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Bypassing the Combinatorial Explosion: Using
Similarity to Generate and Prioritize T-wise

Test Configurations for Software Product Lines
Christopher Henard, Mike Papadakis, Member, IEEE , Gilles Perrouin, Member, IEEE , Jacques Klein,

Member, IEEE , Patrick Heymans, Member, IEEE, and Yves Le Traon, Member, IEEE.

Abstract—Large Software Product Lines (SPLs) are common in industry, thus introducing the need of practical solutions to test
them. To this end, t-wise can help to drastically reduce the number of product configurations to test. Current t-wise approaches
for SPLs are restricted to small values of t. In addition, these techniques fail at providing means to finely control the configuration
process. In view of this, means for automatically generating and prioritizing product configurations for large SPLs are required.
This paper proposes (a) a search-based approach capable of generating product configurations for large SPLs, forming a
scalable and flexible alternative to current techniques and (b) prioritization algorithms for any set of product configurations.
Both these techniques employ a similarity heuristic. The ability of the proposed techniques is assessed in an empirical study
through a comparison with state of the art tools. The comparison focuses on both the product configuration generation and the
prioritization aspects. The results demonstrate that existing t-wise tools and prioritization techniques fail to handle large SPLs.
On the contrary, the proposed techniques are both effective and scalable. Additionally, the experiments show that the similarity
heuristic can be used as a viable alternative to t-wise.

Index Terms—Software Product Lines, Testing, T-wise Interactions, Search-based Approaches, Prioritization, Similarity

F

1 INTRODUCTION

A Software Product Line (SPL) “is a set of software-
intensive systems that share a common, man-

aged set of features satisfying the specific needs of
a particular market segment or mission and that are
developed from a common set of core assets in a
prescribed way” [1]. Features are thus the key to
the discrimination of SPL members by showing their
commonalities and differences. A feature represents
the presence of a functionality in a software product.
These functionalities are often organized in a Feature
Model (FM) [2], [3] which represents all the possible
(software) products of the SPL by expressing relation-
ships and constraints between features.

Testing an SPL is an inherently difficult activity [4].
Although testing all the products would be ideal, it
is rarely feasible in practice. Indeed, the number of
possible product configurations induced by a given
FM usually grows exponentially with the number of
features, quickly leading to millions of possible prod-
ucts to test. As a result, test engineers are seeking for
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solutions to reduce the size of their test suites so that
they can meet release deadlines and cost constraints.

Previous work [5], [6] has identified Combinatorial
Interaction Testing (CIT) as a relevant approach to
reduce the size of the test suites using interaction cov-
erage. CIT is a systematic approach for sampling large
domains of test data. It is based on the observation
that most of the faults are triggered by the interactions
between a small number of features [6]. An interaction
between t ≥ 2 features denotes the possible impact
of one feature on the others, enabled in a specific
product configuration. Kuhn et al. [6] have shown that
interactions between two features are able to disclose
80% of the bugs. Considering all possible interactions
between t features is called t-wise testing. Recently,
such approaches have been adapted to SPL testing
[7], [8], [9], generating product configurations from
the FM covering all the valid (with respect to the FM
constraints) t-wise combinations of features.

However, computing all the t-wise interactions in
the presence of constraints, as it is the case for
FMs, is a hard problem to solve [9], [10]. Although
t-wise generation techniques from FMs have been
greatly improved over the last years, they still face
scalability issues in the presence of constraints [11],
[12], [13]. Therefore, dealing with large FMs such as
those used in industry is still an open research issue.
Furthermore, the CIT literature points out the need
for dealing with higher interaction strengths (t > 2)
[14], [15], [16]. Preliminary evidence shows that 3-wise
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interactions may commonly appear in SPL testing
practice [17] and that higher interaction strengths are
important in achieving a higher fault detection [16].
Additionally, the results of the present study show
that state of the art CIT tools fail to scale even on
FMs of moderate size for high interaction strengths
(t = 3, 4). Since such strengths may remain out of
reach, one may ask if it is possible to cope with these
difficult situations by relaxing the t-wise criterion.
This leads us to the question of whether we can
mimic t-wise product configurations generation, partially
but efficiently while achieving decent coverage?

While t-wise testing drastically reduces the number
of product configurations to consider, this number
may still be too high to fit the budget allocated for SPL
testing. For example, 2-wise coverage for the Linux
FM (over 6,000 features) already requires 480 product
configurations to be tested [18]. This observation is
in line with Song et al. ’s [19] motivation : since they
reported that key interactions may involve up to 7 op-
tion settings, full 7-wise coverage of a realistic system
(admitting such a computation is possible) may yield
too many configurations to consider. Therefore, being
able to prioritize product configurations is critical
from a practical point of view.

The work presented in this paper is motivated by
the results of Arcuri and Briand [11] who showed
that, in the case of large models, random testing is
competitive with CIT for finding interaction faults.
Hence, they suggest the use of random testing as
a possible way to circumvent the scalability issues
of the CIT approaches. Unfortunately, real world ap-
plications involve constraints between features and
the results of Arcuri and Briand do not hold when
constraints are present.

Going one step further, we propose two approaches
working with constraints capable of generating and
prioritizing product configurations: (a) a randomized
approach, named here as unpredictable, and (b) a
search-based technique. Following the lines of Arcuri
and Briand, we empirically investigate the probabil-
ity of finding an interaction failure for t = 2, ..., 6.
Our search-based approach efficiently generates valid
product configurations, i.e., respecting the constraints
of the FM, for t-wise testing. The innovative part of
the proposed approach is that it is independent of t
and able to operate on large and constrained models
by both generating and prioritizing configurations.

Flexibility is required to meet a given testing budget
especially for such systems [20]. Generally, our ap-
proach introduces flexibility in the testing process: the
number of product configurations that can be tested,
i.e., fitting the budget can be specified as well as the
time allowed for generating them. Flexibility is backed
by the design of our approaches that avoid direct
computation of t-wise interactions by using product
configurations dissimilarity measures.

The applicability of the proposed strategies is eval-

uated on both real and generated FMs. Our approach
stands up against the comparison with existing tools
for small and moderate FMs, while it is able to scale
well to models with 6, 000 features for t up to 6.
The experimental data and the implementation are
publicly available at:

http://research.henard.net/SPL/.

In summary, the present paper provides the following
insights:

1) We show that state of the art tools face severe
scalability issues with large SPLs.

2) We propose a randomized and a search-based
approach able to generate valid product config-
urations for t-wise testing for large SPLs.

3) We introduce two scalable product configuration
prioritization techniques.

4) We perform a wide empirical study including
FMs that contain more than 6,000 features.

The remainder of this paper is organized as follows:
Sections 2 and 3 respectively present the context of
this work and an example. Section 4 introduces the
heuristic used by the approaches. Sections 5 and 6
respectively detail the configuration generation and
prioritization techniques. Section 7 reports on the em-
pirical study. Finally, Section 8 discusses the proposed
approaches before Section 9 concludes the paper.

2 CONTEXT

This section first presents background concepts and
notations used in this paper. Then, SPL testing and
CIT are presented. Finally, work related to the present
one is discussed.

2.1 Background
This section introduces testing and coverage for Soft-
ware Product Lines (SPLs) through some concepts and
definitions used in this paper.

2.1.1 SPL Products as Test Configurations
This work focuses on model-based testing of SPLs
where the variability model is a Feature Model (FM).
An FM encompasses the constraints linking the fea-
tures. Feature modeling is a popular way to model
SPL variability and it is by far the most reported in in-
dustry [21]. Thus, basing an SPL testing technique on
FMs as means of documenting variability seems rea-
sonable. Moreover, FMs may be used to reason about
systems that are not SPLs according to the classical
definitions [1], [22]. Thanks to FM reverse-engineering
techniques (e.g., [23], [24]), one can apply SPL testing
techniques to variability-intensive (or configurable)
systems such as the Linux kernel [24] or Eclipse [25].
Thus, an FM can represent the variability of an SPL

http://research.henard.net/SPL/
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or of a highly configurable system, such as the Linux
kernel. In fact, an SPL is a highly configurable system
with a very early feature binding [26].

Definition 1 (Feature Model (FM)): In this paper, we
see an FM as a tuple (F,C), where F = {f1, ..., fn} is
set of n boolean features and C = {c1, ..., ck} a set of
k constraints over the features. C is satisfied if all its
constraints are satisfied, i.e., evaluated to true.

In this context, we consider a product configura-
tion as an assignment of selected/unselected features
satisfying the constraints of the FM.

Definition 2 (Product Configuration): A product con-
figuration is a set PC = {±f1, ...,±fn}, where +fi
indicates a feature of the FM which is present in this
product configuration, and −fi an absent one. A prod-
uct configuration is said to be valid if C is satisfied, i.e.,
all the constraints of the FM are satisfied. Otherwise,
it is said to be invalid. For simplicity reasons, we also
refer to product configuration as configuration.

A configuration may actually refer to different
things depending on the source of the features. While
in the SPL terminology it usually refers to the con-
figuration of a product of the SPL, where each of its
features may have a complex behavior, it may as well
represent parameter values if the FM is a configurable
system, e.g., the Linux kernel. This is not a problem in
our case since the approach described here is agnostic
of feature semantics [27]. Regarding the SPL testing
process, these configurations need to be embodied
and relevant test cases for these configurations have
be provided so that actual testing can be performed.
The full process is out of the scope of this paper. Nev-
ertheless, model-based product configuration deriva-
tion techniques show that this scenario is realistic
even for large systems [25]. Finally, we denote as test
configuration suite a list of (product) configurations.

Definition 3 (Test Configuration Suite): A test config-
uration suite is a list TCS = PC1, ..., PCm where each
PCi is a valid product configuration.

2.1.2 T-wise Testing and Coverage
T-wise testing focuses on the interactions between any
t ≥ 2 features of an SPL [10]. It considers all the
possible interactions (with respect to the constraints C
of the FM) between selected and unselected features.
Such an interaction is called a t-set.

Definition 4 (valid t-set): A valid t-set is a set
{±f1, ...,±ft} satisfying C, with t ≤ n and where
+fi indicates a feature which is selected and −fi an
unselected one. A t-set which is not satisfying C is
said to be invalid.

Definition 5 (t-wise coverage): The t-wise coverage of
a test configuration suite TCS = PC1, ..., PCm is the
ratio #

⋃m
i=1 Tt,PCi

#Tt,FM
, where Tt,PCi is the set of t-sets

covered by the product configuration PCi (i.e., t-sets
included within the configuration PCi), where Tt,FM

denotes the set of all the possible t-sets of the FM and
where #A denotes the cardinality of the set A.

Classical approaches [7], [8], [9] to t-wise testing
have coverage ratio of 1 as they cover all the t-sets
of the FM. Finally, set coverage redundancy expresses
the possibility that, by removing any configuration,
the coverage value is not altered.

2.2 Software Product Line Testing and Combina-
torial Interaction Testing
CIT aims at sampling configurations in order to re-
duce the size of the test suites. This reduction is
achieved by keeping only the configurations covering
all the interactions between t features. As a result,
the strength t is a parameter of a CIT approach. CIT
approaches are closely related to the configuration
generation in SPLs. Generally, CIT handles multi-
valued variables while configuration generation for
SPLs limits the values of variables, i.e., the features,
to boolean ones. In that sense, the generation of
configurations in SPLs can be seen as a subset of
CIT. However, constraints among variables are gen-
erally not included in CIT problems. Indeed, initial
CIT approaches did not take into account constraints.
Some recent studies, e.g., [26] evaluate the impact
of constraints on CIT. Recent CIT tools provide a
support of constraints. In other words, we can say that
configuration generation in SPL testing is an instance
of a boolean CIT problem with constraints.

Generally, an SPL configuration generation problem
can be solved by a CIT tool if it handles constraints.
Indeed, CIT with constraints generalizes the SPL
configuration generation problem since it deals with
multi-valued variables. However, to convert a CIT
problem to an SPL one, it is necessary to transform the
problem into a boolean one. If the variables’ domain
is finite, this transformation can be performed by
applying the rules presented by Frisch et al. [28].

In the CIT context, the constraints have a great
influence: they can, for instance, make configurations
invalid, increase or decrease the number of configu-
rations required to cover all the t-wise interactions,
or produce invalid t-sets [26]. Thus, introducing con-
straints into a CIT problem makes it extremely diffi-
cult to solve. This is due to the irregularity introduced
by the constraints [26]. The configuration generation
in SPLs suffers from the same problems.

State of the art tools for solving CIT with constraints
have great difficulties to scale to large FMs and to
deal with high t values [11], [12], [13]. These issues
are highlighted by our evaluations reported in the
present paper (see Section 7.1). Indeed, none of the
three state of the art tools employed by our study
achieved to scale to large FMs. In addition, these tools
fail also on moderate size FMs for t values greater
than 3. As a result, scalability is one of the major
problems faced by existing techniques. Additionally,
due to the irregularity of the constraints, generating
valid configurations at random is practically infeasi-
ble. The example of the next section will highlight this
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problem. Therefore, there is a practical need to deal
with situations involving both constrained large scale
systems and high interaction strengths.

2.3 Related Work

Since t-wise testing is difficult due to the constraints,
the use of constraint solving solutions have been
investigated. In [26], Cohen et al. examine the impacts
of constraints and present techniques to integrate con-
straints handling into existing CIT tools. In Perrouin
et al. work [10], a solution based on Alloy, a satisfi-
ability (SAT) solver, was devised. The approach was
non-predictable in terms of generated solutions and
strategies to improve scalability were proposed. Oster
et al. [7] optimized the problem upfront by flattening
the FM and using CIT algorithms [5], [29] within
a dedicated constraint solver, producing predictable
solutions. Both cannot handle thousand-sized FMs.

Recently, SPLCAT [9], used as a reference through-
out this paper has been proposed. SPLCAT operates
by generating a covering array [26]. In a covering
array, the rows represent the product configurations
while the columns represent the features. The ap-
proach is incremental and adds configurations (rows)
until all the feature combinations are covered. Each
configuration added in the array tries to exercise the
maximum number of interactions that remain to be
covered. This is performed using a SAT solver which,
given assumptions representing the interactions to be
covered, returns a product configuration. Configura-
tions are added until all the interactions of the FM are
covered. Our generation technique tries to maximize
the dissimilarity of set of n configurations, where n
is predefined. Thus, SPLCAT generate all the config-
urations needed to achieve 100% of t-wise coverage.
On the contrary, our approach aims at maximizing
the t-wise coverage of the n configurations. SPLCAT
handles larger FMs than the other techniques, but it
does not scale well. An improvement of SPLCAT has
been recently proposed [18]: it handles larger FMs
than SPLCAT but it is limited to t = 3.

Logic was also used. Calvagna et al. explain how to
deal with constraints in CIT [30] by encoding them
in first order logic. They offer various reductions
algorithms to simplify them and used a model checker
to solve them. Since this work was not related to FMs,
it is difficult to assess its scalability. Hervieu et al. [31]
also use reduction techniques in the aim of finding the
minimal test suite in a Prolog-based implementation.
However, this approach does not scale well to FMs of
over 200 features, according to our experiments.

Cohen et al. [32] propose a relational model to
represent the semantic basis for defining a family of
coverage criteria for testing an SPL, such as variability
coverage. CIT is then used to generate configurations
that achieve a desired level of coverage. In our work,
we focus on the notion of t-wise interaction coverage

while generating configurations. The testing of the
SPL itself is not considered. Finally, characterizing the
features combinations responsible for failures can be
performed with classification trees [33]. This is part
of debugging and thus falls out of the scope of the
present paper. Our paper focuses on the generation
of product configurations in SPL testing.

As surveyed by Nie and Leung [13], efforts have
been made to prioritize test suites. For instance, Bryce
and Colbourn [34] use search-based techniques (e.g.,
hill climbing) to select the “best test” in terms of
t-wise coverage. Our goal is similar but we focus
on product configurations. Additionally, the proposed
techniques offer improvements over the “natural”
ordering provided by the AETG algorithm [5] in line
with our experimentations. However, computing t-
wise coverage for each configuration is expensive,
especially for constrained cases, which are not taken
into account in their approach and thus unsuitable in
the SPL context. Yoo et al. [35] introduced a cluster-
based prioritization technique to reduce the number
of 2-wise interactions. The idea is too regroup similar
test cases into clusters, and prioritize the clusters. In
our work, we use a notion of similarity to compare
test configurations. Prioritization of test configura-
tions according to parameter interactions has also
been done by Sampath et al. [36] in the context of
web applications. Bryce and Memon [37] proposed a
technique to prioritize configurations according to the
t-wise interactions covered. It is a greedy approach
which selects the configurations exercising the max-
imum number of interactions that are not already
covered. The difference is that our approaches are
not impacted by the t-wise interactions since they
are independent of t. Indeed, our techniques select
the most dissimilar configurations instead of those
covering the highest number of interactions. Other
work [38] also adds the notion of cost of the test
to the combinatorial interaction coverage metric. In
our work, we focus only on the t-wise interactions,
assuming that all the configurations have the same
cost. Finally, there are SPL-dedicated efforts, also in
the context of test generation, but not directed to t-
wise, such as Uzuncaova et al. [39] work.

Due to the computational complexity of t-wise test-
ing of SPLs, using search-based heuristics is an option.
However, we are only aware of two approaches [40],
[41]. Garvin et al. [40] report on their experience
applying and improving an extension to the AETG
algorithm [5] using simulated annealing. The simu-
lated annealing approach incrementally populates a
constrained covering array [26]. It can be simply viewed
as a table where lines represent configurations and
columns features. Each change to the value of the
features is controlled by a SAT solver to ensure it
is legal with respect to the FM constraints. Changes
are guided by a fitness function defined over the
remaining pairs to be covered: the fewer pairs to be



5

covered, the lower the probability to make a change.
As it is shown in Section 5.1, using t-wise cov-

erage as a fitness function induces scalability issues
which may be intractable for very large FMs or
high t values. Similarly to ours, Ensan et al. devised
a genetic algorithm approach to generate SPL test
configuration suites [41]. They propose an approach
where each gene is a feature to be mutated and
where crossover is applied. The crossover induces
possible invalid products which need to be removed
and thus they face scalability issues. Their fitness
function indirectly measures coverage by evaluating
the variability points to be bound and the constraints
concerned by the features of a configuration. On the
contrary, our approach copes better with large FMs
([41] does not scale over 300 features) and does not
produce invalid configurations (since a configuration
is always replaced as a whole). As opposed to other
approaches, Ensan et al. and our approaches yield
partial t-wise coverage due to the choice of the fitness
function. This, however, allows dealing with time
and cost constraints, looking for a “good enough”
solution. Rubenstein et al. [42] proposes an algorithm
that performs a search until some point in time in
the context of software systems analysis. They use
a measure for the accuracy of the analysis, which
is also used to decide when to stop the process.
This measure can be seen as the fitness function in
our work. The difference with our approach is that
the fitness function only evaluates the quality of the
proposed solution, but does not indicate when to stop
the algorithm. In our context, the stopping criteria is
the time budget allowed.

Finally, the variations in space (different product
configurations one can form from the FM) but also
in time (product versioning) have been investigated
in some work [43], [44]. In this work, we focus
only on configuration space variations since we only
consider one version of the SPL. Our approach can
be adapted in the context of different version of an
SPL by focusing only on the features that changed
from one version to the other. Section 8.3 gives more
details about the adaptation of our approach to SPLs
evolving over time. Surveys [45], [46] report that SPL
testing goes beyond the configuration generation. We
do not strive to cover the full SPL testing process.
Indeed, we focus on scalable product configuration
generation, an open research issue [11], [12], [13].

3 EXAMPLE

As a running example, consider a Raster Graphics
Editor (RGE) SPL depicted by the FM of Figure 1.
It contains 9 features that are mapped as follows:
RasterGraphicsEditor 7→ f1, Draw 7→ f2, Selection 7→
f3, ColorPalette 7→ f4, Rendering 7→ f5, Rectangular
7→ f6, ByColor 7→ f7, BlackWhite 7→ f8, Color 7→ f9.

The RGE FM is defined by its 9 features and its 18
constraints1 as (F , C), where F = {f1, ..., f9} and C =
{+f1,−f2∨+f1,−f1∨+f2,−f3∨+f1,−f1∨+f3,−f4∨
+f1,−f5∨+f1,−f1∨+f5,−f6∨+f3,−f7∨+f3,−f3∨
+f6∨+f7,−f8∨+f5,−f9∨+f5,−f5∨+f8∨+f9,−f8∨
−f9,−f7 ∨+f4,−f4 ∨ −f8,−f9 ∨+f4}.

In the absence of constraints, 29 = 512 product
configurations can be established (9 features, with 2
possible values per feature). However, there are prod-
uct configurations among these 512 that are invalid
with respect to the constraints. Taking into accounts
the constraints drops the number of configurations
to 4 only (i.e., this SPL supports only 4 products).
In other words, only 4 configurations among the 512
possible are valid ones. It means that, by trying to
randomly generate a configuration, the probability to
obtain a valid one is only 4/512 = 0.78%. As a result,
generating valid configurations at random is rather
unlikely, even for small SPLs. Thus, a systematic way
to deal with valid configurations is in need. To deal
with this situation, a SAT solver [47] to handle the
constraints of the FM is mandatory. For the FM of
Figure 1, the 4 configurations satisfying C that can be
configured are the following:

PC1 = {+f1,+f2,+f3,+f4,+f5,−f6,+f7,−f8,+f9},
PC2 = {+f1,+f2,+f3,+f4,+f5,+f6,−f7,−f8,+f9},
PC3 = {+f1,+f2,+f3,+f4,+f5,+f6,+f7,−f8,+f9},
PC4 = {+f1,+f2,+f3,−f4,+f5,+f6,−f7,+f8,−f9}.

The t-sets of this FM can be computed as fol-
lows. Compute all the possible t combinations from
{+f1, ...,+f9,−f1, ...,−f9}. Then, remove the combi-
nations that are invalid. An example of valid 3-set
is {+f1,+f2,−f8}. An invalid 2-set is for instance
{−f1, f2}, as it does not satisfies the constraint −f2 ∨
+f1. Thus, the example FM encompasses 73 valid 2-
sets, 204 valid 3-sets, etc. PC1 and PC4 together cover
66/73 ≈ 90.4% of these 2-sets and ≈ 80.4% of the 3-
sets. On the contrary, PC2 and PC3 together cover
only ≈ 60.3% of the 2-sets and ≈ 54.9% of the 3-sets.

The objective of the configuration generation ap-

1. In this example, the constraints are represented in the Con-
junctive Normal Form (CNF).

RasterGraphicsEditor

Draw ColorPaletteSelection Rendering

BlackWhite ColorRectangular ByColor

Mandatory

Optional

Or

Exclusive Or

Requires

Excludes

Fig. 1. A feature model of a raster graphics editor
software product line. It depicts the 9 features and the
constraints linking them.
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proach presented in this paper is to, given a number
of m configurations desired and an execution time,
provide m valid configurations that maximize the t-
wise coverage for any t value. In this example, if
m = 2 (i.e., 2 configurations have to be generated),
we expect them to be those that provide the maximum
coverage. Therefore, PC1 and PC4 should be chosen
rather than PC2 and PC3, as they cover more t-sets.

Suppose now that we have the three configurations
PC1, PC2 and PC3. All together, they provide a 2-
wise coverage of ≈ 71.2%. PC1 alone provides a 2-
wise coverage of ≈ 49.3%. If we now consider PC2 in
addition to PC1, it increases the coverage to ≈ 69.8%.
However, if we consider PC3 in addition to PC1, the
coverage is extended to only ≈ 60.2%. This difference
is depicted in Figure 2. In other words, the order
in which the configurations are considered allows
reaching faster or slower the total coverage of ≈ 71.2%
provided by these configurations. In this case, it is
more interesting to consider the order PC1, PC2 and
PC3 rather than the order PC1, PC3 and PC2.

The objective of the configuration prioritization ap-
proaches presented in this paper is to, given a set of m
configurations, order them such as the t-wise coverage
provided by these configurations is achieved faster.

The following section details the concept of similar-
ity underlying the proposed generation and prioriti-
zation approaches.

4 THE SIMILARITY HEURISTIC

Similarity is a heuristic used here to compare two
configurations. In model-based testing, it has been
found that dissimilar test suites have a higher fault
detection power than similar ones [48]. The results
presented in this paper (see Section 7) suggest that
two dissimilar configurations are more likely to cover
a greater number of valid t-sets than two similar ones.

In this context, we define a distance measure d
between two configurations to evaluate their degree
of similarity. As explained in Section 2.1.1, a configu-
ration is considered as a set of selected or unselected
features. Thus, a straightforward distance measure
is a set-based one, like the Jaccard distance [49] or
any other set-based distance metrics such as the Dice

45%
50%
55%
60%
65%
70%
75%

1st configuration 2nd configuration 3rd configuration

2-
w

is
e 

co
ve

ra
ge

Ordering
PC1, PC2, PC3
PC1, PC3, PC2

Fig. 2. A different ordering of the product config-
urations allows reaching faster or slower the t-wise
coverage provided by these configurations.

or Anti Dice measures [48]. If PC represents all the
possible product configurations of an FM, the Jaccard
distance is mathematically given by:

d :
PC × PC −→ [0, 1.0]

(PCi, PCj) 7−→ 1− #PCi∩PCj

#PCi∪PCj
.

The resulting distance varies between 0 and 1.
More particularly, a distance equal to 1 indicates
that the two considered configurations are completely
different. A distance equal to 0 denotes that the two
configurations are the same (redundant). It is noted
that an unselected feature is also an element of the
set representing a configuration. For instance, with
reference to the example of Section 3, d(PC1, PC2) =

1− #{+f1,+f2,+f3,+f4,+f5,−f8,+f9}
#{+f1,+f2,+f3,+f4,+f5,−f6,+f6,−f7,+f7,−f8,+f9} = 1−

7
11 ≈ 0.36 and d(PC1, PC4) ≈ 0.71. In this example,
PC1 and PC2 are the most similar configurations
(they share the lowest distance), whereas PC1 and
PC4 are the most dissimilar ones. Thus, if we had to
choose only two configurations, PC1 and PC4 would
be the most likely to cover the greatest number of t-
sets according to the similarity heuristic.

5 SEARCH-BASED PRODUCT CONFIGURA-
TION GENERATION

In this section, we take benefit from the similarity
heuristic to guide the generation of configurations.
The objective of the generation process is to provide a
set of configurations that fulfills the requirements of
a test criterion. In the present context, this criterion
is the t-wise coverage. If PC denotes the set of
all the possible configurations and TCS a list of m
configurations, this process is formally defined as:

Given: an FM, the desired number of products
configurations, m, a given amount of time, t, and
a function f from TCS to the real numbers, f :
PCm −→ R+.

Problem: finding TCS ∈ PCm with respect to t
such as [max(f(TCS))]. In this context, f is the t-
wise coverage achieved by the test configuration suite
TCS and t is the time allowed for generating the
configurations. Toward this direction, we introduce
an approach, based on the (1+1) Evolutionary Algo-
rithm [50]. Specifically, the configuration generation
problem is formulated as a search-based one. The
space of all the valid configurations is defined as
the search space. Thus, meta-heuristic techniques can
be used in order to efficiently explore this space. In
view of this, similarity is used as a fitness function
towards searching for configurations in this space. It
enables: (a) a computationally interesting approach,
independent of t and (b) prioritizing the generated
configurations without necessitating much additional
computation.
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5.1 A Similarity-based Fitness Function
Our intuition, which will be confirmed in Section 7,
is that the similarity heuristic is a relevant choice to
define a fitness function f to evaluate a set of product
configurations. Thus, if we consider a test configura-
tion suite of m configurations TCS = PC1, ..., PCm,
f is formally defined as follows:

f :
PCm −→ R+

PC1, ..., PCm 7−→
∑m

j>i d(PCi, PCj).

For instance, with reference to Sections 3 and 4,
f(PC1, PC3, PC4) = d(PC1, PC3) + d(PC1, PC4) +
d(PC3, PC4) ≈ 1.53. This function, which generalizes
the similarity distances for m configurations, allows
evaluating the quality of a set of configurations in
terms of t-wise coverage. Indeed, the information
conveyed by this function is: the higher the fitness
value of the given set of m configurations, the higher
the distances between the configurations, resulting in
a potentially higher t-wise coverage.

Although evaluating the exact coverage would be a
natural choice for a fitness function, say fc, it would
be computationally expensive for such a use. Indeed,
for each configuration, it requires computing all the
t-sets covered by this configuration. Consider an FM
with n features and m configurations. If

(
n
k

)
denotes

the binomial coefficient, fc requires to compute:

N = m

(
n

t

)
=

mn!

t!(n− t)!
(1)

t-sets to evaluate the coverage of the whole set of
configurations, which represents N operations. On the
contrary, f requires N ′ =

(
m
2

)
= m(m−1)

2 distances
computation plus the sum evaluation, which repre-
sents m additions.

We assume that 2 ≤ t � n. Therefore, the time
required to compute one particular distance between
two given configurations is small compared to the
coverage evaluation of these two configurations, i.e.,
N � N ′. Indeed, f does not depend on t. We
also assume that one will test fewer configurations
than the number of features, and thus that m � n.
Especially, in a realistic and industrial context (with
large FMs), the testing process is usually subjected to
time and budget limitations. It thus does not allow
testing as many configurations as features. It results
that N � N ′ and even more while t increases. Recall
that we focus on t-wise, for high t-values. This fact
implies a computationally lower cost for f compared
to fc. As a result, f is used as the fitness function for
the configuration generation.

5.2 Search-based Approach
Classical constraint-based t-wise techniques, e.g., [18],
are unable to scale to large FMs and to high values of
t. This is mainly due to the number of t feature com-
binations. The proposed approach, which is indepen-

dent of t, is composed of two steps. The first one is the
generation of valid configurations using a SAT solver,
and the second one is the configuration selection.
The search process is formed by iteratively repeating
these two steps. A similar technique that combines
constraint solving and search-based approaches in a
scalable way has been proposed by Harman et al. [51]
for mutation-based test generation.

5.2.1 Generating Configurations
A SAT solver is used to produce valid configurations.
Once an FM is converted into a Boolean formula [52],
the solver can generate valid configurations. As a
result, a search space containing only valid configu-
rations is formed.

Typically, a product configuration is a satisfiable
“model” for a given SAT solver [47]. To this end, the
literals of the logical clauses (i.e., clauses represent
the constraints of the FM) are assigned values. If the
constraints are satisfied, one configuration is returned.
However, assignments to the literals are done in a par-
ticular order which involves the following problem:
no uniform exploration of the space of all the valid
configurations is possible. Indeed, the order used by
the solver to parse the logical clauses and literals
enables their prediction. In that case, the approach
always returns the same solution in a deterministic
way. As a result, the configurations enumeration is
driven by the order used by the solver.

To overcome this issue, and thus to get configura-
tions in an unpredictable way, one solution is to ran-
domize how the solver parses the logical clauses and
the literals and how it assigns values to variables. It
thus makes the solving process entirely randomized.
It prevents from predicting the next configuration that
will be returned. Additionally, it allows selecting con-
figurations from the full space instead of enumerating
them in a predictable order. Since it enables the use
of search-based approaches in a non-biased way, the
unpredictable strategy forms a contribution of this
paper.

5.2.2 Selecting Configurations
The objective is to generate a test configuration suite
TCS of m configurations. The proposed approach
is formalized in Algorithm 1. Informally, the search-
based method starts by selecting m configurations
in an unpredictable way (lines 5 to 8). Then, these
configurations are evaluated by the fitness function f
(line 11) and prioritized (line 12). The technique used
to prioritize the configurations (line 12) is presented in
Section 6.2. These configurations define the initial list
TCS. Then, by using the distances computed while
evaluating f , the worst configuration is determined.
The worst configuration is the one which has the
lowest participation in the fitness function. In other
words, it is the last element of TCS (line 13). The next
step consists of trying to replace this configuration
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Algorithm 1 Search-based Configuration Generation(m, t)

1: input: m, t . Number of configurations to generate and
execution time allowed for generating them

2: output: TCS . Test configuration suite (prioritized)
3: TCS ← []
4: S ← ∅ . Set of configurations
5: for i← 1 to m do
6: PCunpredictable ← Request to the solver . If the

solver cannot give a new configuration because it has already
iterated over all the valid configurations, reinitialize it

7: S ← S ∪ {PCunpredictable}
8: end for
9: s← size(TCS)

10: while the elapsed time is lower than t do
11: fitness← f(TCS[1), ..., TCS[s])
12: TCS ← Global Max. Dist. Prioritization(S)
13: PCworst ← TCS[s] . PCworst verifies

min
(∑s

k=1 d(PCworst, TCS[k]
)

14: repeat
15: PCunpredictable ← Request to the solver . If the

solver cannot give a new configuration because it has already
iterated over all the valid configurations, reinitialize it

16: until PCunpredictable 6= PCworst
17: TCS.set(s, PCunpredictable) . The worst configuration is

replaced
18: newFitness← f(TCS[1], ..., TCS[s])
19: if newFitness ≤ fitness then
20: TCS.set(s, PCworst) . The worst configuration is taken

back
21: end if
22: end while
23: return TCS

by an unpredictable one got from the solver (lines 14
to 16). This replacement is conserved if and only if
the fitness of the resulting list increases (lines 17 to
20). This whole process is repeated during a certain
allowed amount of time t.

This technique can be considered as a genetic algo-
rithm without crossover. It is thus an adaptation of the
(1+1) Evolutionary Algorithm [50]. Indeed, instead of
removing a random configuration, the worst ranked
configuration, in terms of fitness, is removed.

Combining constraints with search-based methods
forms a suitable approach for the configuration gen-
eration. Its use differs from both search-based [53]
and similarity-based techniques [48]. Indeed, without
constraint solving, generating valid configurations is
almost impossible for large scale FMs. This problem is
shortened by combining similarity, constraint solving
and search-based approaches.

6 PRODUCT CONFIGURATION PRIORITIZA-
TION

In this section, the similarity distances are used for
prioritizing a given set of product configurations, no
matter the way they have been obtained. The aim of
this process is to order a set S of m configurations
S = {PC1, ..., PCm} according to their ability to cover
t-sets. Therefore, by testing k ≤ m configurations, the
greatest possible level of coverage, for any number of
k configurations and any t value, is achieved. More
formally [55]:

Given: a set of configurations, S, the set of all the
permutations of S, PCS and a function f from PCS

to the real numbers, f : PCS −→ R+.
Problem: finding S′ ∈ PCS such as (∀S′′ ∈

PCS |S′′ 6= S′)[f(S′) ≥ f(S′′)]. In this context, f is the
t-wise coverage. To this end, two algorithms named
Local Maximum Distance and Global Maximum Distance
are introduced. They produce a list TCS, which is the
result of the prioritization. They enable prioritizing
efficiently the configurations with respect to t-wise.

6.1 Local Maximum Distance Prioritization
Algorithm 2 formalizes this procedure. This approach
iterates over the initial unordered set of configurations
S, looking for the two configurations sharing the
maximum distance (line 6). These two configurations
are then added to the resulting list TCS and removed
from S (lines 7 to 9). This process is repeated until all
the configurations from S are added to TCS.

6.2 Global Maximum Distance Prioritization
This approach is formally described in Algorithm
3. Informally, this approach selects at each step the
configuration which is the most distant to all the
configurations already selected during the previous
steps. To this end, the two configurations belonging
to S and sharing the highest distance are first added
to TCS (lines 4 to 6). These two configurations are
then removed from S (line 7). The next step consists
in adding to TCS and removing from S the con-
figuration sharing the maximum distance to all the
configurations already added to TCS (lines 8 to 13):
for each configuration of S, we sum the individual
distances with the other configurations of TCS, thus
giving a value for the set. Then the maximum is
obtained by comparing these set values (line 10). This
process is repeated until S is empty.

This technique allows having more diversity than
the Local Maximum Distance one for k < m configura-
tions, but it is computationally more expensive. This
is due to the need of calculating all the distances from
one configuration to the others (Alg. 3, line 10).

Algorithm 2 Local Maximum Distance(S)
1: input: S = {PC1, ..., PCm} . Unordered set of configurations
2: output: TCS . Prioritized test configuration suite
3: TCS ← []
4: while #S > 0 do
5: if #S > 1 then
6: Select PCi, PCj ∈ S where max (d(PCi, PCj)) . Take

the first one in case of equality
7: TCS.add(PCi)
8: TCS.add(PCj)
9: S ← S \ {PCi, PCj}

10: else . S contains only one element
11: TCS.add(PCi) where PCi ∈ S
12: S ← ∅
13: end if
14: end while
15: return TCS
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Algorithm 3 Global Maximum Distance(S)
1: input: S = {PC1, ..., PCm} . Unordered set of configurations
2: output: TCS . Prioritized test configuration suite
3: TCS ← []
4: Select PCi, PCj ∈ S where max (d(PCi, PCj)) . Take the

first ones in case of equality
5: TCS.add(PCi)
6: TCS.add(PCj)
7: S ← S \ {PCi, PCj}
8: while #S > 0 do
9: s← size(TCS)

10: Select PCi ∈ S where max
(∑s

j=1 d(PCi, TCS[j]
)

.

Take the first one in case of equality
11: TCS.add(PCi)
12: S ← S \ {PCi}
13: end while
14: return TCS

7 EMPIRICAL STUDY

In this section, the configuration generation and pri-
oritization approaches are assessed. In configuration
generation, we aim at selecting configurations pro-
viding the highest coverage. In configuration prior-
itization, the emphasis is on maximizing the overall
t-wise coverage each time a configuration is tested.
The objective of this case study is to answer the four
following research questions:
• [RQ1] How does our configuration generation ap-

proach compares with state of the art tools?
• [RQ2] How effective is the configuration generation

approach when applied on both moderate and large
size feature models?

• [RQ3] How do our prioritization approaches compare
with an interaction-based technique?

• [RQ4] How effective are the configuration prioritiza-
tion approaches when applied on both moderate and
large size feature models?

Answering the first research question amounts
to evaluating how our configuration generation ap-
proach performs compared to state of the art tech-
niques. We expect our approach to provide a t-wise
coverage close to the one achieved by the examined
tools. The second research question aims at evaluating

the configuration generation approach on both mod-
erate and large FMs. Unlike existing tools, we expect
our approach to scale up to t = 6 even on large FMs,
by providing a partial but scalable t-wise coverage.
We also expect it to provide higher coverage than
a random technique for selecting the configurations.
The third research questions amounts to evaluating
how our configuration prioritization approaches per-
form compared to a state of the art technique based
on interaction coverage. We expect our approach to
provide a t-wise coverage close to the state of the art
with a considerably lower execution time required as
it bypasses the t-wise computation. Finally, the fourth
research question aims at evaluating how our two
prioritization techniques perform on both moderate
and large FMs, by comparing them with a random
approach. We expect our prioritization approaches to
perform better than a random one.

Empirical results regarding the stated research
questions are presented and analyzed. The conducted
experiments2 are performed on a Quad Core@2.40
GHz with 24GB of RAM. The study employs 114
FMs3 divided into two categories. The first 110 FMs
are small to medium size (with a number of features
lower or equal to 1000); they are referred to as the
moderate size FMs. A second subset is composed of 4
FMs of large size; they are referred to as the large FMs.

Regarding the moderate size FMs, 10 of them are
real and 100 are artificially generated. The real FMs
are taken from [24], [54] while the artificial ones
are produced with the Software Product Line Online
Tools (SPLOT) FM generator [54]. All involved FMs
are consistent (i.e., the constraints are possible to
fulfill). Details about the moderate FMs are recorded
in Table 1. For each FM, it presents the number of
features, the number of valid configurations4 and the
number of valid 2-sets.

2. The implemented approaches and the data used for the exper-
iments are available at http://research.henard.net/SPL/.

3. Handled via the SPLAR [54] and the SAT solver Sat4j [47].
4. Computed via a Binary Decision Diagram.

TABLE 1
The 110 moderate size feature models involved in the empirical study. The number of features, constraints,

configurations and 2-sets of the generated models are average values.
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#Features 11 24 32 41 52 60 71 88 94 172 15 50 100 200 500

#Constraints 22 35 54 201 119 82 99 151 191 310 31.65 94.7 195.6 395.7 983.2

#Valid configurations (≈) 14 18,176 73,728 6,912 331,776 3.87E9 4.5E13 1.65E13 2.32E7 1.14E27 209.55 1.02E8 8.56E15 3.19E20 8.43E80

#Valid 2-sets 151 833 1,448 2,592 3,746 6,189 7,528 13,139 11,075 42,638 300.65 4,103.2 17,367.8 71,760.15 4.67E5

http://research.henard.net/SPL/
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TABLE 2
The 4 large size feature models involved in the empirical study.

eCos 3.0 i386pc [24] FreeBSD kernel 8.0.0 [24] Generated FM Linux kernel 2.6.28.6 [24]
#Features 1,244 1,396 5,000 6,888

#Constraints 3,146 62,183 9,419 343,944

#Valid 2-sets 2,910,229 3,765,597 49,080,075 92,540,449

#Valid 3-sets (≈) 2.25E9 3.44E9 1.61E11 4.19E11

#Valid 4-sets (≈) 1.27E12 2.34E12 3.97E14 1.50E15

#Valid 5-sets (≈) 5.79E14 1.26E15 7.70E17 3.85E18

#Valid 6-sets (≈) 2.22E17 5.76E17 1.26E21 8.71E21

Regarding the large FMs, three are real, taken from
[24] and one is artificially created. The details of these
FMs are recorded in Table 2. It presents, for each FM,
the number of features and the number of valid t-sets.
The number of configurations cannot be computed in
a reasonable amount of time (in days) due to the high
number of constraints and features of these FMs.

For the needs of the experiment, the t-sets of the
FMs for t ≥ 3 are computed using the following
procedure. First, a list of all the features of the FM is
recovered. Then, all the possible t-sets are enumerated
and provided to the solver to determine whether they
are valid or not. For the large FMs, computing the
exact number of valid t-sets is a non-trivial and time
consuming task. For instance, it took around 3 days
to a 10-threaded program running on our system to
compute the 92,540,449 valid 2-sets of the Linux FM.
As t increases, the number of valid t-sets explodes. As
a result, we estimate the number of t-sets. To this end,
1,000 t-wise sets are randomly sampled and checked.
Since the total number of possible t-sets of an FM is
known and equal to

(
2n
t

)
for n features (2n because

each feature is either selected or unselected), the valid
t-sets can be directly estimated (law of large numbers).
For example, if 800 t-sets out of 1,000 sampled are
valid, the number of estimated valid t-sets is equal to
800∗(2nt )
1,000 .

7.1 Comparison with State of the Art Tools (RQ1)
In this section, we compare our approach with three
state of the art tools: ACTS [56], CASA [57] and
SPLCAT [18]. The latter is the most recent covering
array tool available and performs for t = 2 and t = 3.
The two others perform for t = 2 to 6.

7.1.1 Experiment Setup
We compare our generation approach with the three
tools. We also consider CASA where the desired
number of configurations can be specified. This ap-
proach is denoted as CASA-n. We employ the 10
real FMs of moderate size. For each FM and for
t = 2, ..., 6, the three approaches are executed. Then, if
the result is available, our approach and CASA-n are
performed with the parameters corresponding to the
minimum number of configurations provided by the

other tehcniques. Similarly, the running time of our
approach was set to the minimum one. CASA, CASA-
n and our search-based approach are performed 10
times independently as they are heuristic techniques
providing different solutions at each execution.

7.1.2 Experiment Results
The results of the comparison are recorded in Table 3.
When the time required by an approach exceed three
days (259,200 seconds), we consider its results as Not
Available (N/A). Along the same lines, when none
of the three tools can perform for a specific t value
in less than three days, the result for this t value is
not presented. Following the results of Table 3, it is
clear that SPLCAT is much faster than the two other
tools on almost all the FMs. In some cases, it is more
than 10,000 times faster. Only CASA-n can compete in
terms of time on some FMs such as the Cellphone one.
As a result, our approach has been most of the time
executed with the time used by SPLCAT or CASA-n.

Regarding the size of generated test configuration
suites, the smaller ones are shared between CASA
and SPLCAT. Our approach and CASA-n have been
performed using the smallest size. Regarding the cov-
erage achieved by our approach, one can see that it is
close to 100% for all the subjected FMs.

Finally, one can observe that as the complexity
of the FM increases, the tools require more time to
generate the configurations and thus do not scale well
to large FMs. In addition, none of the tools were
able to perform for t values above 3 on most of the
employed FMs, even though the complexity of these
FMs is quite low.

7.1.3 RQ1 Summary
The experiments conducted for the comparison with
state of the art tools bring out the following conclu-
sions. First, our configuration generation approach
can compete with existing ones. Indeed, our ap-
proach provides a partial t-wise coverage, with values
very close to 100% for all the FMs studied. This was
achieved using the minimum amount of time required
among the three tools. Second, existing tools have
difficulties to scale to t values greater than 3, even
on relatively small FMs. Indeed, our experiments
performed on moderate size FMs demonstrated that
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TABLE 3
Comparison of the configurations’ generation with ACTS, CASA and SPLCAT on the 10 smallest FMs of the

empirical study for t = 2, ..., 6. Our search-based approach has been performed using the minimum number of
configurations and minimum time performed by the other approaches, indicated in bold. N/A indicates that the

generation time exceeded 3 days. The t values for which there is no result available are not represented.

ACTS (IPOG) CASA (avg 10 runs) CASA-n (avg 10 runs) SPLCAT Search-based (avg 10 runs)

Feature Model t-wise Configs. Time Configs. Time Configs. Time Configs. Time Configs. Time Cov.

2 9 2.1 7 0.55 7 0.05 8 0.15 7 0.05 98.37%

3 13 4.4 14 1.14 14 0.045 13 0.24 13 0.045 98.12%

Cellphone 4 14 16 14 3.79 14 0.34 N/A N/A 14 0.34 99.98%

5 14 57 14 55.15 14 0.27 N/A N/A 14 0.27 100%

6 14 399 14 6,947 14 0.45 N/A N/A 14 0.45 100%

2 13 3.3 8.66 1,28 8 0.27 10 0.24 8 0.24 99.34%

C. Strike Simple FM 3 33 70 25.33 22,16 25 2.21 38 0.8 25 0.8 99.71%

4 94 3,278 72.67 790 72 24,7 N/A N/A 72 24.7 98.77%

2 11 7 9 3.67 9 0.6 10 0.3 9 0.3 99.41%

SPL SimulES, PnP 3 32 211 26.33 122.9 26 6.49 35 1 26 1 99.32%

4 83 53,602 72 3,026 72 282.5 N/A N/A 72 282.5 99.64%

DS Sample 2 103 506 96.33 96.16 96 3,13 97 0.9 96 0.9 98.49%

3 N/A N/A 385 12,093 385 113.2 419 4.8 385 4.8 99.51%

Electronic Drum 2 35 38.4 23.67 4,826 23 4.04 27 0.6 23 0.6 99.46%

3 178 43,416 N/A N/A 134 91.22 134 2.9 134 2.9 99.91%

Smart Home v2.2 2 17 15.5 15 28 15 3.1 15 0.5 15 0.5 99.44%

3 75 3,731 55.67 5,182 55 106.7 64 3.2 55 3.2 99.80%

Video Player 2 15 26.5 9.33 56.4 9 1.5 18 0.7 9 0.7 99.75%

3 46 32,687 35.67 2,542 35 47.02 47 3.7 35 3.7 99.98%

Model Transformation 2 35 187 26.33 3,165 26 13.6 28 0.9 26 0.9 99.45%

3 N/A N/A N/A N/A 130 482.7 130 10 130 10 99.91%

Coche Ecologico 2 97 2,348 90 156.91 90 10.6 95 1.1 90 1.1 99.67%

3 N/A N/A N/A N/A 378 3,694 378 13 378 13 99.87%

Printers 2 186 148,446 180.8 718.82 180 71.8 182 2.8 180 2.8 99.75%

3 N/A N/A N/A N/A 560 N/A 560 139 560 139 99.81%

.

for 7 FMs out of 10, none of the three tools was able to
provide results within 3 days from t = 4. The 3 FMs
on which the tools worked are the smallest one, and
for two of them, results are only available up to t = 4.
Overall, the fastest tool among the three is SPLCAT.

7.2 Product Configuration Generation Assess-
ment (RQ2)
Here, we assess the ability of the proposed approaches
to cover t-sets. To this end, we evaluate our approach
on all the moderate size FMs for 2-wise and compare
it to SPLCAT. We limit to 2-wise since SPLCAT does
not scale well to 3-wise or above (at least in a rea-
sonable amount of time, in days) for the subjected
FMs. As far as we know, our search-based approach
is the only one which allows scaling to any t value,
even for large FMs. Finally, since no other technique
can serve as a basis for comparison for the large
FMs, we compare the search-based approach with
configurations selected in an unpredictable way from
the SAT solver (Section 5.2.1). In the following, this
approach will be referred to as the unpredictable one
and will also serve as a comparison basis.

7.2.1 Moderate Feature Models
Here, we compare the search-based approach with
both the unpredictable approach and SPLCAT. This
study is only based on the 2-wise coverage and con-
siders only the moderate FMs.

Experiment Setup: To enable a fair comparison,
the search-based and unpredictable approaches gen-
erate sets of configurations of the same size as those
provided by SPLCAT. The search-based approach is
allowed to run for one minute and is performed 10
times per FM. For the 100 generated FMs, the results
presented are averaged on all the FM.

Experiment Results: The results are presented in
Figure 3. SPLCAT is not represented as it always
achieves 100% of coverage. The results for the gener-
ated FMs are depicted by Figure 3a and the results
for the real FMs are represented on Figure 3b. It
appears that the proposed search-based approach,
as an approximation technique, is close to SPLCAT.
Indeed, in the best case, it is able to achieve 100% of
2-wise coverage with only 1 minute of processing time
allowed. In the worst case, 95% is achieved on both
the generated and real FMs. In addition, the search-
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based approach is much more stable than the unpre-
dictable one, which can drop down to 69% of coverage
in the worst case. Although 100% of coverage might
be desirable, the focus of our approach, as explicitly
stated in the introduction section, is the partial but
scalable t-wise coverage.

Besides, the performance of SPLCAT varies. For
FMs up to 200 features, SPLCAT requires less than
a minute. However, it takes around 6.2 minutes for
the FMs of more than 200 features, and around 159
minutes for the 1,000 features ones.

Finally, to evaluate whether the difference between
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(c) Result of the Mann-Whitney U Test between the search-
based and the unpredictable approach on the moderate size FMs
(equal hypothesis)

Fig. 3. Product configuration generation on the 110
moderate FMs for t = 2 (1 minute execution for the
search-based approach, 10 runs for each approach.
The execution time of the unpredictable approach is
few seconds.).

the search-based approach and the unpredictable one
is statistically significant, we followed the guidelines
suggested by Arcuri and Briand [58]. To this end,
we performed a Mann-Whitney U Test. It is a non-
parametric statistical hypothesis test for assessing
whether one of two samples of independent obser-
vations tends to have larger values than the other.
We obtain from this test a probability called p-value
which represents the probability that the two samples
are equal. It is conventional in statistics to consider
that the difference is not significant if the p-value is
higher than the 5% level. For each run per FM, we
computed the p-value between the two approaches. It
results in 10 p-values for each FM. Figure 3c depicts
the distribution of the p-values for the real and gener-
ated FMs. For the generated FMs, the p-values are rep-
resented all together. Since all the p-values are below
the significance level 5%, the difference between the
two approaches is considered as statistically different.

7.2.2 Large Feature Models
Scaling to large FMs is a quite difficult task, even for
2-wise. Neither SPLCAT nor the tools we studied (see
Section 7.1) are able to scale well to these sizes [9].
On the contrary, the search-based approach efficiently
deals with the t-wise combinations where no other
approach is able to do so, by producing a partial cov-
erage. Here, we evaluate the t-wise coverage ability
of the search-based and unpredictable approaches on
the large FMs for t = 2, ..., 6.

Experiment Setup: To estimate the t-wise coverage
of the product configurations, we use a process similar
as the one used to calculate the t-sets of an FM and
described in the beginning of Section 7. The sampling
process is repeated 10 times per each examined t
value (t = 2 to t = 6) with samples of size 100,000.
The search-based and unpredictable approaches are
executed on all the large FMs to produce 5 times 50
and 100 configurations, with the time restriction of 30
minutes. Another experiment involves the generation
of 1,000 configurations and the recording of the cov-
erage over the runs of the search-based approach.

Experiment Results: The results are recorded in Ta-
ble 4. This table presents the mean coverage achieved
with respect to t-wise per FM and per approach.
Additionally, it records the standard deviation of
these values. A score above 95% with respect to 2-
wise is achieved by both the approaches and for all
the studied FMs when producing 50 configurations.
With respect to 6-wise, scores of 35% to 50% are
achieved. By producing 100 configurations, higher
scores are achieved for both the approaches. It should
be mentioned, based on the standard deviation values
recorded in Table 4, that a small variation on the
achieved coverage is observed. It is a fact indicating
that the approaches are quite stable.

Generally, the search-based strategy provides a
higher coverage compared to the unpredictable ap-
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TABLE 4
T-wise coverage (%) for the large FMs with 50 and 100 configurations. The search-based approach was allowed

to run for 30 minutes. The execution time required by the unpredictable approach is few seconds.

Search-Based Unpredictable Search-Based Unpredictable

50 product configurations 100 product configurations

FM t-wise Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

2 99.04 0.10 98.12 0.34 99.60 0.07 99.43 0.17

3 94.38 0.26 92.28 0.52 97.55 0.14 96.89 0.36

eCos 4 83.40 0.44 80.92 0.53 91.44 0.23 90.41 0.49

5 67.26 0.49 65.59 0.50 80.02 0.29 79.29 0.51

6 49.98 0.45 49.43 0.45 64.96 0.29 64.90 0.48

2 98.89 0.11 97.95 0.27 99.31 0.10 99.17 0.16

3 95.67 0.16 92.77 0.44 97.89 0.12 96.70 0.30

FreeBSD 4 86.56 0.24 81.88 0.53 93.63 0.20 90.65 0.40

5 69.97 0.26 65.23 0.48 83.68 0.28 79.29 0.40

6 50.12 0.22 46.69 0.37 67.57 0.29 63.22 0.36

2 95.92 0.12 94.93 0.29 98.30 0.08 97.83 0.19

3 85.94 0.20 84.04 0.33 92.31 0.16 91.19 0.25

5000f. gen 4 70.50 0.21 68.24 0.30 80.86 0.25 79.22 0.25

5 52.89 0.18 50.87 0.25 65.39 0.25 63.65 0.25

6 36.63 0.18 35.18 0.23 48.92 0.25 47.44 0.23

2 97.74 0.16 97.03 0.23 98.74 0.09 98.46 0.15

3 93.03 0.21 91.86 0.28 96.03 0.13 95.47 0.21

Linux 4 82.67 0.24 81.25 0.27 90.28 0.18 89.48 0.22

5 65.77 0.23 64.50 0.25 79.33 0.20 78.40 0.21

6 46.48 0.18 45.63 0.20 63.08 0.21 62.25 0.23

proach, especially for high values of t. This is true
for all the t-wise coverage measures. Allowing more
time to the search-based technique should increase
the gap with the unpredictable approach since the
iterations improve the set of configurations. However,
the results are based on the selection of 50 and 100
configurations. Therefore, the maximum difference
between the two approaches lies between the cover-
age of the unpredictable selection and the maximum
possible coverage achievable with 50 or 100 configu-
rations. Achieving 100% of t-wise coverage with 50
or 100 configurations seems to be impossible for the
large FMs. It is expected that more configurations are
needed to achieve 100% of coverage.

To evaluate whether the difference between the two
approaches is statistically significant, we perform a
Mann-Whitney U Test a the same lines as explained
in Section 7.2.1. To this end, we applied the following
procedure. For each t-value, each number of configu-
rations (50 and 100) each of the 30 runs and each of the
10 t-sets sample, we evaluated the p-value resulting
from the test between the search based approach and
the unpredictable one. It results in 5× 2× 30× 10 p-
values per FM. Figure 4 presents the distribution of
these 3000 p-values per FM. The resulting p-values are
below the level of significance of 5%, fact indicating
that the two approaches are significantly different.

Table 5 records the coverage achieved by the search-
based approach each 5,000 runs repetitions for 1,000
configurations with respect to 6-wise. Here, we ob-
serve that a higher level of coverage is achieved with
more configurations. For instance, the search-based
approach achieves 90,671% of 6-wise coverage for the
Linux FM. It also shows, as it can be expected for a
search-based approach, that allowing more process-
ing time to the approach allows reaching a higher
coverage. Indeed, at each 5,000 runs, the coverage
recorded is higher than the previous one. Here, the
unpredictable approach, represented by the “0 run”,
is also the initialization stage of the search-based strat-
egy (Alg. 3, lines 5 to 10). For example, considering
the eCos FM, 94.191% of 6-wise coverage is achieved
at the initialization. After 15,000 runs, it is 95.343%,
which represents ≈ 2.475744E15 additional 6-sets cov-
ered compared to the unpredictable approach. The
number of valid t-sets is extremely high (see Table 2)
and thus, a small increase in the coverage represents a
high increase in the number of additional valid t-sets
covered. Finally, the 15,000 runs require about 10 to
20 hours of processing time per FM.

7.2.3 Fitness Function
So far, the presented results suggest that the search-
based approach is effective and able to scale to large



14

TABLE 5
6-wise coverage and fitness evolution over time for the search-based approach on the large FMs with 1,000

product configurations.

0 run (=unpred.) 5,000 runs 10,000 runs 15,000 runs
Coverage Fitness Coverage Fitness Coverage Fitness Coverage Fitness

eCos 94.191% 271,880 94.225% 286,304 94.263% 288,039 95.343% 288,818

FreeBSD 76.236% 294,184 76.395% 299,962 76.465% 300,892 76.494% 301,634

Generated FM 82.986 258,763 84.492% 263,243 84.605% 263,974 84.778% 264,362

Linux 89.411% 296,661 90.404% 298,709 90.640% 299,114 90,671% 299,363

FMs. Scalability is reached thanks to the ability of the
similarity fitness function to mimic the t-wise cover-
age. To illustrate this fact, Table 5 records the fitness
function values with respect to 6-wise coverage for
the large FMs as the search-based approach evolves. It
shows that the fitness increases with the coverage over
the runs of the approach. The same trend holds for all
the FMs and values of t considered in this study. Fig-
ure 5 illustrates the correlation between the fitness and
the t-wise coverage for the Linux FM. Therefore, the
assessment of a set of configurations can be performed
without computing any t-set, thanks to the fitness
function. Recall that computing the t-sets requires vast
computational resources (Section 5.1, Eq. 1).

7.2.4 RQ2 Summary
The configuration generation experiments emphasize
the following outcomes. First, the similarity heuristic
and the fitness function driving the approach form
an efficient guide toward the configurations selec-
tion. The search-based product configuration genera-
tion mimics the t-wise coverage, does not depend at
all on t and thus, it avoids the combinatorial explosion
due to the combinations of t features. Second, the
proposed technique is the first one, to the authors’
knowledge, which scales well to large FMs while
achieving a decent level of t-wise coverage (depend-
ing on the number of configurations desired). Finally,
in addition to be a close approximation of SPLCAT,
it is more flexible than the latter as it allows speci-
fying the processing time and the number of desired
configurations. These are characteristics conforming
to an industrial context where the testing process is
subjected to budget constraints.
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Fig. 4. Result of the Mann-Whitney U Test between
the search-based and the unpredictable approach for
t = 2...6 on the four large FMs (equal hypothesis).

7.3 Similarity-based Product Configuration Prior-
itization Assessment (RQ3 & RQ4)

This part evaluates the proposed prioritization ap-
proaches. To this end, we compare them with a priori-
tization technique based on interaction coverage from
Bryce and Memon [37]. This technique is commonly
used in CIT studies and it is based on t-wise interac-
tion coverage. Since similarity forms an alternative to
the t-wise evaluation, it is natural to compare with
it. In the remainder of this paper, we refer to this
approach as Interaction-based.

The first experiment focuses on t = 2 for the
moderate FMs, due to the limitations of SPLCAT (see
Section 7.2 and 7.2.1). The second experiment demon-
strates the ability of the similarity-based approaches
to scale to any t value for the large FMs. This second
part does not consider SPLCAT and the Interaction-
based approach [37] given their inability to scale, as
demonstrated by our results (see Section 7.3.1).

To compare the prioritization approaches, the area
under curve is evaluated. According to Do and
Rothermel [59], “the area under the curve represents
the weighted average of the percentage of faults
detected over the life of the test suite. This area is
the prioritized test suites average percentage faults
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age for the Linux kernel feature model.
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TABLE 6
Prioritization results: area under curve (scale 1:1,000).

Case I Case II Case III Case IV / 100 confs. Case IV / 500 confs. Case V / 100 confs. Case V / 500 confs.

Technique \ T-wise 2 2 2 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

Random 7.99 7.74 8.93 9.23 8.34 7.10 5.57 4.05 49.06 47.69 45.09 40.88 35.22 8.65 7.33 5.67 4.02 2.67 47.47 44.70 40.42 34.40 27.40

Local Max. Dist. 8.33 7.89 9.07 9.28 8.43 7.17 5.61 4.07 49.16 47.77 45.15 40.97 35.32 8.89 7.68 6.13 4.45 3.03 47.76 45.28 41.44 36.14 29.55

Global Max. Dist. 8.43 8.02 9.19 9.33 8.48 7.22 5.65 4.11 49.23 47.92 45.46 41.32 35.66 9.06 8.00 6.56 4.91 3.37 48.15 46.19 42.95 38.03 31.71

Interaction-based 8.43 8.03 9.20

SPLCAT 8.37

detected metric (APFD).” In our study, we measure
the interaction coverage instead of the percentage of
faults. Hence, the area under curve represents the
effectiveness of the studied approaches. This area is
the numerical approximation of the integral of the
discrete coverage curve and is computed using the
trapezoidal rule, i.e.,

∫ b

a
g(x)dx ≈ (b−a) g(a)+g(b)

2 . Thus,
for each prioritization method, if cov(x) denotes the
percentage of t-wise coverage achieved with the x-
th configuration, then the area value is given by∑99

i=1
cov(i)+cov(i+1)

2 . A higher area under curve value
expresses a more effective prioritization.

7.3.1 Moderate Feature Models
This part of the experiments compares our priori-
tization techniques to SPLCAT and the Interaction-
based approach for t = 2. SPLCAT does not provide
an independent prioritization approach as we do but
it tries to cover the maximum of 2-sets each time a
configuration is added, effectively implementing the
greedy heuristic for prioritization [55]. The resulting
configurations can thus be considered as ordered for
covering faster the highest amount of 2-sets.

Experiment Setup: For each moderate FMs, three
different sets of configurations are used to apply the
prioritization techniques. The first set is the set of con-
figurations produced by SPLCAT (Case I). The second
one is a set of n configurations, where n = #features

2 ,
selected with the unpredictable method (Case II).
Finally, the last set is composed of the configura-
tions generated by SPLCAT plus the same amount of
configurations selected by the unpredictable method
(Case III). Using these different sets allows ensuring
that the prioritization approaches are relevant what-
ever the nature of the configurations.

All these sets of configurations are randomized
before executing the prioritization techniques. This
practice ensures that our approaches are independent
of the original order. On each of the three cases and for
each FM, a random prioritization is averaged 10 times.
Cases II and III are independently repeated 10 times
to avoid any bias from the initial set of configurations.
For each approach and each independent repetition,
the execution time is recorded.

Experiment Results: Table 6 presents the area under

curve for each case and technique. Recall that a higher
surface value indicates a better prioritization. With
respect to Table 6 and focusing on Case I, we observe
the following ordering: Random < Local Maximum
Distance < SPLCAT < Global Maximum Distance
≈ Interaction-based. For Case II and Case III, the
order Random < Local Maximum Distance < Global
Maximum Distance < Interaction-based is observed.
However, the Global Maximum Distance approach
performs almost equally as the Interaction-based one
(difference of 0.01 in the area under curve). It shows
the ability of the similarity heuristic to mimic the t-
wise coverage. In addition, it also performs better than
the Random and Local Maximum Distance.

Figure 6 illustrates this behavior. For each case and
category of FM (real and generated), the results are av-
eraged on all the FMs of the category by normalizing
the number of configurations selected from 0 to 100%.
For instance, with respect to Case I and the generated
FMs (Figure 6a), the Global Maximum Distance pri-
oritization approach enables covering more than 90%
of the 2-set with only 30% of the configurations. On
the contrary, the random prioritization needs around
50% of the configurations. For Case II and Case III, the
same trends are observed. These results emphasize
that the prioritization techniques are either able to
perform similarly (Local Maximum Distance) or better
(Global Maximum Distance) as both the SPLCAT and
the interaction-based approach.

Regarding the execution time, consider Figure 7. It
shows the average execution time for the considered
prioritization approaches on the real FMs (Figure 7a)
and on the generated FMs (Figure 7b). SPLCAT is
not considered as it is a configuration generation
approach. From these figures, it is clear that the
Interaction-based technique has difficulties to scale.
This is due to the expensive computation of the t-wise
interactions (see Section 5.1, Equation 1). For instance,
consider the generated FMs (Figure 7a). For models of
200 features, it requires around 50,000 milliseconds.
For FMs of 500 features, the execution time increases
to more than 106 milliseconds.

On the contrary, the Local and Global Maximum
Distance approaches are significantly less impacted
by the complexity of the FM. Finally, Table 7 shows
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(b) Case I: SPLCAT configs. / Real FMs
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(c) Case II: unpredictable configs. / Generated FMs
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(d) Case II: unpredictable configs. / Real FMs
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(e) Case III: SPLCAT + unpredictable configs. / Generated FMs
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(f) Case III: SPLCAT + unpredictable configs. / Real FMs

Fig. 6. Prioritization on the moderate size FMs (t = 2). Each approach has been performed 10 times per FM.

the execution time for the different cases. Overall, the
Global Maximum Distance approach provides a little
overhead compare to the Local Maximum Distance.
Given the fact that the Global Maximum Distance

performs similarly to the Interaction-based technique
with a considerably lower computational overhead,
its use is advisable.
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TABLE 7
Prioritization results: execution time in milliseconds.

Case I Case II Case III Case IV / 100 confs. Case IV / 500 confs. Case V / 100 confs. Case V / 500 confs.

Local Max. Dist. 241.3 263.4 288.1 1,693 45,437 1,602 46,299

Global Max. Dist. 250.1 271.2 299.4 1,764 47,310 1,698 48,267

Interaction-based 45,256 61,371 111,864

7.3.2 Large Feature Models
This part of the study assesses the Global Maximum
and Local Maximum Distance prioritizations on the
large FMs for t = 2, ..., 6. The Interaction-based ap-
proach is not considered given its difficulty to handle
moderate size FMs, as shown in the previous section.

Experiment Setup: We generate two sets of 100
and 500 configurations containing dissimilar config-
urations (Case IV) and two sets of the same sizes
containing half similar and dissimilar configurations
(Case V). We choose these two kinds of sets of
configurations since the prioritization approaches are
similarity-driven and can thus be influenced by the
nature of the used sets. Indeed, applying these ap-
proaches on sets containing dissimilar configurations
can be less effective than applying them on sets
containing similar configurations. We randomize each
set of configurations and execute the Local Maximum
Distance and Global Maximum Distance prioritiza-
tions on each of them. We also produce 10 random
orderings to compare with our approaches. This prac-
tice shows that the prioritization techniques are not
affected by random orders.

Experiment Results: As for the results presented
in Section 7.3.1, we evaluate the area under curve.
The results are recorded in Table 6, Cases IV and V.
Random is averaged on 10 runs for each value of t.
The presented values are averaged on the 4 large FMs.

We observe the following ordering for both Case IV
and Case V: Random < Local Maximum Distance <
Global Maximum Distance. Thus, the prioritizations
approaches are relevant for finding the dissimilarities
in the sets containing both similar and dissimilar
configurations. The Global Maximum Distance prior-
itization tends to be the most relevant approach.

As expected, when configurations are already dis-
similar (Case IV), the gain is lesser than when the set
of configurations is any (Case V). Additionally, Figure
8 presents the t-wise coverage difference between
the Global Maximum Distance prioritization and the
random ordering for 500 configurations, averaged on
the 4 FMs. For Case IV (Figure 8a) and t = 4, 3% of
difference is observed with 30 configurations selected.
For Case V (Figure 8b), 14% of difference is observed
with 100 configurations for t = 6.

7.3.3 RQ3 & RQ4 Summary
The experiments conducted for the prioritization
bring out the following conclusions. First, the
Global Maximum Distance performs similarly to
the Interaction-based approach. However, the Global
Maximum Distance approach is significantly faster
and less sensitive to the complexity of the FM than
the Interaction-based one. Thus, it forms a scalable
approach for prioritizing product configurations. Sec-
ond, the most relevant configurations contributing

0

200000

400000

600000

800000

1e+06

1.2e+06

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 ti
m

e 
in

 m
ill

is
ec

on
ds

Number of features

Prioritization
Global Max. Distance 

Local Max. Distance
Interaction-based

(a) Generated feature models (Case I, II, III)

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 ti
m

e 
in

 m
ill

is
ec

on
ds

Number of features

Prioritization
Global Max. Distance 

Local Max. Distance
Interaction-based

(b) Real feature models (Case I, II, III)

Fig. 7. Execution time for the prioritization on the moderate size feature models (t = 2). Each approach has
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18

to t-wise coverage are the most dissimilar ones.
This is enabled by the similarity heuristic. Finally,
the proposed prioritization approaches are able to
prioritize any set of configurations, by looking for the
dissimilarities. This is performed without computing
any t-sets and regardless of the value of t.

8 DISCUSSION

This section first discusses the interaction fault de-
tection ability of test configuration suites. Then, it
presents practical implications and further applica-
tions of our approaches. Finally, the limitations of
our techniques and the threats to the validity of the
conducted experiments are highlighted.

8.1 Detecting T-wise Interaction Faults
Failure due to interactions are difficult to detect as
they occur when several features are involved to-
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Fig. 8. Global Maximum Distance VS Random prioriti-
zation on the four large feature models.

gether. Generally, each feature can be tested inde-
pendently, e.g., using unit testing. Highlighting t-
wise faults is more difficult. Arcuri and Briand [11]
established the lower bound for the probability of a
random test suite to trigger at least one failure related
to t-wise. However, this bound is only valid in the
context of CIT without constraints.

In our context, features are constrained and the
above-mentioned results cannot be applied directly.
Providing theoretical results, such as those of Arcuri
and Briand [11] is not possible in the presence of
constraints. This is due to the fact that constraints
are specific to each FM. Therefore, in our work, we
turn to empirical analysis. In order to complete the
experiments with reasonable resources, we restrict the
experiments to t-wise interaction faults for t = 2 to 6.
If we consider that all the t-wise interactions of the
SPL have the same probability to trigger a fault and
that concrete test cases derived from a selected prod-
uct configuration expose all the feature interaction
faults that are present in this configuration, then the
probability that a fault is found by a test configuration
suite can be represented by the t-wise coverage [11].
This probability is calculated by summing the t-wise
coverage for all the examined t values (t = 2, ..., 6).

Figure 9 depicts the probability of finding faults
for the large FMs for all the t-values in the con-
text of prioritization. This probability is obtained by
summing the probabilities for all the FMs. Compared
to a random ordering, a difference of about 15% in
the probability to find a fault can be observed with
around 100 product configurations. It means that with
the first 100 configurations proposed by our approach,
we reach a probability of finding a fault equal to 57%
whereas a random ordering would need more than
200 configurations to reach the same probability.

Regarding the configuration generation, Table 8
presents the estimation of the fault detection rate
achieved by the search-based and the unpredictable
approaches on the 4 large FMs, for t = 2, ..., 6. For
50 configurations, the search-based approach yields
an estimated interaction fault detection rate of 76.86%
and the unpredictable one a rate of 74.63%. Thus, an
average difference of more than 2% is observed be-
tween the two techniques with only 50 configurations.

8.2 Practical Implications

While using existing tools such as SPLCAT, we re-
alized that existing approaches which implement a
covering array technique already perform a priori-
tization with respect to t-wise interactions. This is
due to the construction of these techniques which
try to cover the maximum amount of t-sets with
each new configuration. As a result, the outcome of
our prioritization techniques on small or moderate
size FMs is limited, as existing approaches already
perform a prioritization. However, even in this case,
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our techniques perform better than the existing ones.
The benefit of our techniques is more evident in the
context of large SPLs, where other tools cannot work.
In addition, our prioritization methods can operate on
any set of configurations. They can therefore be used
in combination with existing approaches and tools.

Our generation approach requires an FM. It can
work on any FM, regardless of its complexity. As
a result, the system abstracted by the FM has no
impact on our approach. When the available model
is not an FM, and if the model can be translated
to a boolean one, then our approach can also be
applied. Indeed, it is still possible in that case to
employ transformation rules, such as [28] in order
to transform the model to a boolean one. If such a
transformation is not available, our technique can be
combined with a Satisfiability Modulo Theory (SMT)
solver to handle non-boolean models. Finally, our
technique does not rely on code or existing test cases.
Such artifacts may not be available at an early stage
of the system development or hard to analyze directly
due to their size and complexity. As a result, such
cases are well suited for applying our approach.

The number of product configurations to generate
and the amount of time allowed to generate them
are parameters of our search-based approach. These
parameters aims at making the testing process more
flexible. Indeed, existing approaches [9] generate all
the configurations necessary to cover all the t-sets. The
problem is that they may take a large amount of time
to perform this full coverage and they may generate
too many configurations. To the authors’ knowledge,
our approach bestows a unique feature which aims
at maximizing the t-wise coverage for the specified
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Fig. 9. Estimation of the interaction fault detection rate
of the Global Maximum Distance and Random priori-
tizations for all the t-values. It uses the configurations
resulting from the prioritization experiment on the four
large feature models (Case V).

TABLE 8
Estimation of the interaction fault detection rate on the

4 large feature models for t = 2, ..., 6 for the
search-based (SB) and unpredictable (U) approaches

50 confs. 100 confs.
SB U SB U

eCos 78.81% 77.28% 86.70% 86.19%
FreeBSD 80.24% 76.90% 88.41% 85.80%

5000f. gen. 71.26% 68.31% 71.75% 71.26%
Linux 77.14% 76.05% 85.49% 84.81%

avg 76.8625% 74.635% 83.0875% 82.015%

amount of configurations, given the specified amount
of time. As a result, it gives a partial coverage but
also makes the testing process more practical for large
SPLs. In any cases, for large FMs, it is not possible to
evaluate all the t-wise interactions.

Besides, our approach scales to large FMs. While
using constraint solvers, we observed that solving
constraints is a time consuming task and thus an
obstacle to scalability. In addition, calculating the t-
wise coverage is difficult for large FMs since all the
t-sets of the configurations have to be considered.
Our generation approach uses a SAT solver only for
generating configurations satisfying the constraints of
the FM. The prioritization and generation techniques
are driven by a similarity heuristic which mimics
t-wise coverage and does not require to compute
any combination of feature. As a consequence, one
strength of the proposed approach is that it maximizes
the coverage for any t value. On the contrary, exist-
ing approaches focus only on a given t-value. This
results in maximizing the fault detection up to t while
leaving aside the higher strengths of t [11]. Thus, our
approach has a clear advantage over existing ones.

8.3 Further Applications

The propositions made in this paper have potential
application to other possible issues related to CIT or
SPL testing. For example, considering the evolution
of an SPL over time [44], our approach can also be
relevant. In that context, different versions of the FM
exist (the original and the evolved FMs). Each version
represent a model of the SPL. Therefore, taking into
account the evolution over time implies modifying the
way the distances are computed. The aim is to focus
on the features that have changed or that have been
added to the evolved version of the SPL. Thus, by
defining a distance measure which ignores the un-
changed features from the calculation, the proposed
approach is generate and prioritize configurations
over the interactions of the modified or new features.

Along the same lines, other approaches [19], [60],
[61] attribute different importance to t-wise combina-
tions. This practice can reduce the complexity of the
problem since only the most important combinations
are considered. However, our approach also targets
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on early development stage where no code or system
is available. Furthermore, even in the case where the
system code is available, these approaches face the
usual pitfalls of dynamic analysis. Thus, scalability
issues, problems of handling system calls or memory
constructs restrict the application of such approaches
on large scale systems. In addition, our approach is
somehow orthogonal to these techniques due to the
generation and prioritization. In order to take into
account the relative importance of feature combina-
tions, there is a need to assign weights representing
the importance of the interactions. These weights can
be assigned based on the use of dynamic approaches.
Our approach can handle weight by defining an ap-
propriate distance measure. In this work, we consider
all the features and features combination as equal.
The importance of features or combination of features
is a worth studying problem which has been left
open for further research, adding one objective to be
considered by the prioritization algorithm [62].

8.4 Limitations
The first limitation of our configuration generation
approach is that it does not provide a full cover-
age. Indeed, we perform a partial but scalable t-
wise coverage. In other words, we try to maximize
the t-wise coverage achieved for a given number of
product configurations, within the specified amount
of time provided. This is not a problem as evaluating
all the t-wise interaction is difficult for very large
SPLs. In addition, in an industrial context, the testing
budget is typically limited, preventing all the products
of the SPL from being tested. Thus, a smaller to
100% coverage is going to be achieved. The second
limitation is that our approach works only with FMs.
It may also work with other models that can be
translated to boolean ones. Alternatively, an SMT or
a CSP solver could be used to satisfy non-boolean
constraints. Finally, we depend on the scalability of
constraint solvers and the overhead they induce. We
believe that this is not important as we did not find
any concrete FM raising such an issue. We acknowl-
edge this as a potential limitation for the cases of FMs
significantly larger than the studied ones.

8.5 Threats to Validity
Although we used various FMs, there is an external
validity threat. Indeed, we cannot ensure that the
proposed strategies will provide similar results on
different sets of FMs (larger or more constrained). To
reduce this threat, we used a relatively large set of 114
FMs of different sizes, combined real and generated
FMs to cope with a variety of situations. Additionally,
potential errors in our implementation could affect the
presented results and lead to internal validity threats.
To diminish these threats, we divided the implemen-
tation into sub stages to have a better control on each

of the steps composing the proposed approaches. The
comparison with existing tools also gave us confi-
dence in our implementation. In addition, in order
to enable reproducibility and to reduce the above-
mentioned threats, we made our implementation and
the experiment data publicly available. Besides that,
to prevent as possible a construct validity threat, we
sampled each technique on 10 runs.

Another threat concerns the identification of faulty
interactions by the actual testing of a concrete product.
It is assumed that testing a software product ensures
revealing the interaction faults that it contains. While
this holds, it is a common assumption made by all
the CIT approaches. CIT techniques require to cover
at least once each t-wise interaction, supposing that
executing the test configuration suite will effectively
reveal the faulty interactions. Additionally, this as-
sumption is in line with the structural testing (code
coverage) approaches. Branch coverage forms a test-
ing requirement in many software standards, e.g., [63].
However, covering branches or statements assumes
that executing parts of the code will trigger the faults
that they contain [64]. Besides, it should be clear that
to reveal a faulty interaction, a test should exercise
this interaction. Suppose that a test configuration suite
covers x% more t-wise interactions than another one.
Then, it is guaranteed that the other test configuration
suite will miss all the faults contained in these x in-
teractions. Finally, recent studies [6], [16] demonstrate
the correlation between t-wise and fault detection.

9 CONCLUSION

T-wise testing aims at finding faulty feature inter-
actions. However, full t-wise testing is hard and
scalability is an issue: no approach is able to deal
with high values of t (≥ 3) for large SPL FMs in a
reasonable amount of time (in days). Moreover, there
is no suitable technique supporting the generation of
a fixed number of product configurations, according
to a limited budget. This paper tackled these problems
by proposing (a) approaches to prioritize product
configurations while maximizing the t-wise coverage
and (b) a scalable and flexible search-based technique
to generate configurations under budget and time
constraints for large FMs.

Our experiments, performed on 100 artificially gen-
erated and 14 real feature models from t = 2 to
t = 6 show the feasibility and the scalability of our
solutions. We managed to deal with the largest feature
models available, such as the Linux kernel (≈ 7,000
features, ≈ 200,000 constraints and ≈ 8.71E21 valid 6-
sets) with up to 90.671% of 6-wise coverage achieved
with 1,000 configurations. Thus, by enabling a par-
tial but scalable t-wise coverage and by introducing
flexibility in the testing process, our approaches pave
the way to a potentially t-unrestricted combinatorial
interaction testing.
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