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ABSTRACT 
The problem of accurately predicting protein three-dimensional structure 
from sequence has yet to be solved. Recently, several new and promising 
methods that work in one, two, or three dimensions have invigorated the 
field. Modeling by homology can yield fairly accurate three-dimensional 
structures for approximately 25% of the currently known protein se- 
quences. Techniques for cooperatively fitting sequences into known 
three-dimensional folds, called threading methods, can increase this rate 
by detecting very remote homologies in favorable cases. Prediction of 
protein structure in two dimensions, i.e. prediction of interresidue con- 
tacts, is in its infancy. Prediction tools that work in one dimension are 
both mature and generally applicable; they predict secondary structure, 
residue solvent accessibility, and the location of transmembrane helices 
with reasonable accuracy. These and other prediction methods have 
gained immensely from the rapid increase of information in publicly 
accessible databases. Growing databases will lead to further improve- 
ments of prediction methods and, thus, to narrowing the gap between 
the number of known protein sequences and known protein structures. 
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INTRODUCTION 

Large-scale sequencing projects produce data of gene and, hence, pro- 
tein sequences at a breathtaking pace. Although determination of pro- 
tein three-dimensional structure by crystallography has become more 
efficient (5 l),  the gap between the number of known sequences (45,000; 
5,7) and the number of known structures (3000; 8) is increasing rapidly. 
For many proteins, sequence determines structure uniquely, i.e. the 
entire information for the details of three-dimensional structure is con- 
tained in the sequence (4). In principle, therefore, protein structure 
could be predicted from physicochemical principles given only the se- 
quence of amino acids. In practice, however, prediction from first prin- 
ciples, e.g. by molecular dynamics, is prevented by the high complexity 
of protein folding (with required computing time orders of magnitude 
too high) and by the inaccuracy of the experimental determination of 
basic parameters (93). Most protein structure prediction tools, therefore, 
are knowledge based, using a combination of statistical theory and 
empirical rules. Given a protein sequence of unknown structure (dubbed 
U), what can we uncover regarding the structure of U by using theoreti- 
cal tools, or what can theory contribute to bridging the sequence-struc- 
ture gap? 

The most successful tool for predicting three-dimensional structure 
is homology modeling. An approximate three-dimensional model 
(which has a correct fold but inaccurate loop regions) can be constructed 
if U has significant similarity to a protein of known structure, evaluated 
in terms of pairwise sequence identity (i.e. by alignment) or sequence- 
structure fitness (i.e. threading). Homology modeling effectively raises 
the number of “known” three-dimensional structures from 3000 to 
approximately 10,000 (80). Threading methods may be used to make 
tentative predictions of three-dimensional structure for approximately 
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of 3D structure of 3D structure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a b 
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 Bridging the sequence-structure gap by experiment and theory. The full-clock 
cycle corresponds to all protein sequences stored in the database SWISSPROT (release 
3 1 with 44,000 sequences). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) Fraction of proteins for which three-dimensional structure 
has been experimental determined (sequence unique: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 25% painvise sequence identity; 
structure unique: unique overall fold-type, as defined by Reference 36). (b) Fraction of 
proteins for which three-dimensional structure can be predicted by homology modeling 
(estimated for threading). Note: unique three-dimensional structures cannot be predicted, 
yet. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
an additional 3000 proteins. Consequently, theory-based tools already 
contribute significantly to bridging the sequence-structure gap (Figure 
1). If U has no homologue of known three-dimensional structure, how- 
ever, we are forced to resort to simplifications of the prediction prob- 
lem. In the process, we can use the rich diversity of information in 
current databases. In this review, we focus on generic methods for 
prediction at three different levels of simplification (Figure 2), namely 
one, two, and three dimensions (Figure 3). We have included only 
methods that are available by automatic prediction services or programs 
and, thus, could be used to analyze large numbers of sequences, e.g. 
entire chromosomes (25,42). The underlying question for every method 
is, What is the practical contribution of the method to the problems of 
protein structure prediction and analysis? 

SEQUENCE ALIGNMENTS 

At the level of protein molecules, selective pressure results from the 
need to maintain function, which in turn requires maintenance of the 
specific three-dimensional structure (2 1). This process is the basis for 
attempts to align protein sequences, i.e. to detect equivalent positions 
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....,.... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1....,....2....,....3 
SeqKEGYLVKKSDGCKYGCLKLGENEGCDTECK 
Sec EE HHHHHHHH 
Acc672402598503658398769497048506 

. . . . , . . . .  4....,....5....,....6...., 
SeqAKNQGGSYGYCYAFACWCEGLPESTPTYPLPNKSC 
Sec EEEEE EEEEE 
Acc59825386051877124056168936468398688 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 
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\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 sequence alignment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I \  secondary structure 1 [ ID solvent accessibility 

3 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI inter-residue contacts I 
2D ., inter-strand contacts 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 Summary of the tools available for sequence analysis reviewed here. The 
arrows indicate the input information used for a given method, e.g. secondary structure 
can be predicted from single sequences and alignments: the two-dimensional prediction 
can be used, in turn, for prediction of interstrand contacts and threading. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y 

Figure 2 Representation of scorpion neurotoxin (PDB code 2sn3) in one, two, and 
three dimensions. Each of the representations gives rise to a different type of prediction. 
( I D )  Seq, sequence in one-letter alphabet; Sec, secondary structure, with H for helix, E 
for strand, and blank for other; Acc, relative solvent accessibility (note: integer n codes 
for a relative accessibility of n X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn%). (20) Interresidue contact-map (sequence positions 
1-65 plotted from left to right and from up to down); squares indicate that the respective 
residue pair is in contact. (30) The trace of the protein chain in three dimensions is 
plotted schematically as a ribbon a-carbon trace. The two strands are indicated by arrows, 
the helix is marked by a cylinder. Graphs were generated with the use of WHAT IF, a 
molecular graphics package with modules for homology modeling, drug design, and 
protein structure analysis (96). 
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in strings of amino acid letters optimally. Accordingly, conservation 
and mutation patterns observed in alignments contain very specific 
information regarding three-dimensional structure. Surprisingly, much 
variation is tolerated without loss of structure: Two naturally evolved 
proteins with more than 25% identical residues (length > 80 residues) 
are very likely to be similar in three-dimensional structure (79). Even zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
so, structure may be conserved in spite of much higher divergence (36). 
One naturally wonders how much data are required to detect structure- 
specific sequence motifs (67) and to align correctly even remote homo- 
logues (i.e. sequences with fewer than 25% pairwise identical residues)? 

When the level of pairwise sequence identity is sufficient (say, > 
40%), alignment procedures are (more or less) straightforward (24,44, 
79). With the use of fast alignment tools, one can scan entire databases 
that contain 100,000 sequences in minutes. Two fast sequence align- 
ment programs are FASTA (65) and BLAST (3). For less similar protein 
sequences, however, alignments may fail (30,94). The art of sequence 
alignment is to align related sequence segments accurately and to avoid 
aligning unrelated sequence stretches (20,22,31,48,52,57,75,79,92). 
Alignment techniques can be improved by incorporating information 
derived from three-dimensional structures (30). Profile-based multiple 
alignments appear to be sensitive and fast enough to scan entire data- 
bases if implemented on parallel machines (80). 

One of the difficulties in comparing different alignment procedures 
is the lack zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof well-defined criteria for measuring the quality of an 
alignment. Very few papers have attempted to define such measures 
for the comparison of various methods (22, 30). The second problem 
for users is that most methods do not supply a cutoff criterion for 
distinguishing between homologous and nonhomologous sequences 
(i.e. false positive sequences). For some large sequence families, remote 
homologues can be aligned correctly (57,92); for most cases, however, 
sequences with less than 25% sequence identity will be false positive, 
i.e. will have no structural or functional similarity to the guide sequence. 
A simple, length-dependent cutoff based on sequence identity is pro- 
vided by MAXHOM, which is a profile-based, multiple-sequence align- 
ment program that also runs in parallel complexes (79). This program, 
however, does not quantify the influence of (more subtle) similarities 
and of the occurrence of gaps. 

EVALUATION OF PREDICTION METHODS 

A systematic testing of performance is a precondition for any prediction 
to become reliably useful. For example, the history of secondary struc- 
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ture prediction has partly been a hunt for highest accuracy scores, with 
overly optimistic claims by predictors seeding the skepticism of poten- 
tial users. In 1994, one major point about prediction methods became 
clear at the first international meeting for the evaluation of these meth- 
ods in Asilomar, California (1 8): Exaggerated claims are more damag- 
ing than genuine errors. Even a prediction method of limited accuracy 
can be useful if the user knows what to expect. For the editors of 
scientific journals, this statement implies that a protein structure predic- 
tion method should be published only if it has been sufficiently cross- 
validated. This raises the difficult question of how to evaluate prediction 
methods. 

When a data set is separated into a training set (used to derive the 
method) and a test set (or cross-validation set, used to evaluate perfor- 
mance), a proper evaluation (or cross-validation) of prediction methods 
needs to meet four requirements: 

1. No significant painvise sequence identity between training and test 
set. The proteins used for setting up a method (training set) and 
those used for evaluating it (test set) should have a painvise sequence 
identity of less than 25% [length-dependent cutoff (79)], otherwise 
homology modeling could be applied that would be much more 
accurate than ab initio predictions (74, 76). 

2. Comprehensive tests through using a large data set. All available 
unique proteins should be used for testing [currently zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 400 (32)]. 
The reason for taking as many proteins as possible is simply that 
proteins vary considerably in structural complexity; certain features 
are easy to predict, others are harder (see Figure 5). 

3. Avoid comparing apples with oranges. No matter which data sets 
are used for a particular evaluation, a standard set should be used 
for which results are also always reported (see Figure 4). 

4. No optimization with respect to the test set. A seemingly triv- 
ial-and often violated-rule is that methods should never be opti- 
mized with respect to the data set chosen for final evaluation. In 
other words, the test set should never be used before the method is 
set up. (For example, using a cross-validation set to indicate when 
overtraining on the training data has occurred or to find out how 
many parameters should be used to describe the model is an implicit 
use of the cross-validation set in parameter optimization. The data 
reserved to test the method, therefore, should never be used in two 
ways.) 

Most methods are evaluated in n-fold cross-validation experiments 
(splitting the data set into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn different training and test sets). How many 
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separations should be used, i.e. which value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn yields the best evalua- 
tion? A misunderstanding is often spread in the literature: the more 
separations (the larger n) the better. The exact value of n, however, 
is not important, provided that the test set is representative and compre- 
hensive and that the cross-validation results are not misused to change 
parameters again. In other words, the choice of n is meaningless for 
the user. 

PREDICTION IN ONE DIMENSION 

Secondary Structure 
The principal idea underlying most secondary structure prediction 
methods is the fact that segments of consecutive residues have prefer- 
ences for certain secondary structure states (46). The prediction prob- 
lem, therefore, becomes a pattern-classification problem tractable by 
computer algorithms. The goal is to predict whether the residue at the 
center of a segment of typically 13-21 adjacent residues is in a helix, 
a strand, or in no regular secondary structure. Many different algorithms 
have been applied to tackle this simplest version of the protein-structure 
prediction problem (70, 72). Until recently, however, performance ac- 
curacy seemed to have been limited to approximately 60% (percentage 
of residues correctly predicted in either a-helix, /3-strand, or another 
conformation). 

The use of evolutionary information in sequence has improved pre- 
diction accuracy significantly. The first method that reached a sustained 
level of a three-state prediction accuracy greater than 70% was the 
profile-based neural network program PHD, which uses multiple se- 
quence alignments as input (70). By stepwise incorporation of more 
evolutionary information, prediction accuracy can be pushed to greater 
than 72% (72). A nearest-neighbor algorithm can be used to incorporate 
the same information with a similar performance (77) (Figure 4). A 
method that combines statistics and multiple alignment information 
(53) is clearly less accurate (Figure 4). Compared with methods that 
use single-sequence information only, methods that use the growing 
databases are 6-14 percentage points more accurate (Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4). 

How good is a prediction accuracy of 72%? It is certainly reasonably 
good compared with the prediction of secondary structure by homology 
modeling (16, 74, 76). In addition, some residues within a structure 
are predicted at higher levels of accuracy than the mean value, i.e. 
prediction accuracy is 72% k 9% (one standard deviation; Figure 5).  
Various applications of improved secondary-structure predictions prove 
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method 

Figure 4 Accuracy of secondary structure prediction for various prediction methods. 
Abbreviations: RAN and HM, for comparison the results of the worst (random) and the 
best (homology modeling) possible predictions are given (74); Chou-Fasman, GORIII, 
and COMBINE, early prediction method based on single-sequence information (9, 15, 
28) (these methods are still widely used by standard sequence analysis packages): LPAG, 
multiple alignment-based method using statistics (53); NNSSP, multiple alignment- 
based method using nearest neighbor algorithms (77); PHDsec, multiple alignment- 
based neural network prediction (72). The groups indicate identical test sets, e.g. GORIII 
is approximately eight percentage points less accurate than LPAG using the same algo- 
rithm but additional multiple alignments, and PHDsec is another six percentage points 
more accurate than LPAG by using neural networks instead of statistics. 

that predictions are accurate enough to be of practical use [prediction- 
based threading, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(40, 68); interstrand contact prediction, (39); chain 
tracing in X-ray crystallography; design of residue mutations]. One 
way to increase the 72% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk 9% accuracy level might be to predict 
secondary-structure content (proportion of residues in a-helix, pstrand, 
and other) and then use this initial classification to refine secondary 
structure prediction. 

Proteins have been partitioned into various structural classes, e.g. on 
the basis of percentage of residues assigned to a-helix, P-strand, and 
other conformations (55). Such a coarse-grained classification, how- 
ever, is not well defined (36). Consequently, given a protein sequence 
U, attempts to predict the secondary-structure content for U and then 
to use the result to predict the secondary structural class (i.e. all a, 
all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, or intermediates) is of limited practical use. Alignment-based 
predictions compare favorably with experimental means of determining 
the content in secondary structure. Surprisingly, PHD is, on average, 
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(a) Distribution of prediction accuracy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
40 

30 

20 

10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40 50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 70 80 90 100 

.................................. 

....................... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Range of overall percentage accuracy per protein chain 

(b) Reliability of prediction 

Percentage of predicted residues 
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about as accurate as circular dichroism spectroscopy (70, 72). Of 
course, this finding does not imply that predictions can replace experi- 
ments. In particular, variation of secondary structure as a result of 
changes in environmental conditions (e.g. solvent) is generally accessi- 
ble only experimentally. 

One attempt to improve secondary structure predictions was to de- 
velop methods specifically for all-a helix proteins. Two points often 
have been confused in the literature. First, a two-state accuracy (helix, 
nonhelix) is not comparable to a three-state accuracy (helix, strand, 
other). For example, PHD of secondary structure (PHDsec) has an 
expected three-state accuracy of approximately 72% and an expected 
two-state accuracy of approximately 82% (71). Second, before a 
method specialized on all-a proteins can be applied to U, the structure 
type of U has to be predicted. Such a prediction has an expected accu- 
racy of 70-80% (72). Even if the accuracy for determining whether U 
belongs to the all-a class reaches almost 100% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(99), as recently 
claimed, specialized methods are still not very useful, as the improve- 
ment in accuracy by specializing on one class has been only marginal 
(71). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Solvent Accessibility 
The principal goal is to predict the extent to which a residue embedded 
in a protein structure is accessible to solvent. Solvent accessibility can 
be described in several ways (73). The simplest is a two-state descrip- 
tion distinguishing between residues that are buried (relative solvent 
accessibility zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 16%) and exposed (relative solvent accessibility 5 

16%). The classic method is to assign either of the two states, buried 
or exposed, according to residue hydrophobicity (for overview, see 73). 
A neural network prediction of accessibility, however, has been shown 
to be superior to simple hydrophobicity analyses (33). 

Solvent accessibility at each position of the protein structure is con- 
served evolutionarily within sequence families (73). This fact has been 
used to develop methods for predicting accessibility using multiple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 5 Secondary structure prediction accuracy for PHDsec evaluated on 337 protein 
families. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) Prediction accuracy varies considerably between protein families. One stan- 
dard deviation is nine percentage points, so prediction accuracy for most sequences is 
63-81%, and the average accuracy is 72%. Because of this significant variation, predic- 
tion methods have to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe evaluated on a sufficiently large set of unique proteins. (b) 
Residues with a higher reliability index are predicted with higher accuracy. For example, 
for 44% of all residues prediction accuracy is, on average, 88% (dashed line), i.e. compa- 
rable to homology modeling if it were applicable. In practice, attention should be focused 
on the most reliably predicted residues. 
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Figure 6 Two-state accuracy of predicting relative accessibility. Abbreviations: RAN 
and HM, for comparison the results of the worst (random) and the best (homology 
modeling) possible predictions are given (73); HMK 1990, neural network using single- 
sequence input (33); W&B 1994, multiple alignment-based prediction method using 
rather sophisticated expert rules and statistics (97); PHDacc, multiple alignment-based 
neural network prediction (73). The groups indicate identical test sets. 

alignment information (6,73,97). Prediction accuracy is approximately 
75% k 7%, four percentage points higher than for methods not using 
alignment information (Figure 6). Predictions are accurate enough to 
be used as a seed for predicting secondary structure (6, 97) but not 
accurate enough to become useful as secondary structure predictions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(68). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Transmembrane Helices 
Even in the optimistic scenario that, in the near future, most protein 
structures will be either determined experimentally or predicted theo- 
retically, one class of proteins will still represent a challenge for experi- 
mental determination of three-dimensional structure: transmembrane 
proteins. The major obstacle with these proteins is that they do not 
crystallize and are hardly tractable by NMR spectroscopy. For this class 
of proteins, therefore, structure prediction methods are needed even 
more than for globular water-soluble proteins. Fortunately, the predic- 
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tion task is simplified by strong environmental constraints on trans- 
membrane proteins: The lipid bilayer of the membrane reduces the 
degrees of freedom to such an extent that three-dimensional structure 
formation becomes almost a two-dimensional problem. Once the loca- 
tion of transmembrane segments is known for helical transmembrane 
proteins, three-dimensional structure can be predicted by exploring all 
possible conformations (91). Additionally, the prediction of the loca- 
tions of these transmembrane helices is a much simpler problem than 
is the prediction of secondary structure for soluble proteins. Elaborated 
combinations of expert rules, hydrophobicity analyses, and statistics 
yield a two-state per-residue level of accuracy greater than 90% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(43, 
69, 83, 95). 

Evolutionary information further improves prediction accuracy. For 
two methods, the use of multiple alignment information is reported to 
improve the level of accuracy of predicting transmembrane helices (66, 
69). The best current prediction methods have a similar high level of 
accuracy of approximately 95%. As reliable data for the locations of 
transmembrane helices exist only for a few proteins, data used for 
deriving these methods originate predominantly from experiments in 
cell biology and gene-fusion techniques. Different authors often report 
different locations for transmembrane regions. Thus, the 95% level of 
accuracy is not verifiable. Despite this uncertainty in detail, the predic- 
tion of transmembrane helices is a valuable tool to scan entire chromo- 
somes quickly (69). The classification into membrane/nonmembrane 
proteins has an expected error rate of less than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5%, i.e. approximately 
5% of the proteins predicted to contain transmembrane regions will 
probably be false positive. 

Cytoplasmic and extracellular regions have different amino acid 
compositions (61,95). This difference allows for a successful prediction 
of the orientation of transmembrane helices with respect to the cell 
(pointing inside or outside the cell; 43, 83). Such predictions are esti- 
mated to be correct in more than 75% of all proteins (43). Going one 
step further, Taylor and colleagues (91) have correctly predicted the 
three-dimensional structure for the membrane-spanning regions of G- 
coupled receptors (seven helices) when starting from the known loca- 
tions of the helices. For a successful automatic prediction of three- 
dimensional structure from sequence, the N- and C-terminal ends of 
transmembrane helices have to be predicted very accurately. It remains 
to be tested whether current prediction methods for the location of 
transmembrane helices are sufficiently accurate to predict three-dimen- 
sional structure of integral membrane proteins automatically. 
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PREDICTION IN TWO DIMENSIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Interresidue Contacts 
Given all interresidue contacts or distances (see Figure 2), three-dimen- 
sional structure can be reconstructed by distance geometry (13, 63). 
Distance geometry is used for the determination of three-dimensional 
structures by NMR spectroscopy, which produces experimental data 
of distances between protons (13). Some fraction of interresidue con- 
tacts can be predicted. Helices and strands can be assigned on the basis 
of hydrogen-bonding patterns between residues zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(45). Thus, a successful 
prediction of secondary structure implies a successful prediction of 
some fraction of all the contacts. Contacts predicted from secondary 
structure assignment, however, are short ranged, i.e. between residues 
nearby in sequence. For a successful application of distance geometry, 
long-range contacts have to be predicted, i.e. contacts between residues 
far apart in the sequence. A few methods have been proposed for the 
prediction of long-range interresidue contacts. Two questions surround 
such methods: First, how accurate are these prediction methods on 
average. Second, are all important contacts predicted? 

In sequence alignments, some pairs of positions appear to co-vary 
in a physicochemically plausible manner, i.e. a “loss of function” point 
mutation often is rescued by an additional mutation that compensates 
for the change (2). One hypothesis is that compensation would be most 
effective in maintaining a structural motif if the mutated residues were 
spatial neighbors. Attempts have been made to quantify such a hypothe- 
sis (62, 90) and to use it for contact predictions (29, 81). By applying 
a stringent significance cutoff in the prediction of contacts by correlated 
mutations, a small number of residue contacts can be predicted between 
1.4 and 5.1 times better than random (29); further slight improvements 
are possible (D Thomas, unpublished data). These predictions are still 
not accurate enough to apply distance geometry to the results. 

Analyzing correlated mutations is only one way to predict long-range 
interresidue contacts. Other methods use statistics (26), mean-force po- 
tentials (X Tamames and A Valencia, unpublished data), or neural net- 
works (10). So far, none of the methods appears to find a path between 
the Scylla of missing too many true contacts and the Charybdis of 
predicting too many false contacts. Some of the methods, however, 
may provide sufficient information to distinguish between alternative 
models of three-dimensional structure (A Valencia, unpublished data). 
The ambitious goal to predict long-range interresidue contacts accu- 
rately enough will hopefully continue to attract intellectual resources. 
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PROTEIN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASTRUCTURE PREDICTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA127 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Interstrand Contacts 
One simplification of the problem to predict interresidue contacts fo- 
cuses on predicting the contacts between residues in adjacent Pstrands. 
Such an attempt is motivated by the hope that such interactions are 
more specific than sequence-distant (long-range) contacts in general 
and, hence, are easier to predict. 

The only method published for predicting interstrand contacts is 
based on potentials of mean force (39) similar to those used in the 
evaluation of strand-strand threading (56). Propensities are compiled 
by database counts for 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 2 X 2 classes (parallel/antiparallel, H- 
bonded/non-H-bonded, N-/C-terminal). Each of the eight classes is 
divided further into five subclasses in the following way: Suppose the 
two strand residues at positions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi andj are in close in space. Then, the 
following five residue pairs are counted in separate tables: i/j-2, 
i/j - 1, i/j, i/j + 1, i/j + 2. Such pseudo-potentials identify the correct 
Pstrand alignment in 35-45% of the cases. 

Even if the locations of p-strands in the sequence are known exactly, 
the pseudo-potentials cannot predict the correct interstrand contacts in 
most cases (39). When using multiple alignment information, however, 
the signal-to-noise ratio increases such that interstrand contacts have 
been predicted correctly for most of the strands inspected in some test 
cases (39). For the purpose of reliable contact prediction, this result is 
inadequate, especially as the locations of the strands are not known 
precisely. The pseudo-potentials apparently can handle errors resulting 
from incorrect prediction of strands. Various test examples using pre- 
dictions by PHDsec (72) as input to the Pstrand pseudo-potentials 
indicate that the accuracy in predicting interstrand contacts drops (T 
Hubbard, unpublished data) but, in some cases, is still high enough to 
be useful for approximate modeling of three-dimensional structure (40). 

Intercysteine Contacts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An extreme simplification of the contact prediction problem focuses 
on predicting contacts between cysteine residues (disulfide bridges). 
Previously, such contacts were obtained by experimental protein se- 
quencing techniques. In the age of gene-sequencing projects, however, 
disulfide bridges are no longer part of the sequence information. Disul- 
fide bond predictions are interesting for two reasons: First, disulfide 
bridges are crucial for structure formation of many proteins. Second, 
contacts between cysteines account for the most dominant signal in 
predicting interresidue contacts by mean-force potentials. The predic- 
tion of cysteine-bridges, therefore, is a subject of current interest. 

One method for the prediction of disulfide-bonds uses a neural net- 
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work to predict the bonding state of single cysteines (60), i.e. the goal 
is not to predict which cysteine pair is in contact but whether a cysteine 
residue is in contact to any other one. Strictly speaking, therefore, the 
method operates in one dimension. One result is that the cysteine bond- 
ing state appears to be influenced by the local sequence environment 
of up to 15 adjacent residues. Prediction accuracy in two states is 
claimed to be approximately 80%. The result, however, may be overly 
optimistic for two reasons. First, the test set was rather small (140 
examples). Second, in the cross-validation experiments, training and 
testing examples were not separated on the basis of the level of painvise 
sequence identity. Therefore, the question of how accurately intercyste- 
ine contacts can be predicted remains to be answered. 

PREDICTION IN THREE DIMENSIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Homology zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAModeling 

An analysis of the Protein Data Bank (PDB) of experimentally deter- 
mined structures of protein reveals that all protein pairs with more than 
30% pairwise sequence identity (for alignment length > 80; 79) have 
homologous three-dimensional structures, i.e. the essential fold of the 
two proteins is identical, but such details as additional loop regions 
may vary. Structure is more conserved than is sequence. This finding 
is the pillar for the success of homology modeling. The principal idea 
is to model the structure of U on the basis of the template of a sequence 
homologue of known structure. Consequently, the precondition for ho- 
mology modeling is that a sequence homologue of known structure 
is found in PDB. Because homology modeling is currently the only 
theoretical means to predict three-dimensional structure successfully, 
this finding has two implications. First, homology modeling is applica- 
ble to “only” one quarter of the known protein sequences (see Figure 
1). Second, as the template of a homologue is required, no unique three- 
dimensional structure can yet be predicted, i.e. no structure that has no 
similarity to any experimentally determined three-dimensional struc- 
ture. If there is a protein with a sequence similar to U in PDB (say 
HU), is homology modeling straightforward? 

The basic assumption of homology modeling is that U and HU have 
identical backbones. The task is to place the side chains of U into the 
backbone of HU correctly. For very high levels of sequence identity 
between U and HU (ideally differing by one residue only), side chains 
can be “grown” during molecular dynamics simulations (17,47). For 
slightly lower levels (still of high-sequence similarity), side chains are 
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built on the basis of similar environments in known structures (19, 23, 
54,58,78,89,96). Rotamer libraries are used in the following way (19): 
1. Rotamer distributions are extracted from a database of sequences that 
are not redundant. 2. Fragments of seven (helix, strand) or five residues 
(other) are compiled. 3. Fragments of the same length are shifted suc- 
cessively through the backbone of U. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. For modeling the side chains 
of U, only those fragments from the rotamer library that have the same 
amino acid in the center as U, and for which the local backbone is 
similar to that around the evaluated position, are accepted. Over the 
whole range of sequence identity between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU and HU for which homol- 
ogy modeling is applicable, the accuracy of the model drops with de- 
creasing similarity. For levels of at least 60% sequence identity, the 
resulting models are quite accurate (19). (For even higher values, the 
models are as accurate as is experimental structure determination.) The 
limiting factor is the computation time required (34). How accurate is 
homology modeling for lower levels of sequence identity? 

With decreasing sequence identity, the number of loops inserted 
grows. An accurate modeling of loop regions, however, implies solving 
the structure prediction problem. The problem is simplified in two ways. 
First, loop regions are often relatively short and can thus be simulated 
by molecular dynamics [note the central processing unit (CPU) time 
required for molecular dynamics simulations grows exponentially with 
the number of residues of the polypeptide to be modeled]. Second, the 
ends of the loop regions are fixed by the backbone of the template 
structure. Various methods are used to model loop regions. The best 
have the orientation of the loop regions correct in some cases (e.g. 1). 
With less than approximately 40% sequence identity, the accuracy of 
the sequence alignment used as the basis for homology modeling be- 
comes an additional problem. Even down to levels of 25-30% sequence 
identity, however, homology modeling produces coarse-grained models 
for the overall fold of proteins of unknown structure. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Remote Homology Modeling (Threading) 
As noted in the previous section, naturally evolved sequences with 
more than 30% pairwise sequence identity have homologous three- 
dimensional structures (79). Are all others nonhomologous? Not at all. 
In the current PDB database, there are thousands of pairs of structurally 
homologous pairs of proteins with less than 25% pairwise sequence 
identity (remote homologues) (36). If a correct alignment between U 
and a remote homologue RU (pairwise sequence identity to U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 25%) 
is given, one could build the three-dimensional structure of U by homol- 
ogy modeling on the basis of the template of RU (remote homology 
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modeling). A successful remote homology modeling must solve three 
different tasks: 1. RU has to be detected. 2. U and RU have to be aligned 
correctly. 3. The homology modeling procedure has to be tailored to 
the harder problem of extremely low sequence identity (with many loop 
regions to be modeled). Most methods developed so far have been 
addressed primarily to detect similar folds. The basic idea is to thread 
the sequence of U into the known structure of RU and to evaluate the 
fitness of sequence for structure by some kind of environment-based 
or knowledge-based potential (14, 86). Threading is, in some respects, 
a harder problem than is the prediction of three-dimensional structure 
(50,86). Solving it, however, would enable the prediction of thousands 
of protein structures (see Figure 1). Can this hard nut be cracked? 

The optimism generated by one of the first papers on threading pub- 
lished in the 1990s (11) has boosted attempts to develop threading 
methods (86). Most methods are based on pseudo-potentials and differ 
in the way such potentials are derived from PDB (98). One alternative 
is to use one-dimensional predictions for the threading procedure (68; 
G Barton, unpublished data; F Drabbs, unpublished data). The good 
news, after half a decade of intensive research by dozens of groups, is 
that all potentials capture different aspects, and it is likely that the 
correct remote homologue is found by at least one of these groups (82). 
The bad news is that no single method is accurate enough to identify 
the remote homologue correctly in most cases (82). Instead, evaluated 
on a larger test set, the correct remote homologue appears to be detected 
in approximately 30% of all cases (68). Unfortunately, this is only the 
first of the three tasks for successful remote homology modeling, the 
second (correct alignment of U and RU) is even harder. In many of 
the cases for which RU is identified correctly as a remote homologue 
of U, the alignment of U and RU is flawed in significant ways (unpub- 
lished data). This is fatal for the third step, the model-building proce- 
dure. Thus, is threading useful, at all? 

Like all prediction methods, threading techniques are not error proof. 
One of the practical disadvantages of current tools is the lack of a 
successful measure for prediction reliability, such as that established 
for secondary structure prediction (see Figure 5). The conclusion seems 
to be that threading methods can be useful in the hands of rather skepti- 
cal expert users who can spot wrong hits and false alignments, even 
when the prediction method suggests a high confidence value for the 
error it generates. Three points may be added. First, threading tech- 
niques can clearly widen the range of successful sequence alignments 
(68). Second, some methods are accurate enough to be used in scanning 
entire chromosomes for remote homologues (12). Third, threading tech- 
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niques may still become one of the most successful tools in structure 
prediction, but a lot of detailed work lies ahead. 

ANALYSIS OF THREE-DIMENSIONAL 
STRUCTURES 

A successful idea was to replace inductive force fields that capture the 
heuristics of physical principles by deductive, knowledge-based, mean- 
force potentials (e.g. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA84). Such potentials, as well as more expert-knowl- 
edge-oriented approaches (49, 96), enable the detection of subtle 
stresses or possible errors in both experimentally determined three- 
dimensional structures and predicted models (85). Knowledge-based 
potentials of mean force appear to be valid even for proteins with 
properties not used for deriving the potentials [membrane proteins (85); 
coiled-coils, S O’Donoghue, unpublished data]. Because of this suc- 
cess, quality control tools that use these potentials are becoming a 
routine check applied to any experimentally determined structure or 
any structure predicted by homology modeling. 

More and more frequently, a newly determined structure is identified 
to be remotely homologous to a known structure (38). Recently devel- 
oped algorithms enable routine scans for possible remote homologues 
in PDB for any new structure (35,41,59,64,75,88). Such searches are 
beginning to rival sequence database searches as a tool for discovering 
biologically interesting relationships (38). Similar techniques can often 
be exploited to determine domains in known structures (27, 37, 87). 

CONCLUSION 

Three-dimensional structure cannot yet be predicted reliably from se- 
quence information alone. In other words, the only source for new, 
unique structures (structures for which no homologue exists in the data- 
base) are experiments. Given the amount of time needed to determine 
a protein structure experimentally, however, more non-unique struc- 
tures can be predicted at atomic resolution by homology modeling in 
1 month than have been determined by experiment during the past 3 
decades. Unfortunately, such models typically have considerable coor- 
dinate errors in loop regions, and remote homology modeling (i.e. ho- 
mology modeling for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 25% pairwise sequence identity) is not yet 
reliable. For a few cases, however, threading techniques already have 
resulted in accurate modeling of the overall fold (86). 

The rich information contained in the growing sequence and structure 
databases has been used to improve the accuracy of predictions of some 

Annual Reviews
www.annualreviews.org/aronline

A
nn

u.
 R

ev
. B

io
ph

ys
. B

io
m

ol
. S

tr
uc

t. 
19

96
.2

5:
11

3-
13

6.
 D

ow
nl

oa
de

d 
fr

om
 a

rjo
ur

na
ls

.a
nn

ua
lre

vi
ew

s.
or

g
by

 M
E

M
O

R
IA

L 
S

LO
A

N
-K

E
T

T
E

R
IN

G
 C

A
N

C
E

R
 C

E
N

T
E

R
 o

n 
11

/1
4/

05
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.annualreviews.org/aronline


132 ROST zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& SANDER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
aspects of protein structure. Predictions of secondary structure, solvent 
accessibility, and transmembrane helices are becoming increasingly 
useful. This success is the result of both a better performance of multiple 
alignment-based methods and the ability to focus on more reliably 
predicted regions. Some methods have indicated that one-dimensional 
predictions can be useful as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan intermediate step on the way to predict- 
ing three-dimensional structure (interstrand contacts, prediction-based 
threading). Another advantage of predictions in one dimension is that 
they are not very CPU-intensive, i.e. one-dimensional structure can be 
predicted for the protein sequence of, for example, entire yeast chromo- 
somes overnight. 

The prediction accuracy of chain-distant interresidue contacts is rela- 
tively limited so far. Analysis of correlated mutations can be used to 
distinguish between alternative models (e.g. for threading techniques). 
The prediction of interstrand contacts appears to be useful in some 
cases. An accurate method for the automatic prediction of contacts 
between residues not close in sequence remains to be developed. 

Another encouraging development is the improvement of tools for 
the analysis of protein structures. Experimental inconsistencies can be 
spotted, and predicted models can be tested. The ease of scanning struc- 
ture databases for remote homologues yields a rich amount of informa- 
tion with an effect on our understanding of protein structure and func- 
tion. 
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