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By integrating single-cell RNA-
seq and bulk RNA-seq in
sphingolipid metabolism, CACYBP
was identified as a potential
therapeutic target in lung
adenocarcinoma

Pengpeng Zhang1†, Shengbin Pei2, Zeitian Gong1†,
Yanlong Feng1†, Xiao Zhang1, Fang Yang3* and Wei Wang1*

1Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University,
Nanjing, China, 2Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical
University, Nanjing, China, 3Department of Ophthalmology, Charité – Universitätsmedizin Berlin,
Campus Virchow-Klinikum, Berlin, Germany
Background: Lung adenocarcinoma (LUAD) is a heterogeneous disease with a

dismal prognosis for advanced tumors. Immune-associated cells in the

microenvironment substantially impact LUAD formation and progression, which

has gained increased attention in recent decades. Sphingolipids have a profound

impact on tumor formation and immune infiltration. However, few researchers

have focused on the utilization of sphingolipid variables in the prediction of LUAD

prognosis. The goal of this work was to identify the major sphingolipid-related

genes (SRGs) in LUAD and develop a valid prognostic model based on SRGs.

Methods: The most significant genes for sphingolipid metabolism (SM) were

identified using the AUCell and WGCNA algorithms in conjunction with single-

cell and bulk RNA-seq. LASSO and COX regression analysis was used to develop

risk models, and patients were divided into high-and low-risk categories. External

nine provided cohorts evaluated the correctness of the models. Differences in

immune infiltration, mutation landscape, pathway enrichment, immune

checkpoint expression, and immunotherapy were also further investigated in

distinct subgroups. Finally, cell function assay was used to verify the role of

CACYBP in LUAD cells.

Results: A total of 334 genes were selected as being most linked with SM activity

for further investigation, and a risk model consisting of 11 genes was established

using lasso and cox regression. According to the median risk value, patients were

split into high- and low-risk groups, and the high-risk group had a worse
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prognosis. The low-risk group had more immune cell infiltration and higher

expression of immune checkpoints, which illustrated that the low-risk group was

more likely to benefit from immunotherapy. It was verified that CACYBP could

increase the ability of LUAD cells to proliferate, invade, and migrate.

Conclusion: The eleven-gene signature identified in this research may help

physicians create individualized care plans for LUAD patients. CACYBP may be a

new therapeutic target for patients with advanced LUAD.
KEYWORDS

lung adenocarcinoma, sphingolipid, CACYBP, tumor immunemicroenvironment, immunotherapy
1 Introduction

According to the GLOBOCAN 2020 study, lung cancer is the

largest cause of cancer-related mortality globally, accounting for

11.4% of new cancer cases and 18% of cancer deaths (1). Non-

small-cell lung cancer (NSCLC) is the most prevalent kind of lung

cancer, accounting for around 85% of all occurrences (2). Meanwhile,

the most common histological subtype of NSCLC is LUAD. LUAD is

characterized by significant heterogeneity and a challenging tumor

microenvironment (TME) (3). Conventional pathology stages do not

totally predict a patient’s prognosis for NSCLC. Therefore, the

development of novel and reliable prognostic models may help in

assessing the risk of LUAD patients and offering customized

immunotherapy and chemotherapy regimens.

Sphingolipids are physiologically active lipids that are abundant

in eukaryotic cells and keep cell membrane fluidity and barrier

function in tact (4). Ceramide (Cer), sphingosine -1-phosphate

(S1P), sphingosine (Sph), sphingomyelin, and glycosphingolipids

are only a few of the sphingolipids that are often present in living

things and play crucial structural roles in cell membranes.

Sphingolipids are bioactive lipids that may participate in signal

transduction for a number of critical physiological functions (5, 6).

Several biological activities, including cancer cell proliferation,

migration, and invasion, depend on members of the sphingolipid

family (7). An in-depth study has been done on sphingolipids and

their derivatives as possible therapeutic targets in the fight against

cancer. Cer, Sph, and S1P are the three primary important

sphingolipid compounds. S1P mostly encourages cell survival,

whereas Cer and Sph primarily induce cell cycle arrest and promote

cell death. The “sphingolipid-rheostat” controlling the balance

between pro-apoptotic Cer/Sph and pro-survival S1P, has been

proposed as a novel approach to treating tumors (8, 9).

Dihydroceramide also builds up in cells by preventing ceramide

desaturation. This phenomenon involves controlling autophagy,

particularly autophagy-induced cancer cell death (10). Changes in

sphingolipid production may influence a number of signaling

pathways, encouraging or preventing the growth of tumors (11–14).

A more precise categorization of patients will result from more

research and knowledge of the sphingolipids-associated genes,
02
which will also assist in better monitoring overall survival rates and

enhancing medication response.

Individualized treatment was made feasible by single-cell RNA-

sequencing (scRNA-seq), a potent approach for investigating the

mechanisms behind malignancy heterogeneity and development

(15, 16). Thus, we employed scRNA-seq and bulk RNA-seq to

detect the SRGs signature in LUAD, and based on the median risk

scores, we separated the patients into high- and low-risk categories.

There was a significant difference in prognosis between the two

groups, and nine GEO datasets were chosen to confirm the

accuracy of our research. We also looked at the signature’s

predictive power for immunotherapy, drug sensitivity, tumor

mutational burden (TMB), and the immune microenvironment.

Finally, we reduced CACYBP expression in vitro to examine its

effect on LUAD cell migration and proliferation. Our results

provide fresh insight into how SM affects LUAD and open the door

to more accurate patient classification and identification, which aid in

the development of prognostic biomarkers and novel molecular

targets for LUAD gene therapy.
2 Materials and methods

2.1 Acquisition of raw data

The scRNA-seq data for LUAD, containing 12 LUAD samples,

were downloaded from GEO database (GSE150938). The training

cohort consisted of LUAD RNA expression patterns, gene mutations,

and associated clinical data that were obtained from the TCGA

database (n=516). For use as validation sets, the GEO expression

profiles of the following genes were simultaneously downloaded:

GSE13213, GSE26939, GSE29016, GSE30219, GSE31210,

GSE37745, GSE42127, GSE68465, and GSE72019. All of the

expression data were converted to TPM format for easier dataset

comparison. After that, batch effects were removed using the “sva”

package’. Prior to analysis, all data were converted using Log2. SRGs

were found in the GeneCards database (https://www.genecards.org/ ),

and a total of 122 SRGs with relevance scores greater than 10 were

selected for further investigation.
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2.2 scRNA-seq data processing and
cell annotation

Using “seurat” R tools, we checked the scRNA-seq data for

accuracy. Genes expressed in at least three single cells, cells with

between 200 and 7,000 genes, and cells with more than 10%

mitochondrial genes were filtered out to preserve high-quality

scRNA-seq data. For further investigation, 46286 suitable cells in

total were chosen. Using a linear regression model and the “Log-

normalization” technique, the remaining cells were scaled and

normalized. Following data normalization, the top 3,000

h y p e r v a r i a b l e g e n e s w e r e d i s c o v e r e d u s i n g t h e

“FindVariableFeatures” tool. We used the “FindlntegrationAnchors”

function of the canonical correlation analysis (CCA) approach to

remove the batch effects that would have interfered with downstream

analysis since these data were derived from several samples. In order

to appropriately integrate and scale the data, we then utilized the

“IntegrateData” and “ScaleData” functions. Principal component

analysis (PCA) dimensionality reduction was used to find the

anchor points. The t-distributed stochastic neighbor embedding (t-

SNE) algorithm was used to test the top 20 PCs in order to find the

meaningful clusters. We obtained 20 cell clusters after using the

“FindNeighbors” and “FindClusters” functions (Resolution =0.8) and

then displayed these clusters as a “t-SNE” diagram. Based on the cell

cycle markers included in the “seurat” package, cell cycle

heterogeneity along the clusters was assessed. Cell cycle scores were

calculated using the “CellCycleScoring” tool based on the expression

of G2/M and S-phase markers. The “FindAIIMarkers” tool of the

“Seurat” program was used to determine the differentially expressed

genes (DEGs) of each cluster. We utilized the cutoff threshold values

and modified P<0.01 and log2 (foldchange) >0.25 criterion to

determine which genes served as markers for each cluster. Based on

each cluster’s canonical marker genes, cell types were carefully

confirmed after annotation in accordance with earlier findings

(17, 18).
2.3 AUCell

The “AUCell” R package, which analyzed the active status of gene

sets in scRNA-data, was used to assign SM activity scores to each cell

lineage. Using the “ggplot2 R” software to visualize, the cells were then

divided into high- and low-Sphingolipid-AUC groups based on the

median values of the AUC score. Utilizing the “GSVA” package, Gene

Set Variation Analysis (GSVA) was carried out to investigate the

heterogeneity of diverse biological processes. In order to identify the

biological pathways that are enriched in both the high-and low-

Sphingolipid-AUC groups, the GSVA was carried out. The bar chart

showed all of the noteworthy paths.
2.4 ssGSEA and WGCNA analysis

ssGSEA was used to determine the absolute enrichment

percentage of a specified gene set in each sample (19, 20). In this

study, we employed ssGSEA to assign SM enrichment values to each

individual in the TCGA-LUAD.WGCNA is a biological technique for
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constructing the gene co-expression network of TCGA-LUAD (21,

22), and the “WGCNA” package in R implements this method. The

detailed processes were as follows: missing value genes were

eliminated using the “goodSamplesGenes” function, the tumor

samples were grouped, outliers were eliminated, and a cut line of

120 was defined. After that, a visual determination of the ideal soft

threshold for adjacency computation was made. To identify the

network’s genetic connectedness, the expression matrix was

converted into an adjacency matrix and then into a topological

overlap matrix (TOM). On the basis of the variations in TOM,

average linkage hierarchical clustering was then carried out. In

order to integrate modules with high correlation coefficients (R >

0.25), the hierarchical clustering tree was dynamically pruned to find

similar modules. Module eigengenes (MEs) were the principal

building block of gene modules, being capable of standing in for all

genes in a given module. Pearson correlation was used to determine

the relationship between eigengene values and clinical characteristics.

Finally, module genes with the most remarkable correlation to

sphingolipid score were selected for further analysis.
2.5 Construction and validation of the
risk scoring

As mentioned above, the TCGA-LUAD series as a pilot analysis,

whereas nine GEO datasets served as the validation set. To begin, we

took the intersection of the differential genes with the target genes in

WGCNA as candidate predictors. We applied univariate analysis on

the intersection gene to identify genes that statistically correlate with

patient’s OS (P< 0.01). Next, LASSO and multivariate regression

analysis were performed to further filter for genes and risk coefficients

strongly associated with prognosis (23). Each LUAD patient was

given a risk score based on the coefficients identified by the

multivariate analysis. Based on the median risk score, patients from

TCGA-LUAD were divided into high- and low-risk categories.

Meanwhile, Kaplan-Meier method was employed to plot survival

curves for prognostic purposes, and log-rank tests were performed to

determine the statistical significance. Receiver operating characteristic

(ROC) curves were used to examine the prediction model’s efficacy;

an AUC value of >0.65 indicated excellent performance. The

predictive ability of the signature was validated in independent nine

GEO datasets utilizing survival analysis and AUC. We employed the

“FactoMineR” package to perform PCA dimensionality reduction

analysis and visualized the discrepancy between the two risk groups.

Cohorts for validation were subjected to a similar procedure.
2.6 Assessment of the prognostic model and
analysis of mutations

To calculate the probabilities of OS at 1, 3, and 5 years, we

developed a nomogram combining the risk score, age, and

pathological stage as independent prognostic factors. ROC curves

were drawn to evaluate the accuracy of the nomogram. To assess the

nomogram’s accuracy, ROC curves were created. Using concordance

index analysis, we further assessed the net benefit of the nomogram

and clinical characteristics alone. Stratified analysis was used to
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evaluate the prognostic value of risk score clinical features (age,

gender, clinical stage, pathological T and N stage). The TCGA

database was used to retrieve gene mutation profiles of LUAD

patients, which were then computed using the “maftools” software.

The risk score was combined with the comprehensive gene

mutation information.
2.7 Enrichment analysis

The GSVA made us e o f t h e ha l lma rk gene s e t s

“h.all.v7.5.1.symbols.gmt” from MSigDB (https://www.gseamsigdb.

org/gsea/msigdb/index.jsp ). Then, the activity of each gene set in

each sample was assessed using the GSEABase package (24). The link

between model genes and 51 immune genes (25) was then further

examined, and the results were shown using a circular heat map.

From Mariathasan’s research characteristics, a set of genes positively

linked with anti-PD-L1 medication response was gathered (26–28).

The GSVA method was used to construct enrichment scores for gene

features that were positively related to immunotherapy and the cancer

immune cycles, and P< 0.05 were regarded as significantly different

between the two groupings. For the examination of connections

between the two aforementioned genetic characteristics and risk

scores, the R package “ggcor” was utilized.
2.8 Tumor immunity and immunotherapy

Based on the expression profiles, the R package “estimate” was used

to infer malignant tumor tissues’ stromal and immune cell abundance

and tumor purity (29). A higher score indicates a greater percentage of

TME components. The present study aimed to see whether or not there

were significant differences in survival or responsiveness to treatment

between different groups. Machine learning can accurately assess and

quantify immunogenicity. The Cancer Immunome Atlas (TCIA)

database was used to retrieve the Immunophenoscores (IPS) for

LUAD (30). To forecast immunotherapy sensitivity, the IPS was

examined. Additionally, immune checkpoints are made up of several

molecules that are expressed on immune cells and regulate the level of

immune activation. They are very important for limiting excessive

immune activation. We compared the levels of expression in both

groups of well-known immune checkpoint genes (ICGs). To evaluate

the possible response to immunotherapy, the Tumor Immune

Dysfunction and Exclusion (TIDE, http://tide.dfci.harvard.edu/ )

algorithm was used (31). We next determined the degree of immune

infiltration for LUAD patients in the TCGA database from the TIMER

2.0 database, which contains the results of 7 evaluation methods. These

data were applied to quantify the relative fractions of immune cell

infiltration in the TME in the form of heatmaps. There are six

recognized immune subtypes: wound healing, inflammatory,

lymphocyte deficient, immunologically quiet, and TGF-dominant

(25). The “ImmuneSubtypeClassifier” software was used to assess six

immune subtypes in LUAD samples and compare them to the

developed risk model. The differences were examined using the Chi-

square test.
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2.9 The role of CACYBP in LUAD

The expression of CACYBP in pan-cancer was explored using the

timer database. In order to investigate variations in survival, patients

were split into two groups based on CACYBP expression: high- and

low-expression, and finally the correlation between gene expression

and enrichment scores of the Hallmark gene sets was explored.
2.10 Tissue collection and cell lines culture

The tissue samples collected from the First Affiliated Hospital of

Nanjing Medical University were approved by the Medical Ethics

Committee (2019-SR-156) and were kept at -80°C. Ten pairs of

samples, including tumor tissue (T) and precancerous tissue (N),

were collected from LUAD patients undergoing tumor resection.

BEAS-2B cells (normal human lung epithelial) and A549 and

H1299 cells (human LUAD cell lines) were acquired from the Cell

Resource Center of Shanghai Life Sciences Institute. These cells were

grown in F12K or RPMI-1640 (Gibco BRL, USA) with 10% fetal

bovine serum (FBS), 1% streptomycin, and penicillin (Gibco,

Invitrogen, Waltham, MA, USA). 5% CO2, 95% humidity, and 37°

C were used to cultivate the cells.
2.11 Cell transfection

CACYBP knockdown was generated using small interfering

RNAs (siRNAs). In addition, CACYBP siRNA sequences were

listed in Supplementary Table S1. Briefly, cells were seeded at 50%

confluence in a 6-well plate and infected with negative control (NC),

and knockdown (siCACYBP). All transfections were carried out with

Lipofectamine 3000 (Invitrogen, USA).
2.12 Extraction of RNA and real-time PCR

Total RNA from cell lines and tissues was extracted by the

manufacturer’s instructions using TRIzol (15596018, Thermo).

After that, cDNA was created using the PrimeScriptTMRT kit

(R232-01, Vazyme). SYBR Green Master Mix (Q111-02, Vazyme)

was used to perform the Real-time polymerase chain reaction (RT-

PCR), and the expression levels of each mRNA were normalized to

the level of mRNA GAPDH. The 2−DDCt method was used to count

the expression levels. Tsingke Biotech (Beijing, China) provided all

primers, and Supplementary Table S1 has full primer sequences.
2.13 Colony formation

We transfected 1×103 cells into each well of a 6-well plate and

kept the cells alive for 14 days. Before Crystal violet (Solarbio, China)

staining, the cells were washed twice with PBS and fixed for 15

minutes in 4% paraformaldehyde.
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2.14 Wound-healing assay

In 6-well plates, transfected cells were plated and cultured in a cell

incubator until they were 95% confluent. In each cultured well, a

single straight line was scraped using a sterile 20-L plastic pipette tip,

and unattached cells and debris were gently washed away twice with

PBS. Finally, we used the Image J software to measure the width of the

scratches after taking photos of the scratch wounds at 0h as well

as 48h.
2.15 Transwell assay

Cell invasion and migration studies were performed via transwell

assay. The top chamber of 24-wells was filled with treated A549 and

H1299 cells (2×105), which were then incubated for 48 hours. To

assess the cells’ ability to invade and migrate, the top section of the

plate was either precoated with matrigel solution (BD Biosciences,

USA) or left untreated. The remaining cells on the bottom layer were

then fixed with 4% paraformaldehyde and stained with 0.1% crystal

violet after the cells on the top surface were removed

(Solarbio, China).
2.16 Statistical analysis

R (version 4.1.3) was used to process all of our data and statistics.

Utilizing the programs Graphpad and Image J (version 1.8.0),

experimental data were processed (version 9.4.0). To compare the

survival rates of the two groups, Kaplan-Meier curves with a log-rank

test were employed. All survival curves were produced using the R

program survminer. Cox regression analysis, both univariate and

multivariate, was used to evaluate prognostic variables. Lasso

regression was used to identify factors that had a bigger influence

on results. We used the R software “ggplot2” to show the data and the

R package survival to compute the OS and risk scores. Pheatmap was

used to create the heatmap. A two-tailed t-test or a one-way ANOVA

was used to identify significant quantitative differences for normally

distributed variables. A Wilcoxon test or a Kruskal-Wallis test was

used to evaluate if there were significant differences for nonnormally

distributed data. Using R software, every statistical analysis was

carried out. A statistically significant value is P< 0.05.
3 Results

3.1 The scRNA profiling of LUAD

Figure 1 displayed the study’s flowchart. After a quality check

based on the percentage of cell signatures and the expression of the

mitochondrial and ribosomal genes, a total of 46286 high-quality cells

were deemed suitable for further study. Each sample’s expression

characteristics are shown in Supplementary Figure S1A. There are

statistically significant positive correlations between sequencing depth

and total intracellular sequences (R=0.94, Supplementary Figure S1B).

No discernible variations in cell cycles were seen in the PCA reduction

plot (Supplementary Figure S1C). Figure 2A illustrated typical
Frontiers in Immunology 05
markers for different cell types. There were 12 samples included in

the study, and the cell distribution within each sample was generally

consistent, indicating that there was no discernible batch impact

among samples, which could be used for further investigation

(Figure 2B). Subsequently, the dimensionality reduction methods,

namely t-SNE, classified all cell to 20 clusters (Figure 2C). Figure 2D

showed the proportion of each cell in the 12 LUAD samples with line

plots, among which NK/T cells accounted for the highest proportion.

Figure 2E illustrated the distribution of each cell population with a t-

SNE plot. A total of seven cell types can be found, such as Endothelial

cells, Fibroblasts, Myeloid, and tumor cells. Using the “AUCell” R

package, the SRGs activity of each cell was determined (Figure 2F).

Higher AUC values were seen in cells that expressed more genes, and

these cells were mostly orange-hued myeloid cells (Figure 2G). All

cells were assigned an AUC score for the corresponding SRGs and

divided into high- and low-Sphingolipid-AUC groups by AUC score

median values.
3.2 Identification of the most relevant
genes for SM activity and the construction
of a risk model

To elucidate the potential biological mechanisms of distinct AUC

scores, the GSVA was conducted and results showed that the top five

pathways enriched in high Sphingolipid-AUC group were

Coagulation, Xenobiotic metabolism, Cholesterol homestasis,

Adipogenesis, and Protein secretion (Figure 3A). We next

performed differential analyses to identify DEGs related to SM

between high-and low-Sphingolipid-AUC groups and a total of 613

DEGs were selected for the subsequent study. In addition to this we

performed correlation analysis to explore the genes most associated

with SM metabolic activity (Figure 3B), the top 150 most associated

genes were used for subsequent analysis. In the single-cell analysis, the

DEGs and the genes obtained from the correlation analysis were

merged to obtain the genes that most affected SM activity (764 in

total). Each sample in TCGA-LUAD had its SM score determined

using ssGSEA, and WGCNA was used to further search for gene sets

that were covarying with SM score. Supplementary Figure S1D

showed that mean connectivity tends to be stable and the data is

more compatible with the power-law distribution when the soft

domain value is 7. This makes the data appropriate for further

investigation. Nine non-gray modules (Figure 3C) were produced

when the minimum number of modules was set to 100, deepSplit to 3,

and merging the modules with similarity lower than 0.25

(Supplementary Figure S1F). The relationship between each

module’s expression and clinical characteristics was assessed.

Finally, the 761 genes most associated with SM activity obtained in

the single-cell analysis were intersected with the three modular genes

most associated with SM activity obtained in WGCNA, and a total of

334 overlapped genes were selected to be analyzed in the following

step (Figure 3D). For better data consistency, we removed the batch

effect from the GEO-obtained data and with the TCGA data,

Figure 3E showed the distribution ratio of the ten data sets, and

Figures 3F, G showed the PCA plots before and after the batch effect

was removed, respectively. After that, TCGA was divided into

training and validation sets according to 6:4, and univariate COX
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analysis was performed, and the results were shown by a circular plot

(Figure 3H), and finally, the risk model consisting of 11 genes was

obtained by multivariate COX and lasso regression analysis

(Figure 3I, Supplementary Figure S1F). The formula is as follows:

risk   score =o
k

n=i
Coefi exp ið Þ

Coefi and Expi represented the coefficient and expression of each

model gene, respectively, and the risk score for each sample was

calculated by the above formula.
3.3 Survival analysis and model evaluation

Patients were divided into high-and low-risk groups based on

median risk values and survival analysis showed a significant

difference in survival in the TCGA dataset LUAD patients. In the

geo datasets, there were eight datasets with a significant difference in
Frontiers in Immunology 06
survival (P< 0.05, Figure 4A). This indicates the reproducibility and

stability of the model. The ROC curves showed high AUC values in

TCGA, and most of the datasets in the GEO datasets had AUC values

greater than 0.6 (Figure 4B). Ten datasets from TCGA and GEO were

subjected to PCA analysis according to the model gene expression,

and the final results are presented in Supplementary Figure S2A-K.

PCA found that According to the risk scores, patients could be

distinguished well in two dimensions, which suggested that the

model had a promising capacity to stratify risk subtypes in both the

TCGA cohort and the GEO cohorts.
3.4 Construction and validation of
prognostic nomogram integrating risk score
and clinicopathological parameters

On the basis of the TCGA-LUAD dataset, a predictive nomogram

incorporating risk score and clinicopathological characteristics (age and
FIGURE 1

The flowchart of this study.
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clinical stage) was created to more accurately predict the prognosis of

LUAD (Figure 5A). Clinical outcome parameters were used based on

survival at 1, 3, and 5 years. The AUC of the ROC curve for predicting

patient prognosis was maintained at around 0.750, indicating that the

nomogram’s predictive value was greater than that of any one clinical

trait (Figures 5C–E). C-index curves clarified that clinical features

combined with the risk score could predict the prognosis with more

sensitivity compared to a single indicator (Figure 5F). The above results

determined that the nomogram is suitable for clinically predicting the

prognosis of LUAD. A heatmap of correlations between prognostic

signatures of risk score and clinicopathological outcomes was also
Frontiers in Immunology 07
generated. According to the heatmap, the risk score presented

correlated positively with clinical status, clinical stage, T stage, and N

stage (P< 0.05, Figure 5B), while no statistical difference was found

between other clinical features such as age and clinical stage. The

distribution of various clinical traits in various groups was then

compared and shown as a percentage bar plot. We also assessed

thepredictive performance of risk categories in LUAD patients

stratified by various clinical characteristics. We saw that patients in the

high-risk category consistently had considerably inferior outcomes across

a wide range of clinical categories, which suggested the universal

applicability of the prognostic model (Figures 5G–K).
B C D

E F G

A

FIGURE 2

Annotation of single-cell data and SM activity. (A) Typical marker genes for each cell group. (B) The t-SNE plot showed that all the cells in the 12 LUAD
samples. (C) The t-SNE plot showed that all the cells in 20 clusters. (D) Different proportions of cells in 12 samples. (E) The t-SNE map indicates that
LUAD samples can be annotated as 7 cell types in the TME (different colors represent different cell types). (F, G) AUCell score and groups of SM activity in
each cell.
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3.5 Mutational landscape

Given that genetic mutation also played a key part in cancer

patients’ tailored treatment. We examined the somatic mutation

profiles of risk. As shown in Figure 6A, the top 3 most frequent

mutant genes were TTN, MUC16, and CSMD3. The distributions of

gene mutations among risk groupings were then further examined.

Figure 6B showed that genes with the top 20 high-frequency

mutations have a higher mutation frequency in the high-risk group,

such as TP53, TTN, and CSMD3. We next looked at the distribution

of mutations in model genes in TCGA-LUAD and showed that model

genes were mutated in a total of 6.7% of samples, with KLF4 having

the highest mutation frequency, which may be a key factor affecting

the prognosis of LUAD patients (Figures 6C). furthermore, co-

mutations of model genes were examined and the results showed

that KFBP5 and ATP6V1B2 were co-mutated (P< 0.05, Figures 6D).
Frontiers in Immunology 08
Figure 6E showed that there is a significant difference in the TMB of

patients in the high- and low-risk groups, with higher TMB in the

high-risk group. Next, we classified patients into four categories based

on median TMB values and median risk values (H-TMB+high-risk,

H-TMB+low-risk, L-TMB+high-risk, and L-TMB+low-risk), and the

results show that patients with low-risk and high mutations had the

best prognosis (Figure 6F).
3.6 Pathway enrichment analysis

To explore the underlying mechanism that could lead LUAD

patients in the high-risk group to a poor prognosis. Analysis of

hallmark pathway gene signatures highlighted that the high-and

low-risk groups showed some differences. A direct comparison of

Risk-High versus Risk-Low revealed the top 5 enriched signatures in
B C
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FIGURE 3

Construction and validation of SM-related prognostic model. (A) GSVA showed the enrichment of hallmark gene sets in different SM AUCell groups.
(B) Correlation analysis between SM-AUCell score and genes. (C) WGCNA analysis searched for the modules most associated with SM activity. (D) Venn plots
identified the genes most associated with SM activity. (E The sources of samples and the proportion of sample size in 10 datasets were analyzed. (F, G) PCA
plots before and after removal of batch effects for 10 datasets. (H) Genes significantly associated with prognosis after univariate regression. (I) Model genes
and coefficients identified by lasso regression and multivariate analysis.
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the high-risk group included Glycolysis, mTORC1 signaling, C-MYC

target, G2M checkpoint, and E2F targets (Figure 7A). Glycolysis is an

essential condition for the occurrence and development of tumors

(32). High-risk samples may present a worse prognosis for LUAD

patients by upregulating the glycolytic pathway. MTORC1 is an

effective pathway to promote tumor progression, and targeting

MTORC1 may become a therapeutic target for LUAD patients in

the high-risk group (33). Furthermore, c-Myc is necessary for

tumorigenesis (34), almost often, Myc may increase transcription

(35), which showed that LUAD cells could be susceptible to Myc

inhibition. Extremely crucial nuclear transcription factors involved in

controlling the cell cycle are encoded by the E2F family (36, 37).

According to clinical research, E2F family members are directly

linked to the incidence, growth, proliferation, and apoptosis of

cancerous tumors such as gastric, pulmonary, liver, esophagus,

prostate, bladder, and ovarian cancer (36, 38). In order to control
Frontiers in Immunology 09
cell proliferation, the G2M checkpoint also functions as a cell cycle

regulatory route. High G2M checkpoint pathway activation has been

linked in studies to considerably worse survival in people with

pancreatic cancer (39). As a result, these pathways, which were

more prevalent in the high-risk group, may play a crucial role in

controlling tumor development in LUAD. To explore the TME of

high-and low-risk group samples,we used ssGSEA to evaluate the

composition of immune cells between two risk groups (Figure 7B).

Patients in low-high exhibited considerably more partial innate

immunity cells (like DC cells and macrophages) and adaptive

immunological population (like B cells and T cells) than patients in

other groups. Additionally, LUAD patients in the low-risk group had

usually higher enrichment scores of immune-related activities

produced. To further investigate the variations in immune response

across various risk categories, we performed correlation analysis using

model genes and classical immune-related genes (Figure 7C), and the
B

A

FIGURE 4

Assessment of risk models. (A) Kaplan-Meier prognostic analysis of signatures in the training, testing, whole TCGA, and nine GEO datasets. (B) The ROC
curve was used to evaluate the performance of the model in the training, testing, whole TCGA, and nine GEO datasets.
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results showed that high-risk genes (HR>1) such as CACYBP and

CCL20 were negatively correlated with immune genes, while low-risk

genes such as DUSP2 and FBP1 were negatively correlated with

immune genes, which may explain the significant differences in

immune microenvironment and survival prognosis between high-

and low-risk groups. The biological performance of the chemokine

system and other immunomodulators was assessed using the tumor

immune cycle as a critical indication (26, 40, 41). As a result, we

examined the relationship between the activity of tumor immune

steps and various risk groups (Figure 7D), and we found that there

was a strong negative relationship between risk score and the activity

of the majority of cycle steps, including cancer cell antigen expression

(step 2), initiation and activation (step 3), and immune cell trafficking

into tumors (step 4). These immune cell recruitment steps include T
Frontiers in Immunology 10
cell recruitment, CD4 T cell recruitment, CD8 T cell recruitment, Th1

recruitment, DC cell recruitment, and Th22 (step 7). The relationship

between immune checkpoint blockade (ICB) response signatures and

SRGs risk scores was then investigated further. Risk scores had a

positive correlation with the majority of ICB signals but a negative

correlation with the interaction between cytokines and

their receptors.
3.7 Differences in tumor immune
microenvironment in different risk groups

We calculated parameters using the ESTIMATE technique to

assess differences in the TME among different risk groups. According
B
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FIGURE 5

Building a more accurate nomogram. (A) Nomogram was constructed by combining clinical features with risk score. (B) Heat map incorporating
clinical data, model genes. (C–E) ROC curves for 1, 3, and 5 years showed AUC values for various clinical factors, risk scores, and nomogram scores.
(F) The C-index curves were used to evaluate the predictive performance of different clinical characteristics, nomogram scores and risk scores.
(G–K) The proportion of multiple clinical characteristics in different risk subgroups. :**P < 0.01, ***P < 0.001.
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to our research, patients with low-risk had greater stromal, immune,

and ESTIMATE scores (stromal+immune) than those with high-risk,

although the high-risk group had higher tumor purity (Figure 8A).

The correlation findings indicated a positive relationship between the

risk score and the distribution of each TME component (Figure 8B).

Immunotherapeutic effectiveness may change depending on the

tumor progression due to the different immune infiltration levels.

In light of the aforementioned results, we investigated whether the

prognostic model could forecast LUAD patients’ responses to ICIs.

Individuals who could benefit from immunotherapy may be found

using the IPS. It was expected that tumor samples from these

individuals would have a positive immune response to either PD-1/

PD-L1 or CTLA4 inhibitors, or both (Figure 8C–F). The IPS scores of

the patients in the low-risk group were much higher, indicating that

they would benefit most from this kind of immunotherapy. The
Frontiers in Immunology 11
findings of our investigation into the variations in ICGs between the

high-and low-risk groups were then shown as heat maps (Figure 8G)

and boxplots (Figure 8H), respectively. Most ICGs, including

CD40LG, LAG3, PD-1, and others, were more strongly expressed in

the low-risk group, while TNFS9 was more significantly expressed in

the high-risk group. Evasion of the immune system is one of the

important features of cancer that depends on the successful survival of

this tumor in the human body. TIDE, a technique to identify variables

that underpin tumor immune escape pathways, may function as a

useful biomarker for anticipating immunotherapy response in

patients with a variety of malignancies, particularly those treated

with ICIs. With anti-PD1 and anti-CTLA4 treatments, a greater

tumor TIDE prediction score is linked to a poorer ICB response as

well as a worse patient survival. According to our research, the low-

risk group benefited better after immunotherapy, had a lower
B

C D
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A

FIGURE 6

Landscape of LUAD sample mutation profiles. (A) Description of the statistical measurement mutation details, among which the most common mutation
type was a missense mutation. SNP occupied an absolute proportion compared with insertion or deletion, and C>A occurred more frequently than in
other classifications of forms. The horizontal histogram listed the top 10 mutated genes in melanoma. (B) Mutation landscape of the top 20 genes with
mutation frequency in differential risk subgroups. (C) Mutation landscape of model genes. (D) Co-mutation or co-exclusion relationships among model
genes. (E) Comparison of tumor mutation burden (TMB) between different risk groups. (F) Correlation analysis between risk score and TMB. (E) Survival
differences for four different subgroups (H-TMB+high-risk, H-TMB+low-risk, L-TMB+high-risk, and L-TMB+low-risk).
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Exclusion score, and had a decreased likelihood of tumor immune

escape (Figure 8I). Therefore, it is speculated that patients in the low-

risk group are more suitable for immunotherapy.
3.8 Reassessment of immune infiltration and
analysis of CACYBP

In order to further verify the difference in immune cell infiltration

in different risk groups, we used seven algorithms to evaluate the

immune infiltration of different risk groups. The results are shown in

Figure 9A. It can be seen that there was higher immune cell

infiltration in the low-risk group, such as B cell, T cell, DC cell, etc.
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This means that the TME of the low-risk group tends to form a hot

tumor with a better effect on immunotherapy. Figure 9B showed the

heat map of TME scores, immune checkpoints, and CIBERSORT

calculated immune cell infiltration scores, which also illustrates that

there are more highly expressed immune checkpoints and higher

levels of immune cell infiltration in the low-risk group. Following

that, the association between model grouping as well as immune

subtypes was investigated, as demonstrated in Figure 9C. Immune

subtypes C1, C2, and C6 were more common in the high-risk group.

Previous research has revealed that the immunological subtype C3

group had the best prognosis, and C3 was mostly found in the low-

risk category, which was consistent with the previous findings.

Further research was done on the CACYBP with the highest HR
B

C D

A

FIGURE 7

Enrichment analysis and functional annotation. (A) GSVA shows the enrichment of hallmark gene sets in different risk subgroups. (B) The ssGSEA algorithm
was used to evaluate the differences in immune cells and immune-related functions between high- and low- risk subgroups. (C) Heat map of correlation
between model genes and immune genes. (D) Correlation of risk scores with ICB response signature and each step of the tumor-immune cycle. *P < 0.05,
**P < 0.01, ***P < 0.001.
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value in the signature. CACYBP was found to be significantly

expressed in tumor tissues in the majority of malignancies when we

looked at the relative expression of CACYBP in pan-cancerous

tumors and nearby tumors using the TIMER database (Figure 9D).

We divided TCGA-LUAD patients into high- and low-CACYBP

expression groups and found that patients with high-CACYBP

expression had a worse prognosis (Figure 9E). Similarly, the

gse31210 dataset showed similar results (Supplementary Figure

S3A). To explore the reasons for this, we analyzed the relationship

between CACYBP expression and the hallmark gene sets (Figure 9F)

and found that the top five pathways that positively correlated with

CACYBP expression were Myc targets v1, Myc target v2, E2F targets,

mTORC1 signaling, and Spermatogenesis, which may be important

factors affecting tumor progression. Further experimental verification

proved our conclusion.
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3.9 Experimental validation of CACYBP

The expression of CACYBP was evaluated in ten pairs of LUAD

carcinomas and adjacent tissues (Figure 10A), and it was found that

CACYBP was significantly highly expressed in the tumor tissues,

which was similarly validated in our cell line experiments

(Figure 10B). And then, we employed the qRT-PCR technique to

measure the level of CACYBP expression 5 days after transfection in

order to gauge the effectiveness of siRNA knockdown of CACYBP in

A549 and H1299 cell lines (Figure 10C). Clonal formation tests after

that showed that CACYBP knockdown significantly decreased the

LUAD cell line’s capacity to form colonies (Figure 10D). These

findings suggested that CACYBP knockdown prevented LUAD cell

growth. The knockdown of CACYBP dramatically impaired the

migration and invasion capacity of LUAD cells, as detected by the
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FIGURE 8

Analysis of TIME and immune checkpoint. (A) The violin plot demonstrated the difference in ESTIMATE Score, Immune Score, Stromal Score and tumor
purity calculated using the ESTIMATE algorithm between the two risk subgroups. (B) The correlations in ESTIMATE Score, Immune Score, Stromal Score
and tumor purity calculated using the ESTIMATE algorithm between the two risk subgroups. (C–F) The low-risk group has significantly greater IPS, IPS-
CTLA4-neg-PD-1-neg, IPS-CTLA4-pos-PD-1-neg, IPS-CTLA4-neg-PD-1-pos, and IPS-CTLA4-pos-PD-1-pos. Note: *P < 0.05, **P < 0.01, ***P < 0.001.
(G, H) Heat map and box plot showed that differences in immune checkpoint gene expression between high- and low-risk subgroups. (I) TIDE between
those LUAD patients at high-and low-risk statue.
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wound healing assay (Figure 10E). In line with the results of the

wound healing assay, LUAD cells transfected with si-CACYBP

exhibited weaker migratory invasive ability in the transwell assay

(Figure 10F). All of these findings suggested that CACYBP operated

in LUAD as a pro-oncogenic regulator.
4 Discussion

Immune system plays important role in the development of

cancers, as well as immunotherapy (42). Notably, metabolic

molecules are greatly influencing the immune environment (43)

and thus the progression of the disease (44). Sphingolipids

influence cell signal transmission by functioning as secondary
Frontiers in Immunology 14
messengers and controlling a number of biological processes, and

they are crucial for maintaining the fluidity and functionality of

membrane barriers (45). Nearly all of the key metabolic enzymes that

control the relative abundance of sphingolipids have been found and

cloned during the last several years by a large number of researchers.

These enzymes’ varying activity alter how cancer progresses, which

has an impact on therapy (46). Sphingolipids have been found to be

crucial in the development of many diseases, including lung cancer.

Immune checkpoints have been discovered and developed, which has

raised the possibility of defeating cancers. However, only few patients

benefit from tumor immunotherapy, and there are definite (47).

Tumor immunotherapy research now focuses on ways to increase

immunotherapy’s effectiveness and broaden the population that

benefits from treatment. There is mounting evidence that the
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FIGURE 9

Analysis of immunotherapy and the immune microenvironment. (A) Seven algorithms assess differences in immune infiltration status between different risk
groups. (B) A heat map showed the differences in TME scores, immune checkpoint expression and immune cell infiltration calculated by Cibersort among
different risk subgroups. (C) Relationship between high- and low-risk groups and six immune subtypes. (D) Boxplot showed CACYBP expression in pan-
cancer. (E) Survival analysis showed the effect of CACYBP expression on prognosis. (F) Correlation between CACYBP expression and 50 hallmark pathways.
*P < 0.05, **P < 0.01, ***P < 0.001.
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TME’s heterogeneity is to blame for the variations in treatment results

(48). The comprehension of the TME has substantially benefited from

the emergence of scRNA-seq technology (17). In the current

investigation, we used single-cell sequencing to examine 12 LUAD

samples, and seven different cell types were identified in total. The SM

gene set, which was downloaded from the GeneCards database, was

used to calculate SM activity using the AUCell algorithm, and it was

discovered that myeloid cells had the highest levels of SM activity.

This suggested that SM may regulate myeloid cells to affect
Frontiers in Immunology 15
tumorigenesis and development. The most important genes

controlling SM activity were then identified. In the TCGA database,

we also created a distinct prognostic prediction signature for LUAD

patients, and the signature employed in this study had 11 SRGs:

ATP6V1B2, BIN2, DUSP2, FKBP5, PLSCR1, XBP1, CCL20, KLF4,

CACYBP, FBP1, and RHOF. The unfavorable genes in the signature

model were CCL20, FKBP5, PLSCR1, RHOF, KLF4, and CACYBP,

while other genes showed protective action on the prognosis of LUAD

patients. The survival study of eight external GEO cohorts revealed
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FIGURE 10

The role of CACYBP in LUAD. (A) Relative expression of CACYBP in tumor and paracancerous tissues in LUAD and CACYBP was highly expressed in
tumor tissues compared with adjacent tissues (B) CACYBP was highly expressed in LUAD cell lines compared to healthy human lung epithelial BEAS-2B
cell line. (C) RT-qPCR was performed to measure the relative expression of CACYBP in LUAD cells transfected with si-RNAs or negative control (NC). (D)
Colony formation assay displayed that cell with reduced CACYBP expression exhibited a significant reduction in the numbers of colonies, compared with
the NC group. (E) Scratch-wound healing assay. A significant reduction in migration rate was observed in cells with reduced CACYBP gene expression.
(F) Transwell assay showed that downregulation of CACYBP expression inhibited the migration and invasion capacity of LUAD cells. To demonstrate the
accuracy and reproducibility of the results, three independent experiments were performed in two LUAD (A549, H1299) cell lines and all data were
presented as the means ± SD of three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001.
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statistically significant differences, the predictive potential of the

signature was confirmed, and the AUC value of the ROC curves

indicated that the signature had some predictive power.

A recent study found a clear link between genetic modifications

and the formation of neoantigens and immunotherapeutic effects

(49). However, the results of this study showed that patients in the

low-risk group have less TMB and the high-risk group had more

mutations in the high-frequency genes. Next, we split the patients into

four groups (H-TMB+high-risk, H-TMB+low-risk, L-TMB+high-

risk, and L-TMB+low-risk). The low-risk and high-mutation group

had the best prognosis, which may provide fresh guidelines for clinical

assessment of patient prognosis. To explore the underlying

mechanisms underlying the differences in survival between the

different risk groups, a series of pathway enrichment analyses were

further explored. According to the GSVA data, the high-risk group

had considerably enriched Glycolysis, Myc, and mTORCH pathways,

which may have an impact on the incidence and growth of cancers.

Further investigation of ssGSEA enrichment analysis revealed that the

low-risk group had more immune cell infiltration and immune-

related function enrichment. We next used correlation analysis to

examine the association between model genes and immune-related

genes in order to investigate the probable mechanism of action. The

findings revealed a substantial negative correlation between face and

factor and the high-risk gene CACYBP, demonstrating that the

immune system’s activation was constrained in the high-risk

group’s TME. Tumor-fighting immune cells are ineffective. Finally,

we explored the correlation between risk score and tumor immune

cycle, and ICB response signature. The result demonstrated that when

the risk score increased, the immune checkpoint signature was

activated and the tumor immune cycle process was suppressed,

creating a suppressive immune microenvironment.

The extracellular matrix, cancer-associated fibroblasts, new blood

vessels, endothelial cells, and tumor-infiltrating immune cells make

up the TME, which may encourage tumor degradation, enhance

tumor invasiveness, and heighten the antitherapeutic response (50–

52). In order to better understand how TME affects tumor prognosis,

we compared immune cell infiltration between high-risk and low-risk

LUAD patients. Seven algorithms were used to assess the immune cell

infiltration in various risk groups, and the results revealed that the

low-risk group’s tumors had a higher level of immune cell infiltration

in the surrounding tissue and were more likely to develop hot tumors.

This finding also explained why the low-risk immune function was

simpler to activate against tumor progression and to support a

favorable prognosis. ICGs are now widely acknowledged as being

predictive indicators of responsiveness to PD-1/PD-L1 inhibitors

(53). TIDE, a recently identified immunotherapy predictor, has

shown superior predictive ability compared to other biomarkers or

indications (54). We investigated the distinctions between this

signature and ICGs in order to demonstrate that this signature may

be a biomarker of immunotherapy response. We discovered that

patients in the high-risk category for SRGs had considerably higher

TIDE scores as well as lower scores for T cell dysfunction and PD-1

protein expression, which indicated that these patients would benefit

less from immunotherapy. TCIA analysis was carried out to

investigate the effects of PD-1 and CTLA-4 treatment in various

risk groups in order to better assess the variations in

immunotherapy’s effectiveness in various risk groups. According to
Frontiers in Immunology 16
the findings, the low-risk group would benefit more from

immunotherapy since their IPS score was much higher than that of

the high-risk group.

Surprisingly, our research found that of the nine modeled genes,

CACYBP had the highest HR value, and additional survival analysis

showed that high CACYBP expression was associated with a poor

prognosis in LUAD patients. Then, we used the A549 and H1299

LUAD cell lines to examine how well the cells functioned. The results

showed that the knockdown of CACYBP in LUAD cell lines

significantly decreased cell invasion, migration, and proliferation.

The current research contains a number of drawbacks. First,

public datasets were used to build this signature. Large-scale

prospective clinical trials are required to confirm the predictive

potential. The capacity of the SRGs signature to predict the

response to immunotherapy was indirectly assessed in this research

since patients who had received immunotherapy were not studied.

We only conducted basic cell function assays in our work, thus more

animal experiments are required for confirmation. In conclusion,

using integrated analysis of single-cell and bulk RNA-sequencing, we

created and validated a unique prognostic signature made up of

eleven SRGs that has the potential to be a prognostic biomarker and

predict patients’ responses to immunotherapy in LUAD. Our findings

provide light on the function of SRGs in LUAD patient prognosis and

treatment responsiveness.
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