of usages of the children. Wemultiply a FlowGroup’s alloca-
tion by its burstiness factor before running theWaterFill.his
allows its children to burst as long as they are not bursting
together. If a FlowGroup’s children burst at uncoordinated
times, then the burstiness factor is high, otherwise the value
will be close to 1.

6.3 Fair Allocation for Satisfied Flow-
Groups

A Satisfied FlowGroup is one whose demand is less than
or equal to its allocation. Initially, we throttled each satis-
fied FlowGroup strictly to its estimated demand. However
we found that latency sensitive applications could not ramp
fast enough to their fair share on a congested link. We next
eliminated throttling allocations for all satisfied FlowGroups.
However, this lead to oscillations in system behavior as a

FlowGroup switched between throttled and unthrottled each
time its usage increased.
Our current approach is to assign satisfied FlowGroups a

stable allocation that reflects the fair share at infinite demand.
his allocation is a FlowGroup’s allocation if its demand grew
to infinity while demand for other FlowGroups remained
the same. When a high priority satisfied FlowGroup’s usage
increases, it will ramp almost immediately to its fair share.
Other low-priority FlowGroups will be throttled at the next
iteration of the BwE control loop. his implies that the ca-
pacity of a constrained link is oversubscribed and can result
in transient loss if a FlowGroup’s usage suddenly increases.
he naive approach for implementing user-fg allocation

involves running our global allocation algorithm multiple
times for each FlowGroup, assigning infinite demand to the
target user-fg without modifying the demand of other user-

Figure 9: Improving Network Utilization

fgs. Because multiple such runs across all FlowGroups does
not scale, we run one instance of the global algorithm and
pass toCluster Enforcers the bandwidth function for themost
constrained link for each FlowGroup. Assuming the most
constrained link does not change, the Cluster Enforcer can
efficiently calculate allocation for a FlowGroup with ∞ de-
mand in the constrained link, assuming it becomes the bot-
tleneck.

6.4 Improving Network Utilization

BwE allows network administrators to increase link uti-
lization by deploying high throughput NETBLT [10]-like
protocols for copy traffic. BwE is responsible for determin-
ing the flow transmission rate for these protocols. We mark
packets for such copy flowswith low priorityDSCP values so
that they absorb most of the transient network packet loss.
To ensure that the system achieves high utilization (>90%)
without affecting latency/loss sensitive flows such asweb and
video traffic, the BwE Global Enforcer supports two rounds
of allocation.

● In the first round, link capacities are set conservatively
(for example at 90% of actual capacity). All traffic types
are allowed to participate in this round of allocation.

● In the second round, theGlobal Enforcer allocates only
copy traffic, but it scales up the links aggressively, e.g.,
to 105% of link capacity.

● We also adjust link scaling factors depending on loss
on the link. If a link shows loss for higher QoS classes,
we reduce the scaling factor. his allows us to better
achieve a balance between loss and utilization on a link.

Figure 9 shows link utilization increasing from 80% to 98%
as we adjust the link capacity. he corresponding loss for
copy traffic also increases to an average 2% loss with no in-
creases in loss for loss-sensitive traffic.

6.5 Redundancy and Failure Handling

For scale and fault tolerance, we run multiple replicas at
each level of the BwE hierarchy. here are N live and M cold
standby JobEnforcers in each cluster. Hosts report all task-fgs
belonging to the same job-fg to the same Job Enforcer, shard-
ing different job-fgs across Job Enforcers by hashing <user
name, job name, destination cluster, traffic_type>.
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Cluster Enforcers run asmaster/hot standby pairs. Job En-
forcers report all information to both. Both instances in-
dependently run the allocation algorithm and return band-
width allocations to Job Enforcers. he Job Enforcers enforce
the bandwidth allocations received from the master. If the
master is unreachable Job Enforcers switch to the allocations
received from the standby. We employ a similar redundancy
approach between Global Enforcers and Cluster Enforcers.
Communication between BwE components is high prior-

ity and is not enforced. However, there can be edge scenar-
ios where BwE components are unable to communicate with
eachother. Some examples are: BwE job failures (e.g. binaries
go into a crash loop) causing hosts to stop receiving updated
bandwidth allocations, network routing failures preventing
Cluster Enforcers from receiving allocation from the Global
Enforcers, or the network model becoming stale.

he general strategy for handling these failures is that we
continue to use last known state (bandwidth allocations or
capacity) for several minutes. For longer/sustained failures,
in most cases we eliminate allocations and rely on QoS and
TCP congestion management. For some traffic patterns such
as copy-traffic we set a low static allocation. We have found
this design pattern of defense by falling back to sub-optimal
but still operable baseline systems invaluable to building ro-
bust network infrastructure.

7. EVALUATION

7.1 Micro-benchmarks on Test Jobs

We begin with some micro-benchmarks of the live BwE
system to establish its baseline behavior. Figure 12(a) demon-
strates BwE fairness across users running different number
of TCP connections. Two users send traffic across a network
configured to have 100Mbps of available capacity between the
source/destination clusters. User1 has two connections and a
weight of one. We vary the number of connections for User2
(shownon the x-axis) and itsBwE assignedweight.he graph
shows the throughput ratio is equivalent to the users weight
ratio independent of the number of competing TCP flows.
Nextwe show how quickly BwE can enforce bandwidth al-

locations with and without the infinite demand feature (Sec-
tion 6.3). In this scenario there are 2 users on a simulated
100Mbps link. Initially, User1 has weight of 3 and User2 has
weight of 1. At 120s, we change the weight of User2 to 12. In
Figure 12(b), where the infinite demand feature is disabled,
we observe thatBwE converges at 580s. In Figure 12(c),where
infinite demand feature is enabled,we observe it converges at
160s. his demonstrates BwE can enforce bandwidth alloca-
tions and converge in intervals of tens of seconds. his delay
is reasonable for our production WAN network since large
bandwidth consumers are primarily copy traffic.

7.2 System Scale

A significant challenge for BwE deployment is the system’s
sheer scale. Apart from organic growth to flows and network
scale other reasons that affect system scale were supporting

50.0k
400.0k
800.0k

1.2M
1.6M

Feb 2012 Jul 2012 Jan 2013 Jul 2013 Dec 2013
0.0
30.0M
60.0M
90.0M
120.0M
150.0M
180.0M

us
er

/jo
b/

cl
us

te
r f

lo
w

 g
ro

up
s

ta
sk

 fl
ow

 g
ro

up
s

user flow groups (left)
job flow groups (left)

cluster flow groups (left)
task flow groups (right)

Figure 10: FlowGroup Counts
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fine-grained bandwidth allocation and decreasing reporting
interval for enforcement frequency.
Figure 10 shows growth in FlowGroups over time. As ex-

pected, as we go up in the hierarchy the number of Flow-
Groups drops significantly, allowing us to scale global com-
ponents. Figure 11 shows the amount of resources used by
our distributed deployment (excepting per-host overhead). It
also shows the communication overhead of the control plane.
We can conclude that the overall cost is very small relative to
enforcing traffic generated by hundreds of thousands of cores
using terabits/sec of bandwidth capacity.

Table 2 shows the number of FlowGroups on a congested
link at one point in time relative to all outgoing flow groups
from amajor cluster enforcer. It gives an idea of overall scale
in terms of the number of competing entities. here are por-
tions of the networkwithmillions of competing FlowGroups.
Table 3 shows our algorithm run time at various levels in the
hierarchy. We show max and average (across multiple in-
stances) for each level except global. Overall, our goal is to
enforce large flows in a few minutes, which we are able to
achieve. he table also shows that the frequency of collecting
and distributing data is a major contributing factor to reac-
tion time.

site cluster user job task

One Congested Link 336 3.0k 40k 400k 12714k

Largest Cluster Enforcer 55 3.5k 63k 165k 15660k

Avg across cluster enforcers 53 1.5k 22k 60k 6496k

Global 1594 47.4k 682k 1825k 194088k

Table 2: Number of *-fgs (at various levels in BwE) for a con-
gested link and for a large cluster enforcer.

Algo Run-time Algo Reporting
Max(s) Mean(s) Interval(s) Interval(s)

Global Enforcer 3 - 10 10

Cluster Enforcer .16 .15 4 10

Job Enforcer <0.01 <0.01 4 5

Table 3: Algorithm run time and feedback cycle in seconds.
Algorithm interval is how frequently algorithm is invoked
and Reporting interval is the duration between two reports
from the children in BwE hierarchy.
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(a) BwE Fairness (b) Allocation Capped at Demand (c) Allocation not Capped at Demand

Figure 12: BwE compliance

Min Max Mean

Number of user-fg 3% 11% 7%

Number of job-fg 3% 10% 6%

Usage 94% 99% 97%

Table 4: Percentage of FlowGroups enforced.

BwE tracks about 500k user-fgs andmillions of job-fgs, but
only enforces a small fraction of these. Processing for unen-
forced FlowGroups is lightweight at higher levels of the BwE
hierarchy allowing the system to scale. Table 4 shows the frac-
tion of enforced flows and the fraction of total usage they rep-
resent. BwE only enforces 10%of the flows but these flows ac-
count for 94% of the traffic. We also found that for congested
links, those with more than 80% utilization, less than 1% of
the utilization belonged to unenforced flows. his indicates
BwE is able to focus its work on the subset of flows thatmost
contribute to utilization and any congestion.
We introduced a number of system optimizations to

address growth along the following dimensions: 1) Flow
Groups: Organic growth and increase in specificity (for e.g.,
delegation). For example, the overall design has been serv-
ing us through a growth of 10x from BwE’s inception (20M to
200M). 2) Paths: TrafficEngineering introducednew paths in
the system. 3) Links: Organic network Growth 4) Reporting
frequency: there is a balance between enforcement accuracy
and resource overhead. 5) Bottleneck links: he number of
bottleneck links affects the overall run time of the algorithm
on the Global Enforcer.

8. DISCUSSION AND FUTURE WORK

BwE requires accurate network modeling since it is a key
input to the allocation problem. his is challenging in an en-
vironment where devices fail o�en and new technologies are
being introduced rapidly. In many cases, we lack standard
APIs to expose network topology, routing and pathing infor-
mation. With So�ware Defined Networking, we hope to see
improvements in this area. Another challenge is that for scal-
ability,we o�en combine a symmetric fullmesh topology into
a single abstract link. his assumption however breaks dur-
ing network failures and handling these edge cases continues
to be a challenge.
Our FlowGroup abstraction is limited in that it allows

users sending from multiple source/destination cluster pairs
over the same bottleneck link to have an advantage. We are

exploring abstractions where we can provide fair share to all
users across all bottleneck links irrespective of the number
and placement of communicating cluster pairs. Other areas
of research include improving the reaction time of the control
system while scaling to a large number of FlowGroups, pro-
viding fairness at longer timescales (hours or days) and in-
cluding flow deadlines in the objective function for fairness.

8.1 Broader Applicability

Our work is motivated by the observation that per-flow
bandwidth allocation is no longer the ideal abstraction for
emerging WAN use cases. We have seen substantial bene-
fit of BwE to applications for WAN distributed computing
and believe that it is also applicable to a number of emerg-
ing application classes in the broader Internet. For example,
video streaming services for collaboration or entertainment
increasingly dominate WAN communication. hese appli-
cations have well-understood bandwidth requirements with
step functions in additional utility from incremental band-
width allocation. Consider that a 480P video stream may
receive no incremental benefit from an additional 100Kbps
of bandwidth; only sufficient additional bandwidth to enable
720P streaming is useful. Finally, homes and businesses are
trending toward multiple simultaneous video streams with
known relative priority and incremental bandwidth utility, all
sharing a single bottleneck with known capacity.

Next, consider themove toward an Internet ofhings [29]
where hundreds of devices in a home or business may have
varying wide-area communication requirements. hese ap-
plications may range from home automation, to security,
health monitoring, to backup. For instance, home security
may have moderate bandwidth requirements but be of the
highest priority. Remote backup may have substantial, sus-
tained bandwidth requirements. However, the backup does
not have a hard deadline and is largely insensitive to packet
loss. Investigating BwE-basedmechanisms for fair allocation
based on an understanding of relative application utility in
response to additional bandwidth is an interesting area of fu-
ture work.

9. RELATED WORK

his paper focuses on allocating bandwidth among users
in emergingmulti-datacenterWAN environments. Given the
generality of the problem,we necessarily build on a rich body
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of related efforts, including utility functions [8],weighted fair
sharing [2, 11, 12, 8] and host-based admission control [9].
We extend existingUtilitymax-min approaches [8] formulti-
path routing and hierarchical fairness.
Weighted queuing is one common bandwidth allocation

paradigm. While a good starting point, we find weights
are insufficient for delivering user guarantees. Relative to
weighted queuing, we focus on rate limiting based on de-
mand estimation. BwE control is centralized and protocol
agnostic, i.e., general to TCP and UDP.his is in contrast to
DRL [25], which solves the problem via distributed rate con-
trol for TCP while not accounting for network capacity ex-
plicitly.
Netshare [20] and Seawall [30] also use weighted band-

width allocation mechanisms. Seawall in particular achieves
per-link proportional fairness. We have foundmax-min fair-
ness to bemore practical because it provides better isolation.

Gatekeeper [26] also employs host-based hierarchical to-
ken buckets to share bandwidth among data center ten-
ants, emphasizing work-conserving allocation. Gatekeeper
however assumes a simplified topology for every tenant.
BwE considers complex topologies, multi-path forwarding,
centralized bandwidth allocation, and a range of flexible
bandwidth allocation mechanisms. Secondnet [15] provides
pair-wise bandwidth guarantees but requires accurate user-
provided demands and is not work conserving.
Oktopus [4]proposes a datacenter tree topologywith spec-

ified edge capacity. While suitable for datacenters, it is not a
natural fit for the WAN where user demands vary based on
source-destination pairs. he BwE abstraction is more fine-
grained, with associated implementation and configuration
challenges. Oktopus also ties the problem of bandwidth al-
location with VM placement. Our work however does not
affect computation placement but rather takes the source of
demand as fixed. We believe there are opportunities to ap-
ply such joint optimization to BwE. Datacenter bandwidth
sharing efforts such as ElasticSwitch [24], FairCloud [23] and
EyeQ [18] focus on a hosemodel for tenants. EyeQ uses ECN
todetect congestion at the edge and assumes a congestion free
core. In contrast, our flow-wise bandwidth sharing model al-
lows aggregation across users and is explicitly focused on a

congested core.
Recent efforts such as SWAN [16], and B4 [17] are closely

related but focus on the network and routing infrastructure
to effectively scale and utilize emergingWAN environments.
In particular, they focus on employing So�ware DefinedNet-
working constructs for controlling and efficiently scaling the
network. Our work is complementary and focuses on en-
forcing policies given an existing multipath routing con-
figuration. Jointly optimizing network routing, and band-
width allocation is an area for future investigation. TEM-
PUS [19] focuses on optimizing network utilization by ac-
counting for deadlines for long-lived flows . Our bandwidth
sharing model applies to non-long-lived flows as well and
does not require deadlines to be known ahead of time. Flow
deadlines open up possibility of further optimization (for ex-
ample, by smoothing bandwidth allocation over a longer pe-
riod of time) and that remains an area for future work for us.

Work in RSVP, Differentiated Services and Traffic Engi-
neering [14, 27, 7, 22, 21, 1, 5] overlaps in terms of goals. How-
ever, these approaches are network centric, assuming that
host control is not possible. In some sense,we take the oppo-
site approach, considering an orthogonal hierarchical con-
trol infrastructure that leverages host-based demand mea-
surement and enforcement.
Congestion Manager [3] is an inspiration for our work on

BwE, enabling a range of flexible bandwidth allocation poli-
cies to individual flows based on an understanding of ap-
plication requirements. However, Congestion Manager still
manages bandwidth at the granularity of individual hosts,
whereas we focus on the infrastructure and algorithms for
bandwidth allocation in a large-scale distributed computing
WAN environment.

10. CONCLUSIONS

In this paper, we present Bandwidth Enforcer (BwE), our
mechanism for WAN bandwidth allocation. BwE allocates
bandwidth to competing applications based on flexible pol-
icy configured by bandwidth functions. BwE supports hierar-
chical bandwidth allocation and delegation among services
while simultaneously accounting for multi-path WAN com-
munication.
Based on multiple years of production experience, we

summarize a number of important benefits to our WAN.
First, BwE provides isolation among competing services, de-
livering plentiful capacity in the common case while main-
taining required capacity under failure andmaintenance sce-
narios. Second, we provide a single point for specifying allo-
cation policy to administrators. While pathing, RTT, and ca-
pacity can shi� substantially, BwE continues to allocate band-
width according to policy. Finally, BwE enables theWAN to
run at higher levels of utilization than before. By tightly in-
tegrating new loss-insensitive file transfer protocols running
at low priority with BwE, we run many of our WAN links at
90% utilization.
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