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ABSTRACT

Historically, rational choice theory has focused on the utility maximization principle to describe how individuals make choices. In reality,
there is a computational cost related to exploring the universe of available choices and it is often not clear whether we are truly maximizing an
underlying utility function. In particular, memory effects and habit formation may dominate over utility maximization. We propose a stylized
model with a history-dependent utility function, where the utility associated to each choice is increased when that choice has been made in
the past, with a certain decaying memory kernel. We show that self-reinforcing effects can cause the agent to get stuck with a choice by sheer
force of habit. We discuss the special nature of the transition between free exploration of the space of choice and self-trapping. We find, in
particular, that the trapping time distribution is precisely a Zipf law at the transition, and that the self-trapped phase exhibits super-aging
behavior.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0009518

In modeling the behavior of agents, the common view in standard
economics is that their actions are guided by the maximization of
an utility function. For convenience, the utility for each agent is
often thought of as independent of the actions of others as well as
static in time. A myriad of results in economic theory actually rest
upon this assumption. Complexity economics has recently begun
to tackle the issue of interactions between agents with analytical
and numerical tools, and we address here the possibility of rein-
forcement mechanisms that make an agent’s utility depend on his
past. This simple toy model leads to non-ergodic dynamics, where
the agent’s actions depend crucially on past decisions.

I. INTRODUCTION

A key assumption in rational choice theory is that individuals
set their preferences according to an utility maximization principle.
Each choice an individual can make is assigned a certain “utility,”
i.e., a quantity measuring the satisfaction it provides to the agent and
frequently related to the dispassionate forecast of a related payoff.

This framework is often accompanied by the assumption that the
agent considers all available choices present to her/him, weighs their
utilities against one another, and then makes her/his choice taking
into account possible constraints, such as a finite budget.

A number of criticisms to this view of human behavior have
emerged, with, e.g., Simon1 as a key figure highlighting that indi-
viduals may be “satisfiers” rather than pure optimizers, in the sense
that there is both a computational cost and a cognitive bias related to
considering the universe of available choices. Sometimes, finding the
optimum of the utility function can itself be such a computationally
hard problem that even the most powerful computers would not be
able to find it in a reasonable amount of time. This led to the idea of
bounded rationality as a way to model real agents.2–5 More recently,
Kahneman6,7 pointed at what he considers to be significant diver-
gences between economics and psychology in their assumptions of
human behavior, with a special emphasis on the empirical evidence
of the cognitive biases, and, therefore, the irrationality that guides
individual behavior. A pervasive effect, for example, is that the utility
of a certain choice strongly depends on the choice made by oth-
ers. These so-called “externalities” can lead to interesting collective
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effects, where choices made by agents synchronize and condense
on a small subset of choices, or lead to confidence crises—see, for
example, Refs. 8–12.

An interesting idea developed in Ref. 13 is the fact that the
utility associated to a certain decision may depend also on our
memory if it has already been made in the past. Here, we pro-
pose a simple model that encapsulates this idea and show that this
too can lead to choices that do not necessarily conform to their
“objective” utilities, but are rather dominated by past choices alone.
This is related to what economists call “habit formation.”14–19 Mem-
ory effects chisel the utility landscape in a way that may render
objectively sub-optimal choices subjectively optimal. In the case
of sufficiently long-range memory, agents may, in a self-fulfilling
kind of way, become “trapped” forever in a certain choice and stop
exploring alternative choices.

As a practical example, one may imagine a situation where one
must choose where to have lunch every day. Standard rational the-
ory dictates that we ought to scrutinize every restaurant, eatery, and
cafeteria, taking into account our personal tastes and the costs asso-
ciated with going to any of these places. In contrast, we want to
model the fact that habit may take over: instead of seeking to maxi-
mize a certain objective cost function, we are likely to persist in going
to a specific place just because we are used to it. Anecdotal evidence
shows that this is indeed what often happens in practice!

Our model assumes that the utility landscape is affected by past
choices, with a memory kernel that decays with time. Agents can
change their decision using a logit (or Metropolis) rule, parameter-
ized by an “intensity of choice” β that plays the role of the inverse
temperature in statistical physics. This type of model belongs to
a wide class of so-called “reinforcement” models, which contains
Polya Urns, Reinforced Random Walks, Elephant Walks, etc.—for a
review, see Ref. 20, and references therein (for recent developments,
see also Refs. 21 and 22). Such models have also gained traction
in the economics literature, where positive reinforcement of cer-
tain choices made by agents are shown to impact the emergence of
certain macro-outcomes and structures.23,24

After properly defining our model, we provide analytical argu-
ments to confirm the intuition that sufficiently strong memory
effects, coupled with the optimization of the subjective memory-
induced utility, can lead to “self-trapping,” i.e., the agent sticks to
a choice whose objective utility is not necessarily maximal, simply
by force of habit. We confirm our result via numerical simulations
that explore different topologies for the space of different choices.
We discover a particularly interesting dynamical transition when the
memory kernel decays as the inverse of time, with rather unusual
scaling and super-aging properties. We finally propose possible
extensions.

II. A SIMPLE MODEL

Consider a set of N discrete choices, labeled (xi)1≤i≤N, to which
we assign an utility—a measure of the value an individual assigns a
given choice. The perceived utility of site xi and time t is postulated
to be

U(xi, t) = U0(xi)

(

1 +
t
∑

t′=0

φ(t − t′)1x(t′)=xi

)

, (2.1)

where the first term on the right-hand side is the intrinsic, or objec-
tive utility of the choice, while the second accounts for memory
effects, affecting the utility of that choice for the only reason that
the individual has picked it in the past. [One may also think, in the
physicist’s language, of an energy landscape (akin to minus the util-
ity), where the energy of a given site or configuration increases or
decreases if the system has already visited that site.] The decaying
memory kernel φ encodes that more recent choices have a stronger
effect, and x(t) denotes the choice of the individual at time t. Hence,
past history “chisels” the utility landscape, in a way similar to ants
leaving a pheromone trace that guide other ants along the same
path, or rivers creating their own bed through erosion. Note that in
most reinforcement random walk models reviewed in Ref. 20, infi-
nite memory span is assumed, i.e., φ(t) = constant, while we will be
mostly concerned here with decaying memory kernels.

The sign of the kernel φ separates two different cases: φ < 0
indicates a situation where an individual grows weary of his past
choices, while φ > 0 corresponds to the case where an individual
becomes increasingly endeared with them. In agreement with intu-
ition, the former case leads to an exploration of all the choices unless
the optimal choice has an utility too far apart from the rest to be suf-
ficiently affected by the kernel. In all that follows, we focus on the
more interesting case φ ≥ 0. The reason behind studying such utility
reinforcement lies in the behavioral idea that people tend to prefer
what they already know, thus paving the way for “habit formation”
as in Ref. 25 (see also Refs. 11 and 15–19). We then consider the
following dynamics. An individual, standing by choice xi at time t,
draws an alternative xj from a certain ensemble of “nearby choices”
∂i, e.g., the set of neighbors of i in a graph G, with probability,

Txi→xj
=

1xj∈∂i

Ni

, Ni :=
∑

j

1xj∈∂i
, (2.2)

where Ni is the number of neighbors of i. Restricting to nearby
choices is a parsimonious way to model adaptation costs that penal-
ize large decision changes. However, our framework is quite versatile
since the topology of the graph G is arbitrary, and we will consider
different cases below.

The target choice xj is then adopted with the logit probability,
standard in choice theory26 (for non-trivial trapping to emerge, we
consider graphs without singletons, that is to say that all sites have a
non-empty set of neighbors that are different to itself),

p(xi → xj) =
1

1 + eβ[U(xi ,t)−U(xj ,t)]
, (2.3)

where β is called the “intensity of choice” and accounts for the
degree of rationality (it is the analog of the inverse temperature
in statistical mechanics). Indeed, as long as 0 < β < ∞, the agent
is more likely to switch whenever U(xj, t) > U(xi, t) (optimizing
behavior), but the probability to pick a choice with a lower utility
is non-zero, which encodes for bounded-rationality (or uncertainty
about the true utility) in the economics literature. In the β → 0 limit
(equivalent to the infinite temperature limit in physics), the agent
explores the whole space of possible choices without taking their
utility into account. In the opposite limit β → ∞ (or zero temper-
ature), the agent has a greedy behavior and only switches to choices
with a higher utility, but this also implies that he/she may stay in a
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FIG. 1. Schematic representation of our problem at a given time t. The plot on
the top depicts the case of random “objective” utilities U0(x), while the one on
the bottom shows the situation where they are uniform U0(x) = U0. In both plots,
the solid black ball represents the choice made at time t, while the empty ball
represents the choice made at time t − 1. Both correspond to a simulation run
with a power-law kernel φ(t) ∝ (1 + t)−γ with γ = 1.5 and β = 0.2, on a fully
connected graph.

local maximum instead of taking the chance to explore all available
possibilities. An illustration of these dynamics is given in Fig. 1.

When φ = 0, the dynamics is that of the Metropolis–Hastings
algorithm used to sample the Boltzmann–Gibbs distribution.27,28

The stationary state of the dynamics is such that the probability
to pick choice xi is proportional to Nie

βU0(xi). This can by itself
lead to interesting phenomena depending on the statistics of U0.
For example, the study of the random energy model,29,30 for a finite
value of N and for Gaussian utilities of variance σ 2, shows that for
β > βc =

√
2 ln N/σ , the probability measure condenses on a small

number of choices, much smaller than N.

III. NON-ERGODICITY AND CONDENSATION OF

CHOICES

Adding the kernel introduces the possibility that the agent
gets stuck in a non-optimal choice exclusively through memory
effects: staying a long time in a given choice self-reinforces its utility,
thereby increasing the likelihood to stay there and leading to non-
ergodic dynamics. To study the possible condensation or trapping
induced by memory alone, we restrict ourselves to the case where
U0(xi) = 1, ∀i henceforth (any other value of U0 can be reabsorbed
in β). The interplay between memory-induced trapping and utility
heterogeneity is quite interesting in itself, but we leave it to future
investigations.

We consider an agent starting from a given choice x0 at
time t = 0 and follow his/her evolution for times t = 1, . . . , T
with T sufficiently large. We then compute the empirical state
histogram pi =

∑

t 1x(t)=xi
/T and define the order parameter h,

in a similar way to the inverse participation ratio used in
condensed matter physics31,32 or to the Herfindahl index in
economics,33 as

h :=
N
∑

i=1

p2
i . (3.1)

This parameter indicates how the agent has explored the space of
possible choices: if all choices were visited with equal probability,
then one has immediately pi = 1/N and thus h =

∑

i 1/N2 = 1/N.
On the other hand, if the agent was stuck in a single choice j, then
pi = δi,j and so h = 1. Therefore, 1/h gives an order of magnitude
of the number of different choices picked by the agent during time
T. In practice, we average h over a large number of trajectories and
starting sites x0, to obtain an average parameter 〈h〉. For a set of
simulations on a graph G with N choices and lasting a time T, we,
therefore, define the critical value βc, defining the crossover between
h = O(1/N) and h = O(1) as the value for β that maximizes the
variance of h over different trajectories.

An important question is whether βc corresponds to a true
transition or to a mere crossover. This depends on the L1 norm
of the memory kernel, |φ| =

∑∞
t=0 φ(t). Suppose that this norm is

finite. Then, if the agent has been stuck in a given site i for a time
t � 1, we can approximate its utility by (1 + |φ|). The difference
in utility with the neighboring choices thus remains finite. For any
finite value of β , the probability to leave that site is non-zero, and,
therefore, the individual will eventually pick a different choice. The
time for this to happen is, however, of the order of exp(β |φ|). If
this time is much longer than T, we will in fact measure h ∼ 1,
even though running the trajectory for a longer time would result in
h = O(1/N). Hence, in this case, βc is a crossover that depends on T
as ln(T)/(|φ|).

A more interesting situation (at least from a theoretical point
of view) is when |φ| = ∞. As we will show below, there exists cases
where βc corresponds to a true phase transition and is independent
of T (when T is large).

IV. MEAN FIELD APPROXIMATION

In order to draw further analytical features, we start by looking
at a mean-field approximation. This means that we take the graph
G to be fully connected with Txi→xj

= 1/(N − 1) and in the limit
N → ∞.

We now formalize the argument previously sketched. If the
individual started first at a given choice corresponding to node i,
then the probability P>(τ ) that he/she remains there up to a time
τ is given by the product over t ∈ [[0, τ − 1]] of the probabilities
not to leave the site between times t and t + 1, pstay(t). Now, pstay(t)
= 1 − pleave(t), with

pleave(t) =
∑

j∈∂i

Txi→xj

1

1 + eβ[U(xi ,t)−U(xj ,t)]
. (4.1)
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For the fully connected graph, this expression simplifies to Ref. 48

pstay(t) =
[

1 + e−β8(t)
]−1

, with 8(t) =
∑t

0 φ(s). It follows that:

P>(τ ) =
τ
∏

t=0

[

1 + e−β8(t)
]−1 ≈ e−I(τ ), (4.2)

with I(τ ) :=
∫ τ

0 dt ln
[

1 + e−β8(t)
]

, where we have replaced discrete
sums by integrals. Equation (4.2) determines the distribution of the
“trapping” time τ that the agent spends stuck on a certain choice. Its
nature will entirely depend on the behavior of the integral I(τ ) when
τ → ∞.

A. Short term memory

Consider first the case where limt→∞ 8(t) = |φ| < +∞. Then
I(τ ) ≈ λτ for τ → ∞, with

λ := ln
[

1 + e−β|φ|] . (4.3)

This means that the trapping time distribution decays exponentially
fast for large τ , with an average trapping time 〈τ 〉 approximately
given by 1/λ. For sufficiently small λ, we recover the qualitative
criterion of Sec. III by setting Tλ ∼ 1. But the dynamics remains
ergodic when T → ∞.

B. Long term memory

Suppose now that φ(t) decays sufficiently slowly for large t for
|φ| to diverge. For definiteness, we will focus on power-law kernels,

φ(t) =
C

(1 + t)γ . (4.4)

When γ > 1, |φ| is finite and we are back to the previous case.
Hence, we restrict to γ ≤ 1.

When γ < 1, one finds that 8(t) ∝ t1−γ for large t. Hence, I(τ )

converges to a finite limit I∞ for large τ . This means that there is a
finite probability P∞ = e−I∞ that the choice is made forever.

When γ = 1, 8(t) ≈ C ln t for large t. This leads to three
further sub-cases:

1. When βC > 1, I(τ ) again converges to a finite limit when
τ → ∞, i.e., decisions self-trap forever.

2. At the transition point, defined as β?
c = C−1, one finds that

P>(τ ) decays as τ−1, i.e., the trapping time distribution is a Zipf
law, τ−2. This is the marginal case that appears in several mod-
els of aging in the literature.34,35 For a finite observation time T,
the average trapping time grows like ln T.

3. When βC < 1, I(τ ) behaves for large τ as τ b/b, where b = 1
− βC > 0. The average trapping time 〈τ 〉 is thus finite. A
careful analysis49 shows that 〈τ 〉 diverges as b−1 when b → 0,
but higher moments 〈τ k〉 with k > 1 diverge much faster, as
exp((k − 1)/b), i.e., according to the so-called Vogel–Tamman–
Fulcher law (see, e.g., Ref. 36).

Let us summarize the above results. When the kernel φ decays fast
enough, there is a crossover regime in β between free exploration of
the space of choice and trapping. The crossover value of β depends

on the observation time T and is given, using Eq. (4.3) for T large, by

βc =
ln T

|φ|
. (4.5)

When memory is long ranged, and described by a power-law ker-
nel with decay exponent γ , there exists a genuine transition when
γ = 1 between a free exploration regime and a (non-ergodic)
trapped regime at a T independent value of β that we shall hence-
forth call β?

c . When β > β?
c or γ < 1, there is a non-zero probability

to get trapped in the same decision forever. The characteristic time
for changing decision is of the same order of magnitude as T itself,
a phenomenon called “aging” [see, e.g., Refs. 35 and 37 on which we
will comment further below (see Fig. 4)]. Note finally that for γ = 1,
our mean-field analysis predicts that while the average trapping time
diverges as (β?

c − β)−1, all higher moments diverge much faster, as
∼ exp(A/(β?

c − β)).

V. NUMERICAL RESULTS

We have conducted simulations using a long-range memory
kernel given by Eq. (4.4) with γ ∈ [1; ∞[. For numerical conve-
nience, we represent φ(t) as a superposition of exponentials as done
in Ref. 38. We have considered a variety of different graph topolo-
gies G: fully connected graphs, one-dimensional chains, and finally
Watts–Strogatz small-world networks. Without loss of generality,
we set again U0 = 1 as this simply corresponds to a rescaling of β .

Figure 2 (left) shows the value of βc, determined as the max-
imum of the variance of h, as a function of T for two different
topologies (one-dimensional and fully connected) and two differ-
ent values of γ ∈ {1, 1.5}. Our results show excellent qualitative
agreement with the theoretical prediction for the two topologies, in
particular, Eq. (4.5) in the γ > 1 case, although there is an overall
factor needed to account for the one-dimensional data.

One can actually interpolate between the two situations by
considering Watts–Strogatz small-world networks,39 with a rewiring
parameter p such that p = 0 corresponds to one-dimension chains
and p = 1 to the fully connected graph. Figure 2 (right) shows the
value of β?

c as a function of the rewiring parameter p of interpolating

FIG. 2. Left: critical βc as a function of ln T for γ = 1 and 1.5, N = 105, and dif-
ferent topologies. (Fc stands for fully connected, while 1D is the one-dimensional
chain). Black lines correspond to the prediction of mean-field theory. Right: depen-
dence of the critical intensity of choice β?

c on the parameter p of Watts–Strogatz
networks, for T = 5 × 103 and N = 2 × 103.
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FIG. 3. Order parameter h as a function β for N = 105, γ = 1, and different
values of T . Left: fully connected graph, for which a step function is approached
as T−1/3. Right: one-dimensional chain geometry, for which we cannot exclude
that h remains a continuous function of β when T → ∞.

between one-dimensional chains for p = 0 and the fully connected
graph for p = 1. The parameter p, therefore, allows to interpolate
between a situation where one may only do local jumps to a situa-
tion where one can go anywhere. As expected, β?

c increases with p,
as it is easier to get trapped in less connected graphs, where the same
choice is revisited more often.

We now study more carefully the behavior of the order param-
eter h close to the transition point β?

c , when γ = 1, both for one-
dimensional chains and for the fully connected graph. We choose
N = 105 henceforth, such that finite size effects are negligible in the
range of T that we explore. Figure 3 suggests that as T → ∞, 〈h〉(β)

appears to slowly converge to a step function that is zero for β < β?
c

and unity when β > β?
c , at least in the fully connected case where the

speed of convergence is found to be ∼T−1/3. In the one-dimensional
case, one cannot exclude with the available data that this limiting
function remains continuous when T → ∞.

VI. AGING

Finally, let us be a little more specific about the meaning of
self-trapping for finite T when β > β?

c . The correct statement is that
the system ages, in the following sense:37,40 assume that the agent’s
choice at time T is a certain xi and ask: what is the probabilityP(t, T)

that the agent has never changed his/her mind between T and a
later time T + t? In the free exploration phase β < β?

c , this probabil-
ity is, for large T, independent of T: the process is time-translation
invariant. In the trapped phase β > β?

c , P(t, T) can be estimated
by appropriately generalizing Eq. (4.2). The result takes the fol-
lowing aging form (see Fig. 4) [note that P(t, T) can be written in
the general form advocated by Cugliandolo and Kurchan:41 P(t, T)

= F(h(T)/h(T + t)), where F(u) = 1/u and h(x) is an effective
clock],

P(t, T) ≈ exp

(

1

a(T + t)a −
1

aTa

)

, a =
β

β?
c

− 1 > 0, (6.1)

where the exponent a is equal to minus the exponent b characteriz-
ing the stretched exponential distribution in the phase β < β?

c (see
Sec. IV). Note that in the regime t � T, P(t, T) is a function of
t/T1+a [precisely P(t, T) ≈ 1 − t/T1+a (see dashed line in Fig. 4)],

FIG. 4. Aging function 1 − P(t, T) as a function of t/Tβ/β?
c in a fully connected

graph with N = 10 000, with β?
c ≈ 1.5 and β = 3.5. Equation (6.1) predicts that

P(t, T) ≈ 1 − t/Tβ/β?
c when t � T (dashed line).

a regime called super-aging42 since the effective time for changing
one’s mind grows faster than the age T itself. This is quite interesting
since we are not aware of simple models leading to such a super-
linear aging behavior. Hence, memory effects of the type discussed
here might very well be an interesting lead to interpret experiments
that show such a super-aging behavior, such as those reported in
Ref. 43.

Right at the transition point β = β?
c , one finds simple aging,

i.e., a scaling function of t/T,

P(t, T) ≈
1

1 + t
T

, β = β?
c . (6.2)

When the kernel has a finite norm and leads to a crossover rather
than a true transition, aging will take place whenever T � eβ|φ|

but revert to a normal time-translation dynamics when T � eβ|φ|

(see Ref. 40 for a similar situation). When γ < 1, on the con-
trary, relaxation is quasi-frozen for large T, in the sense that P(t, T)

≈ 1 − t exp(−βCT1−γ ) when t � Tγ .

VII. CONCLUSION

Although quite simple, our model shows that non-trivial choice
distortion effects can emerge through memory or self-reinforcing
mechanisms. Our main result is that the addition of memory effects
can hinder the full exploration of all choices by the agent, and it may
even cause him/her to leave a substantial number of possible options
totally unexplored. The emergence of aging properties also shows
that including memory effects in agents’ preferences can lead to non-
ergodic dynamics, when ergodicity is a crucial assumption to many
models in economics. Table I summarizes our results.

Several extensions can be thought of and would be a sensible
way to incorporate more realism into the model. As we mentioned,
we have explored here the case where the objective utility landscape
U0(x) is totally flat, in a way to highlight the effects induced by mem-
ory alone. Reintroducing some heterogeneities in U0(x) would allow
one to study the competition between “landscape trapping” and
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TABLE I. Summary of the different dynamical regimes.

Asymptotics of
∑T

t=0 φ(t) |φ| < ∞ ln(T) T1−γ , γ < 1

• β > β?
c (trapped regime): P∞ > 0

Asymptotics of P>(τ ) e−λτ with λ = ln[1 + e−β|φ|] • β = β?
c (critical regime): τ−1 P∞ > 0 (trapped)

• β < β?
c (ergodic regime): exp ( − τ b/b),

with b = 1 − β/β?
c

• β > β?
c super-aging t ∼ Tβ/β?

c

Aging P(t, T) Trapping and aging for T � eβ|φ| • β = β?
c normal-aging t ∼ T Quasi-frozen relaxation

• β < β?
c equivalent to |φ|< ∞

“memory trapping,” with possibly interesting transitions between
the two. One could also imagine, along the lines of Ref. 44, a situa-
tion where an agent is only sensitive to past extreme values of his/her
utility.

Another direction is to introduce many agents with interac-
tions between them, meaning that the subjective utility may also
depend on what others are doing. Here again, one expects some
interesting competition between herding induced condensation of
choices and memory effects. Steps in this direction, with agents
interacting through a market and learning through past experience,
have already been taken in Refs. 45 and 46. In particular, the com-
bined effect of imitation of the past and imitation of peers may
generate collective self-fulfilling prophecies.

One could also explore the case where the graph G defining
the topology of the space of choices is itself time dependent—see
Ref. 47 for a step in this direction. For example, the neighborhood
of each choice could be itself affected by past choices, or some new
choices, not present initially, could present themselves later in time
(for example, the opening of a new restaurant).

In all these cases, the basic question is whether memory effects,
habit formation, or herding completely distort the choices dictated
by their objective utilities or not. Such distortions may have very
significant economic consequences at the macrolevel.

From a purely theoretical point of view, revisiting reinforce-
ment models considered in the literature20 with a power-law decay-
ing memory kernel could lead to new interesting transitions of
the type discussed above. In particular, the super-aging behavior
reported in the trapped phase might have applications much beyond
the present setting.
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