A Annual Reviews

Annu. Rev. Biophys. Biomol. Struct. 1996.25:113-136. Downloaded from arjournals.annualreviews.org
by MEMORIAL SLOAN-KETTERING CANCER CENTER on 11/14/05. For personal use only.

www.annualreviews.org/aronline

Annu. Rev. Biophys. Biomol. Struct. 1996. 25:113-36
Copyright © 1996 by Annual Reviews Inc. All rights reserved

BRIDGING THE PROTEIN
SEQUENCE-STRUCTURE GAP
BY STRUCTURE PREDICTIONS

Burkhard Rost and Chris Sander
European Molecular Biology Laboratory, 69012 Heidelberg, Germany

KEY WORDS: multiple alignments, secondary structure, solvent
accessibility, transmembrane helices, interresidue
contacts, homology modeling, threading, knowledge-
based mean-force potentials

ABSTRACT

The problem of accurately predicting protein three-dimensional structure
from sequence has yet to be solved. Recently, several new and promising
methods that work in one, two, or three dimensions have invigorated the
field. Modeling by homology can yield fairly accurate three-dimensional
structures for approximately 25% of the currently known protein se-
quences. Techniques for cooperatively fitting sequences into known
three-dimensional folds, called threading methods, can increase this rate
by detecting very remote homologies in favorable cases. Prediction of
protein structure in two dimensions, i.e. prediction of interresidue con-
tacts, is in its infancy. Prediction tools that work in one dimension are
both mature and generally applicable; they predict secondary structure,
residue solvent accessibility, and the location of transmembrane helices
with reasonable accuracy. These and other prediction methods have
gained immensely from the rapid increase of information in publicly
accessible databases. Growing databases will lead to further improve-
ments of prediction methods and, thus, to narrowing the gap between
the number of known protein sequences and known protein structures.
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INTRODUCTION

Large-scale sequencing projects produce data of gene and, hence, pro-
tein sequences at a breathtaking pace. Although determination of pro-
tein three-dimensional structure by crystallography has become more
efficient (51), the gap between the number of known sequences (45,000;
5, 7) and the number of known structures (3000; 8) is increasing rapidly.
For many proteins, sequence determines structure uniquely, i.e. the
entire information for the details of three-dimensional structure is con-
tained in the sequence (4). In principle, therefore, protein structure
could be predicted from physicochemical principles given only the se-
quence of amino acids. In practice, however, prediction from first prin-
ciples, e.g. by molecular dynamics, is prevented by the high complexity
of protein folding (with required computing time orders of magnitude
too high) and by the inaccuracy of the experimental determination of
basic parameters (93). Most protein structure prediction tools, therefore,
are knowledge based, using a combination of statistical theory and
empirical rules. Given a protein sequence of unknown structure (dubbed
U), what can we uncover regarding the structure of U by using theoreti-
cal tools, or what can theory contribute to bridging the sequence-struc-
ture gap?

The most successful tool for predicting three-dimensional structure
is homology modeling. An approximate three-dimensional model
(which has a correct fold but inaccurate loop regions) can be constructed
if U has significant similarity to a protein of known structure, evaluated
in terms of pairwise sequence identity (i.e. by alignment) or sequence-
structure fitness (i.e. threading). Homology modeling effectively raises
the number of ‘‘known’’ three-dimensional structures from 3000 to
approximately 10,000 (80). Threading methods may be used to make
tentative predictions of three-dimensional structure for approximately
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Figure 1 Bridging the sequence-structure gap by experiment and theory. The full-clock
cycle corresponds to all protein sequences stored in the database SWISSPROT (release
31 with 44,000 sequences). (a) Fraction of proteins for which three-dimensional structure
has been experimental determined (sequence unique: < 25% pairwise sequence identity;
structure unique: unique overall fold-type, as defined by Reference 36). (b) Fraction of
proteins for which three-dimensional structure can be predicted by homology modeling
(estimated for threading). Note: unique three-dimensional structures cannot be predicted,
yet.

an additional 3000 proteins. Consequently, theory-based tools already
contribute significantly to bridging the sequence-structure gap (Figure
1). If U has no homologue of known three-dimensional structure, how-
ever, we are forced to resort to simplifications of the prediction prob-
lem. In the process, we can use the rich diversity of information in
current databases. In this review, we focus on generic methods for
prediction at three different levels of simplification (Figure 2), namely
one, two, and three dimensions (Figure 3). We have included only
methods that are available by automatic prediction services or programs
and, thus, could be used to analyze large numbers of sequences, e.g.
entire chromosomes (25, 42). The underlying question for every method
is, What is the practical contribution of the method to the problems of
protein structure prediction and analysis?

SEQUENCE ALIGNMENTS

At the level of protein molecules, selective pressure results from the
need to maintain function, which in turn requires maintenance of the
specific three-dimensional structure (21). This process is the basis for
attempts to align protein sequences, i.e. to detect equivalent positions
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Figure 3 Summary of the tools available for sequence analysis reviewed here. The
arrows indicate the input information used for a given method, e.g. secondary structure
can be predicted from single sequences and alignments; the two-dimensional prediction
can be used, in turn, for prediction of interstrand contacts and threading.

-

<

Figure 2 Representation of scorpion neurotoxin (PDB code 2sn3) in one, two, and
three dimensions. Each of the representations gives rise to a different type of prediction.
(1D) Seq, sequence in one-letter alphabet; Sec, secondary structure, with H for helix, E
for strand, and blank for other; Acc, relative solvent accessibility (note: integer n codes
for a relative accessibility of n X n%). (2D) Interresidue contact-map (sequence positions
1-65 plotted from left to right and from up to down); squares indicate that the respective
residue pair is in contact. (3D) The trace of the protein chain in three dimensions is
plotted schematically as a ribbon a-carbon trace. The two strands are indicated by arrows,
the helix is marked by a cylinder. Graphs were generated with the use of WHAT IF, a
molecular graphics package with modules for homology modeling, drug design, and
protein structure analysis (96).
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in strings of amino acid letters optimally. Accordingly, conservation
and mutation patterns observed in alignments contain very specific
information regarding three-dimensional structure. Surprisingly, much
variation is tolerated without loss of structure: Two naturally evolved
proteins with more than 25% identical residues (length > 80 residues)
are very likely to be similar in three-dimensional structure (79). Even
s0, structure may be conserved in spite of much higher divergence (36).
One naturally wonders how much data are required to detect structure-
specific sequence motifs (67) and to align correctly even remote homo-
logues (i.e. sequences with fewer than 25% pairwise identical residues)?

When the level of pairwise sequence identity is sufficient (say, >
40%), alignment procedures are (more or less) straightforward (24, 44,
79). With the use of fast alignment tools, one can scan entire databases
that contain 100,000 sequences in minutes. Two fast sequence align-
ment programs are FASTA (65) and BLAST (3). For less similar protein
sequences, however, alignments may fail (30, 94). The art of sequence
alignment is to align related sequence segments accurately and to avoid
aligning unrelated sequence stretches (20, 22, 31,48, 52, 57,75, 79, 92).
Alignment techniques can be improved by incorporating information
derived from three-dimensional structures (30). Profile-based multiple
alignments appear to be sensitive and fast enough to scan entire data-
bases if implemented on parallel machines (80).

One of the difficulties in comparing different alignment procedures
is the lack of well-defined criteria for measuring the quality of an
alignment. Very few papers have attempted to define such measures
for the comparison of various methods (22, 30). The second problem
for users is that most methods do not supply a cutoff criterion for
distinguishing between homologous and nonhomologous sequences
(i.e. false positive sequences). For some large sequence families, remote
homologues can be aligned correctly (57, 92); for most cases, however,
sequences with less than 25% sequence identity will be false positive,
i.e. will have no structural or functional similarity to the guide sequence.
A simple, length-dependent cutoff based on sequence identity is pro-
vided by MAXHOM, which is a profile-based, multiple-sequence align-
ment program that also runs in parallel complexes (79). This program,
however, does not quantify the influence of (more subtle) similarities
and of the occurrence of gaps.

EVALUATION OF PREDICTION METHODS

A systematic testing of performance is a precondition for any prediction
to become reliably useful. For example, the history of secondary struc-
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ture prediction has partly been a hunt for highest accuracy scores, with
overly optimistic claims by predictors seeding the skepticism of poten-
tial users. In 1994, one major point about prediction methods became
clear at the first international meeting for the evaluation of these meth-
ods in Asilomar, California (18): Exaggerated claims are more damag-
ing than genuine errors. Even a prediction method of limited accuracy
can be useful if the user knows what to expect. For the editors of
scientific journals, this statement implies that a protein structure predic-
tion method should be published only if it has been sufficiently cross-
validated. This raises the difficult question of how to evaluate prediction
methods.

When a data set is separated into a training set (used to derive the
method) and a test set (or cross-validation set, used to evaluate perfor-
mance), a proper evaluation (or cross-validation) of prediction methods
needs to meet four requirements:

1. No significant pairwise sequence identity between training and test
set. The proteins used for setting up a method (training set) and
those used for evaluating it (test set) should have a pairwise sequence
identity of less than 25% [length-dependent cutoff (79)], otherwise
homology modeling could be applied that would be much more
accurate than ab initio predictions (74, 76).

2. Comprehensive tests through using a large data set. All available
unique proteins should be used for testing [currently > 400 (32)].
The reason for taking as many proteins as possible is simply that
proteins vary considerably in structural complexity; certain features
are easy to predict, others are harder (see Figure 5).

3. Avoid comparing apples with oranges. No matter which data sets
are used for a particular evaluation, a standard set should be used
for which results are also always reported (see Figure 4).

4. No optimization with respect to the test set. A seemingly triv-
ial—and often violated—rule is that methods should never be opti-
mized with respect to the data set chosen for final evaluation. In
other words, the test set should never be used before the method is
set up. (For example, using a cross-validation set to indicate when
overtraining on the training data has occurred or to find out how
many parameters should be used to describe the model is an implicit
use of the cross-validation set in parameter optimization. The data
reserved to test the method, therefore, should never be used in two
ways.)

Most methods are evaluated in n-fold cross-validation experiments
(splitting the data set into » different training and test sets). How many
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separations should be used, i.e. which value of » yields the best evalua-
tion? A misunderstanding is often spread in the literature: the more
separations (the larger n) the better. The exact value of n, however,
is not important, provided that the test set is representative and compre-
hensive and that the cross-validation results are not misused to change
parameters again. In other words, the choice of n is meaningless for
the user.

PREDICTION IN ONE DIMENSION

Secondary Structure

The principal idea underlying most secondary structure prediction
methods is the fact that segments of consecutive residues have prefer-
ences for certain secondary structure states (46). The prediction prob-
lem, therefore, becomes a pattern-classification problem tractable by
computer algorithms. The goal is to predict whether the residue at the
center of a segment of typically 13—21 adjacent residues is in a helix,
a strand, or in no regular secondary structure. Many different algorithms
have been applied to tackle this simplest version of the protein-structure
prediction problem (70, 72). Until recently, however, performance ac-
curacy seemed to have been limited to approximately 60% (percentage
of residues correctly predicted in either a-helix, B-strand, or another
conformation).

The use of evolutionary information in sequence has improved pre-
diction accuracy significantly. The first method that reached a sustained
level of a three-state prediction accuracy greater than 70% was the
profile-based neural network program PHD, which uses multiple se-
quence alignments as input (70). By stepwise incorporation of more
evolutionary information, prediction accuracy can be pushed to greater
than 72% (72). A nearest-neighbor algorithm can be used to incorporate
the same information with a similar performance (77) (Figure 4). A
method that combines statistics and multiple alignment information
(53) is clearly less accurate (Figure 4). Compared with methods that
use single-sequence information only, methods that use the growing
databases are 6—14 percentage points more accurate (Figure 4).

How good is a prediction accuracy of 72%? It is certainly reasonably
good compared with the prediction of secondary structure by homology
modeling (16, 74, 76). In addition, some residues within a structure
are predicted at higher levels of accuracy than the mean value, i.e.
prediction accuracy is 72% * 9% (one standard deviation; Figure 5).
Various applications of improved secondary-structure predictions prove
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Figure 4 Accuracy of secondary structure prediction for various prediction methods.
Abbreviations: RAN and HM, for comparison the results of the worst (random) and the
best (homology modeling) possible predictions are given (74); Chou-Fasman, GORIII,
and COMBINE, early prediction method based on single-sequence information (9, 15,
28) (these methods are still widely used by standard sequence analysis packages); LPAG,
multiple alignment-based method using statistics (53); NNSSP, multiple alignment-
based method using nearest neighbor algorithms (77); PHDsec, multiple alignment-
based neural network prediction (72). The groups indicate identical test sets, e.g. GORIIL
is approximately eight percentage points less accurate than LPAG using the same algo-
rithm but additional multiple alignments, and PHDsec is another six percentage points
more accurate than LPAG by using neural networks instead of statistics.

that predictions are accurate enough to be of practical use [prediction-
based threading, (40, 68); interstrand contact prediction, (39); chain
tracing in X-ray crystallography; design of residue mutations]. One
way to increase the 72% =+ 9% accuracy level might be to predict
secondary-structure content (proportion of residues in a-helix, S-strand,
and other) and then use this initial classification to refine secondary
structure prediction.

Proteins have been partitioned into various structural classes, e.g. on
the basis of percentage of residues assigned to a-helix, B-strand, and
other conformations (55). Such a coarse-grained classification, how-
ever, is not well defined (36). Consequently, given a protein sequence
U, attempts to predict the secondary-structure content for U and then
to use the result to predict the secondary structural class (i.e. all «,
all B, or intermediates) is of limited practical use. Alignment-based
predictions compare favorably with experimental means of determining
the content in secondary structure. Surprisingly, PHD is, on average,
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about as accurate as circular dichroism spectroscopy (70, 72). Of
course, this finding does not imply that predictions can replace experi-
ments. In particular, variation of secondary structure as a result of
changes in environmental conditions (e.g. solvent) is generally accessi-
ble only experimentally.

One attempt to improve secondary structure predictions was to de-
velop methods specifically for all-« helix proteins. Two points often
have been confused in the literature. First, a two-state accuracy (helix,
nonhelix) is not comparable to a three-state accuracy (helix, strand,
other). For example, PHD of secondary structure (PHDsec) has an
expected three-state accuracy of approximately 72% and an expected
two-state accuracy of approximately 82% (71). Second, before a
method specialized on all-a proteins can be applied to U, the structure
type of U has to be predicted. Such a prediction has an expected accu-
racy of 70—80% (72). Even if the accuracy for determining whether U
belongs to the all-a class reaches almost 100% (99), as recently
claimed, specialized methods are still not very useful, as the improve-
ment in accuracy by specializing on one class has been only marginal
(71).

Solvent Accessibility

The principal goal is to predict the extent to which a residue embedded
in a protein structure is accessible to solvent. Solvent accessibility can
be described in several ways (73). The simplest is a two-state descrip-
tion distinguishing between residues that are buried (relative solvent
accessibility <16%) and exposed (relative solvent accessibility =
16%). The classic method is to assign either of the two states, buried
or exposed, according to residue hydrophobicity (for overview, see 73).
A neural network prediction of accessibility, however, has been shown
to be superior to simple hydrophobicity analyses (33).

Solvent accessibility at each position of the protein structure is con-
served evolutionarily within sequence families (73). This fact has been
used to develop methods for predicting accessibility using multiple

-

w

Figure5 Secondary structure prediction accuracy for PHDsec evaluated on 337 protein
families. (a) Prediction accuracy varies considerably between protein families. One stan-
dard deviation is nine percentage points, so prediction accuracy for most sequences is
63—81%, and the average accuracy is 72%. Because of this significant variation, predic-
tion methods have to be evaluated on a sufficiently large set of unique proteins. (b)
Residues with a higher reliability index are predicted with higher accuracy. For example,
for 44% of all residues prediction accuracy is, on average, 88% (dashed line), i.e. compa-
rable to homology modeling if it were applicable. In practice, attention should be focused
on the most reliably predicted residues.
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Figure 6 Two-state accuracy of predicting relative accessibility. Abbreviations: RAN
and HM, for comparison the results of the worst (random) and the best (homology
modeling) possible predictions are given (73); HMK 1990, neural network using single-
sequence input (33); W&B 1994, multiple alignment—based prediction method using
rather sophisticated expert rules and statistics (97); PHDacc, multiple alignment-based
neural network prediction (73). The groups indicate identical test sets.

alignment information (6, 73, 97). Prediction accuracy is approximately
75% =+ 7%, four percentage points higher than for methods not using
alignment information (Figure 6). Predictions are accurate enough to
be used as a seed for predicting secondary structure (6, 97) but not
accurate enough to become useful as secondary structure predictions
(68).

Transmembrane Helices

Even in the optimistic scenario that, in the near future, most protein
structures will be either determined experimentally or predicted theo-
retically, one class of proteins will still represent a challenge for experi-
mental determination of three-dimensional structure: transmembrane
proteins. The major obstacle with these proteins is that they do not
crystallize and are hardly tractable by NMR spectroscopy. For this class
of proteins, therefore, structure prediction methods are needed even
more than for globular water-soluble proteins. Fortunately, the predic-
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tion task is simplified by strong environmental constraints on trans-
membrane proteins: The lipid bilayer of the membrane reduces the
degrees of freedom to such an extent that three-dimensional structure
formation becomes almost a two-dimensional problem. Once the loca-
tion of transmembrane segments is known for helical transmembrane
proteins, three-dimensional structure can be predicted by exploring all
possible conformations (91). Additionally, the prediction of the loca-
tions of these transmembrane helices is a much simpler problem than
is the prediction of secondary structure for soluble proteins. Elaborated
combinations of expert rules, hydrophobicity analyses, and statistics
yield a two-state per-residue level of accuracy greater than 90% (43,
69, 83, 95).

Evolutionary information further improves prediction accuracy. For
two methods, the use of multiple alignment information is reported to
improve the level of accuracy of predicting transmembrane helices (66,
69). The best current prediction methods have a similar high level of
accuracy of approximately 95%. As reliable data for the locations of
transmembrane helices exist only for a few proteins, data used for
deriving these methods originate predominantly from experiments in
cell biology and gene-fusion techniques. Different authors often report
different locations for transmembrane regions. Thus, the 95% level of
accuracy is not verifiable. Despite this uncertainty in detail, the predic-
tion of transmembrane helices is a valuable tool to scan entire chromo-
somes quickly (69). The classification into membrane/nonmembrane
proteins has an expected error rate of less than 5%, i.e. approximately
5% of the proteins predicted to contain transmembrane regions will
probably be false positive.

Cytoplasmic and extracellular regions have different amino acid
compositions (61, 95). This difference allows for a successful prediction
of the orientation of transmembrane helices with respect to the cell
(pointing inside or outside the cell; 43, 83). Such predictions are esti-
mated to be correct in more than 75% of all proteins (43). Going one
step further, Taylor and colleagues (91) have correctly predicted the
three-dimensional structure for the membrane-spanning regions of G-
coupled receptors (seven helices) when starting from the known loca-
tions of the helices. For a successful automatic prediction of three-
dimensional structure from sequence, the N- and C-terminal ends of
transmembrane helices have to be predicted very accurately. It remains
to be tested whether current prediction methods for the location of
transmembrane helices are sufficiently accurate to predict three-dimen-
sional structure of integral membrane proteins automatically.
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PREDICTION IN TWO DIMENSIONS

Interresidue Contacts

Given all interresidue contacts or distances (see Figure 2), three-dimen-
sional structure can be reconstructed by distance geometry (13, 63).
Distance geometry is used for the determination of three-dimensional
structures by NMR spectroscopy, which produces experimental data
of distances between protons (13). Some fraction of interresidue con-
tacts can be predicted. Helices and strands can be assigned on the basis
of hydrogen-bonding patterns between residues (45). Thus, a successful
prediction of secondary structure implies a successful prediction of
some fraction of all the contacts. Contacts predicted from secondary
structure assignment, however, are short ranged, i.e. between residues
nearby in sequence. For a successful application of distance geometry,
long-range contacts have to be predicted, i.e. contacts between residues
far apart in the sequence. A few methods have been proposed for the
prediction of long-range interresidue contacts. Two questions surround
such methods: First, how accurate are these prediction methods on
average. Second, are all important contacts predicted?

In sequence alignments, some pairs of positions appear to co-vary
in a physicochemically plausible manner, i.e. a ‘‘loss of function’’ point
mutation often is rescued by an additional mutation that compensates
for the change (2). One hypothesis is that compensation would be most
effective in maintaining a structural motif if the mutated residues were
spatial neighbors. Attempts have been made to quantify such a hypothe-
sis (62, 90) and to use it for contact predictions (29, 81). By applying
a stringent significance cutoff in the prediction of contacts by correlated
mutations, a small number of residue contacts can be predicted between
1.4 and 5.1 times better than random (29); further slight improvements
are possible (D Thomas, unpublished data). These predictions are still
not accurate enough to apply distance geometry to the results.

Analyzing correlated mutations is only one way to predict long-range
interresidue contacts. Other methods use statistics (26), mean-force po-
tentials (X Tamames and A Valencia, unpublished data), or neural net-
works (10). So far, none of the methods appears to find a path between
the Scylla of missing too many true contacts and the Charybdis of
predicting too many false contacts. Some of the methods, however,
may provide sufficient information to distinguish between alternative
models of three-dimensional structure (A Valencia, unpublished data).
The ambitious goal to predict long-range interresidue contacts accu-
rately enough will hopefully continue to attract intellectual resources.
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Interstrand Contacts

One simplification of the problem to predict interresidue contacts fo-
cuses on predicting the contacts between residues in adjacent SB-strands.
Such an attempt is motivated by the hope that such interactions are
more specific than sequence-distant (long-range) contacts in general
and, hence, are easier to predict.

The only method published for predicting interstrand contacts is
based on potentials of mean force (39) similar to those used in the
evaluation of strand-strand threading (56). Propensities are compiled
by database counts for 2 X 2 X 2 classes (parallel/antiparallel, H-
bonded/non—H-bonded, N-/C-terminal). Each of the eight classes is
divided further into five subclasses in the following way: Suppose the
two strand residues at positions i and j are in close in space. Then, the
following five residue pairs are counted in separate tables: i/j—2,
ifji—1, ifj, ifj +1, i/j+2. Such pseudo-potentials identify the correct
[B-strand alignment in 35-45% of the cases.

Even if the locations of B-strands in the sequence are known exactly,
the pseudo-potentials cannot predict the correct interstrand contacts in
most cases (39). When using multiple alignment information, however,
the signal-to-noise ratio increases such that interstrand contacts have
been predicted correctly for most of the strands inspected in some test
cases (39). For the purpose of reliable contact prediction, this result is
inadequate, especially as the locations of the strands are not known
precisely. The pseudo-potentials apparently can handle errors resulting
from incorrect prediction of strands. Various test examples using pre-
dictions by PHDsec (72) as input to the B-strand pseudo-potentials
indicate that the accuracy in predicting interstrand contacts drops (T
Hubbard, unpublished data) but, in some cases, is still high enough to
be useful for approximate modeling of three-dimensional structure (40).

Intercysteine Contacts

An extreme simplification of the contact prediction problem focuses
on predicting contacts between cysteine residues (disulfide bridges).
Previously, such contacts were obtained by experimental protein se-
quencing techniques. In the age of gene-sequencing projects, however,
disulfide bridges are no longer part of the sequence information. Disul-
fide bond predictions are interesting for two reasons: First, disulfide
bridges are crucial for structure formation of many proteins. Second,
contacts between cysteines account for the most dominant signal in
predicting interresidue contacts by mean-force potentials. The predic-
tion of cysteine-bridges, therefore, is a subject of current interest.
One method for the prediction of disulfide-bonds uses a neural net-
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work to predict the bonding state of single cysteines (60), i.e. the goal
is not to predict which cysteine pair is in contact but whether a cysteine
residue is in contact to any other one. Strictly speaking, therefore, the
method operates in one dimension. One result is that the cysteine bond-
ing state appears to be influenced by the local sequence environment
of up to 15 adjacent residues. Prediction accuracy in two states is
claimed to be approximately 80%. The result, however, may be overly
optimistic for two reasons. First, the test set was rather small (140
examples). Second, in the cross-validation experiments, training and
testing examples were not separated on the basis of the level of pairwise
sequence identity. Therefore, the question of how accurately intercyste-
ine contacts can be predicted remains to be answered.

PREDICTION IN THREE DIMENSIONS

Homology Modeling

An analysis of the Protein Data Bank (PDB) of experimentally deter-
mined structures of protein reveals that all protein pairs with more than
30% pairwise sequence identity (for alignment length > 80; 79) have
homologous three-dimensional structures, i.e. the essential fold of the
two proteins is identical, but such details as additional loop regions
may vary. Structure is more conserved than is sequence. This finding
is the pillar for the success of homology modeling. The principal idea
is to model the structure of U on the basis of the template of a sequence
homologue of known structure. Consequently, the precondition for ho-
mology modeling is that a sequence homologue of known structure
is found in PDB. Because homology modeling is currently the only
theoretical means to predict three-dimensional structure successfully,
this finding has two implications. First, homology modeling is applica-
ble to ‘‘only’’ one quarter of the known protein sequences (see Figure
1). Second, as the template of a homologue is required, no unique three-
dimensional structure can yet be predicted, i.e. no structure that has no
similarity to any experimentally determined three-dimensional struc-
ture. If there is a protein with a sequence similar to U in PDB (say
HU), is homology modeling straightforward?

The basic assumption of homology modeling is that U and HU have
identical backbones. The task is to place the side chains of U into the
backbone of HU correctly. For very high levels of sequence identity
between U and HU (ideally differing by one residue only), side chains
can be ‘‘grown’’ during molecular dynamics simulations (17, 47). For
slightly lower levels (still of high-sequence similarity), side chains are
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built on the basis of similar environments in known structures (19, 23,
54, 58,78, 89, 96). Rotamer libraries are used in the following way (19):
1. Rotamer distributions are extracted from a database of sequences that
are not redundant. 2. Fragments of seven (helix, strand) or five residues
(other) are compiled. 3. Fragments of the same length are shifted suc-
cessively through the backbone of U. 4. For modeling the side chains
of U, only those fragments from the rotamer library that have the same
amino acid in the center as U, and for which the local backbone is
similar to that around the evaluated position, are accepted. Over the
whole range of sequence identity between U and HU for which homol-
ogy modeling is applicable, the accuracy of the model drops with de-
creasing similarity. For levels of at least 60% sequence identity, the
resulting models are quite accurate (19). (For even higher values, the
models are as accurate as is experimental structure determination.) The
limiting factor is the computation time required (34). How accurate is
homology modeling for lower levels of sequence identity?

With decreasing sequence identity, the number of loops inserted
grows. An accurate modeling of loop regions, however, implies solving
the structure prediction problem. The problem is simplified in two ways.
First, loop regions are often relatively short and can thus be simulated
by molecular dynamics [note the central processing unit (CPU) time
required for molecular dynamics simulations grows exponentially with
the number of residues of the polypeptide to be modeled]. Second, the
ends of the loop regions are fixed by the backbone of the template
structure. Various methods are used to model loop regions. The best
have the orientation of the loop regions correct in some cases (e.g. 1).
With less than approximately 40% sequence identity, the accuracy of
the sequence alignment used as the basis for homology modeling be-
comes an additional problem. Even down to levels of 25-30% sequence
identity, however, homology modeling produces coarse-grained models
for the overall fold of proteins of unknown structure.

Remote Homology Modeling (Threading)

As noted in the previous section, naturally evolved sequences with
more than 30% pairwise sequence identity have homologous three-
dimensional structures (79). Are all others nonhomologous? Not at all.
In the current PDB database, there are thousands of pairs of structurally
homologous pairs of proteins with less than 25% pairwise sequence
identity (remote homologues) (36). If a correct alignment between U
and a remote homologue RU (pairwise sequence identity to U < 25%)
is given, one could build the three-dimensional structure of U by homol-
ogy modeling on the basis of the template of RU (remote homology


http://www.annualreviews.org/aronline

A Annual Reviews

Annu. Rev. Biophys. Biomol. Struct. 1996.25:113-136. Downloaded from arjournals.annualreviews.org
by MEMORIAL SLOAN-KETTERING CANCER CENTER on 11/14/05. For personal use only.

www.annualreviews.org/aronline

130 ROST & SANDER

modeling). A successful remote homology modeling must solve three
different tasks: 1. RU has to be detected. 2. U and RU have to be aligned
correctly. 3. The homology modeling procedure has to be tailored to
the harder problem of extremely low sequence identity (with many loop
regions to be modeled). Most methods developed so far have been
addressed primarily to detect similar folds. The basic idea is to thread
the sequence of U into the known structure of RU and to evaluate the
fitness of sequence for structure by some kind of environment-based
or knowledge-based potential (14, 86). Threading is, in some respects,
a harder problem than is the prediction of three-dimensional structure
(50, 86). Solving it, however, would enable the prediction of thousands
of protein structures (see Figure 1). Can this hard nut be cracked?

The optimism generated by one of the first papers on threading pub-
lished in the 1990s (11) has boosted attempts to develop threading
methods (86). Most methods are based on pseudo-potentials and differ
in the way such potentials are derived from PDB (98). One alternative
is to use one-dimensional predictions for the threading procedure (68;
G Barton, unpublished data; F Drablgs, unpublished data). The good
news, after half a decade of intensive research by dozens of groups, is
that all potentials capture different aspects, and it is likely that the
correct remote homologue is found by at least one of these groups (82).
The bad news is that no single method is accurate enough to identify
the remote homologue correctly in most cases (82). Instead, evaluated
on a larger test set, the correct remote homologue appears to be detected
in approximately 30% of all cases (68). Unfortunately, this is only the
first of the three tasks for successful remote homology modeling, the
second (correct alignment of U and RU) is even harder. In many of
the cases for which RU is identified correctly as a remote homologue
of U, the alignment of U and RU is flawed in significant ways (unpub-
lished data). This is fatal for the third step, the model-building proce-
dure. Thus, is threading useful, at all?

Like all prediction methods, threading techniques are not error proof.
One of the practical disadvantages of current tools is the lack of a
successful measure for prediction reliability, such as that established
for secondary structure prediction (see Figure 5). The conclusion seems
to be that threading methods can be useful in the hands of rather skepti-
cal expert users who can spot wrong hits and false alignments, even
when the prediction method suggests a high confidence value for the
error it generates. Three points may be added. First, threading tech-
niques can clearly widen the range of successful sequence alignments
(68). Second, some methods are accurate enough to be used in scanning
entire chromosomes for remote homologues (12). Third, threading tech-
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niques may still become one of the most successful tools in structure
prediction, but a lot of detailed work lies ahead.

ANALYSIS OF THREE-DIMENSIONAL
STRUCTURES

A successful idea was to replace inductive force fields that capture the
heuristics of physical principles by deductive, knowledge-based, mean-
force potentials (e.g. 84). Such potentials, as well as more expert-knowl-
edge—oriented approaches (49, 96), enable the detection of subtle
stresses or possible errors in both experimentally determined three-
dimensional structures and predicted models (85). Knowledge-based
potentials of mean force appear to be valid even for proteins with
properties not used for deriving the potentials [membrane proteins (85);
coiled-coils, S O’Donoghue, unpublished data]. Because of this suc-
cess, quality control tools that use these potentials are becoming a
routine check applied to any experimentally determined structure or
any structure predicted by homology modeling.

More and more frequently, a newly determined structure is identified
to be remotely homologous to a known structure (38). Recently devel-
oped algorithms enable routine scans for possible remote homologues
in PDB for any new structure (35, 41, 59, 64, 75, 88). Such searches are
beginning to rival sequence database searches as a tool for discovering
biologically interesting relationships (38). Similar techniques can often
be exploited to determine domains in known structures (27, 37, 87).

CONCLUSION

Three-dimensional structure cannot yet be predicted reliably from se-
quence information alone. In other words, the only source for new,
unique structures (structures for which no homologue exists in the data-
base) are experiments. Given the amount of time needed to determine
a protein structure experimentally, however, more non-unique struc-
tures can be predicted at atomic resolution by homology modeling in
1 month than have been determined by experiment during the past 3
decades. Unfortunately, such models typically have considerable coor-
dinate errors in loop regions, and remote homology modeling (i.e. ho-
mology modeling for < 25% pairwise sequence identity) is not yet
reliable. For a few cases, however, threading techniques already have
resulted in accurate modeling of the overall fold (86).

The rich information contained in the growing sequence and structure
databases has been used to improve the accuracy of predictions of some
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aspects of protein structure. Predictions of secondary structure, solvent
accessibility, and transmembrane helices are becoming increasingly
useful. This success is the result of both a better performance of multiple
alignment—based methods and the ability to focus on more reliably
predicted regions. Some methods have indicated that one-dimensional
predictions can be useful as an intermediate step on the way to predict-
ing three-dimensional structure (interstrand contacts, prediction-based
threading). Another advantage of predictions in one dimension is that
they are not very CPU-intensive, i.e. one-dimensional structure can be
predicted for the protein sequence of, for example, entire yeast chromo-
somes overnight.

The prediction accuracy of chain-distant interresidue contacts is rela-
tively limited so far. Analysis of correlated mutations can be used to
distinguish between alternative models (e.g. for threading techniques).
The prediction of interstrand contacts appears to be useful in some
cases. An accurate method for the automatic prediction of contacts
between residues not close in sequence remains to be developed.

Another encouraging development is the improvement of tools for
the analysis of protein structures. Experimental inconsistencies can be
spotted, and predicted models can be tested. The ease of scanning struc-
ture databases for remote homologues yields a rich amount of informa-
tion with an effect on our understanding of protein structure and func-
tion.
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