



# University of Groningen

# BxGe120/+ Clusters with x=1-4

Hung Tan Pham, [No Value]; Rizzo, Helena Girame; Havenith, Remco W. A.; Minh Tho Nguyen, [No Value]

Published in: Journal of Physical Chemistry C

DOI: 10.1021/acs.jpcc.9b05483

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Hung Tan Pham, N. V., Rizzo, H. G., Havenith, R. W. A., & Minh Tho Nguyen, N. V. (2019). BxGe120/+ Clusters with x=1-4: Germanium Tubes Stabilized by Three and Four Boron Dopants. *Journal of Physical* Chemistry C, 123(40), 24676-24684. https://doi.org/10.1021/acs.jpcc.9b05483

Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

#### Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

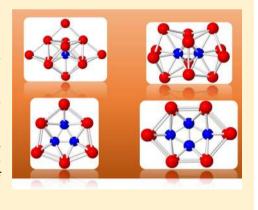
Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

# $B_xGe_{12}^{0/+}$ Clusters with x = 1-4: Germanium Tubes Stabilized by Three and Four Boron Dopants

Hung Tan Pham,<sup>§,||</sup> Helena Girame Rizzo,<sup>||</sup> Remco W. A. Havenith,<sup>⊥,#</sup> and Minh Tho Nguyen<sup>\*,†,‡</sup>

<sup>†</sup>Computational Chemistry Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam

<sup>‡</sup>Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam


<sup>§</sup>Institute for Computational Science and Technology (ICST), Quang Trung Software Park, Ho Chi Minh City 700000, Vietnam Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium

<sup>1</sup>Zernike Institute for Advanced Materials and Stratingh Institute for Chemistry, University of Groningen, Groningen NL-9747 AG, The Netherlands

<sup>#</sup>Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), Gent B-9000, Belgium

Supporting Information

**ABSTRACT:** Some boron-doped germanium clusters  $B_xGe_{12}^q$  with x = 1, 2, 3, 3and 4 and q = 0, 1 were designed as stabilized double ring tubes. While the  $B_2Ge_{12}$  constitutes the smallest deltahedral germanium cluster, both  $B_3Ge_{12}$ and B<sub>4</sub>Ge<sub>12</sub> clusters present us, for the first time, with an endohedral tubular motif in which either the  $B_3$  or the  $B_4$  cycle is encapsulated inside a  $Ge_{12}$ hexagonal prism tube. Both B<sub>3</sub> and B<sub>4</sub> units thus satisfy a geometry requirement to create an endohedral structure within the Ge<sub>12</sub> double ring. Keeping their high symmetry, both B<sub>3</sub> and B<sub>4</sub> units generate delocalized bonds upon interaction with the Ge12 tubular framework and thereby induce an aromatic character for the resulting  $B_3Ge_{12}^+$  and  $B_4Ge_{12}$ , respectively. Their aromaticity was probed by the magnetic responses of electron densities. Such a tubular aromaticity appears to greatly contribute to the high thermodynamic stability of the binary hexagonal germanium tubes.



# 1. INTRODUCTION

Compounds based on the germanium element are used for applications in semiconductors and optoelectronic industries.<sup>1,2</sup> Development of new and tiny electronic devices has attracted much interest in the basic studies of the geometric, electronic, thermodynamic, and spectroscopic properties of small Ge clusters and their doped varieties.<sup>3-13</sup> The main objective of such investigations is a search for appropriate cluster units that can be used as building blocks for different assembly materials whose properties can effectively be controlled by a change of the cluster size and its charge as well as the nature of the dopants.

According to numerous previous investigations, the interplay between the dopants and Ge hosts controls the thermodynamic stability and provides a structural flourish for doped Ge clusters. The structural richness perspective of Ge-based clusters is clearly illustrated by, a. o., the geometry of  $[M_3Ge_{18}]^q$  clusters, with M = Au, Ni, and Pd, where the  $Ge_{18}$  counterpart is actually a combination of two  $Ge_9$  units.<sup>14–16</sup> Three Ni atoms generate a trimeric filament in  $[Ni_3@Ge_{18}]^{4-}$ , whereas Au<sub>3</sub> and Pd<sub>3</sub> each form a trimeric cycle in  $[Au_3Ge_{18}]^{5-}$  and  $[Pd_3Ge_{18}]^{2-}$  clusters, respectively. However, introduction of two Pd atoms to the  $Ge_{18}$  host establishes [Pd2@Ge18]4- as the largest single-cage deltahedron in which the  $Pd_2$  dimer is covered by a deltahedral  $Ge_{18}$ .

Recently, a similar structural motif is found for  $[Co_2@Ge_{16}]^{4-}$ clusters. X-ray experiments that were supported by density functional theory (DFT) computations, pointed out that  $[Co_2@Ge_{16}]^{4-}$  exists in two different isomers in which both Co atoms are encapsulated by Ge<sub>16</sub> cages.<sup>18,19</sup>

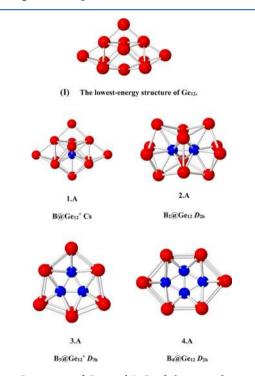
Beside such deltahedral structures, singly transition metaldoped germanium clusters provide us with a wide range of geometrical features. It is peculiar that the singly doped CoGe10<sup>3-</sup> and FeGe10<sup>3-</sup> clusters are stable in a double-ring tube in which either the Co or the Fe atom is centered in a  $D_{5h}$ (5/5) Ge<sub>10</sub> pentagonal prism.<sup>20,21</sup> Another remarkable feature is the high stability of  $M@Ge_{16}$  (M = Ti, Zr, and Hf) Frank-Kasper polyhedrons.<sup>22</sup> In the latter, a transition metal dopant is encapsulated by a Ge<sub>16</sub> cage and subsequently induces a high symmetry  $T_d$  M@Ge<sub>16</sub>. A large number of systematic investigations were carried out to elucidate the structural evolution of singly doped germanium clusters at various charged states.<sup>23-33</sup> Accordingly, the interplay between the metal dopant and the Ge-host gives rise to a geometrical richness which varies from incomplete cage through the encapsulated form, and then to the Frank-Kasper polyhedron.

Received: June 9, 2019 Revised: August 30, 2019 Published: September 5, 2019

Within the Ge-based garden, the doped Ge-clusters containing 12 Ge atoms emerge as the most beautiful flower owing to their typical diversity in structure and chemical bonding phenomena. A hexagonal prism shape was found for V@Ge<sub>12</sub><sup>-</sup>, Mo@Ge<sub>12</sub>, and W@Ge<sub>12</sub> indicating a certain similarity of germanium and silicon clusters.<sup>30,31,34</sup> Such an incomplete cage was identified for M@Ge<sub>12</sub><sup>q</sup> and particularly their shape is quite sensitive with respect to the charge state. Interestingly, the AuGe<sub>12</sub><sup>-</sup> anion cluster presents a high symmetry structure in which the Au dopant is encapsulated by an  $I_h$  Ge<sub>12</sub> host.<sup>35</sup>

Recently, a hexagonal cylinder was found for the Si<sub>12</sub> cluster when it is doped by three boron atoms giving the three-layer tube  $B_3(@Si_{12}^{+,36,37})$  This result brings in an interesting possibility that small boron clusters such as  $B_2$ ,  $B_3$ , and  $B_4$ can serve as doping units in an efficient approach to generate stable tubular clusters. In this context, we set out to expand the scope of our approach in successfully stabilizing germanium clusters containing 12 Ge atoms into a hexagonal tubular prism using the effects of both boron clusters  $B_3$  and  $B_4$  as dopants. According to our literature survey, both the  $B_3Ge_{12}^+$  and  $B_4Ge_{12}$  cases represent, for the first time, endohedral motifs in which all dopants are encapsulated within a  $Ge_{12}$  hexagonal tube. In other words, the unstable Ge double hexagonal ring tube is stabilized following doping of  $B_3$  and  $B_4$  units.

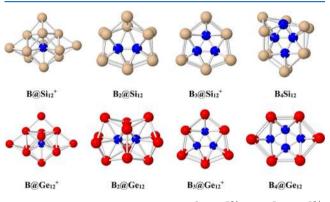
# 2. COMPUTATIONAL DETAILS


In order to construct the potential energy surfaces of  $B_x Ge_{12}^{0/+}$ clusters, we use a stochastic genetic algorithm developed earlier by us.<sup>38</sup> We now modify this algorithm by adding a permutation subroutine in which each atom exchanges its position with all the others. Moreover, to ensure that the global energy minimum isomer of each size is correctly found, several series of geometries having nonconventional shapes are also considered with the aim to search for unexpectedly stable structures. The initial structures are generated without any constrain on the largest distance of B-B, B-Ge, and Ge-Ge connectivities, whereas their shortest distances are the sum of covalence radii. We use DFT with both hybrid TPSSh and B3P86 functionals<sup>39,40</sup> for geometry optimizations in view of previous results that these functionals provide the reliable results.<sup>41,42</sup> Initial structures are first optimized using the small split-valence 3-21G basis set.<sup>43,44</sup> The optimized isomers, whose relative energies are lying within a range of 50 kcal/mol with respect to the lowest-lying one, are subsequently reoptimized using the same functionals, but in conjunction with the larger  $6-\overline{3}11+G(d)$  basis set.<sup>45,46</sup> Harmonic vibrational frequencies are analyzed afterward at the same level of theory to ensure the character of the optimized structures as energy local minima and to estimate their zero-point vibrational energies. In order to explore the chemical bonding of the clusters considered, their electron density will be explored by means of the electron localization function (ELF) method,<sup>4</sup> Mayer bond order (MBO),<sup>48</sup> as well as natural bond orbital (NBO) atomic charge.<sup>49</sup> All standard electronic structure theory computations are performed using the Gaussian 09 suite of program.<sup>50</sup>

The magnetic response of the electron density is calculated using the CTOCD-DZ method<sup>51,52</sup> implemented in the SYSMO program,<sup>53,54</sup> which is connected to the GAMESS-UK package.<sup>55</sup> The magnetic ring current maps are then constructed using the B3P86 functional with the 6-311G(d) basis set. In each current density map, the contour and shading show the modulus of the induced current density, and the arrows display its projection on the plotting plane. As for a convention, anticlockwise or clockwise circulations of electron flows correspond to diatropic or paratropic currents, respectively. A diatropic current flow is correlated with an aromatic character, whereas a paratropic current flow suggests an anti-aromatic character.

# 3. RESULTS AND DISCUSSION

In the search for Ge clusters having a tubular form, we investigate the  $B_xGe_{12}$  systems in which x = 1, 2, 3, and 4. As the open-shell doublet state in both neutral  $BGe_{12}$  and  $B_3Ge_{12}$  radicals usually leads to a distorted geometry, we only report on the corresponding cations  $BGe_{12}^+$  and  $B_3Ge_{12}^+$  that exhibit a closed-shell singlet ground state. Let us first briefly report on their geometrical aspects before analyzing their electronic structure. As for a convention, structures mentioned in the following sections are denoted by **x**. **Y** where **x** stands for the number of B atoms, being 1, 2, 3, and 4, and **Y** = A, B, and C, ... for the isomers with increasing relative energy. Thus, structure **x**. **A** invariably refers to the lowest-energy isomer for the dopant  $B_{xx}$ , and relative energy of other isomers mentioned are given, unless otherwise stated, with respect to its corresponding **A** isomer.


**3.1.**  $BGe_{12}^+$ . The most stable isomer 1.A of the  $BGe_{12}^+$  cation is given in Figure 1, whereas some of its lower-lying



**Figure 1.** Geometries of  $\text{Ge}_{12}$  and  $\text{B}_x \text{Ge}_{12}^{-q}$  clusters with x = 1, 2, 3, 4, and q = 0, 1. Geometry optimizations were performed using the TPSSh/6-311+G(d) and B3P86/6-311+G(d) methods.

isomers are shown in Figure S1 of the Supporting Information file. The ground state **1.A** ( $C_s$ <sup>1</sup>A') is revealed by both TPSSh and B3P86 calculations. **1.A** has an endohedral form in which the B<sup>+</sup> ion is covered by the most stable structure of the Ge<sub>12</sub> cluster (I) displayed in Figure 1. Actually, a similar shape was identified for the isovalent BSi<sub>12</sub><sup>+</sup> in which the most stable isomer Si<sub>12</sub> fully covers the B dopant.<sup>36</sup> Hence, the latter actually does not induce a significant modification on the geometry of both pure Ge<sub>12</sub> and Si<sub>12</sub> clusters.

3.2. B<sub>2</sub>Ge<sub>12</sub>. Our extensive DFT optimizations point out that a mixture of two B atoms with 12 Ge atoms induces an endohedral structure 2.A for the neutral B<sub>2</sub>Ge<sub>12</sub>. Some lowerlying isomers are displayed in Figure S1 of the Supporting Information file. Geometric characteristics of 2.A illustrate that both B atoms form a B-B dimer, which is encapsulated by a  $Ge_{12}$  host, then giving rise to a high symmetry  $D_{2h} B_2 Ge_{12}$ . The B-B connection of 2.A, with a bond distance of 1.73 Å, is significantly longer than that of free  $B_2$  molecule (1.61 Å). On the one hand, formation of 2.A reduces the strength of the  $B_2$ molecule. For the pure  $Ge_{12}$  system, a  $D_{2h}$  isomer having the same skeleton as that in 2.A is highly unstable on its potential energy surface.<sup>56</sup> An interesting finding is that the two B dopants contribute to stabilize an unstable  $D_{2h}$  Ge<sub>12</sub> isomer, emphasizing a special effect of a double doping of two B atoms. According to previous reports, the geometry of the B2Ge12 cluster is totally different from that of the B<sub>2</sub>Si<sub>12</sub>. As shown in Figure 2, the  $B_2Si_{12}$  is of a double ring structure in which the  $B_2$ 



**Figure 2.** Summary of geometries of  $[B_x Si_{12}]^{0/+}$  and  $[B_x Ge_{12}]^{0/+}$  clusters, with x = 1, 2, 3, 4.

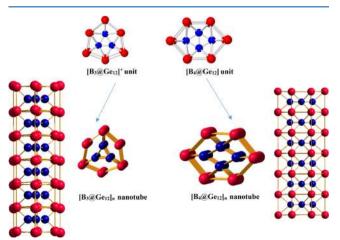
moiety is located inside a  $(6 \times 2)$  Si<sub>12</sub> prism, whereas the B<sub>2</sub>Ge<sub>12</sub> is stabilized in a deltahedral shape. This result emphasizes the different behavior between Si and Ge hosts regarding the B<sub>2</sub> dopant.

Concerning the doubly doped Ge clusters having a cage shape, B<sub>2</sub>Ge<sub>12</sub> appears to be the smallest system known up to now. As mentioned above, the  $[Pd_2@Ge_{18}]^{4-}$  and  $[Co_2@$  $Ge_{16}$ <sup>4-</sup> clusters are of the deltahedral germanium clusters.<sup>17-19</sup> According to our literature survey and own extensive computations, no size smaller than the current case of B<sub>2</sub>Ge<sub>12</sub> can form endohedral structure with two dopants. The  $B_2Ge_{12}$ 2.A no doubt represents the smallest single deltahedron of germanium cluster which can endohedrally encapsulate two dopants. The B<sub>2</sub> moiety also exerts a different influence on the isovalence  $Si_{12}$  cluster which is of a  $C_s$  cage. Indeed, the most stable B<sub>2</sub>Si<sub>12</sub> is a distorted hexagonal prism in which the B<sub>2</sub> unit is covered by a  $(2 \times 6)$  Si<sub>12</sub> prism.<sup>36,37</sup> Hence, the B<sub>2</sub> dopant brings in strong modification on the geometry of both Ge<sub>12</sub> and Si<sub>12</sub> bare clusters. The main difference in both doped clusters is that because of its larger size, the Ge<sub>12</sub> cage has more available space to fully cover the B<sub>2</sub> unit.

**3.3.**  $B_3Ge_{12}^+$ . Following  $BGe_{12}^+$  and  $B_2Ge_{12}$ , the geometry of the triply boron-doped  $B_3Ge_{12}^+$  with a positive charge is considered. Lower-lying isomers of the  $B_3Ge_{12}^+$  cation identified by computations using both TPSSh and B3P86 functionals and the 6-311+G(d) basis set are displayed in Figure S2 of the Supporting Information file. Accordingly, isomers containing a  $B_3$  cycle are highly stable, and among

them, the structure having the highest symmetry **3.A**  $(D_{3h}^{-1}A'_1)$ is found to be its ground state. **3.A** contains indeed a  $D_{3h}$  B<sub>3</sub> cycle which is placed inside a  $(6 \times 2)$  Ge<sub>12</sub> hexagonal prism, and finally establishes a  $D_{3h}$  tube. While the triatomic  $B_3$  cycle of 3.A is actually similar to the free  $B_3$  cycle, the  $Ge_{12}$ counterpart is totally different from its pure ground state ( $C_s$ structure (I), Figure 1). Therefore, the  $B_3$  cycle again tends to transform the geometry of  $Ge_{12}$  from a  $C_s$  cage to a  $D_{3h}$ hexagonal prism in the positively charged and singlet state. The  $B_3Ge_{12}^+$  cation presents for the first time a hexagonal prism, or a double hexagonal ring tube, with three endohedral dopants for a germanium cluster, and it appears to be the smallest one of the class M3@Ge12. Recent reports also pointed out that a  $B_3$  cycle exerts a similar effect on the Si<sub>12</sub> host in which a  $D_{3h}$ hexagonal prism was also found as the most stable isomer for the singlet  $B_3Si_{12}^+$  cation.<sup>36</sup> It can be concluded that the cyclic B<sub>3</sub> dopant consistently induces and stabilizes a tubular structure for both  $Si_{12}$  and  $Ge_{12}$  in their cationic singlet state.

**3.4.**  $B_4Ge_{12}$ . The geometry of the  $B_4Ge_{12}$  cluster presents us with the most interesting finding of the present work. Lowerlying isomers of the neutral  $B_4Ge_{12}$  are displayed in Figure S3 of the Supporting Information file. Similar to the  $B_3Ge_{12}^+$ , geometries of the  $B_4Ge_{12}$  isomers emphasize a remarkable result that the four B atoms connect together to form a  $B_4$  cycle inside the  $Ge_{12}$  host to produce the most stable doped cluster. Both TPSSh and B3P86 calculations point out that both 4.A ( $D_{2h}$   $^1A_{1g}$ ) and 4.B ( $C_1$   $^1A$ ) isomers are very close in energy. However, coupled-cluster CCSD(T)/6-311G(d) calculations indicate that 4.B actually lies ~7 kcal/mol above 4.A. Therefore, 4.A is confirmed to be the most stable  $B_4Ge_{12}$  isomer.


The geometric shape of **4.A** clearly points out that a tetraatomic  $D_{2h}$  B<sub>4</sub> cycle is placed inside of a  $(2 \times 6)$  Ge<sub>12</sub> prism generating again a hexagonal prismatic shape for B<sub>4</sub>Ge<sub>12</sub>. In the pure form, a Ge<sub>12</sub> tube does not exist as a local minimum. In the cationic form, it is much higher in energy in Ge<sub>12</sub><sup>2+</sup> (~30 kcal/mol) and Ge<sub>12</sub><sup>4+</sup> (~13 kcal/mol) than their corresponding global minimum Ge<sub>12</sub> cages (such as I, Figure 1). Although the B<sub>4</sub> unit of **4.A** exhibits the same shape as that of the free B<sub>4</sub>, its B–B bond length of ~1.7 Å is actually longer than that of ~1.5 Å in pure B<sub>4</sub>.<sup>37</sup> As far as we are aware, the appearance of the **4.A** structure presents us with a particular case of doped germanium clusters, in which an encapsulation of four dopants in a double hexagonal ring tube is found for the first time.

Although a hexagonal prism form is a general structural motif for both  $B_3Ge_{12}^+$  and  $B_3Si_{12}^+$  clusters, this kind of structure is not found for the B<sub>4</sub>Si<sub>12</sub> cluster. Actually, the most stable structure of B<sub>4</sub>Si<sub>12</sub>, 4.Si.A isomer, can be considered as a broken version of the B<sub>4</sub>Ge<sub>12</sub> hexagonal prism. The lower-lying isomers of the B<sub>4</sub>Si<sub>12</sub> cluster identified by the TPSSh/6-311+g(d) level of theory are given in Figure S4 (Supporting Information file). Accordingly, the **4.Si.A** isomer is found to be the lowest-energy structure, whereas the isomer 4.Si.I, which has the same shape as that of  $B_4Ge_{12}$ , is ~12 kcal/mol higher than 4.Si.A. Within 4.Si.A, boron atoms also form a  $B_4$  cycle, but it is not planar, and one B atom replaces a Si site of the (6  $\times$  2) Si<sub>12</sub> hexagonal prism. This result emphasizes that the Si<sub>12</sub> double ring is not large enough to contain a  $B_4$  ring, whereas the Ge<sub>12</sub> counterpart fits well in this geometric condition. For a complete picture, the geometries of  $B_x Si_{12}^{+/0}$  and  $B_x Ge_{12}^{+/0}$  are shown in Figure 2.

In summary, geometric features of  $B_2Ge_{12}$ ,  $B_3Ge_{12}^+$ , and  $B_4Ge_{12}$  clusters indicate the ability of small boron clusters to influence the geometry of the  $Ge_{12}$  moiety. While one B atom does not give a significant impact on the  $Ge_{12}$  cage, a  $B_2$  dimer converts a  $C_s$   $Ge_{12}$  into a higher symmetry  $D_{2h}$  shape and produces the smallest deltahedral cage for germanium clusters. The most interesting finding is that the appearance of the **3.A** and especially **4.A** clusters illustrate that both  $B_3$  and  $B_4$  units can be used as dopant units that strongly stabilize a  $Ge_{12}$  host into a higher symmetry hexagonal prismatic tube, forcing an adaption of the host to their point group in a suitable charge state.

Concerning the formation of prismatic germanium structures, both  $B_3$  and  $B_4$  units show the importance of geometry requirement. As mentioned in Introduction, three Pd or Au dopants form a Pd<sub>3</sub> or Au<sub>3</sub> triatomic cycle which connect two Ge9 units and then generate the sandwich-type Pd3Ge18 and  $Au_3Ge_{18}$  clusters. In contrast, an endohedral structure is now established with a  $B_3$  unit.<sup>14–16</sup> With bond lengths of 2.9 and 3.0 Å, both Pd<sub>3</sub> and Au<sub>3</sub> cycles are apparently too large to fit inside a  $Ge_{18}$  cage, whereas both  $B_3$  and  $B_4$  units, with a B-B bond length of  $\sim 1.7$  Å, are more suitable for endohedral insertion. In addition, a prismatic motif was previously identified for germanium clusters doped by transition metals including a pentagonal prism for M@Ge10<sup>q</sup> and a hexagonal prism for  $M @ Ge_{12}^{q}$  clusters.<sup>21,26</sup> Within each of these structures, the metal dopant was found to be located inside a  $(2 \times 5)$  Ge<sub>10</sub> or a  $(2 \times 6)$  Ge<sub>12</sub> prism and thereby forming M@ Ge10<sup>*q*</sup> and M@Ge12<sup>*q*</sup> endohedral prismatic clusters, respectively. The emergence of 3.A and 4.A structures in which both  $B_3$  and  $B_4$  cycles are located inside a  $(2 \times 6)$  Ge<sub>12</sub> prism, thus provides us with a novel approach to construct endohedral prismatic structures. Generally, tubular clusters can also be established by doping a planar cluster that has a suitable size.

The high symmetry form of both  $B_3Ge_{12}^+$  and  $B_4Ge_{12}$  clusters is highly suitable for the assembly materials. Upon extension of both  $B_3Ge_{12}^+$  and  $B_4Ge_{12}$  hexagonal prisms along the *z*-axis, a novel type of nanotube is established as shown in Figure 3. Accordingly, the final forms of  $[B_3Ge_{12}^+]_n$  and  $[B_4Ge_{12}]_n$  nanotubes exhibit smaller  $(B_3)_n$  and  $(B_4)_n$  tubes covered inside the  $(Ge_{12})_n$  tube. Because of the effect of  $(B_3)_n$  and  $(B_4)_n$  tubes, the  $[B_3Ge_{12}^+]_n$  and  $[B_4Ge_{12}]_n$  tubes can thus



**Figure 3.** Formation of  $[B_3 @ Ge_{12}]_n$  and  $[B_4 @ Ge_{12}]_n$  assembly nanotube from  $[B_3 @ Ge_{12}]^+$  and  $[B_4 @ Ge_{12}]$  units.

be built up, whereas the only-Ge-based tube could not be made yet.

For a quantitative evaluation on the stability of the  $[B_xGe_{12}]^{0/4}$  clusters, their binding energies are calculated and given in Table 1. Accordingly, the  $B_2Ge_{12}$  deltahedral structure and  $B_4Ge_{12}$  hexagonal prism have significantly larger  $E_b$  than that of the  $BGe_{12}^+$  and  $B_3Ge_{12}^+$  clusters. These neutral mixed clusters are in higher stability than the cations. The embedding energies, which are the energy differences between the doped cluster and the separated fragments  $Ge_{12} + B_x^{0/4}$ , are also performed and given in Table 1. The  $B_3Ge_{12}^+$  hexagonal structure has the largest embedding energy, indicating that of the  $B_x$  dopants, introduction a  $B_3^+$  unit into the  $Ge_{12}$  host is the most favored approach.

In attempts to understand how a  $B_x$  unit can exert such a large influence on the geometry of a  $Ge_{12}$  host, their bonding phenomenon is now explored. Investigation of electron densities of the  $B_xGe_{12}^{-q}$  clusters using the ELF points out some interesting perspectives in terms of chemical bonding. For the singly doped  $BGe_{12}^{+}$  **1.A**, as shown in Figure 2, localization domains associated with B–Ge bonds are observed. However, at the bifurcation value of ELF = 0.65, in the region between B and  $Ge_{12}$  host one basin appears covering B atoms indicating the importance of the electrostatic interaction. Hence, the B<sup>+</sup> dopant establishes a polarized bond with  $Ge_{12}$  host. This observation is supported by NBO atomic charge calculated for the B atom which bears a value of -2.1 electron, illustrating that the  $Ge_{12}$  host actually undergoes a great charge transfer to the B center.

Concerning the smallest germanium deltahedron 2.A of B<sub>2</sub>Ge<sub>12</sub>, two B atoms give rise to a delocalized bond with the Ge<sub>12</sub> deltahedral skeleton, as indicated by ELF maps. The ELF map of 2.A (Figure 4) shows the appearance of localization domains in regions between the B atoms and Ge<sub>12</sub> host. This observation emphasizes that B dopants form delocalized bonds with the Ge<sub>12</sub> counterpart. Indeed, both B dopants in 2.A actually carry a negative NBO charge of -1.8 electron. Similar to  $BGe_{12}^+$ ,  $Ge_{12}$  transfers its charge to the  $B_2$  unit and thereby enhances its stability through the electrostatic interaction. From this view, 2.A can be considered as a  $[B_2^{\delta} - Ge_{12}^{\delta}]$ donor-acceptor complex. Another important feature in B<sub>2</sub>Ge<sub>12</sub> is that both boron atoms in 2.A connect through a covalence bond rather than existing as two separated atoms. The ELF map of 2.A (Figure 2) also shows a V(B,B) basin located between two B atoms indicating the formation of a B-B valence bond. In addition, the MBO performed for 2.A show a value of  $\sim$ 1.0 for this B–B connection. Although this value is much lower than that of the free  $B_2$  molecule (1.9), it suggests that the B–B moiety of  $B_2Ge_{12}$  2.A can be regarded as a B–B single bond.

Regarding the  $B_3Ge_{12}^+$  cation 3.A, a novel perspective on the  $B_3$  moiety is now revealed by an ELF examination. With the appearance of a V(B,B,B) basin located over the  $B_3$  cycle, three B atoms actually form a three-center valence bond rather than acting as three separated atoms. The MBO value calculated for the  $B_3$  unit in 3.A has a value of 0.44 indicating the existence of a three-center bond. In comparison to the bare  $B_3^{+/-}$  clusters, the MBO value performed for these cycles amount to 1.1/0.97, being a much greater value than those of  $B_3$  moiety of  $B_3Ge_{12}^+$ . Hence, according to the usual meaning of bond order, interaction with  $Ge_{12}$  to establish  $B_3Ge_{12}^+$  reduces the strength of the  $B_3$  cycle inside the Ge tube.

|                   | $BGe_{12}^+$ | $B_2Ge_{12}$ | $B_{3}Ge_{12}^{+}$ | $B_4Ge_{12}$ | $B_2$ | B <sub>3</sub> <sup>-/+</sup> | $B_4$ |
|-------------------|--------------|--------------|--------------------|--------------|-------|-------------------------------|-------|
| $E_{b}^{b}$       | 4.00/3.87    | 4.52/4.45    | 4.17/4.10          | 4.58/4.57    |       |                               |       |
| $E_{\rm D}^{\ c}$ | 7.71/7.55    | 7.60/7.50    | 10.75/10.93        | 6.38/6.58    |       |                               |       |
| qNBO(B)           | -2.10        | -1.8         | -1.45              | -1.30        |       |                               |       |
| d (B-B)           |              | 1.73         | 1.76               | 1.70/175     | 1.62  | 1.55/1.57                     | 1.52  |
| MBO <sub>BB</sub> |              | 0.91         | 0.45               | 0.61/0.52    | 1.95  | 2.0/1.64                      | 1.41  |
| $MBO_{B_x}$       |              |              | 0.44               | 0.52         |       | 1.1/0.97                      | 0.58  |

| Table 1. Binding Energ | r (E <sub>b</sub> , eV) and | d Dissociation Energy ( | $(E_{\rm D},  {\rm eV})$ of ${\rm B}_x {\rm Ge}_{12}^q$ Clusters" |
|------------------------|-----------------------------|-------------------------|-------------------------------------------------------------------|
|------------------------|-----------------------------|-------------------------|-------------------------------------------------------------------|

<sup>*a*</sup>NBO charge, bonding length of B–B connection (Å), MBO B–B connection (MBO<sub>BB</sub>), MBO B<sub>3</sub> and B<sub>4</sub> cycle (MBO<sub>B<sub>2</sub></sub>). <sup>*b*</sup>E<sub>b</sub> values were calculated by the TPSSh/6-311+G(d) (left), and B3P86/6-311+G(d) (right). <sup>*c*</sup>This value was performed for the process:  $B_xGe_{12}^q \rightarrow B_x^q + Ge_{12}$ . In the reversed direction, these values correspond to the embedding energies.

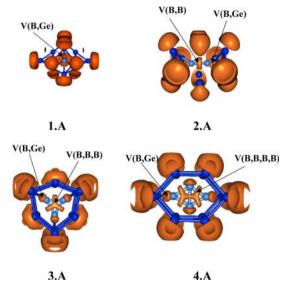
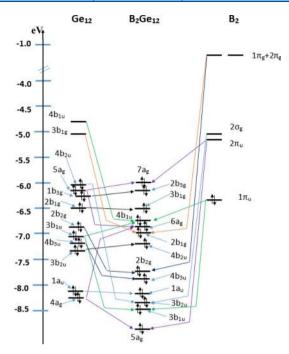



Figure 4. ELF iso-surfaces plotted at the bifurcation value ELF = 0.70 for 1.A, 2.A, 3.A, and 4.A structures. The electron density was obtained by the TPSSh/6-311+G(d) computations.

It is meaningful to consider the connection between both the B<sub>3</sub> cycle and Ge<sub>12</sub> hexagonal prism. The B<sub>3</sub> moiety interacts with, and thereby form delocalized bonds with the Ge12 prism according to the ELF result. Localization domains shown in Figure 4, which are located in region between the  $B_3$  and  $Ge_{12}$ , illustrate a delocalized bonding character. These localization domains are closer to the B centers illustrating the fact that electrons tend to be concentrated around the B<sub>3</sub> unit. On the other hand, NBO atomic charges of 3.A agree with the ELF picture on the polar character of the bond. Although the  $B_3Ge_{12}^+$  has a formal positive charge, each of three B atoms bears a negative net charge of -1.5 electron. This result confirms a polar bonding between the B3 and Ge12 moieties arising from a great charge transfer from Ge12 to B3. The  $B_3Ge_{12}^{+}$  cluster can again be regarded as a  $[B_3^{\delta-} Ge_{12}^{\delta+}]$ donor-acceptor complex.

A similar characteristic is also identified for  $B_4Ge_{12}$  **4.A** in which four B atoms prefer to connect together and act as a  $B_4$  block. As indicated in Table 1, the MBO values performed for  $B_4$  unit of **4.A** and free  $B_4$  are nearly identical, being equal to ~0.5. The ELF map of **4.A** (Figure 4) gives a similar observation. In fact the ELF map of **4.A** reveals the V(B,B,B,B) basin populated over four B atoms illustrating the formation of a four-center bond. Similar to the cases of  $B_3Ge_{12}^+$  and  $B_2Ge_{12}$ , the  $B_4$  cycle in **4.A** also brings in a strongly delocalized bonding with the  $Ge_{12}$  moiety, in constructing the hexagonal


tubular prism. Actually, localization domains appeared in the region between both B<sub>4</sub> unit and Ge<sub>12</sub> prism is associated with the emergence of delocalized bond between the B<sub>4</sub> dopant with the Ge<sub>12</sub> host. In terms of charge transfer, the Ge<sub>12</sub> host again supplies its electrons to the B<sub>4</sub> moiety, in such a way that each B atom bears a negative net charge of -1.3 electron, emphasizing again the importance of induced electrostatic interaction within an apparent  $[B_4^{\delta-} Ge_{12}^{\delta+}]$  donor-acceptor complex.

In summary, the above analysis gives an emphasis that the small  $B_2$ ,  $B_3$ , and  $B_4$  clusters can be used as efficient dopants to turn Ge hosts into high symmetry clusters. Boron atoms introduced into a Ge<sub>12</sub> host maintain both geometric and bonding characteristics as in free  $B_2$ ,  $B_3$ , and  $B_4$  clusters according to calculated ELF and MBO results. These small B clusters connect with Ge<sub>12</sub> host through delocalized bonds. The Ge<sub>12</sub> host carries out a great charge transfer to  $B_x$  and thereby produces a kind of  $[B_x^{\delta-} \text{Ge}_{12}^{\delta+}]$  donor–acceptor complex. The  $B_x$  units can be considered as negatively charged islands surrounded in positively charged Ge<sub>12</sub> tubes.

3.5. Molecular Orbital Interactions between Ge12 and  $B_x$  Units. The special geometries of  $B_2Ge_{12}$ ,  $B_3Ge_{12}^+$ , and  $B_4Ge_{12}$  clusters deserve a further analysis in order to more deeply understand the stabilizing interactions as well as the inherent electronic requirements. Orbital interaction diagrams between  $B_x$  dopants and their respective  $Ge_{12}$  skeletons are constructed and displayed in Figures 5-7. The orbital shapes of 2.A, 3.A, and 4.A structures associating to orbital interaction between  $B_r$  and  $Ge_{12}$  are given in Figures S6–S8 of Supporting Information file. For the smallest germanium deltahedron, orbital interactions of the  $B_2$  dimer with the deltahedral  $Ge_{12}$ emphasize an interesting perspective on its stability. As displayed in Figure 5, the doubly occupied molecular orbitals (MOs) of the  $Ge_{12}$  host involving the  $5a_g$  and  $4a_g$  MOs enjoy stabilizing interactions with the  $2\pi_u$  of  $B_2$  and subsequently establish the fully occupied  $5a_{g}$ ,  $6a_{g}$ , and  $7a_{g}$  levels for  $B_2Ge_{12}$ 2.A.

Similarly, the  $2b_{2g}$  MO of  $B_2Ge_{12}$  **2.A** is constructed by combination of the  $2b_{2g}$  level of  $Ge_{12}$  and  $2\pi_g$  of  $B_2$ , whereas the  $1\pi_g$  of  $B_2$  enjoys an interaction with the  $3b_{1g}$  eigenstate of  $Ge_{12}$  host and generate the  $2b_{1g}$  MO of  $B_4Ge_{12}$ , which is occupied by two electrons. The  $2\sigma_g$  vacant level of  $B_2$  is an orbital overlap with  $4b_{2u}$  eigenstate of  $Ge_{12}$ , which is occupied by two electrons, and produces subsequently the doubly occupied  $3b_{2u}$  MO of  $B_2Ge_{12}$ . These interactions are associated with an electron donation from  $Ge_{12}$  to  $B_2$  and give rise to an enhanced stability for the resulting  $B_2Ge_{12}$ . This finding is in agreement with NBO calculations discussed above.

Orbital interaction diagrams also reveal another special bonding feature of the  $B_2Ge_{12}$  deltahedron. The  $B_2$  highest



**Figure 5.** Orbital interaction diagram of  $B_2$  and  $Ge_{12}$  in  $D_{2h}$  symmetry forming the **2.A** structure. The eigenvalues were obtained by TPSSh/ 6-311+G(d) calculations.

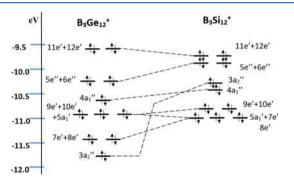
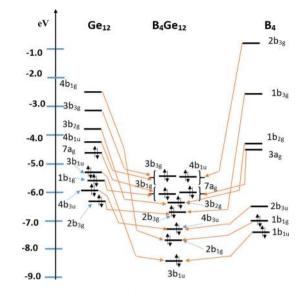




Figure 6. Quantitative correlation diagram between  $B_3Ge_{12}^+$  and  $B_3Si_{12}^+$  clusters. The eigenvalues were obtained by the TPSSh/6-311+G(d) calculations.

occupied MO (HOMO) is involved in an interaction with the fully occupied  $3b_{1u}$  and empty  $4b_{1u}$  MOs of  $Ge_{12}$ , and subsequently induce two fully occupied MOs, namely,  $3b_{1u}$  and  $4b_{1u}$ , for  $D_{2h}$  B<sub>2</sub>Ge<sub>12</sub> **2.A.** As a result, the stability of B<sub>2</sub>Ge<sub>12</sub> is also contributed by electron backdonation from the B<sub>2</sub> unit.

Regarding the  $B_3Ge_{12}^+$  hexagonal prism 3.A, an orbital interaction diagram between the  $D_{3h}$   $B_3^+$  and  $Ge_{12}$  skeleton is constructed and shown in Figure S5 of the Supporting Information file. Because of the fact that both isovalent  $B_3Ge_{12}^+$  and  $B_3Si_{12}^+$  clusters exhibit the same type of geometry,<sup>36</sup> it is meaningful to comparatively explore their electronic structure, and identify the stabilizing effect of the  $B_3$ dopant. Empty delocalized MOs of  $B_3^+$  gain electrons from the  $Ge_{12}$  moiety through orbital overlap, and subsequently give rise a strong stability for the  $B_3Ge_{12}^+$  cluster. Actually, six empty levels of  $B_3^+$  including lowest unoccupied

Actually, six empty levels of  $B_3^+$  including lowest unoccupied MO (LUMO)  $(a'_1)$ , LUMO + 1,1' (e') and LUMO + 2,2' (e'') enjoy stabilizing interactions with LUMO and LUMO + 1,1' of  $Ge_{12}$ , and consequently induce thermodynamic stability for the resulting  $B_3Ge_{12}^+$  hexagonal prism. Quite similar to  $B_3Si_{12}^+$ , the



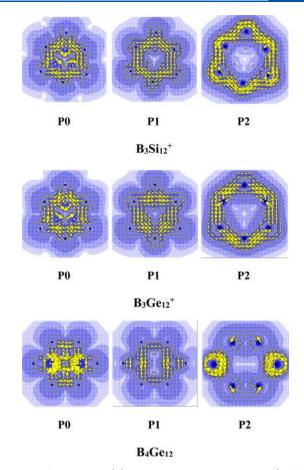
**Figure 7.** Orbital interaction diagram of  $B_4$  and  $Ge_{12}$  in  $D_{2h}$  symmetry forming **4.A** structure. The eigenvalues were obtained by TPSSh/6-311+G(d) calculations.

stability of  $B_3Ge_{12}^+$  is enhanced by the interaction of bonding MOs of the  $B_3^+$  unit with  $Ge_{12}$ . As displayed in Figure S5 (Supporting Information), three bonding  $1a_2''$  and 2e' + 3e' levels of  $B_3^+$  are actually involved in an orbital overlap with the HOMO - 1 ( $a_2''$ ) and HOMO - 4,4' (e') of  $D_{3h}$   $Ge_{12}$ . These interactions subsequently generate the  $3a_2''$  and 9e' + 10e' eigenstates and thereby give rise to the stable  $B_3Ge_{12}^+$  cluster in the high  $D_{3h}$  symmetry. Figure 4 displays a qualitative correlation between both  $B_3Si_{12}^+$  and  $B_3Ge_{12}^+$  clusters in terms of eigenstates. Hence, through orbital interactions with  $Ge_{12}$  and  $Si_{12}$  tubular skeletons, both empty and occupied MOs of the  $B_3^+$  cycle are strongly stabilized and thereby produce the stabilized  $D_{3h}$   $B_3Ge_{12}^+$  and  $B_3Si_{12}^+$  tubes.

Orbital interaction diagram of both  $B_4$  and  $Ge_{12}$  units in  $D_{2h}$ symmetry is now explored to understand how a  $B_4$  cycle actually stabilizes a  $Ge_{12}$  block into a  $D_{2h}$  shape. It is illustrative that both  $B_4Ge_{12}$  and  $B_3Ge_{12}^+$  hexagonal prisms share a similar stabilizing mechanism in which both empty and occupied MOs of the  $B_4$  unit are stabilized. The  $B_4$  cycle receives an electron donation from the  $Ge_{12}$  host through the orbital overlap. The  $1b_{3g}$ ,  $3a_g$ , and  $2b_{3u}$  empty levels of the  $B_4$  cycle are involved in stabilizing interactions with the doubly occupied  $2b_{3g}$ ,  $7a_g$ , and  $4b_{3u}$  MOs of  $Ge_{12}$ , and subsequently produce the  $7a_g$ ,  $2b_{3g}$ , and  $4b_{3u}$  eigenstates, which are fulfilled by 6 electrons, of the  $D_{2h}$  $B_4Ge_{12}$  tubular structure **4.A**. These interactions emphasize that a fulfilment of empty MOs of  $B_4$  plays an essential factor for the stabilization of the binary  $B_4Ge_{12}$  cluster in a  $D_{2h}$  shape.

Orbital interactions also indicate another important contributor to the stabilizing mechanism where empty levels of the  $D_{2h}$  Ge<sub>12</sub> tube are important. As shown in Figure 7, orbital overlaps of the  $4b_{1g}$ ,  $3b_{2g}$ , and  $3b_{1u}$  MOs of Ge<sub>12</sub> with the  $1b_{1g}$ ,  $1b_{2g}$  and  $1b_{1u}$  MOs of B<sub>4</sub> tend to stabilize the B<sub>4</sub>Ge<sub>12</sub> tubular cluster. These interactions give rise to the doubly occupied  $3b_{2g}$ ,  $2b_{1g}$ , and  $3b_{1u}$  MOs of r B<sub>4</sub>Ge<sub>12</sub>. Therefore, occupancy of the empty levels of the Ge<sub>12</sub> skeleton as well as reinforcement of bonding MOs of the B<sub>4</sub> cycle constitute important contributors to the thermodynamic stability of the B<sub>4</sub>Ge<sub>12</sub> hexagonal prism **4.A**.

The abovementioned analysis on bonding trends points out a general perspective on an electronic requirement for the


## The Journal of Physical Chemistry C

formation of the tubular geometry. Establishment of delocalized bonds between the  $B_x^{q}$  dopant and the  $Ge_{12}$  skeletons ends up in an enhanced stability for the doped  $B_xGe_{12}^{q}$  clusters. The transition metal-doped  $MGe_{12}^{q}$  clusters also share such a stabilization mechanism. Depending on the dopant characteristics,  $MGe_{12}^{q}$  structures actually tend to favor a puckered hexagonal prism, bicapped pentagonal prism, or icosahedral geometry. Investigation on the correlationship between geometry and bonding suggests that a maximization of electron density overlaps between the  $Ge_{12}$  cage and metal dopant is a driving force for formation of  $MGe_{12}^{q}$  in different geometries.<sup>58</sup> Although each  $B_x$  dopant basically generates a different geometry with a  $Ge_{12}$  host, they attain in all cases a stabilized electronic structure which is contributed by highly delocalized bonds made through strong orbital interactions.

A general principle to design tubular clusters can thus be proposed upon comparison to other tubular clusters. The  $M_2Si_{12}$  hexagonal prism,<sup>59</sup>  $Mn_2Si_{15}$  triple ring,<sup>60</sup>  $M_2B_{14}$  double <sup>1</sup> and the  $Rh_2B_{18}$  teetotum<sup>62</sup> all have the most stable form ring, in tubular geometry and such an enhanced stability is contributed by two main effects. The first effect is that both antibonding and bonding MOs of M2 are stabilized through orbital interactions with delocalized eigenstates of the corresponding tube. The second factor is that the vacant eigenstate of the Si12, Si15, B14, and B18 tubes becomes occupied in the resulting  $M_2 Si_{12}\text{, }Mn_2 Si_{15}\text{, }M_2 B_{14}\text{, and }Rh_2 B_{18}$ structure, respectively, and this also contributes to a stabilization of the latter. It is clear that the  $M_2$  and  $B_x$ dopants induce the delocalized bond with either Ge, Si, or B hosts to generate the tubular frames. Hence, an electronic principle for formation of tubular clusters is that the dopants are able to generate delocalized bonds with their host in a tubular shape, and subsequently attain a high-symmetry stable configuration.

3.6. Aromaticity of B<sub>3</sub>Ge<sub>12</sub><sup>+</sup> and B<sub>4</sub>Ge<sub>12</sub> Clusters. With the appearance of delocalized bonds, it is insightful to further explore the aromatic features of both  $B_3Ge_{12}^+$  and  $B_4Ge_{12}$ tubular prisms. Previous reports indicated that aromaticity constitutes a main reason for the planar shape of boron-based clusters.<sup>63</sup> Because it is rather difficult to classify the MOs of either  $B_3Ge_{12}^+$  or  $B_4Ge_{12}$  into different  $\sigma$  and  $\pi$  sets, we now explore their magnetic ring current maps with respect to three different planes. The first plane contains either the B<sub>3</sub> or B<sub>4</sub> cycle, denoted as  $P_0$  plane. The second plane is located about 1 a.u. above the  $P_0$  plane, called  $P_1$  plane. Finally, the third plane involves a Ge<sub>6</sub> hexagon and named as P<sub>2</sub> plane. Exploration of the ring current density projected into these planes, in particular the  $P_1$  plane, provides us with an intrinsic aromatic character of these novel type of clusters. The total magnetic ring current maps of  $B_3Ge_{12}^+$  3.A and  $B_4Ge_{12}$  4.A that are projected onto the  $P_0$ ,  $P_1$ , and  $P_2$  planes are displayed in Figure 8.

Regarding both  $P_0$  and  $P_1$  planes, both  $B_3Ge_{12}^+$  and  $B_4Ge_{12}$ sustain diatropic ring current flows induced by an external magnetic field, thus indicating a certain aromatic character for these tubular clusters. For both free  $B_3$  and  $B_4$  cycles, appearance of diatropic induced current densities in both  $P_0$ and  $P_1$  planes shows both  $\sigma$  and  $\pi$  aromatic characters, respectively. However, because of the involvement of MOs of  $Ge_{12}$  skeletons in  $B_3Ge_{12}^+$  and  $B_4Ge_{12}$ , the total ring current maps projected into  $P_0$  and  $P_1$  planes cannot separately be considered as  $\sigma$  and  $\pi$  contributions. Diatropic current density flows are identified in the  $P_2$ -plane indicating an aromatic



**Figure 8.** Comparison of the magnetic ring current maps of  $B_3Si_{12}^+$ ,  $B_3Ge_{12}^+$  **3.A** and  $B_4Ge_{12}$  **4.A** in different planes.  $P_0$  is the plane containing  $B_3$  or  $B_4$  cycle,  $P_1$  is the plane 1 a.u above  $P_0$ , and  $P_2$  is the plane containing a Ge<sub>6</sub> face. Ring current maps were obtained from B3P86/6-311+G(d) electron densities.

feature of the Ge<sub>6</sub> hexagon. It is illustrative that diatropic ring currents for both  $B_3 {\rm Ge}_{12}{}^{\scriptscriptstyle +}$  and  $B_4 {\rm Ge}_{12}$  are not only discernible on the  $B_3$  and  $B_4$  cycles but also on the hexagonal face of the  $Ge_{12}$  skeleton. This result emphasizes that the aromatic character of both tubular clusters  $B_3Ge_{12}^+$  and  $B_4Ge_{12}$  is not solely contributed by the  $B_3$  and  $B_4$  dopants, but the  $Ge_{12}$ tubular skeleton equally has an important role. Indeed, the  $D_{2h}$  $Ge_{12}$  skeleton and  $B_4$  dopant of  $B_4Ge_{12}$  each separately show a strongly paratropic current density associating with an antiaromatic feature. Combination of both moieties end up with a high-symmetry stable aromatic cluster, clearly indicating that aromaticity plays a more crucial role in the design principle of tubular clusters. It is related to orbital interactions leading to formation of delocalized bonds, that are regarded, as discussed above, to be a driving force in stabilizing tubular clusters. The magnetic ring current calculations suggest that aromaticity, which is resulting from electron delocalization, constitutes another essential factor in the stabilization mechanism.

# 4. CONCLUDING REMARKS

In the present theoretical study, we successfully designed the boron-doped germanium  $B_x Ge_{12}{}^q$  clusters with x = 1, 2, 3, and 4 and q = 0, 1. While the  $B_2 Ge_{12}$  structure constitutes the smallest deltahedral germanium cluster, both  $B_3 Ge_{12}^+$  and  $B_4 Ge_{12}$  clusters present us, for the first time, with an endohedral tubular motif where either the  $B_3$  or the  $B_4$  cycle

Within  $D_{3h}$  and  $D_{2h}$  geometries, the  $B_3$  and  $B_4$  clusters generate delocalized bonds with the  $Ge_{12}$  framework and thereby induce an aromatic character for the resulting  $B_3Ge_{12}^+$ and  $B_4Ge_{12}$ . Such a tubular aromaticity appears to greatly contribute to the high thermodynamic stability of the binary hexagonal Ge tubes. Together, both characteristics constitute a design electronic principle for making stabilized tubular clusters.

# ASSOCIATED CONTENT

#### **S** Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.9b05483.

Geometrical shapes of lower-lying isomers of the  $[B_xGe_{12}]^{0/+}$  and  $B_4Si_{12}$  and their relative energies, the MO shapes of **2.A**, **3.A**, and **4.A**, orbital interaction diagram of  $[B_3Ge_{12}]^+$ , and Cartesian coordinates of the optimized ground-state structures of  $[B_xGe_{12}]^{0/+}$  (PDF)

### AUTHOR INFORMATION

#### **Corresponding Author**

\*E-mail: nguyenminhtho@tdtu.edu.vn.

#### ORCID ©

Hung Tan Pham: 0000-0001-6356-3167

Remco W. A. Havenith: 0000-0003-0038-6030 Minh Tho Nguyen: 0000-0002-3803-0569

#### Notes

The authors declare no competing financial interest.

# ACKNOWLEDGMENTS

H.T.P. and M.T.N. are grateful to the Department of Science and Technology, Ho Chi Minh City, Vietnam, for support under Grant nos. 414/QD-KHCNTT & 1398/QD-SKHCN.

#### REFERENCES

(1) Kamata, Y. High-k/Ge MOSFETs for Future Nanoelectronics. *Mater. Today* **2008**, *11*, 30–38.

(2) Pillarisetty, R. Academic and industry research progress in germanium nanodevices. *Nature* **2011**, *479*, 324–328.

(3) Wang, J.; Wang, G.; Zhao, J. Structure and Electronic Properties of  $Ge_n$  (n = 2-25) Clusters from Density-functional Theory. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2001**, *64*, 205411.

(4) King, R. B.; Silaghi-Dumitrescu, I.; Lupan, A. Density Functional Theory Study of 11-Atom Germanium Clusters: Effect of Electron Count on Cluster Geometry. *Inorg. Chem.* **2005**, *44*, 3579–3588.

(5) King, R. B.; Silaghi-Dumitrescu, I.; Uţă, M. M. Density Functional Theory Study of 10-Atom Germanium Clusters: Effect of Electron Count on Cluster Geometry. *Inorg. Chem.* **2006**, *45*, 4974–4981.

(6) King, R. B.; Silaghi-Dumitrescu, I. Density Functional Theory Study of Nine-Atom Germanium Clusters: Effect of Electron Count on Cluster Geometry. *Inorg. Chem.* **2003**, *42*, 6701–6708.

(7) Qin, W.; Lu, W.-C.; Zang, Q.-J.; Zhao, L.-Z.; Chen, G.-J.; Wang, C. Z.; Ho, K. M. Geometric structures of Gen (*n* = 34-39) clusters. *J. Chem. Phys.* **2010**, *132*, 214509.

(8) Qin, W.; Lu, W.-C.; Zhao, L.-Z.; Zang, Q.-J.; Chen, G.-J.; Wang, C. Z.; Ho, K. M. Platelike structures of semiconductor clusters Gen (*n* = 40-44). *J. Chem. Phys.* **2009**, *131*, 124507.

(9) Li, B.-x.; Cao, P.-l. Structures of Genclusters (n = 3-10) and comparisons to Si<sub>n</sub> clusters. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2000**, 62, 15788–15796.

(10) Shvartsburg, A. A.; Liu, B.; Lu, Z.-Y.; Wang, C.-Z.; Jarrold, M. F.; Ho, K.-M. Structures of Germanium Clusters: Where the Growth Patterns of Silicon and Germanium Clusters Diverge. *Phys. Rev. Lett.* **1999**, *83*, 2167.

(11) Wang, L.; Zhao, J. Competition between supercluster and stuffed cage structures in medium-sized Gen (n = 30-39) clusters. J. Chem. Phys. **2008**, 128, 024302.

(12) Bulusu, S.; Yoo, S.; Zeng, X. C. Search for global minimum geometries for medium sized germanium clusters: Ge12–Ge20. J. Chem. Phys. 2005, 122, 164305.

(13) Yoo, S.; Zeng, X. C. Search for global-minimum geometries of medium-sized germanium clusters. II. Motif-based low-lying clusters Ge21–Ge29. J. Chem. Phys. 2006, 124, 184309.

(14) Spiekermann, A.; Hoffmann, S. D.; Kraus, F.; Fässler, T. F.  $[Au_3Ge_{18}]^{5-}$ —A Gold–Germanium Cluster with Remarkable Au–Au Interactions. *Angew. Chem., Int. Ed.* **2007**, *46*, 1638–1640.

(15) Perla, L. G.; Muñoz-Castro, A.; Sevov, S. C. Eclipsed- and Staggered- $[Ge_{18}Pd_3{E^iPr_3}_6]^{2-}$  (E = Si, Sn): Positional Isomerism in Deltahedral Zintl Clusters. *J. Am. Chem. Soc.* **2017**, *139*, 15176–15181.

(16) Perla, L. G.; Sevov, S. C. A Stannyl-Decorated Zintl Ion  $[Ge_{18}Pd_3(Sn^iPr_3)_6]^{2-}$ : Twinned Icosahedron with a Common Pd<sub>3</sub>-Face or 18-Vertex *Hypho*-Deltahedron with a Pd<sub>3</sub>-Triangle Inside. *J. Am. Chem. Soc.* **2016**, *138*, 9795–9798.

(17) Goicoechea, J. M.; Sevov, S. C.  $[(Pd-Pd)@Ge_{18}]^{4-}$ : A Palladium Dimer Inside the Largest Single-Cage Deltahedron. J. Am. Chem. Soc. 2005, 127, 7676–7677.

(18) Liu, C.; Popov, I. A.; Li, L.-J.; Li, N.; Boldyrev, A. I.; Sun, Z.-M.  $[Co_2@Ge_{16}]^{4-}$ : Localized versus Delocalized Bonding in Two Isomeric Intermetalloid Clusters. *Chem.*—*Eur. J.* **2018**, *24*, 699–705.

(19) Jin, X.; Espinoza-Quintero, G.; Below, B.; Arcisauskaite, V.; Goicoechea, J. M.; McGrady, J. E. Structure and bonding in a bimetallic endohedral cage,  $[Co_2@Ge_{16}]^{2^-}$ . J. Organomet. Chem. **2015**, 792, 149–153.

(20) Zhou, B.; Denning, M. S.; Kays, D. L.; Goicoechea, J. M. Synthesis and Isolation of  $[Fe@Ge_{10}]^{3-}$ : A Pentagonal Prismatic Zintl Ion Cage Encapsulating an Interstitial Iron Atom. *J. Am. Chem. Soc.* **2009**, *131*, 2802–2803.

(21) Wang, J.-Q.; Stegmaier, S.; Fässler, T. F.  $[Co@Ge_{10}]^{3}$ : An Intermetalloid Cluster with Archimedean Pentagonal Prismatic Structure. *Angew. Chem., Int. Ed.* **2009**, *48*, 1998–2002.

(22) Kumar, V.; Kawazoe, Y. Metal-Encapsulated Caged Clusters of Germanium with Large Gaps and Different Growth Behavior than Silicon. *Phys. Rev. Lett.* **2002**, *88*, 235504.

(23) Jing, Q.; Tian, F.-y.; Wang, Y.-x. No Quenching of Magnetic Moment for the Ge<sub>n</sub>Co (n=1-13) Clusters: First-principles Calculations. J. Chem. Phys. **2008**, 128, 124319.

(24) Deng, X.-J.; Kong, X.-Y.; Xu, X.-L.; Xu, H.-G.; Zheng, W.-J. Structural and Magnetic Properties of  $CoGe_n^-$  (n=2-11) Clusters: Photoelectron Spectroscopy and Density Functional Calculations. *ChemPhysChem* **2014**, *15*, 3987–3993.

(25) Wang, J.; Han, J.-G. A Theoretical Study on Growth Patterns of Ni-Doped Germanium Clusters. J. Phys. Chem. B 2006, 110, 7820–7827.

(26) Deng, X.-J.; Kong, X.-Y.; Xu, H.-G.; Xu, X.-L.; Feng, G.; Zheng, W.-J. Photoelectron Spectroscopy and Density Functional Calculations of  $VGe_n^-$  (n = 3-12) Clusters. J. Phys. Chem. C 2015, 119, 11048–11055.

(27) Siouani, C.; Mahtout, S.; Safer, S.; Rabilloud, F. Structure, Stability, and Electronic and Magnetic Properties of  $VGe_n$  (n = 1-19) Clusters. J. Phys. Chem. A **2017**, 121, 3540–3554.

(28) Hou, X.-J.; Gopakumar, G.; Lievens, P.; Nguyen, M. T. Chromium-Doped Germanium Clusters  $CrGe_n$  (n = 1-5): Geometry, Electronic Structure, and Topology of Chemical Bonding. *J. Phys. Chem. A* **2007**, *111*, 13544–13553.

(29) Bandyopadhyay, D.; Kaur, P.; Sen, P. New Insights into Applicability of Electron-Counting Rules in Transition Metal Encapsulating Ge Cage Clusters. J. Phys. Chem. A 2010, 114, 12986–12991.

### The Journal of Physical Chemistry C

(30) Wang, J.; Han, J.-G. Geometries and Electronic Properties of the Tungsten-Doped Germanium Clusters:  $WGe_n$  (n = 1-17). J. Phys. Chem. A **2006**, 110, 12670–12677.

(31) Trivedi, R.; Dhaka, K.; Bandyopadhyay, D. Study of Electronic Properties, Stabilities and Magnetic Quenching of Molybdenumdoped Germanium Clusters: a Density Functional Investigation. *RSC Adv.* **2014**, *4*, 64825–64834.

(32) Jin, Y.; Tian, Y.; Kuang, X.; Lu, C.; Cabellos, J. L.; Mondal, S.; Merino, G. Structural and Electronic Properties of Ruthenium-Doped Germanium Clusters. *J. Phys. Chem. C* **2016**, *120*, 8399–8404.

(33) Jaiswal, S.; Kumar, V. Growth Behavior and Electronic Structure of Neutral and Anion  $ZrGe_n$  (n = 1-21) Clusters. *Comput. Theor. Chem.* **2016**, 1075, 87–97.

(34) Phi, N. D.; Trung, N. T.; Ewald, J.; Ngan, V. T. Electron Counting Rules for Transition Metal-doped  $Si_{12}$  Clusters. *Chem. Phys. Lett.* **2016**, 643, 103–108.

(35) Lu, S.-J.; Hu, L.-R.; Xu, X.-L.; Xu, H.-G.; Chen, H.; Zheng, W.-J. Transition from Exohedral to Endohedral Structures of  $AuGe_n^-$  (n = 2-12) Clusters: Photoelectron Spectroscopy and ab initio Calculations. *Phys. Chem. Chem. Phys.* **2016**, *18*, 20321–20329.

(36) Pham, H. T.; Dang, T. T. M.; Van Duong, L.; Tam, N. M.; Nguyen, M. T.  $B_3 @Si_{12}^+$ : Strong Stabilizing Effects of a Triatomic Cyclic Boron Unit on Tubular Silicon Clusters. *Phys. Chem. Chem. Phys.* **2018**, 20, 7588.

(37) Koukaras, E. N. Ab initio study of medium sized boron-doped silicon clusters SinBm, n = 11-13, m = 1-3. Phys. Chem. Chem. Phys. **2018**, 20, 18556–18570.

(38) Pham, H. T.; Duong, L. V.; Pham, B. Q.; Nguyen, M. T. The 2D-to-3D Geometry Hopping in Small Boron Clusters: The Charge Effect. *Chem. Phys. Lett.* **2013**, *577*, 32–37.

(39) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. *Phys. Rev. Lett.* **2003**, *91*, 146401.

(40) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. **1993**, 98, 5648-5652.

(41) Baek, H.; Moon, J.; Kim, J. Benchmark Study of Density Functional Theory for Neutral Gold Clusters,  $Au_n$  (n = 2-8). J. Phys. Chem. A 2017, 121, 2410–2419.

(42) Pham, H. T.; Duong, L. V.; Tam, N. M.; Pham-Ho, M. P.; Nguyen, M. T. The Boron Conundrum: Bonding in the Bowl  $B_{30}$  and  $B_{367}$  Fullerene  $B_{40}$  and Triple Ring  $B_{42}$  Clusters. *Chem. Phys. Lett.* **2014**, 608, 295–302.

(43) Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. Self-consistent Molecular Orbital Methods. 22. Small Split-valence Basis Sets for Second-row Elements. J. Am. Chem. Soc. 1982, 104, 2797–2803.

(44) Dobbs, K. D.; Hehre, W. J. Molecular Orbital Theory of the Properties of Inorganic and Organometallic Compounds 5. Extended Basis Sets for First-row Transition Metals. *J. Comput. Chem.* **1987**, *8*, 861–879.

(45) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Selfconsistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. **1980**, 72, 650–660.

(46) Jeffrey Hay, P. Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition-metal atoms. *J. Chem. Phys.* **1977**, *66*, 4377–4384.

(47) Silvi, B.; Savin, A. Classification of Chemical Bonds Based on Topological Analysis of Electron Localization Functions. *Nature* **1994**, 371, 683–686.

(48) Mayer, I. Bond Order and Valence Indices: A Personal Account. J. Comput. Chem. 2007, 28, 204–221.

(49) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. *Chem. Rev.* **1988**, *88*, 899–926.

(50) Frisch, M. J.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J.; et al. *Gaussian 09*, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2009. (51) Zanasi, R. Coupled Hartree-Fock calculations of molecular magnetic properties annihilating the transverse paramagnetic current density. *J. Chem. Phys.* **1996**, *105*, 1460–1469.

(52) Lazzeretti, P.; Malagoli, M.; Zanasi, R. Computational Approach to Molecular Magnetic Properties by Continuous Transformation of the Origin of the Current Density. *Chem. Phys. Lett.* **1994**, *220*, 299–304.

(53) Lazzeretti, P.; Malagoli, P. M.; Zanasi, R. R. SYSMO package, Technical Report "Sistemi Informatici e Calcolo Parallelo", CNR Italy, 1991. Research Report number 1/67. Additional Routines by Fowler, P. W.; Steiner, E.; Havenith, R. W. A. and Soncini, A.

(54) Havenith, R. W. A.; Fowler, P. W. Ipsocentric Ring Currents in Density Functional Theory. *Chem. Phys. Lett.* **200**7, 449, 347–353.

(55) Guest, M. F.; et al. The GAMESS-UK electronic structure package: algorithms, developments and applications. *Mol. Phys.* 2005, 103, 719–747.

(56) Bruce King, R.; Silaghi-Dumitrescu, I.; Uţă, M. M. Density functional theory study of twelve-atom germanium clusters: conflict between the Wade-Mingos rules and optimum vertex degrees. *Dalton Trans.* **2007**, 364–372.

(57) Zhai, H.-J.; Wang, L.-S.; Alexandrova, A. N.; Boldyrev, A. I.; Zakrzewski, V. G. Photoelectron Spectroscopy and ab Initio Study of  $B_3^-$  and  $B_4^-$ Anions and Their Neutrals. *J. Phys. Chem. A* **2003**, *107*, 9319–9328.

(58) Goicoechea, J. M.; McGrady, J. E. On the Structural Landscape in Endohedral Silicon and Germanium Clusters, M@Si<sub>12</sub> and M@ Ge<sub>12</sub>. Dalton Trans. **2015**, 44, 6755–6766.

(59) Pham, H. T.; Majumdar, D.; Leszczynski, J.; Nguyen, M. T. 4d and 5d Bimetal Doped Tubular Silicon Clusters Si12M2 with M = Nb, Ta, Mo and W: a Bimetallic Configuration Model. *Phys. Chem. Chem. Phys.* **2017**, *19*, 3115–3124.

(60) Pham, H. T.; Phan, T.-T.; Tam, N. M.; Duong, L. V.; Pham-Ho, M. P.; Nguyen, M. T.  $Mn_2@Si_{15}$ : the Smallest Triple Ring Tubular Silicon Cluster. *Phys. Chem. Chem. Phys.* **2015**, *17*, 17566–17570.

(61) Pham, H. T.; Nguyen, M. T. Effects of Bimetallic Doping on Small Cyclic and Tubular Boron Clusters:  $B_7M_2$  and  $B_{14}M_2$  Structures with M = Fe, Co. *Phys. Chem. Chem. Phys.* **2015**, *17*, 17335–17345.

(62) Pham, H. T.; Nguyen, M. T. Formation of a Bi-rhodium Boron Tube  $Rh_2B_{18}$  and its Great  $CO_2$  Capture Ability. *Phys. Chem. Chem. Phys.* **2018**, 20, 26072–26082.

(63) Pham, H. T.; Lim, K. Z.; Havenith, R. W. A.; Nguyen, M. T. Aromatic Character of Planar Boron-based Clusters Revisited by Ring Current Calculations. *Phys. Chem. Chem. Phys.* **2016**, *18*, 11919–11931.

24684