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Abstract—Network intrusion detection and prevention systems

commonly use regular expression (RE) signatures to represent in-

dividual security threats. While the corresponding deterministic

finite state automata (DFA) for any one RE is typically small, the

DFA that corresponds to the entire set of REs is usually too large

to be constructed or deployed. To address this issue, a variety of

alternative automata implementations that compress the size of
the final automaton have been proposed such as extended finite

automata (XFA) and delayed input DFA (D FA). The resulting

final automata are typically much smaller than the corresponding
DFA. However, the previously proposed automata construction al-

gorithms do suffer from some drawbacks. First, most employ a

“Union then Minimize” framework where the automata for each
RE are first joined before minimization occurs. This leads to an

expensive nondeterministic finite automata (NFA) to DFA subset

construction on a relatively large NFA. Second, most construct the
corresponding large DFA as an intermediate step. In some cases,

this DFA is so large that the final automaton cannot be constructed

even though the final automaton is small enough to be deployed.
In this paper, we propose a “Minimize then Union” framework for

constructing compact alternative automata focusing on the D FA.

We show that we can construct an almost optimal final D FA with
small intermediate parsers. The key to our approach is a space-

and time-efficient routine for merging two compact D FA into a

compact D FA. In our experiments, our algorithm runs on average
155 times faster and uses 1500 times less memory than previous al-

gorithms. For example, we are able to construct a D FA with over

80 000 000 states using only 1 GB of main memory in only 77 min.

Index Terms— Deep packet inspection, information security,
intrusion detection and prevention, network security, regular

expression matching.

I. INTRODUCTION

A. Background and Problem Statement

T HE CORE component of today’s network security de-

vices such as network intrusion detection and prevention

systems is signature-based deep packet inspection. The con-

tents of every packet need to be compared against a set of

signatures. Application-level signature analysis can also be
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used for detecting peer-to-peer traffic, providing advanced

QoS mechanisms. In the past, the signatures were specified

as simple strings. Today, most deep packet inspection engines

such as Snort [2], [3], Bro [4], TippingPoint X505, and Cisco

security appliances use regular expressions (REs) to define

the signatures. REs are used instead of simple string patterns

because REs are fundamentally more expressive and thus are

able to describe a wider variety of attack signatures [5]. As a

result, there has been a lot of recent work on implementing

high-speed RE parsers for network applications.

Most RE parsers use some variant of the deterministic finite

state automata (DFA) representation of REs. A DFA is defined

as a 5-tuple , where is a set of states, is an

alphabet, is the transition function, is

the start, and is the set of accepting states. Any set of

REs can be converted into an equivalent DFAwith the minimum

number of states [6], [7]. DFAs have the property of needing

constant memory access per input symbol, and hence result in

predictable and fast bandwidth. The main problem with DFAs is

space explosion: A huge amount of memory is needed to store

the transition function, which has entries. Specifically,

the number of states can be very large (state explosion), and the

number of transitions per state is large .

To address the DFA space explosion problem, a variety

of DFA variants have been proposed that require much less

memory than DFAs to store. For example, there is the Delayed

Input DFA (D FA) proposed by Kumar et al. [8]. The basic

idea of D FA is that in a typical DFA for real-world RE set,

given two states and , for many symbols

. We can remove all the transitions for from for which

and make a note that ’s transitions were

removed based on ’s transitions. When the D FA is later pro-

cessing input and is in state and encounters input symbol ,

if is missing, the D FA can use to determine

the next state. We can do the same thing for most states in

the DFA, and it results in tremendous transition compression.

Kumar et al. observe an average decrease of 97.6% in the

amount of memory required to store a D FA when compared

to its corresponding DFA.

In more detail, to build a D FA from a DFA, just do the fol-

lowing two steps. First, for each state , pick a deferred

state, denoted by . (We can have .) Second, for

each state for which , remove all the transi-

tions for for which .

When traversing the D FA, if on current state and current

input symbol , is missing (i.e., has been removed), we

can use to get the next state. Of course,

might be missing too, in which case we then use

to get the next state, and so on. The only restriction on selecting
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Fig. 1. (a) DFA for . (b) Corresponding SRG. Edges of weight 1 not shown. Unlabeled edges have weight 255. (c) The D FA.

deferred states is that the function cannot create a cycle other

than a self-loop on the states; otherwise all states on that cycle

might have their transitions on some removed and there

would be no way of finding the next state.

Fig. 1(a) shows a DFA for the REs set

, and Fig. 1(c) shows the D FA built from the DFA. The

dashed lines represent deferred states. The DFA has

transitions, whereas the D FA only has 1030 actual tran-

sitions and 9 deferred transitions.

D FA are very effective at dealing with the DFA space ex-

plosion problem. In particular, D FA exhibit tremendous transi-

tion compression reducing the size of the DFA by a huge factor;

this makes D FAmuch more practical for a software implemen-

tation of RE matching than DFAs. D FAs are also used as a

starting point for advanced techniques like those in [9] and [10].

This leads us to the fundamental problem we address in this

paper. Given as input a set of REs , build a compact D FA as

efficiently as possible that also supports frequent updates. Effi-

ciency is important as current methods for constructing D FA

may be so expensive in both time and space that they may not

be able to construct the final D FA even if the D FA is small

enough to be deployed in networking devices that have lim-

ited computing resources. Such issues become doubly important

when we consider the issue of the frequent updates (typically

additions) to that occur as new security threats are identified.

The limited resource networking device must be able to effi-

ciently compute the new D FA. One subtle but important point

about this problem is that the resulting D FA must report which

RE (or REs) from matched a given input; this applies because

each RE typically corresponds to a unique security threat. Fi-

nally, while we focus on D FA in this paper, we believe that our

techniques can be generalized to other compact RE matching

automata solutions [11]–[15].

B. Summary of Prior Art

Given the input RE set , any solution that builds a D FA for

will have to do the following two operations: 1) union the au-

tomata corresponding to each RE in , and 2) minimize the au-

tomata, both in terms of the number of states and the number of

edges. Previous solutions [8], [16] employ a “Union then Min-

imize” framework where they first build automata for each RE

within , then perform union operations on these automata to

arrive at one combined automaton for all the REs in , and only

then minimize the resulting combined automaton. In particular,

previous solutions typically perform a computationally expen-

sive NFA to DFA subset construction followed by or composed

with DFAminimization (for states) and D FAminimization (for

edges).

Consider the D FA construction algorithm proposed by

Kumar et al. [8]. They first apply the Union then Minimize

framework to produce a DFA that corresponds to and then

construct the corresponding minimum-state DFA. Next, in

order to maximize transition compression, they solve a max-

imum-weight spanning tree problem on the following weighted

graph, which they call a space reduction graph (SRG). The

SRG has DFA states as its vertices. The SRG is a complete

graph with the weight of an edge equal to the number

of common transitions between DFA states and . Once the

spanning tree is selected, a root state is picked, and all edges

are directed toward the root. These directed edges give the

deferred state for each state. Fig. 1(b) shows the SRG built for

the DFA in Fig. 1(a).

Becchi and Crowley also use the Union thenMinimize frame-

work to arrive at aminimum-state DFA [16]. At this point, rather

than using an SRG to set deferment states for each state, Becchi

and Crowley use state levels where the level of a DFA state is

the length of the shortest string that takes the DFA from the start

state to state . Becchi and Crowley observed that if all states

defer to a state that is at a lower level than itself, then the defer-

ment function can never produce a cycle. Furthermore, when

processing any input string of length , at most deferred

transitions will be processed. Thus, for each state , among all

the states at a lower level than , Becchi and Crowley set

to be the state that shares the most transitions with . The re-

sulting D FA typically has a few more transitions than the min-

imal D FA that results by applying the Kumar et al. algorithm.

C. Limitations of Prior Art

Prior methods have three fundamental limitations. First, they

follow the Union then Minimize framework, which means they

create large automata and only minimize them at the end. This

also means they must employ the expensive NFA to DFA subset

construction. Second, prior methods build the corresponding

minimum-state DFA before constructing the final D FA. This

is very costly in both space and time. The D FA is typically 50

to 100 times smaller than the DFA, so even if the D FAwould fit

in available memory, the intermediate DFA might be too large,

making it impractical to build the D FA. This is exacerbated in

the case of the Kumar et al. algorithm, which needs the SRG that



PATEL et al.: BYPASSING SPACE EXPLOSION IN HIGH-SPEED REGULAR EXPRESSION MATCHING 1703

Fig. 2. (a) : D FA for . (b) : D FA for . (c) : merged D FA. (d) Illustration of setting deferment for some states in .

ranges from about the size of the DFA itself to over 50 times the

size of the DFA. The resulting space and time required to build

the DFA and SRG impose serious limits on the D FA that can

be practically constructed. We do observe that the method pro-

posed in [16] does not need to create the SRG. Furthermore, as

the authors have noted, there is a way to go from the NFA di-

rectly to the D FA, but implementing such an approach is still

very costly in time as many transition tables need to be repeat-

edly recreated in order to realize these space savings. Third,

none of the previous methods provides efficient algorithms for

updating the D FA when a new RE is added to .

D. Our Approach

To address these limitations, we propose a Minimize then

Union framework. Specifically, we first minimize the small au-

tomata corresponding to each RE from , and then union the

minimized automata together. A key property of our method is

that our union algorithm automatically produces a minimum-

state D FA for the regular expressions involved without explicit

state minimization. Likewise, we choose deferment states effi-

ciently while performing the union operation using deferment

information from the input D FAs. Together, these optimiza-

tions lead to a vastly more efficient D FA construction algo-

rithm in both time and space.

In more detail, given , we first build a DFA and D FA for

each individual RE in . The heart of our technique is the D FA

merge algorithm that performs the union. It merges two smaller

D FAs into one larger D FA such that the merged D FA is

equivalent to the union of REs that the D FAs being merged

were equivalent to. Starting from the initial D FAs for each

RE, using this D FA merge subroutine, we merge two D FAs

at a time until we are left with just one final D FA. The ini-

tial D FAs are each equivalent to their respective REs, so the

final D FA will be equivalent to the union of all the REs in

. Fig. 2(a) and (b) shows the initial D FAs for the RE set

. The resulting D FA from merging

these two D FAs using the D FA merge algorithm is shown in

Fig. 2(c).

The D FA produced by our merge algorithm can be larger

than the minimal D FA produced by the Kumar et al. algo-

rithm. This is because the Kumar et al. algorithm does a global

optimization over the whole DFA (using the SRG), whereas

our merge algorithm efficiently computes state deferment in the

merged D FA based on state deferment in the two input D FAs.

In most cases, the D FA produced by our approach is suffi-

ciently small to be deployed. However, in situations where more

compression is needed, we offer an efficient final compression

algorithm that produces a D FA very similar in size to that pro-

duced by the Kumar et al. algorithm. This final compression

algorithm uses an SRG; we improve efficiency by using the de-

ferment already computed in the merged D FA to greatly reduce

the size of this SRG and thus significantly reduce the time and

memory required to do this compression.

1) Advantages of our Algorithm: One of the main advan-

tages of our algorithm is a dramatic increase in time and space

efficiency. These efficiency gains are partly due to our use

of the Minimize then Union framework instead of the Union

then Minimize framework. More specifically, our improved

efficiency comes about from the following four factors. First,

other than for the initial DFAs that correspond to individual

REs in , we build D FA bypassing DFAs. Those initial

DFAs are very small (typically 50 states), so the memory

and time required to build the initial DFAs and D FAs is

negligible. The D FA merge algorithm directly merges the

two input D FAs to get the output D FA without creating the

DFA first. Second, other than for the initial DFAs, we never

have to perform the NFA to DFA subset construction. Third,

other than for the initial DFAs, we never have to perform DFA

state minimization. Fourth, when setting deferment states in

the D FA merge algorithm, we use deferment information

from the two input D FA. This typically involves performing

only a constant number of comparisons per state rather than

a linear in the number of states comparison per state as is

required by previous techniques. All told, our algorithm has a

practical time complexity of , where is the number

of states in the final D FA and is the size of the input

alphabet. In contrast, Kumar et al.’s algorithm [8] has a time

complexity of , and Becchi and Crowley’s

algorithm [16] has a time complexity of just for

setting the deferment state for each state and ignoring the cost
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of the NFA subset construction and DFA state minimization.

See Section V-D for a more detailed complexity analysis.

These efficiency advantages allow us to build much larger

D FAs than are possible with previous methods. For the syn-

thetic RE set that we consider in Section VI, given a maximum

working memory size of 1 GB, we can build a D FA with

80 216 064 states with our D FA merge algorithm, whereas the

Kumar et al. algorithm can only build a D FA with 397 312

states. Also from Section VI, our algorithm is typically 35–250

times faster than previous algorithms on our RE sets.

Besides being much more efficient in constructing D FA

from scratch, our algorithm is very well suited for frequent RE

updates. When an RE needs to be added to the current set, we

just need to merge the D FA for the RE to the current D FA

using our merge routine which is a very fast operation.

2) Technical Challenges: For our approach to work, the main

challenge is to figure out how to efficiently union two min-

imum-state D FAs and so that the resulting D FA is

also a minimum-state D FA. There are two aspects to this chal-

lenge. First, we need to make sure that D FA has the min-

imum number of states. More specifically, suppose and

are equivalent to RE sets and , respectively. We need to

ensure that has the minimum number of states of any D FA

equivalent to . We use an existing union cross-product

construction for this and prove that it results in a minimum-state

D FA for our purpose. We emphasize that this is not true in gen-

eral, but holds for applications where must identify which

REs from match a given input string. Many security

applications meet this criteria.

Our second challenge is building the D FA without

building the entire DFA equivalent to while ensuring that

achieves significant transition compression; that is, the

number of actual edges stored in D FA must be small.

More concretely, as each state in is created, we need to

immediately set a deferred state for it; otherwise, we would be

storing the entire DFA. Furthermore, we need to choose a good

deferment state that eliminates as many edges as possible. We

address this challenge by efficiently choosing a good deferment

state for by using the deferment information from and

. Typically, the algorithm only needs to compare a handful

of candidate deferment states.

3) Key Contributions: In summary, we make the following

contributions. 1) We propose a novel Minimize then Union

framework for efficiently constructing D FA for network

security RE sets that we believe will generalize to other RE

matching automata. Note, Smith et al. used the Minimize then

Union Framework when constructing extended finite automata

(XFA) [12], [13], though they did not prove any properties

about their union algorithms. 2) To implement this frame-

work, we propose a very efficient D FA merge algorithm for

performing the union of two D FAs. 3) When maximum com-

pression is needed, we propose an efficient final compression

step to produce a nearly minimal D FA. 4) To prove the cor-

rectness of our D FA merge algorithm, we prove a fundamental

property about the standard union cross-product construction

and minimum-state DFAs when applied to network security RE

sets that can be applied to other RE matching automata.

We implemented our algorithms and conducted experiments

on real-world and synthetic RE sets. Our experiments indicate

the following. 1) Our algorithm generates D FA with a fraction

of the memory required by existing algorithms, making it fea-

sible to build D FA with many more states. For the real-world

RE sets we consider in Section VI, our algorithm requires an av-

erage of 1500 times less memory than the algorithm proposed

in [8] and 30 times less memory than the algorithm proposed

in [16]. 2) Our algorithm runs much faster then existing algo-

rithms. For the real-world RE sets we consider in Section VI,

our algorithm runs an average of 154 times faster than the al-

gorithm proposed in [8] and 19 times faster than the algorithm

proposed in [16]. 3) Even with the huge space and time effi-

ciency gains, our algorithm generates D FA only slightly larger

than existing algorithms in the worst case. If the resulting D FA

is too large, our efficient final compression algorithm produces

a nearly minimal D FA.

II. RELATED WORK

Initially, network intrusion detection and prevention systems

used string patterns to specify attack signatures [17]–[23].

Sommer and Paxson [5] first proposed using REs instead of

strings to specify attack signatures. Today, network intrusion

detection and prevention systems mostly use REs for attack

signatures. RE matching solutions are typically software-based

or hardware-based [field-programmable gate array (FPGA) or

application-specific integrated circuit (ASIC)].

Software-based approaches are cheap and deployable on

general-purpose processors, but their throughput may not be

high. To achieve higher throughput, software solutions can

be deployed on customized ASIC chips at the cost of low

versatility and high deployment cost. To achieve deterministic

throughput, software-based solutions must use DFAs, which

face a space explosion problem. Specifically, there can be state

explosion where the number of states increases exponentially

in the number of REs, and the number of transitions per state

is extremely high. To address the space explosion problem,

transition compression and state minimization software-based

solutions have been developed.

Transition compression schemes that minimize the number

of transitions per state have mostly used one of two techniques.

One is alphabet re-encoding, which exploits redundancy within

a state, [16], [24]–[26]. The second is default transitions or de-

ferment states, which exploit redundancy among states [8], [9],

[16], [27]. Kumar et al. [8] originally proposed the use of de-

fault transitions. Becchi and Crowley [16] proposed a more ef-

ficient way of using default transitions. Our work falls into the

category of transition compression via default transitions. Our

algorithms are much more efficient than those of [8], [16] and

thus can be applied to much larger RE sets. For example, if

we are limited to 1 GB of memory to work with, we show

that Kumar et al.’s original algorithm can only build a D FA

with less than 400 000 states, whereas our algorithm can build

a D FA with over 80 000 000 states.

Two basic approaches have been proposed for state mini-

mization. One is to partition the given RE set and build a DFA

for each partition [28]. When inspecting packet payload, each

input symbol needs to be scanned against each partition’s DFA.

Our work is orthogonal to this technique and can be used in com-

bination with this technique. The second approach is to modify

the automata structure and/or use extra memory to remember

history and thus avoid state duplication [11]–[15]. We believe

our merge technique can be adopted to work with some of these
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approaches. For example, Smith et al. also use the Minimize

then Union framework when constructing XFA [12], [13]. One

potential drawback with XFA is that there is no fully automated

procedure to construct XFAs from a set of regular expressions.

Paraphrasing Yang et al. [29], constructing an XFA from a set

of REs requires manual analysis of the REs to identify and elim-

inate ambiguity.

FPGA-based solutions typically exploit the parallel pro-

cessing capabilities of FPGAs to implement a nondeterministic

finite automata (NFA) [14], [25], [30]–[34] or to implement

multiple parallel DFAs [35]. TCAM-based solutions have been

proposed for string matching in [21]–[23] and [36] and for REs

in [10]. Our work can potentially be applied to these solutions

as well.

Recently and independently, Liu et al. proposed to construct

DFA by hierarchical merging [37]. That is, they essentially pro-

pose the Minimize then Union framework for DFA construc-

tion. They consider merging multiple DFAs at a time rather than

just two. However, they do not consider D FA, and they do not

prove any properties about their merge algorithm including that

it results in minimum-state DFAs.

III. PATTERN-MATCHING DFAS

A. Pattern-Matching DFA Definition

In a standard DFA, defined as a 5-tuple , each

accepting state is equivalent to any other accepting state. How-

ever, in many pattern-matching applications where we are given

a set of REs , we must keep track of which REs have been

matched. For example, each RE may correspond to a unique

security threat that requires its own processing routine. This

leads us to define pattern-matching deterministic finite state au-

tomata (PMDFA). The key difference between a PMDFA and a

DFA is that for each state in a PMDFA, we cannot simply mark

it as accepting or rejecting; instead, we must record which REs

from are matched when we reach . More formally, given as

input a set of REs , a PMDFA is a 5-tuple

where the last term is now defined as .

B. Minimum-State PMDFA Construction

Given a set of REs , we can build the corresponding min-

imum-state PMDFA using the standard Union then Minimize

framework: First build an NFA for the RE that corresponds to

an OR of all the REs , then convert the NFA to a DFA, and

finally minimize the DFA treating accepting states as equivalent

if and only if they correspond to the same set of regular expres-

sions. This method can be very slow, mainly due to the NFA to

DFA conversion, which often results in an exponential growth

in the number of states. Instead, we propose a more efficient

Minimize then Union framework.

Let and denote any two disjoint subsets of ,

and let and be their corresponding minimum-state

PMDFAs. We use the standard union cross-product con-

struction to construct a minimum-state PMDFA that

corresponds to . Specifically, suppose we

are given the two PMDFAs

and . The union cross-product

PMDFA of and , denoted as , is given

by , where

, ,

, and .

Each state in corresponds to a pair of states, one from

and one from . For notational clarity, we use and

to enclose an ordered pair of states. Transition function just

simulates both and in parallel. Many states in might not

be reachable from the start state . Thus, while constructing

, we only create states that are reachable from .

We now argue that this construction is correct. This is a stan-

dard construction, so the fact that is a PMDFA for

is straightforward and covered in standard automata

theory textbooks (e.g. [6]). We now show that is also a min-

imum-state PMDFA for assuming , a result that

does not follow for standard DFAs.

Theorem III.1: Given twoRE sets, and , and equivalent

minimum-state PMDFAs, and , the union cross-product

DFA , with only reachable states con-

structed, is the minimum-state PMDFA equivalent to

if .

Proof: First, since only reachable states are constructed,

cannot be trivially reduced. Now assume is not min-

imum. That would mean there are two states in , say

and , that are indistinguishable. This implies that

Working on both sides of this equality, we get

as well as

This implies that

Now since , this gives us

This implies that and are indistinguishable in and

and are indistinguishable in , implying that both and

are not minimum-state PMDFAs, which is a contradiction,

and the result follows.

Our efficient construction algorithm works as follows. First,

for each RE , we build an equivalent minimum-state

PMDFA for using the standard method, resulting in a set

of PMDFAs . Then, we merge two PMDFAs from at a time

using the above UCP construction until there is just one PMDFA

left in . The merging is done in a greedy manner: In each step,

the two PMDFAs with the fewest states are merged together.

Note the condition is always satisfied in all the

merges.

In our experiments, our Minimize then Union technique runs

exponentially faster than the standard Union then Minimize

technique because we only apply the NFA to DFA step to the

NFAs that correspond to each individual regular expression
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rather than the composite regular expression. This makes a

significant difference even when we have a relatively small

number of regular expressions. For example, for our C7 RE set

that contains seven REs, the standard technique requires 385.5 s

to build the PMDFA, but our technique builds the PMDFA in

only 0.66 s. For the remainder of this paper, we use DFA to

stand for minimum-state PMDFA.

IV. D FA CONSTRUCTION

In this section, we first formally define what a D FA is, and

then describe howwe can extend theMinimize then Union tech-

nique to D FA bypassing DFA construction.

A. D FA Definition

Let be a DFA. A corresponding D FA

is defined as a 6-tuple . Together, func-

tion and partial function are

equivalent to DFA transition function . Specifically, defines

a unique deferred state for each state in , and is a partially de-

fined transition function. We use to denote the domain

of , i.e., the values for which is defined. The key property of

a D FA that corresponds to DFA is that

;

that is, for each state, only has those transitions that are dif-

ferent from that of its deferred state in the underlying DFA.

When defined, . States that defer to themselves

must have all their transitions defined. We only consider D FA

that correspond to minimum-state DFA, though the definition

applies to all DFA.

The function defines a directed graph on the states of . A

D FA is well defined if and only if there are no cycles of length

in this directed graph, which we call a deferment forest.

We use to denote , i.e., directly defers to

. We use to denote that there is a path from to in

the deferment forest defined by . We use to denote the

number of transitions in common between states and ; i.e.,

.

The total transition function for a D FA is defined as

if

else.

It is easy to see that is well defined and equal to if the D FA

is well defined.

B. D FA Merge Algorithm

The UCP construction merges two DFAs together. We extend

the UCP construction to merge two D FAs together as follows.

During the UCP construction, as each new state is created,

we define at that time. We then define to only include

transitions for that differ from .

To help explain our algorithm, Fig. 2 shows an example ex-

ecution of the D FA merge algorithm. Fig. 2(a) and (b) show

the D FA for the REs and , respectively.

Fig. 2(c) shows the merged D FA for the D FAs in Fig. 2(a)

and 2(b). We use the following conventions when depicting a

D FA. The dashed lines correspond to the deferred state for a

given state. For each state in the merged D FA, the pair of num-

bers above the line refer to the states in the original D FAs that

correspond to the state in the merged D FA. The number below

the line is the state in the merged D FA. The number(s) after the

“/” in accepting states give(s) the id(s) of the pattern(s) matched.

Fig. 2(d) shows how the deferred state is set for a few states in

the merged D FAs . We explain the notation in this figure as

we give our algorithm description.

For each state , we set the deferred state as fol-

lows. While merging D FAs and , let state

be the new state currently being added to the merged D FA

. Let be the maximal deferment

chain (i.e., defers to itself) in starting at , and

be the maximal deferment chain

in starting at . For example, in Fig. 2(d), we see the max-

imal deferment chains for , ,

, and . For ,

the top row is the deferment chain of state 4 in , and the

bottom row is the deferment chain of state 2 in . We will

choose some state where and

to be . In Fig. 2(d), we represent these candidate

pairs with edges between the nodes of the deferment chains.

For each candidate pair, the number on the top is the corre-

sponding state number in , and the number on the bottom

is the number of common transitions in between that pair

and state . For example, for , the two candidate

pairs represented are state 7 , which shares 256 transi-

tions in common with state 9, and state 4 , which shares

255 transitions in common with state 9. Note that a candidate

pair is only considered if it is reachable in . In Fig. 2(d) with

, three of the candidate pairs corresponding

to , , and are not reachable, so no edge is in-

cluded for these candidate pairs. Ideally, we want and to

be as small as possible though not both 0. For example, our

best choices are typically or . In the first case,

, and we already have

in . In the second case, , and

we already have in . In Fig. 2(d), we set to be

for and , and we use

for . However, it is possible that both

states are not reachable from the start state in . This leads

us to consider other possible . For example, in Fig. 2(d),

both and are not reachable in , so we use reach-

able state as for .

We consider a few different algorithms for choosing .

The first algorithm, which we call the first match method, is to

find a pair of states for which and is

minimum. Stated another way, we find the minimum such

that the set of states

. From the set of states ,

we choose the state that has the most transitions in common with

breaking ties arbitrarily. If is empty for all , then

we just pick , i.e., the deferment pointer is not set (or the

state defers to itself). The idea behind the first match method is

that decreases as increases. In Fig. 2(d),

all the selected correspond to the first match method.

A second more complete algorithm for setting is the

best match methodwhere we always consider all

pairs and pick the pair that is in and has themost transi-

tions in common with . The idea behind the best match

method is that it is not always true that

for . For instance, we can have

, which would mean

. In such cases, the first match method will
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not find the pair along the deferment chains with the most tran-

sitions in common with . In Fig. 2(d), all the selected

also correspond to the best match method. It is difficult to

create a small example where first match and best match differ.

When adding the new state to , it is possible that some

state pairs along the deferment chains that were not in while

finding the deferred state for will later on be added to .

This means that after all the states have been added to , the

deferment for can potentially be improved. Thus, after all the

states have been added, for each state we again find a deferred

state. If the new deferred state is better than the old one, we reset

the deferment to the new deferred state. Algorithm 1 shows the

pseudocode for the D FA merge algorithm with the first match

method for choosing a deferred state. Note that we use and

interchangeably to indicate a state in the merged D FA

, where is a state in , and and are the states in

and , respectively, that state corresponds to.

C. Original D FA Construction for one RE

Before we can merge D FAs, we first must construct a D FA

for each RE. One option, which we used in the NDSS prelim-

inary version of this paper [1], is the D FA construction algo-

rithm proposed in [10], which is based on the original D FA

construction algorithm proposed in [8]. This is an effective al-

gorithm that we now describe in more detail.

The first step is to build the SRG: a complete graph where

the vertices represent DFA states and the weight of each SRG

edge is the number of common transitions between its endpoints

in the DFA. Meiners et al. note that for real-world RE sets, the

distribution of edge weights in the SRG is bimodal, with edge

weights typically either very small ( 10) or very large ( 180).

They chose to omit low ( 10) weight edges from the SRG,

which then produced a forest withmany distinct connected com-

ponents. They then construct a maximum spanning forest of the

SRG using Kruskal’s algorithm.

The next step is to choose a root state for each connected com-

ponent of the SRG. For this, Meiners et al. choose self-looping

states to be root states. A state is a self-looping state if it has

more than half (i.e., 128) of its transitions looping back to it-

self. Each component of the SRG has at most one self-looping

state. For components that do not have a self-looping state, they

choose one of the states in the center of the spanning tree as the

root state. After choosing the root for each tree, all the edges in

the spanning tree are directed toward the root, giving the defer-

ment pointer for each state.

One subtle point of this algorithm is that there are many cases

where multiple edges can be added to the spanning tree. Specif-

ically, Kruskal’s algorithm always chooses the edge with the

maximum weight from the remaining edges. Since there are

only 256 possible edge weights, there often are multiple edges

with the same maximum weight. Meiners et al. use the fol-

lowing tie-breaking order among edges having the current max-

imum weight.

1) Edges that have a self-looping state as one of their end-

points are given the highest priority.

2) Next, priority is given to edges with higher sum of degrees

(in the current spanning tree) of their end vertices.

D. Improved D FA Construction for one RE

We now offer an improved algorithm for constructing a D FA

for one RE. This algorithm is similar to that of Meiners et al.’s

algorithm [10]. The difference is we modify and extend the tie-

breaking strategy as follows.

For each state , we store a value, , which is initially

set to 0. During Kruskal’s algorithm, when an edge

is added to the current spanning tree, is incremented

by 2 if ; otherwise it is incremented by

1. Recall that is the length of the shortest string that

takes the DFA from the start state to state . We similarly update

. Then, we use the following tie-breaking order among

edges having the current maximum weight.

1) Edges that have a self-looping state as one of their end

points are given the highest priority.

2) Next, priority is given to edges with higher sum of of

their end vertices.

3) Next, priority is given to edges with higher difference be-

tween the levels of their end vertices.

The sum of degrees of end vertices is used for tie breaking

in order to prioritize states that are already highly connected.

However, we also want to prioritize connecting to states at lower

levels, so we use instead of just the degree. Using the differ-

ence between levels of endpoints for tie breaking also prioritizes

states at a lower level. This helps reduce the deferment depth and

the D FA size for RE sets whose s have a higher average

deferment depth.We observe in our experiments section that the

improved algorithm does outperform the original algorithm.
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E. D FA Construction for RE set

We now have methods for constructing a D FA given one

RE and merging two D FAs into one D FA. We combine these

methods in the natural way to build one D FA for a set of REs.

That is, we first build a D FA for each RE in . We then merge

the D FAs together using a balanced binary tree structure to

minimize the worst-case number of merges that any RE expe-

riences. We do use two different variations of our D2FAMerge

algorithm. For all merges except the final merge, we use the first

match method for setting . When doing the final merge to

get the final D FA, we use the best match method for setting

. It turns out that using the first match method results in a

better deferment forest structure in the D FA, which helps when

the D FA is further merged with other D FAs. The local opti-

mization achieved by using the best match method only helps

when used in the final merge.

F. Optional Final Compression Algorithm

When there is no bound on the deferment depth (see

Section V-B), the original D FA algorithm proposed in [8]

results in a D FA with smallest possible size because it runs

Kruskal’s algorithm on a large SRG. Our D FA merge algo-

rithm results in a slightly larger D FA because it uses a greedy

approach to determine deferment. We can further reduce the

size of the D FA produced by our algorithm by running the

following compression algorithm on the D FA produced by the

D FA merge algorithm.

We construct an SRG and perform a maximum weight span-

ning tree construction on the SRG, but we only add edges to

the SRG that have the potential to reduce the size of the D FA.

More specifically, let and be any two states in the current

D FA. We only add the edge in the SRG if its weight

is . Here, is the de-

ferred state of in the current D FA. As a result, very few edges

are added to the SRG, so we only need to run Kruskal’s algo-

rithm on a small SRG. This saves both space and time compared

to previous D FA construction methods. However, this com-

pression step does require more time and space than the D FA

merge algorithm because it does construct an SRG and then runs

Kruskal’s algorithm on the SRG.

V. D FA MERGE ALGORITHM PROPERTIES

A. Proof of Correctness

The D FA merge algorithm exactly follows the UCP con-

struction to create the states. Hence, the correctness of the

underlying DFA follows from the correctness of the UCP

construction.

Theorem V.1 shows that the merged D FA is also well de-

fined (no cycles in deferment forest).

Lemma V.1: In the D FA ,

.

Proof: If , then the lemma is trivially

true. Otherwise, let be the

deferment chain in . When selecting the deferred state for

, D2FAMerge always choose a state that corresponds

to a pair of states along deferment chains for and in

and , respectively. Therefore, we have that

. By induction on the length

of the deferment chain and the fact that the relation is transi-

tive, we get our result.

Theorem V.1: If D FAs and are well defined, then the

D FA is also well defined.

Proof: Since and are well defined, there are no cy-

cles in their deferment forests. Now assume that is not well

defined, i.e., there is a cycle in its deferment forest. Let

and be two distinct states on the cycle. Then, we have

that

Using Lemma V.1, we get

Since , we have , which

implies that at least one of or has a cycle in their defer-

ment forest which is a contradiction.

B. Limiting Deferment Depth

Since no input is consumed while traversing a deferred transi-

tion, in the worst case, the number of lookups needed to process

one input character is given by the depth of the deferment forest.

As previously proposed, we can guarantee a worst-case perfor-

mance by limiting the depth of the deferment forest.

For a state of a D FA , the deferment depth of , de-

noted as , is the length of the maximal deferment chain in

from to the root. denotes the

deferment depth of (i.e., the depth of the deferment forest in

).

Lemma V.2: In the D FA ,

, .

Proof: Let . If , then

is a root and the lemma is trivially true. Thus, we con-

sider and assume the lemma is true for all states with

. Let be the deferment

chain in . Using the inductive hypothesis, we have

Given , we assume without loss of gener-

ality that . Using Lemma V.1, we get that .

Therefore, . Combining the above, we

get

.

Lemma V.2 directly gives us the following theorem.

Theorem V.2: If , then

.

For an RE set , if the initial D FAs have , in the

worst case, the final merged D FA corresponding to can have

. Although Theorem V.2 gives the value of

in the worst case, in practical cases, is very close to

. Thus, the deferment depth of the final

merged D FA is usually not much higher than .

Let denote the desired upper bound on . To guarantee

, we modify the FindDefState subroutine in

Algorithm 1 as follows: When selecting candidate pairs for the

deferred state, we only consider states with . Specifically,

we replace line 23 with the following:
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When we do the second pass (lines 14–19), we may increase

the deferment depth of nodes that defer to nodes that we read-

just. We record the affected nodes and then do a third pass to

reset their deferment states so that the maximum depth bound is

satisfied. In practice, this happens very rarely.

When constructing a D FA with a given bound , we first

build D FAs without this bound. We only apply the bound

when performing the final merge of two D FAs to create the

final D FA.

C. Deferment to a Lower Level

In [16], the authors propose a technique to guarantee an amor-

tized cost of two lookups per input character without limiting

the depth of the deferment tree. They achieve this by having

states only defer to lower-level states, where the level of any

state in a DFA (or D FA), denoted , is defined as

the length of the shortest string that ends in that state (from

the start state). More formally, they ensure that for all states ,

if . We call this property the

back-pointer property. If the back-pointer property holds, then

every deferred transition taken decreases the level of the current

state by at least 1. Since a regular transition on an input char-

acter can only increase the level of the current state by at most

1, there have to be fewer deferred transitions taken on the en-

tire input string than regular transitions. This gives an amortized

cost of at most two transitions taken per input character.

In order to guarantee the D FA has the back-pointer prop-

erty, we perform a similar modification to the FindDefState

subroutine in Algorithm 1 as we performed when we wanted to

limit the maximum deferment depth. When selecting candidate

pairs for the deferred state, we only consider states with a lower

level. Specifically, we replace line 23 with the following:

For states for which no candidate pairs are found, we just search

through all states in that are at a lower level for the deferred

state. In practice, this search through all the states needs to be

done for very few states because if D FAs and have

the back-pointer property, then almost all the states in D FAs

have the back-pointer property. As with limiting maximum

deferment depth, we only apply this restrictionwhen performing

the final merge of two D FAs to create the final .

D. Algorithmic Complexity

The time complexity of the original D FA algorithm pro-

posed in [8] is . The SRG has

edges, and time is required to add each edge to the

SRG and time is required to process each edge

in the SRG during the maximum spanning tree routine. The

time complexity of the D FA algorithm proposed in [16] is

. Each state is compared to other states, and

each comparison requires time.

The time complexity of our new D2FAMerge algorithm to

merge two D FAs is , where is the number of

states in the merged D FA, and and are the maximum de-

ferment depths of the two input D FAs. When setting the defer-

ment for any state , in the worst case the algorithm

compares with all the pairs along the deferment chains

of and , which are at most and in length, respec-

tively. Each comparison requires time. In practice, the

time complexity is as each state needs to be compared

to very few states for the following three reasons. First, the

maximum deferment depth is usually very small. The largest

value of among our eight primary RE sets in Section VI is

7. Second, the length of the deferment chains for most states is

much smaller than . The largest value of average deferment

depth among our eight RE sets is 2.54. Finally, many of the

state pairs along the deferment chains are not reachable in the

merged D FA. Among our eight RE sets, the largest value of the

average number of comparisons needed is 1.47.

When merging all the D FAs together for an RE set

, the total time required in the worst case would be

. The worst case would happen when

the RE set contains strings and there is no state explosion. In

this case, each merged D FA would have a number of states

roughly equal to the sum of the sizes of the D FAs being

merged. When there is state explosion, the last D FA merge

would be the dominating factor, and the total time would just

be .

When modifying the D2FAMerge algorithm to maintain

back-pointers, the worst-case time would be because

we would have to compare each state with other states

if none of the candidate pairs are found at a lower level than

the state. In practice, this search needs to be done for very few

states, typically less than 1%.

The worst-case time complexity of the final compression step

is the same as that of Kumar et al.’s D FA algorithm, which is

, since both involve computing a maximum

weight spanning tree on the SRG. However, because we only

consider edges that improve upon the existing deferment forest,

the actual size of the SRG in practice is typically linear in the

number of nodes. In particular, for the real-world RE sets that

we consider in Section VI, the size of the SRG generated by our

final compression step is on average 100 times smaller than the

SRG generated by Kumar et al.’s algorithm. As a result, the op-

timization step requires much less memory and time compared

to the original algorithm.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of our algo-

rithms on real-world and synthetic RE sets. We consider three

variants of our D FA merge algorithm. We denote the main

variant as D FAMERGE; this variant uses our improved D FA

construction algorithm for one RE. The other two variants are

D FAMergeOld, which uses the D FA construction algorithm

in [10] to build D FA for each RE and was used exclusively in

the preliminary version of this paper, and D FAMergeAlgoOpt,

which applies our final compression algorithm after running

D FAMERGE. We compare our algorithms to ORIGINAL, the

original D FA construction algorithm proposed in [8] that opti-

mizes transition compression, and BACKPTR, the D FA con-

struction algorithm proposed in [16] that enforces the back-

pointer property described in Section V-C.

A. Methodology

1) Data Sets: Our main results are based on eight real RE

sets: four proprietary RE sets C7, C8, C10, and C613 from

a large networking vendor and four public RE sets Bro217,
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Snort 24, Snort31, and Snort 34, that we partition into three

groups, STRING, WILDCARD, and SNORT, based upon their

RE composition. For each RE set, the number indicates the

number of REs in the RE set. The STRING RE sets, C613 and

Bro217, contain mostly string matching REs. TheWILDCARD

RE sets, C7, C8, and C10, contain mostly REs with multiple

wildcard closures “. ”’. The SNORT RE sets, Snort24, Snort31,

and Snort34, contain a more diverse set of REs, roughly 40%

of which have wildcard closures. To test scalability, we use

Scale, a synthetic RE set consisting of 26 REs of the form

, where and are the 26 upper-

case and lowercase alphabet letters. Even though all the REs

are nearly identical, differing only in the character after the two

. ’s, we still get the full multiplicative effect where the number

of states in the corresponding minimum-state DFA roughly dou-

bles for every RE added.

2) Metrics: We use the following metrics to evaluate the

algorithms. First, we measure the resulting D FA size (#

transitions) to assess transition compression performance. Our

D FAMERGE algorithm typically performs almost as well

as the other algorithms even though it builds up the D FA

incrementally rather than compressing the final minimum-state

DFA. Second, we measure the maximum deferment depth

and average deferment depth in the D FA to assess how

quickly the resulting D FA can be used to perform regular

expression matching. Smaller and mean that fewer de-

ferment transitions that process no input characters need to be

traversed when processing an input string. Our D FAMERGE

significantly outperforms the other algorithms. Finally, we

measure the space and time required by the algorithm to build

the final automaton. Again, our D FAMERGE significantly

outperforms the other algorithms. When comparing the perfor-

mance of D FAMERGE with another algorithm on a given

RE or RE set, we define the following quantities to compare

them: transition increase is (D FAMERGE D FA size

D FA size) divided by D FA size, transition decrease is (

D FA size D FAMERGE D FA size) divided by D FA

size, average (maximum) deferment depth ratio is average

(maximum) deferment depth divided by D FAMERGE average

(maximum) deferment depth, space ratio is space divided by

D FAMERGE space, and time ratio is build time divided by

D FAMERGE build time.

Since we have a new D FAMERGE algorithm, we needed to

rerun our experiments. We ran them on faster processors than in

our conference version, so all of the algorithms report smaller

processing times than before. One interesting note is that while

the new D FAMERGE performs better than D FAMergeOld,

the running times are essentially the same.

3) Measuring Space: When measuring the required space

for an algorithm, we measure the maximum amount of memory

required at any point in time during the construction and then

final storage of the automaton. This is a difficult quantity

to measure exactly; we approximate this required space for

each of the algorithms as follows. For D FAMERGE and

D FAMergeOld, the dominant data structure is the D FA. For

a D FA, the transitions for each state can be stored as pairs of

input character and next state id, so the memory required to

store a D FA is calculated as B. How-

ever, the maximum amount of memory required while running

D FAMERGE may be higher than the final D FA size because

of the following two reasons. First, when merging two D FAs,

we need to maintain the two input D FAs as well as the output

D FA. Second, we may create an intermediate output D FA

that has more transitions than needed; these extra transitions

will be eliminated once all D FA states are added. We keep

track of the worst-case required space for our algorithm during

D FA construction. This typically occurs when merging the

final two intermediate D FA to form the final D FA.

For ORIGINAL, we measure the space required by the mini-

mized DFA and the SRG. For the DFA, the transitions for each

state can be stored as an array of size with each array entry

requiring 4 B to hold the next state id. For the SRG, each edge re-

quires 17 B as observed in [16]. This leads to a required memory

for building the D FA of

B.

For D FAMergeOpt, the space required is the size of the final

D FA resulting from the merge step, plus the size of the SRG

used by the final compression algorithm. The sizes are computed

as in the case of D FAMERGE and ORIGINAL.

For BACKPTR, we consider two variants. The first variant

builds the minimized DFA directly from the NFA and then sets

the deferment for each state. For this variant, no SRG is needed,

so the space required is the space needed for the minimized

DFA, which is B. The second variant goes directly

from the NFA to the final D FA; this variant uses less space,

but is much slower as it stores incomplete transition tables for

most states. Thus, when computing the deferment state for a

new state, the algorithm must recreate the complete transition

tables for each state to determine which has the most common

transitions with the new state. For this variant, we assume the

only space required is the space to store the final D FA, which is

B even though more memory is needed

at various points during the computation. We also note that both

implementations must perform the NFA to DFA subset con-

struction on a large NFA, which means even the faster variant

runs much more slowly than D FAMERGE.

4) Correctness: We tested correctness of our algorithms by

verifying the final D FA is equivalent to the corresponding

DFA. Note we can only do this check for our RE sets where we

were able to compute the corresponding DFA. Thus, we only

verified correctness of the final D FA for our eight real RE sets

and the smaller-scale RE sets.

B. D FAMERGE versus ORIGINAL

We first compare D FAMERGE to ORIGINAL that opti-

mizes transition compression when both algorithms have un-

limited maximum deferment depth. These results are shown in

Table I for our eight primary RE sets. Tables I–III summarize

these results by RE group. We make the following observations.

1) D FAMERGE Uses Much Less Space Than ORIGINAL:

On average, D FAMERGE uses 1500 times less memory than

ORIGINAL to build the resulting D FA. This difference is

most extreme when the SRG is large, which is true for the two

STRING RE sets and Snort24 and Snort34. For these RE sets,

D FAMERGE uses between 1422 and 4568 times less memory

than ORIGINAL. For the RE sets with relatively small SRGs

such as those in the WILDCARD and Snort31, D FAMERGE

uses between 35 and 231 times less space than ORIGINAL.

2) D FAMERGE is Much Faster Than ORIGINAL: On

average, D FAMERGE builds the D FA 155 times faster
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TABLE I

PERFORMANCE DATA OF ORIGINAL AND D FAMERGE

TABLE II

PERFORMANCE DATA OF D FAMergeOld AND D FAMergeOpt

TABLE III

COMPARING D FAMergeOld, D FAMERGE, AND D FAMergeOpt TO ORIGINAL

than ORIGINAL. This time difference is maximized when the

deferment chains are shortest. For example, D FAMERGE

only requires an average of 0.05 and 0.09 ms per state

for the WILDCARD and SNORT RE sets, respectively, so

D FAMERGE is, on average, 247 and 142 times faster than

ORIGINAL for these RE sets, respectively. For the STRING

RE sets, the deferment chains are longer, so D FAMERGE

requires an average of 0.67 ms per state, and is, on average, 35

times faster than ORIGINAL.

3) D FAMERGE Produces D FA With Much Smaller Av-

erage and Maximum Deferment Depths Than ORIGINAL:

On average, D FAMERGE produces D FA that have average

deferment depths that are 6.4 times smaller than ORIGINAL

and maximum deferment depths that are 4.4 times smaller

than ORIGINAL. In particular, the average deferment depth

for D FAMERGE is less than 2 for all but the two STRING

RE sets, where the average deferment depths are 2.15 and

2.69. Thus, the expected number of deferment transitions to

be traversed when processing a length string is less than .

One reason D FAMERGE works so well is that it eliminates

low weight edges from the SRG so that the deferment forest

has many shallow deferment trees instead of one deep tree.

This is particularly effective for the WILDCARD RE sets and,

to a lesser extent, the SNORT RE sets. For the STRING RE

sets, the SRG is fairly dense, so D FAMERGE has a smaller

advantage relative to ORIGINAL.

4) D FAMERGE Produces D FA With Only Slightly More

Transitions Than ORIGINAL, Particularly on the RE Sets

That Need Transition Compression the Most: On average,

D FAMERGE produces D FA with roughly 11% more transi-

tions than ORIGINAL does. D FAMERGE works best when

state explosion from wildcard closures creates DFA composed

of many similar repeating substructures. This is precisely

when transition compression is most needed. For example,

for the WILDCARD RE sets that experience the greatest state

explosion, D FAMERGE only has 1% more transitions than

ORIGINAL. On the other hand, for the STRING RE sets,

D FAMERGE has, on average, 22% more transitions. For

this group, ORIGINAL needed to build a very large SRG and

thus used much more space and time to achieve the improved

transition compression. Furthermore, transition compression

is typically not needed for such RE sets as all string matching

REs can be placed into a single group and the resulting DFA

can be built.

In summary, D FAMERGE achieves its best performance

relative to ORIGINAL on the WILDCARD RE sets (except for

space used for construction of the D FA) and its worst perfor-

mance relative to ORIGINAL on the STRING RE sets (except

for space used to construct the D FA). This is desirable as the

space- and time-efficient D FAMERGE is most needed on RE

sets like those in the WILDCARD because those RE sets expe-

rience the greatest state explosion.
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TABLE IV

PERFORMANCE DATA FOR ORIGINAL AND D FAMERGE GIVEN MAXIMUM DEFERMENT DEPTH BOUNDS OF 1, 2, AND 4

5) Improvement of D FAMERGE Over D FAMergeOld:

Using our improved algorithm to build the initial D FAs results

in significant reduction in the final size of the D FA produced by

the D FA merge algorithm. On average, D FAMergeOld pro-

duces a D FA 8.2% larger than that produced by D FAMERGE.

C. Assessment of Final Compression Algorithm

We now assess the effectiveness of our final compression

algorithm by comparing D FAMergeOpt to ORIGINAL and

D FAMERGE. As expected D FAMergeOpt produces a D FA

that is almost as small as that produced by ORIGINAL; on av-

erage, the number of transitions increases by only 0.4%. There

is a very small increase for WILDCARD and SNORT because

ORIGINAL also considers all edges with weight 1 in the SRG,

whereas D FAMergeOpt does not use edges with weight 10.

There is a significant benefit to not using these low-weight SRG

edges; the deferment depths are much higher for the D FA pro-

duced by ORIGINALwhen compared to the D FA produced by

D FAMergeOpt.

The final compression algorithm of D FAMergeOpt does

require more resources than are required by D FAMERGE.

In some cases, this may limit the size of the RE set for which

D FAMergeOpt can be used. However, as explained earlier,

D FAMERGE performs best on the WILDCARD (which

has the most state explosion) and performs the worst on the

STRING (which has the no or limited state explosion). Hence,

the final compression algorithm is only needed for and is most

beneficial for RE sets with limited state explosion. Finally, we

observe that D FAMergeOpt requires on average 113 times

less RAM than ORIGINAL and, on average, runs 9 times faster

than ORIGINAL.

D. D FAMERGE Versus ORIGINAL With Bounded Maximum

Deferment Depth

We now compare D FAMERGE and ORIGINAL when they

impose a maximum deferment depth bound of 1, 2, and 4. Be-

cause time and space do not change significantly, we focus only

on number of transitions and average deferment depth. These

results are shown in Table IV. Note that for these data sets, the

resulting maximum depth typically is identical to the max-

imum depth bound ; the only exception is for D FAMERGE

and , thus we omit the maximum deferment depth from

Table IV. Table V summarizes the results by RE group high-

lighting how much better or worse D FAMERGE does than

TABLE V

COMPARING D FAMERGE WITH ORIGINAL GIVENMAXIMUM DEFERMENT

DEPTH BOUNDS OF 1, 2, AND 4

ORIGINAL on the two metrics of number of transitions and av-

erage deferment depth .

Overall, D FAMERGE performs very well when presented

a bound . In particular, the average increase in the number of

transitions for D FAMERGE with equal to 1, 2 and 4, is only

131%, 20%, and 1% respectively, compared to D FAMERGE

with unbounded maximum deferment depth. Stated another

way, when D FAMERGE is required to have a maximum

deferment depth of 1, this only results in slightly more than

twice the number of transitions in the resulting D FA. The

corresponding values for ORIGINAL are 3121%, 1216%, and

197%.

These results can be partially explained by examining the av-

erage deferment depth data. Unlike in the unbounded maximum

deferment depth scenario, here we see that D FAMERGE has a

larger average deferment depth than ORIGINAL except for

the WILDCARD when is 1 or 2. What this means is that

D FAMERGE has more states that defer to at least one other

state than ORIGINAL does. This leads to the lower number of

transitions in the final D FA. Overall, for , D FAMERGE

produces D FA with roughly 91% fewer transitions than ORIG-

INAL for all RE set groups. For , D FAMERGE produces

D FA with roughly 59% fewer transitions than ORIGINAL for

the WILDCARD RE sets and roughly 92% fewer transitions

than ORIGINAL for the other RE sets.

E. D FAMERGE Versus BACKPTR

We now compare D FAMERGE to BACKPTR that enforces

the back-pointer property described in Section V-C. We adapt

D FAMERGE to also enforce this back-pointer property. The

results for all our metrics are shown in Section VI for our eight

primary RE sets. We consider the two variants of BACKPTR

described in Section VI-A.3, one that constructs the minimum-

state DFA corresponding to the given NFA and one that by-

passes the minimum-state DFA and goes directly to the D FA

from the given NFA. We note the second variant appears to
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TABLE VI

PERFORMANCE DATA FOR BOTH VARIANTS OF BACKPTR AND D FAMERGE WITH THE BACK-POINTER PROPERTY

TABLE VII

COMPARING D FAMERGE WITH BOTH VARIANTS OF BACKPTR

use less space than D FAMERGE. This is partially true since

BACKPTR creates a smaller D FA than D FAMERGE. How-

ever, we underestimate the actual space used by this BACKPTR

variant by simply assuming its required space is the final D FA

size. We ignore, for instance, the space required to store inter-

mediate complete tables or to perform the NFA to DFA subset

construction. Tables VI and VII summarize these results by RE

group displaying ratios for many of our metrics that highlight

howmuch better or worse D FAMERGE does than BACKPTR.

Similar to D FAMERGE versus ORIGINAL, we find that

D FAMERGE with the back-pointer property performs well

when compared to both variants of BACKPTR. Specifically,

with an average increase in the number of transitions of roughly

18%, D FAMERGE runs on average 19 times faster than

the fast variant of BACKPTR and 143 times faster than the

slow variant of BACKPTR. For space, D FAMERGE uses

on average almost 30 times less space than the first variant

of BACKPTR and on average roughly 42% more space than

the second variant of BACKPTR. Furthermore, D FAMERGE

creates D FA with average deferment depth 2.9 times smaller

than BACKPTR and maximum deferment depth 1.9 times

smaller than BACKPTR. As was the case with ORIGINAL,

D FAMERGE achieves its best performance relative to

BACKPTR on the WILDCARD RE sets and its worst perfor-

mance relative to BACKPTR on the STRING RE sets. This

is desirable as the space- and time-efficient D FAMERGE is

most needed on RE sets like those in the WILDCARD because

those RE sets experience the greatest state explosion.

F. Scalability Results

Finally, we assess the improved scalability of D FAMERGE

relative to ORIGINAL using the Scale RE set assuming that we

have a maximum memory size of 1 GB. For both ORIGINAL

and D FAMERGE, we add one RE at a time from Scale until

the space estimate to build the D FA goes over the 1-GB limit.

For ORIGINAL, we are able only able to add 12 REs; the final

D FA has 397 312 states and requires over 71 h to compute. As

explained earlier, we include the SRG edges in the RAM size es-

timate. If we exclude the SRG edges and only include the DFA

Fig. 3. Memory and time for ORIGINAL’s D FA and D FAMERGE’s D FA.

size in the RAM size estimate, we would only be able to add one

more RE before we reach the 1-GB limit. For D FAMERGE,

we are able to add 19 REs; the final D FA has 80 216 064 states

and requires only 77 min to compute. This data set highlights

the quadratic versus linear running time of ORIGINAL and

D FAMERGE, respectively. Fig. 3 shows how the space and

time requirements grow for ORIGINAL and D FAMERGE as

REs from Scale are added one by one until 19 have been added.

VII. CONCLUSION

In this paper, we propose a novelMinimize then Union frame-

work for constructing D FAs using D FA merging. Our ap-

proach requires a fraction of memory and time compared to cur-

rent algorithms. This allows us to build much larger D FAs than

was possible with previous techniques. Our algorithm naturally

supports frequent RE set updates. We conducted experiments

on real-world and synthetic RE sets that verify our claims. For

example, our algorithm requires an average of 1500 times less

memory and 150 times less time than the original D FA con-

struction algorithm of Kumar et al.. We also provide an opti-

mization post-processing step that produces D FAs that are es-

sentially as good as those produced by the original D FA con-

struction algorithm; the optimization step requires on average

113 times less memory and 9 times less time than the original

D FA construction algorithm.
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